JP2009059499A - Manufacturing method of dye-sensitized solar cell - Google Patents

Manufacturing method of dye-sensitized solar cell Download PDF

Info

Publication number
JP2009059499A
JP2009059499A JP2007223496A JP2007223496A JP2009059499A JP 2009059499 A JP2009059499 A JP 2009059499A JP 2007223496 A JP2007223496 A JP 2007223496A JP 2007223496 A JP2007223496 A JP 2007223496A JP 2009059499 A JP2009059499 A JP 2009059499A
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
electrode plate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007223496A
Other languages
Japanese (ja)
Inventor
Yasushi Ono
恭史 小野
Takeshi Shinohara
猛 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EINTESLA Inc
Niigata University NUC
Original Assignee
EINTESLA Inc
Niigata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EINTESLA Inc, Niigata University NUC filed Critical EINTESLA Inc
Priority to JP2007223496A priority Critical patent/JP2009059499A/en
Publication of JP2009059499A publication Critical patent/JP2009059499A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a new dye-sensitized solar cell in which a dye-sensitized solar cell having flexibility using a thermoplastic resin for a transparent electrode plate can be manufactured with a small number of processes and high productivity by eliminating a heating calcination process. <P>SOLUTION: The manufacturing method is provided with a lamination film formation process to form simultaneously a lamination film consisting of a semiconductor film 5 and a conductive polymer film 6 on a surface of an electrode plate 4 by carrying out electrolytic polymerization by impressing voltage between an electrode plate 4 and an organic layer 3 while pulling up the electrode plate 4 from a liquid layer 1 in both end direction of the electrode plate 4 and passing through a water layer 2 and an organic layer 3 in the order, and a counter electrode formation process to form a counter electrode by adhering closely to the surface of the conductive polymer film 6 formed in the lamination film formation process. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、色素増感型太陽電池の製造方法に関する。   The present invention relates to a method for producing a dye-sensitized solar cell.

1991年にグレッツェルが提案した色素増感型太陽電池は、シリコン半導体を使わずにヨウ素溶液を介した電気化学的なセル構造を持つ。この色素増感型太陽電池は、材料が安価であることと、作製に大掛かりな設備を必要としないことから、低コストの太陽電池として多くの期待を集めている。   The dye-sensitized solar cell proposed by Gretzell in 1991 has an electrochemical cell structure through an iodine solution without using a silicon semiconductor. This dye-sensitized solar cell is attracting many expectations as a low-cost solar cell because it is inexpensive and does not require large-scale equipment for production.

しかし、従来の色素増感型太陽電池の製造方法は、以下の6工程を要することから、1〜2日間を要し、生産性が低いという問題があった。
(1)酸化チタン微粒子ペーストをドクターブレード法、スキージ法、スピンコート法、あるいはスクリーン印刷法により透明電極板に塗布する。
(2)塗布した酸化チタン微粒子ペーストを400〜500℃で透明電極板に焼き付ける。
(3)透明電極板を色素のアルコール溶液に浸し、その後、乾燥する。
(4)透明電極板に対極板を重ねる。
(5)透明電極板と対極板の隙間に電解質溶液を含浸させる。
(6)電解質溶液が漏れないように透明電極板と対極板の周囲を樹脂等により封止する。
However, since the conventional method for producing a dye-sensitized solar cell requires the following six steps, there is a problem that it takes 1-2 days and productivity is low.
(1) A titanium oxide fine particle paste is applied to a transparent electrode plate by a doctor blade method, a squeegee method, a spin coating method, or a screen printing method.
(2) The applied titanium oxide fine particle paste is baked on the transparent electrode plate at 400 to 500 ° C.
(3) The transparent electrode plate is dipped in an alcohol solution of the dye, and then dried.
(4) The counter electrode plate is stacked on the transparent electrode plate.
(5) The gap between the transparent electrode plate and the counter electrode plate is impregnated with the electrolyte solution.
(6) The periphery of the transparent electrode plate and the counter electrode plate is sealed with a resin or the like so that the electrolyte solution does not leak.

また、従来の色素増感型太陽電池の製造方法では、透明電極板上の酸化チタン膜の形成時に、酸化チタン微粒子間の電気伝導の効率化のために加熱焼成工程(上記の工程(2))が必須であり、よって透明電極板には耐熱性が要求される。この加熱焼成工程での焼成温度は400〜500℃と高いものであり、使用できる透明電極板の基板材料はガラスなどに限られていた。   In addition, in the conventional method for producing a dye-sensitized solar cell, when a titanium oxide film is formed on a transparent electrode plate, a heating and firing step (above step (2)) is performed to increase the efficiency of electrical conduction between the titanium oxide fine particles. ) Is essential, and thus the transparent electrode plate is required to have heat resistance. The firing temperature in this heating and firing step is as high as 400 to 500 ° C., and the substrate material of the transparent electrode plate that can be used is limited to glass or the like.

なお、100℃以下の低温で酸化チタン膜を形成する方法として、加圧プレス法などを用いる方法も開示されている(例えば、特許文献1参照)が、製造工程がさらに複雑となって、生産性は決して良いものとはいえなかった。
特開2005−108807号公報
In addition, as a method for forming a titanium oxide film at a low temperature of 100 ° C. or lower, a method using a pressure press method or the like is also disclosed (for example, refer to Patent Document 1). Sex was never good.
JP 2005-108807 A

加熱焼成工程を省略できれば、少ない工程でより簡便に色素増感型太陽電池が製造できるだけでなく、耐熱性の低い透明電極板を使用できるようになり、その結果、透明電極板に熱可塑性樹脂を使用した可撓性を有する色素増感型太陽電池の製造も可能となる。   If the heating and baking step can be omitted, not only can a dye-sensitized solar cell be manufactured more easily with fewer steps, but also a transparent electrode plate with low heat resistance can be used, and as a result, a thermoplastic resin can be used for the transparent electrode plate. The used dye-sensitized solar cell having flexibility can also be manufactured.

そこで、本発明は、工程数が少なく生産性が高く、かつ、加熱焼成工程を省略して透明電極板に熱可塑性樹脂を使用した可撓性を有する色素増感型太陽電池を製造できる、新規の色素増感型太陽電池の製造方法を提供することを目的とする。   Therefore, the present invention has a low number of steps and high productivity, and can produce a dye-sensitized solar cell having flexibility using a thermoplastic resin as a transparent electrode plate by omitting the heating and baking step. An object of the present invention is to provide a method for producing a dye-sensitized solar cell.

本発明者らは、溶液からの基板引上げにより薄膜を形成させるディップコート法では、基板と溶液が接触する部分において、溶液に分散、溶解させた物質が基板に付着、堆積することに注目し、基板を浸漬する溶液を多層にすることにより、単工程にて積層膜の形成が可能になることを見出した。そして、溶液に粉末を分散させた場合に、粉末の粒子が配列制御されて堆積することを見出し、本発明に想到した。   In the dip coating method in which a thin film is formed by pulling up a substrate from a solution, the inventors pay attention to the fact that a substance dispersed and dissolved in the solution adheres to and deposits on the substrate at a portion where the substrate and the solution are in contact with each other. It has been found that a multilayer film can be formed in a single process by forming a multilayer solution for immersing the substrate. And when powder was disperse | distributed to the solution, it discovered that the particle | grains of powder were deposited by arrangement | sequence control and came up with this invention.

本発明の色素増感型太陽電池の製造方法は、液層と、この液層と界面を介して接し前記液層の上層に位置する増感色素を吸着した半導体粉末を分散させた水層と、この水層と界面を介して接し前記水層の上層に位置する電解重合性分子と支持電解質を含む有機層とを積層し、電極板を前記液層から前記電極板の両端方向に引き上げて前記電極板を前記水層、前記有機層の順に通過させながら、前記電極板と前記有機層との間に電圧を印加して電解重合を行うことにより、前記電極板の表面に半導体膜、導電性高分子膜からなる積層膜を同時に形成する積層膜形成工程と、この積層膜形成工程で形成された前記導電性高分子膜の表面に密着させて対極を形成する対極形成工程とを備えたことを特徴とする。   The method for producing a dye-sensitized solar cell according to the present invention includes a liquid layer, an aqueous layer in which a semiconductor powder that is in contact with the liquid layer via an interface and adsorbs a sensitizing dye that is positioned above the liquid layer is dispersed. An organic layer containing an electropolymerizable molecule and a supporting electrolyte that are in contact with the aqueous layer through the interface and located in the upper layer of the aqueous layer is laminated, and the electrode plate is pulled up from the liquid layer toward both ends of the electrode plate. While passing through the electrode plate in the order of the water layer and the organic layer, a voltage is applied between the electrode plate and the organic layer to perform electropolymerization, whereby a semiconductor film and a conductive layer are formed on the surface of the electrode plate. A laminated film forming step of simultaneously forming a laminated film made of a conductive polymer film, and a counter electrode forming step of forming a counter electrode in close contact with the surface of the conductive polymer film formed in the laminated film forming step It is characterized by that.

また、前記水層は、増感色素と半導体粉末を水で混練して得たペーストを水で希釈し界面活性剤を加えて調製されたことを特徴とする。   The aqueous layer is prepared by diluting a paste obtained by kneading a sensitizing dye and a semiconductor powder with water and adding a surfactant.

また、前記電解重合性分子は、アニリン、ジフェニルアミン、ピレン、アズレン、N−ビニルカルバゾール、ベンゼン、ビフェニル、ピロール、フラン、インドール、フェノール、フタロシアニン、エチレン、アセチレン、チオフェン又はこれらの誘導体から選ばれる少なくとも1種からなることを特徴とする。   The electropolymerizable molecule is at least one selected from aniline, diphenylamine, pyrene, azulene, N-vinylcarbazole, benzene, biphenyl, pyrrole, furan, indole, phenol, phthalocyanine, ethylene, acetylene, thiophene, or derivatives thereof. It consists of seeds.

また、前記支持電解質は、イオン電離可能な物質であることを特徴とする。
請求項1〜3のいずれか1項記載の色素増感型太陽電池の製造方法。
The supporting electrolyte is a substance capable of ionization.
The manufacturing method of the dye-sensitized solar cell of any one of Claims 1-3.

本発明の色素増感型太陽電池は、本発明の色素増感型太陽電池の製造方法によって製造されたことを特徴とする。   The dye-sensitized solar cell of the present invention is manufactured by the method for manufacturing a dye-sensitized solar cell of the present invention.

本発明の色素増感型太陽電池の製造方法によれば、電極板の表面に、半導体膜と、導電性高分子膜からなる積層膜を同時に形成することができる。したがって、従来の方法と比較して、工程数を大幅に減少させ、生産性を大幅に向上させることができる。   According to the method for producing a dye-sensitized solar cell of the present invention, a laminated film composed of a semiconductor film and a conductive polymer film can be simultaneously formed on the surface of an electrode plate. Therefore, compared with the conventional method, the number of steps can be greatly reduced, and the productivity can be greatly improved.

また、本発明の色素増感型太陽電池の製造方法によれば、半導体膜は、増感色素を吸着した半導体粉末の粒子が規則正しく配列して堆積する。したがって、従来の方法では必要とされた半導体膜の加熱焼成を行わなくとも電気的、光学的機能特性の優れた半導体膜が得られる。その結果、加熱焼成工程を省略してすべての工程を常温で行うことが可能となり、透明電極板に熱可塑性樹脂を使用した可撓性を有する色素増感型太陽電池を製造できる。また、ロール・ツー・ロール法を採用することにより、連続長尺の大面積の色素増感型太陽電池を製造できる。   In addition, according to the method for manufacturing a dye-sensitized solar cell of the present invention, the semiconductor film is deposited by regularly arranging particles of the semiconductor powder adsorbing the sensitizing dye. Therefore, a semiconductor film having excellent electrical and optical functional characteristics can be obtained without performing the heating and baking of the semiconductor film required in the conventional method. As a result, all the steps can be performed at room temperature by omitting the heating and baking step, and a flexible dye-sensitized solar cell using a thermoplastic resin for the transparent electrode plate can be manufactured. Further, by adopting the roll-to-roll method, a continuous long large-area dye-sensitized solar cell can be manufactured.

さらに、本発明の色素増感型太陽電池の製造方法によれば、増感色素を吸着した半導体粉末を用いる。したがって、従来の方法では必要とされた半導体膜の加熱焼成後に増感色素を塗布する工程も省略することができる。   Furthermore, according to the method for producing a dye-sensitized solar cell of the present invention, a semiconductor powder having adsorbed a sensitizing dye is used. Therefore, the step of applying the sensitizing dye after heating and baking the semiconductor film, which is required in the conventional method, can be omitted.

本発明の色素増感型太陽電池の製造方法は、電極板の表面に半導体膜、導電性高分子膜からなる積層膜を同時に形成する積層膜形成工程と、この積層膜形成工程で形成された導電性高分子膜の表面に密着させて対極を形成する対極形成工程とを備えている。   The method for producing a dye-sensitized solar cell of the present invention is formed by a laminated film forming step of simultaneously forming a laminated film composed of a semiconductor film and a conductive polymer film on the surface of an electrode plate, and the laminated film forming step. A counter electrode forming step of forming a counter electrode in close contact with the surface of the conductive polymer film.

以下、本発明の色素増感型太陽電池の製造方法の一実施例について図面を参照しながら説明する。   Hereinafter, an embodiment of a method for producing a dye-sensitized solar cell of the present invention will be described with reference to the drawings.

積層膜形成工程では、図1に示すように、液層1と、水層2と、有機層3とを積層した多層の溶液層を用いる。   In the laminated film forming step, as shown in FIG. 1, a multilayer solution layer in which a liquid layer 1, an aqueous layer 2, and an organic layer 3 are laminated is used.

液層1は水層2よりも比重が大きく、水層2と相溶性がないことが必要とされる。液層1には、例えば、四塩化炭素を用いることができる。   The liquid layer 1 is required to have a specific gravity greater than that of the water layer 2 and not compatible with the water layer 2. For example, carbon tetrachloride can be used for the liquid layer 1.

液層1の上層には、液層1と界面を介して接して水層2が位置しており、この水層2には、増感色素を吸着した半導体粉末が均一に分散している。   On the upper layer of the liquid layer 1, an aqueous layer 2 is located in contact with the liquid layer 1 through an interface. In this aqueous layer 2, semiconductor powder having adsorbed a sensitizing dye is uniformly dispersed.

半導体粉末としては、一般に色素増感型太陽電池の半導体膜を構成する半導体が用いられ、特定のものに限定されないが、例えば、酸化チタン粉末を用いることができる。   As the semiconductor powder, a semiconductor constituting a semiconductor film of a dye-sensitized solar cell is generally used and is not limited to a specific one. For example, titanium oxide powder can be used.

増感色素としては、一般に色素増感型太陽電池の増感色素として用いられるものが用いられ、特定のものに限定されないが、例えば、ルテニウム−ビピリジル錯体を用いることができる。   As the sensitizing dye, those generally used as a sensitizing dye of a dye-sensitized solar cell are used, and are not limited to specific ones. For example, a ruthenium-bipyridyl complex can be used.

なお、増感色素と半導体粉末を水で混練することで半導体粉末に増感色素を吸着させることができ、水層2は、増感色素と半導体粉末を水で混練して得たペーストを水で希釈することで調製することができる。このように、増感色素を半導体粉末に予備吸着させることにより、従来は必要とされていた半導体膜の加熱焼成後に増感色素を塗布する工程を省略することができる。   The sensitizing dye can be adsorbed to the semiconductor powder by kneading the sensitizing dye and the semiconductor powder with water, and the water layer 2 is prepared by mixing a paste obtained by kneading the sensitizing dye and the semiconductor powder with water. It can be prepared by diluting with. In this manner, by preliminarily adsorbing the sensitizing dye to the semiconductor powder, the step of applying the sensitizing dye after heating and baking of the semiconductor film, which has been conventionally required, can be omitted.

また、水層2に界面活性剤を加えることで、水層2と、液層1、有機層3、電極板4との間の界面が安定化し、均一な半導体膜5を容易に形成することができる。   Further, by adding a surfactant to the aqueous layer 2, the interface between the aqueous layer 2, the liquid layer 1, the organic layer 3, and the electrode plate 4 is stabilized, and a uniform semiconductor film 5 can be easily formed. Can do.

水層2の上層には、水層2と界面を介して接して有機層3が位置しており、この有機層3には、電解重合性分子と支持電解質を含まれている。有機層3は水層2よりも比重が小さく、水層2と相溶性がないことが必要とされ、有機層3の溶媒としては、電解重合性分子と支持電解質を溶解することのできる有機溶媒が用いられる。   An organic layer 3 is located on the upper layer of the water layer 2 in contact with the water layer 2 via an interface. The organic layer 3 contains an electropolymerizable molecule and a supporting electrolyte. The organic layer 3 is required to have a specific gravity smaller than that of the aqueous layer 2 and not compatible with the aqueous layer 2. As the solvent of the organic layer 3, an organic solvent capable of dissolving the electropolymerizable molecule and the supporting electrolyte is used. Is used.

電解重合性分子としては、特定のものに限定されないが、例えば、アニリン、ジフェニルアミン、ピレン、アズレン、N−ビニルカルバゾール、ベンゼン、ビフェニル、ピロール、フラン、インドール、フェノール、フタロシアニン、エチレン、アセチレン、チオフェン又はこれらの誘導体から選ばれる少なくとも1種を用いることができる。電解重合性分子は、電解重合後に導電性を有する必要があるが、電解重合性分子は導電性を有しなくともドーパントを添加することにより電解重合後に導電性を有するものを用いることができる。   Examples of the electropolymerizable molecule include, but are not limited to, aniline, diphenylamine, pyrene, azulene, N-vinylcarbazole, benzene, biphenyl, pyrrole, furan, indole, phenol, phthalocyanine, ethylene, acetylene, thiophene or At least one selected from these derivatives can be used. Although the electropolymerizable molecule needs to have conductivity after the electropolymerization, the electropolymerizable molecule may have conductivity after the electropolymerization by adding a dopant even if it does not have electroconductivity.

支持電解質としては、イオン電離可能なものが用いられ、特定のものに限定されない。特に、溶媒に対する溶解性が高く、酸化、還元を受けにくいものが好適に用いられる。また、イオン液体又はイオン液体を含んだ溶媒を用いた場合には、イオン液体が支持電解質となるため、別途、有機層3に支持電解質を添加する必要はない。   As the supporting electrolyte, those capable of ionization are used, and the supporting electrolyte is not limited to a specific one. In particular, those having high solubility in a solvent and hardly undergoing oxidation and reduction are preferably used. Further, when an ionic liquid or a solvent containing an ionic liquid is used, the ionic liquid becomes a supporting electrolyte, so that it is not necessary to add a supporting electrolyte to the organic layer 3 separately.

はじめの積層膜形成工程において、液層1に浸漬した電極板4を液層1から電極板4の両端方向に引き上げる。すなわち、電極板4の一端側から電極板4を鉛直方向に移動させる。そして、電極板4を水層2、有機層3の順に通過させながら、電極板4と有機層3との間に連続して電圧を印加して電解重合を行う。均一な積層膜を得るために電極板4の引き上げ速度は一定とし、かつ、0.5mm/s以下とするのが好ましい。このようにすることによって、電極板4の表面に半導体膜5、導電性高分子膜6からなる積層膜が同時に形成される。そして、半導体膜5を形成する半導体粉末の粒子は、規則正しく配列して堆積する。したがって、半導体膜の加熱焼成を行わなくとも電気的、光学的機能特性の優れた半導体膜が得られる。その結果、加熱焼成工程を省略して、すべての工程を30℃以下の常温で行うことが可能となり、電極板に熱可塑性樹脂を使用した可撓性を有する色素増感型太陽電池を製造できる。また、ロール・ツー・ロール法を採用することにより、連続長尺の大面積の色素増感型太陽電池を製造できる。   In the first laminated film forming step, the electrode plate 4 immersed in the liquid layer 1 is pulled up from the liquid layer 1 toward both ends of the electrode plate 4. That is, the electrode plate 4 is moved in the vertical direction from one end side of the electrode plate 4. Then, while passing the electrode plate 4 through the water layer 2 and the organic layer 3 in this order, a voltage is continuously applied between the electrode plate 4 and the organic layer 3 to perform electrolytic polymerization. In order to obtain a uniform laminated film, it is preferable that the pulling speed of the electrode plate 4 is constant and 0.5 mm / s or less. By doing so, a laminated film composed of the semiconductor film 5 and the conductive polymer film 6 is simultaneously formed on the surface of the electrode plate 4. The particles of the semiconductor powder forming the semiconductor film 5 are regularly arranged and deposited. Therefore, a semiconductor film having excellent electrical and optical functional characteristics can be obtained without heating and baking the semiconductor film. As a result, it is possible to omit the heating and baking step and perform all steps at a room temperature of 30 ° C. or lower, and a flexible dye-sensitized solar cell using a thermoplastic resin for the electrode plate can be manufactured. . Further, by adopting the roll-to-roll method, a continuous long large-area dye-sensitized solar cell can be manufactured.

なお、電極板4は、色素増感型太陽電池の光電変換効率を高めるために光透過性の高いものが好適に用いられる。本実施例では、電極板4は、透明なガラス基板4aの片面に透明電極4bを形成したものであって、透明電極4bは、例えば、インジウムスズ酸化物(ITO)などの酸化物からなる透明な薄膜から形成されている。   In addition, as the electrode plate 4, one having high light transmittance is preferably used in order to increase the photoelectric conversion efficiency of the dye-sensitized solar cell. In this embodiment, the electrode plate 4 is formed by forming a transparent electrode 4b on one surface of a transparent glass substrate 4a, and the transparent electrode 4b is made of a transparent oxide made of indium tin oxide (ITO), for example. It is formed from a thin film.

つぎの対極形成工程において、積層膜形成工程で形成された導電性高分子膜6の表面に密着させて対極7を形成する。対極7を形成する方法としては、特定の方法に限定されず、蒸着により金属膜を形成する方法などの公知の方法を用いることもできるが、本発明の色素増感型太陽電池の製造方法においては、導電性高分子膜6の表面にアルミニウム箔などの金属箔を圧着するだけで、極めて簡単に対極7を形成することができる。また、圧着で対極7を形成すれば、容易に連続長尺の色素増感型太陽電池を製造することができる。さらに、鏡面状アルミニウム箔を利用すれば、多層膜を透過してきた太陽光を反射して再度多層膜の増感色素に照射することが可能となり、太陽光の利用効率を向上させることができる。   In the next counter electrode forming step, the counter electrode 7 is formed in close contact with the surface of the conductive polymer film 6 formed in the laminated film forming step. The method of forming the counter electrode 7 is not limited to a specific method, and a known method such as a method of forming a metal film by vapor deposition can be used. In the method for producing a dye-sensitized solar cell of the present invention, The counter electrode 7 can be formed very simply by simply pressing a metal foil such as an aluminum foil onto the surface of the conductive polymer film 6. Further, if the counter electrode 7 is formed by pressure bonding, a continuous long dye-sensitized solar cell can be easily manufactured. Furthermore, if a mirror-like aluminum foil is used, it is possible to reflect sunlight that has passed through the multilayer film and to irradiate the sensitizing dye of the multilayer film again, thereby improving the utilization efficiency of sunlight.

本発明の色素増感型太陽電池の製造方法に必要な工程は、積層膜形成工程と対極形成工程の2工程である。そして、積層膜形成工程と対極形成工程に要する時間は10分程度である。したがって、従来の6工程を要する色素増感型太陽電池の製造方法が1〜2日間要していたことと比較すると、本発明の色素増感型太陽電池の製造方法によれば、飛躍的に製造に要する時間を短縮することができる。したがって、従来の方法と比較して、工程数を大幅に減少させ、生産性を大幅に向上させることができる。   The steps necessary for the method for producing the dye-sensitized solar cell of the present invention are two steps, a laminated film forming step and a counter electrode forming step. The time required for the laminated film forming step and the counter electrode forming step is about 10 minutes. Therefore, according to the method for producing a dye-sensitized solar cell of the present invention, compared with the conventional method for producing a dye-sensitized solar cell that requires 6 steps, the method for producing a dye-sensitized solar cell of the present invention is dramatically improved. The time required for manufacturing can be shortened. Therefore, compared with the conventional method, the number of steps can be greatly reduced, and the productivity can be greatly improved.

また、本発明の色素増感型太陽電池の製造方法によれば、導電性高分子膜6を利用することにより、電解質溶液を含まない完全固体型の色素増感型太陽電池を得ることができる。   In addition, according to the method for producing a dye-sensitized solar cell of the present invention, a completely solid dye-sensitized solar cell that does not contain an electrolyte solution can be obtained by using the conductive polymer film 6. .

また、本発明の色素増感型太陽電池の製造方法によれば、導電性高分子膜6は、電極板4の引上げ方向の垂直方向に導電性が特異的に向上されている。これより、従来法で見られる電解質溶液中のイオン種(ヨウ化物イオンなど)の拡散の遅滞による反応律速が緩和される。   Moreover, according to the method for producing a dye-sensitized solar cell of the present invention, the conductivity of the conductive polymer film 6 is specifically improved in the direction perpendicular to the pulling-up direction of the electrode plate 4. Thus, the reaction rate limiting due to the delay of diffusion of ionic species (iodide ions, etc.) in the electrolyte solution, which is observed in the conventional method, is alleviated.

また、本発明の色素増感型太陽電池の製造方法によれば、積層膜形成工程において、増感色素を予め半導体粉末に吸着させて水中に分散させることにより、吸着平衡に基づく最低担持量の増感色素が半導体粉末上に吸着する。これにより、電荷の再結合が抑制され、効率の向上に寄与する。   Further, according to the method for producing a dye-sensitized solar cell of the present invention, in the laminated film forming step, the sensitizing dye is previously adsorbed on the semiconductor powder and dispersed in water, so that the minimum supported amount based on the adsorption equilibrium is obtained. A sensitizing dye is adsorbed on the semiconductor powder. Thereby, recombination of electric charge is suppressed and it contributes to improvement in efficiency.

さらに、本発明の色素増感型太陽電池の製造方法によれば、電極板4を引上げることにより増感色素を吸着した半導体粉末を電極板4上に固着しており、半導体粉末間に極微小域が形成される。これにより、半導体粉末間の極微小域に光が閉じ込められて光と増感色素との相互作用が極限的に強くなる光閉じ込め効果が発現し、効率の向上に寄与する。   Furthermore, according to the method for producing a dye-sensitized solar cell of the present invention, the semiconductor powder having adsorbed the sensitizing dye is fixed on the electrode plate 4 by pulling up the electrode plate 4, and a fine amount is interposed between the semiconductor powders. A small area is formed. As a result, light is confined in a very small region between the semiconductor powders, and a light confinement effect in which the interaction between the light and the sensitizing dye becomes extremely strong is exhibited, which contributes to improvement in efficiency.

以下の実施例において、本発明の色素増感型太陽電池の製造方法について、より具体例に説明する。   In the following examples, the method for producing the dye-sensitized solar cell of the present invention will be described in more specific examples.

増感色素(ルテニウム−ビピリジル錯体:トリス(2,2’−ビピリジル)ルテニウム(II)クロライドヘキサハイドレート)1g、酸化チタン粉末(デグサジャパン株式会社製、アエロキサイドP25)1g、水5mlをアルミナ乳鉢に加えて混練させ、均一なペーストを得た。   Sensitizing dye (ruthenium-bipyridyl complex: tris (2,2′-bipyridyl) ruthenium (II) chloride hexahydrate) 1 g, titanium oxide powder (Degussa Japan Co., Ltd. Aeroxide P25) 1 g, water 5 ml in an alumina mortar In addition, the mixture was kneaded to obtain a uniform paste.

これに水45mlを加えて全量を50mlとし、60mg・dm−3の界面活性剤(大日本インキ株式会社製、メガファックF150)を加えて水層用水溶液とした。 To this, 45 ml of water was added to make the total volume 50 ml, and 60 mg · dm −3 surfactant (manufactured by Dainippon Ink Co., Ltd., MegaFac F150) was added to make an aqueous solution for water layer.

電解重合性分子(ピロール)0.5mol・dm−3と有機性の支持電解質(ブチルメチルイミダゾリウムヘキサフルオロホスフェイト)0.1mol・dm−3を有機溶剤(酢酸エチル)20mlに溶解させ、有機層用電解液とした。 An electropolymerizable molecule (pyrrole) 0.5 mol · dm −3 and an organic supporting electrolyte (butylmethylimidazolium hexafluorophosphate) 0.1 mol · dm −3 are dissolved in 20 ml of an organic solvent (ethyl acetate). It was set as the electrolyte solution for layers.

液層として四塩化炭素50mlを100mlビーカーに加え、これに、電極板として市販の透明酸化物電極(ガラス基板上にインジウムスズ酸化物透明導電体を形成させたもの、表面抵抗:10Ω、形状:20mm×40mm)を浸漬した。   As a liquid layer, 50 ml of carbon tetrachloride was added to a 100 ml beaker. To this, a commercially available transparent oxide electrode (indium tin oxide transparent conductor formed on a glass substrate, surface resistance: 10Ω, shape: 20 mm × 40 mm) was immersed.

この四塩化炭素上に水層用水溶液を滴下して厚さ5mmの水層を形成させ、さらに有機層用電解液を水層の上に滴下して厚さ5mmの有機層を形成させた。   An aqueous layer aqueous solution was dropped on the carbon tetrachloride to form a 5 mm thick aqueous layer, and an organic layer electrolyte was dropped on the aqueous layer to form a 5 mm thick organic layer.

浸漬しておいた透明酸化物電極を定速引上げ装置(株式会社アインテスラ製、ディップコーターND−0407)により0.1mm・s−1にて鉛直上方に引上げることにより、増感色素を吸着した酸化チタン粉末の電極板上への堆積を行うと同時に、電解重合性分子を含有する有機層に接触させておいた金属対極と電極板との間に電圧(電流密度:1mA/cm相当)を印加して導電性高分子膜を形成させた。これにより、増感色素を吸着した酸化チタン膜、導電性高分子膜からなる積層膜を形成した。 The soaked transparent oxide electrode was pulled vertically upward at 0.1 mm · s −1 by a constant speed pulling device (Dip Coater ND-0407, manufactured by Aintesla Co., Ltd.) to adsorb the sensitizing dye. At the same time as the deposition of the titanium oxide powder on the electrode plate, a voltage was applied between the metal counter electrode and the electrode plate that had been in contact with the organic layer containing the electropolymerizable molecule (current density: 1 mA / cm 2 equivalent). Was applied to form a conductive polymer film. Thus, a laminated film composed of a titanium oxide film adsorbing a sensitizing dye and a conductive polymer film was formed.

得られた積層膜上にアルミ箔を圧着し、さらにガラス製スライドガラスを絶縁性保護材料としてアルミ箔にあてがい、色素増感型太陽電池とした。   An aluminum foil was pressure-bonded onto the obtained laminated film, and a glass slide glass was further applied to the aluminum foil as an insulating protective material to obtain a dye-sensitized solar cell.

得られた色素増感型太陽電池に、キセノン光源を用いて光照射したところ、3mVの電圧発生が確認され、色素増感型太陽電池として機能することを確認した。   When the obtained dye-sensitized solar cell was irradiated with light using a xenon light source, voltage generation of 3 mV was confirmed, confirming that it functions as a dye-sensitized solar cell.

本発明の色素増感型太陽電池の製造方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing method of the dye-sensitized solar cell of this invention. 本発明の色素増感型太陽電池の製造方法の一実施形態によって得られた色素増感型太陽電池の断面を示す模式図である。It is a schematic diagram which shows the cross section of the dye-sensitized solar cell obtained by one Embodiment of the manufacturing method of the dye-sensitized solar cell of this invention.

符号の説明Explanation of symbols

1 液層
2 水層
3 有機層
4 電極板
5 半導体膜
6 導電性高分子膜
7 対極
DESCRIPTION OF SYMBOLS 1 Liquid layer 2 Water layer 3 Organic layer 4 Electrode plate 5 Semiconductor film 6 Conductive polymer film 7 Counter electrode

Claims (5)

液層と、この液層と界面を介して接し前記液層の上層に位置する増感色素を吸着した半導体粉末を分散させた水層と、この水層と界面を介して接し前記水層の上層に位置する電解重合性分子と支持電解質を含む有機層とを積層し、電極板を前記液層から前記電極板の両端方向に引き上げて前記電極板を前記水層、前記有機層の順に通過させながら、前記電極板と前記有機層との間に電圧を印加して電解重合を行うことにより、前記電極板の表面に半導体膜、導電性高分子膜からなる積層膜を同時に形成する積層膜形成工程と、この積層膜形成工程で形成された前記導電性高分子膜の表面に密着させて対極を形成する対極形成工程とを備えたことを特徴とする色素増感型太陽電池の製造方法。 A liquid layer, an aqueous layer in which a semiconductor powder adsorbing a sensitizing dye located in an upper layer of the liquid layer and in contact with the liquid layer is dispersed, and an aqueous layer in contact with the aqueous layer via the interface An organic layer containing an electropolymerizable molecule located in the upper layer and an organic layer containing a supporting electrolyte is laminated, and the electrode plate is pulled up from the liquid layer toward both ends of the electrode plate, and passes through the electrode plate in the order of the water layer and the organic layer. A laminated film that simultaneously forms a laminated film composed of a semiconductor film and a conductive polymer film on the surface of the electrode plate by applying a voltage between the electrode plate and the organic layer to perform electropolymerization. A method for producing a dye-sensitized solar cell, comprising: a forming step; and a counter electrode forming step of forming a counter electrode in close contact with the surface of the conductive polymer film formed in the laminated film forming step . 前記水層は、増感色素と半導体粉末を水で混練して得たペーストを水で希釈し界面活性剤を加えて調製されたことを特徴とする請求項1記載の色素増感型太陽電池の製造方法。 2. The dye-sensitized solar cell according to claim 1, wherein the aqueous layer is prepared by diluting a paste obtained by kneading a sensitizing dye and a semiconductor powder with water and adding a surfactant. Manufacturing method. 前記電解重合性分子は、アニリン、ジフェニルアミン、ピレン、アズレン、N−ビニルカルバゾール、ベンゼン、ビフェニル、ピロール、フラン、インドール、フェノール、フタロシアニン、エチレン、アセチレン、チオフェン又はこれらの誘導体から選ばれる少なくとも1種からなることを特徴とする請求項1又は2記載の色素増感型太陽電池の製造方法。 The electropolymerizable molecule is at least one selected from aniline, diphenylamine, pyrene, azulene, N-vinylcarbazole, benzene, biphenyl, pyrrole, furan, indole, phenol, phthalocyanine, ethylene, acetylene, thiophene, or derivatives thereof. The method for producing a dye-sensitized solar cell according to claim 1 or 2, wherein: 前記支持電解質は、イオン電離可能な物質であることを特徴とする請求項1〜3のいずれか1項記載の色素増感型太陽電池の製造方法。 The method for producing a dye-sensitized solar cell according to any one of claims 1 to 3, wherein the supporting electrolyte is a substance capable of ionization. 請求項1〜4のいずれか1項記載の色素増感型太陽電池の製造方法によって製造されたことを特徴とする色素増感型太陽電池。 A dye-sensitized solar cell produced by the method for producing a dye-sensitized solar cell according to any one of claims 1 to 4.
JP2007223496A 2007-08-30 2007-08-30 Manufacturing method of dye-sensitized solar cell Pending JP2009059499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223496A JP2009059499A (en) 2007-08-30 2007-08-30 Manufacturing method of dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223496A JP2009059499A (en) 2007-08-30 2007-08-30 Manufacturing method of dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2009059499A true JP2009059499A (en) 2009-03-19

Family

ID=40555072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223496A Pending JP2009059499A (en) 2007-08-30 2007-08-30 Manufacturing method of dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2009059499A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511805A (en) * 2009-11-19 2013-04-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic system and base and electronic module suitable for such an electronic system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511805A (en) * 2009-11-19 2013-04-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electronic system and base and electronic module suitable for such an electronic system

Similar Documents

Publication Publication Date Title
Zhang et al. Fabrication of double-walled carbon nanotube counter electrodes for dye-sensitized solar sells
JP6074962B2 (en) Photoelectric conversion device using perovskite compound and method for producing the same
US20070095390A1 (en) Solar cell and manufacturing method thereof
Bonomo et al. Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions
KR101297885B1 (en) Counter electrode with graphene and metal hybrid film for dye sensitized solar cell and dye sensitized solar cell comprising the same
Zhang et al. Performance of dye-sensitized solar cells with various carbon nanotube counter electrodes
TW200915641A (en) Process for producing electroconductive polymer electrode and dye-sensitized solar cell comprising the electroconductive polymer electrode
Meng et al. Quantum dot and quantum dot-dye co-sensitized solar cells containing organic thiolate–disulfide redox electrolyte
US20140174524A1 (en) Photoelectric conversion element, method for manufacturing the same, electronic apparatus, counter electrode for photoelectric conversion element, and architecture
JP6082007B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
Wang et al. Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells
JP6069987B2 (en) Method for producing photoelectric conversion element using perovskite compound
JP2004311355A (en) Manufacturing method of substrate for electrode
Woo et al. Conducting polymer/in-situ generated platinum nanoparticle nanocomposite electrodes for low-cost dye-sensitized solar cells
US10886072B2 (en) Method for producing photoelectric conversion element
JP2010108902A (en) Method of forming electromechanical device
JP2004311354A (en) Manufacturing method of substrate for electrode
JP2009059499A (en) Manufacturing method of dye-sensitized solar cell
JP2007200656A (en) Dye-sensitized solar battery and manufacturing method therefor and manufacturing device
JP5160045B2 (en) Photoelectric conversion element
JP2003151355A (en) Transparent conductive board and pigment sensitized solar battery
WO2015044881A1 (en) Catalytic transparent electrode consisting of graphene film and application on metal nanoparticles and a method for preparation and respective usages
CN105070510A (en) Flexible dye-sensitized solar cell and preparation method thereof
JP2020047839A (en) Brittle material mold, photoelectrode, dye-sensitized solar battery and manufacturing methods thereof
JP2019169658A (en) Photoelectrode, dye-sensitized solar cell, production method of the same, and dye solution for producing photoelectrode of dye-sensitized solar cell