JP2009056791A - Laminated substrate - Google Patents

Laminated substrate Download PDF

Info

Publication number
JP2009056791A
JP2009056791A JP2007298179A JP2007298179A JP2009056791A JP 2009056791 A JP2009056791 A JP 2009056791A JP 2007298179 A JP2007298179 A JP 2007298179A JP 2007298179 A JP2007298179 A JP 2007298179A JP 2009056791 A JP2009056791 A JP 2009056791A
Authority
JP
Japan
Prior art keywords
group
silicone rubber
silyl
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007298179A
Other languages
Japanese (ja)
Other versions
JP5481024B2 (en
Inventor
Kunio Mori
邦夫 森
Kazuhisa Takagi
和久 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Rubber Inc
Original Assignee
Asahi Rubber Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Rubber Inc filed Critical Asahi Rubber Inc
Priority to JP2007298179A priority Critical patent/JP5481024B2/en
Publication of JP2009056791A publication Critical patent/JP2009056791A/en
Application granted granted Critical
Publication of JP5481024B2 publication Critical patent/JP5481024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated substrate for a printed wiring board having small thermal deterioration and excellent heat resistance, and not peeled off nor cracked even if pulled or bent by surely joining a non-metal base member to a metal base member with a force far higher than before. <P>SOLUTION: This laminated substrate 10 comprises the non-metal base member 11 for joining formed by binding, with silyl-ether, an active silyl group selected from a hydro silyl-containing silyl group, a vinyl silyl-containing silyl group, an alkoxysilyl-containing silyl group, and a hydrolytic group-containing silyl group to the dehydrogenation residue of a hydroxyl group on the surface of the non-metal and the metal base member 13 for joining formed by binding, with silyl-ether, another active silyl group selected from a hydro silyl-containing silyl group, a vinyl silyl-containing silyl group, an alkoxysilyl-containing silyl group, and a hydrolytic group-containing silyl group to the dehydrogenation residue of a hydroxyl group on the surface of the non-metal covering the non-metal base member are adhered to each other by binding while holding a silicone rubber adhesive agent layer 12 having an exposed reactive group bondable to the active silyl groups of both base members. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プリント配線板に用いられる軽量で可撓性があり耐熱性の積層基板に関するものである。   The present invention relates to a lightweight, flexible and heat-resistant laminated substrate used for printed wiring boards.

携帯電話のような電子機器類は、小型軽量で高性能、多機能であることが要求されるようになっている。そのため、それに用いられる高密度実装半導体のような個々の部品の小型化・高密度化・個数の削減が求められる。   Electronic devices such as mobile phones are required to be small, light, high performance, and multifunctional. Therefore, there is a demand for downsizing, increasing the density, and reducing the number of individual parts such as high-density mounting semiconductors used in the semiconductor device.

そのような部品を配置するプリント配線板は、薄くて軽く小型で、可撓性のものが汎用されている。このプリント配線板は、配線の狭ピッチ化により高精細化したり、多層化したりして、高密度化が図られている。   A printed wiring board on which such components are arranged is thin, light, small, and flexible. This printed wiring board is designed to have a high density by increasing the definition or decreasing the number of layers by narrowing the wiring pitch.

高密度化したフレキシブルプリント配線板を製造するには、その原材料であるフレキシブル銅張積層基板のような積層基板が用いられる。このような積層基板は、フォトエッチングされた複数層の回路パターンを層間で接続した多層のものや、銅製基板の配線層とガラスエポキシ樹脂からなる絶縁層とを交互に積層した多層のものが知られている。この多層は、配線層と絶縁層とを接着剤で接着しつつ高温で加熱プレスして作製される。そのため積層基板には、高い耐熱性と、高温に影響されない優れた接着強度とが要求されている。積層基板のこれらの特性は、接着剤の性質に左右される。接着剤組成物として、従来、アクリロニトリルブタジエンゴム/エポキシ樹脂系、カルボキシ含有アクリロニトリルブタジエンゴム/エポキシ樹脂系、ビニル含有アクリロニトリルブタジエンゴム/エポキシ樹脂系、ブタジエンゴム/エポキシ樹脂系、アクリロニトリルブタジエンゴム/フェノール樹脂系及びカルボキシ含有アクリロニトリルブタジエンゴム/フェノール樹脂系の接着剤を配合したものが、用いられていた。また、特許文献1には、接着剤にアミン系の老化防止剤を配合したフレキシブル基板用接着剤組成物が開示されている。従来の接着剤組成物は、初期の接着力が優れるが、熱プレス加工を繰り返した後の接着力が不十分であった。   In order to manufacture a high-density flexible printed wiring board, a laminated substrate such as a flexible copper-clad laminated substrate, which is a raw material, is used. Such a multilayer substrate is known to be a multilayer substrate in which a plurality of photoetched circuit patterns are connected between layers, or a multilayer substrate in which wiring layers of copper substrates and insulating layers made of glass epoxy resin are alternately stacked. It has been. This multilayer is produced by hot pressing at a high temperature while adhering the wiring layer and the insulating layer with an adhesive. Therefore, the laminated substrate is required to have high heat resistance and excellent adhesive strength that is not affected by high temperature. These properties of the laminated substrate depend on the nature of the adhesive. Conventional adhesive compositions include acrylonitrile butadiene rubber / epoxy resin, carboxy-containing acrylonitrile butadiene rubber / epoxy resin, vinyl-containing acrylonitrile butadiene rubber / epoxy resin, butadiene rubber / epoxy resin, acrylonitrile butadiene rubber / phenol resin. And a carboxy-containing acrylonitrile butadiene rubber / phenolic resin adhesive was used. Patent Document 1 discloses an adhesive composition for flexible substrates in which an amine-based anti-aging agent is blended in an adhesive. The conventional adhesive composition is excellent in the initial adhesive strength, but the adhesive strength after repeated hot pressing is insufficient.

また、電子部品の高集積化に伴い、放熱性の向上及び軽量化が強く望まれているため、発光ダイオード(LED)などの半導体光源が照明として用いられている。それに用いられる積層基板は、軽量かつ熱伝導性に優れたアルミニウムやその合金製のアルミニウム基板の配線層と、樹脂製の絶縁層とを貼り合せたもので、アルミニウム反射板としての機能を有することが求められている。アルミニウム基板の配線層と、樹脂製の絶縁層とを貼り合せる際、アルミニウム基板に対し予め、硫酸陽極酸化処理や蓚酸陽極酸化処理を施したり、機械的に砂目立て処理を施したりして、アルミニウム基板表面を粗面化し、アルミニウム基板の配線層と樹脂層との密着性を向上させているが、それでも接着力が不十分であった。   In addition, as electronic components are highly integrated, improvement in heat dissipation and weight reduction are strongly desired, and therefore, a semiconductor light source such as a light emitting diode (LED) is used as illumination. The laminated substrate used for this is a lightweight and heat-conductive aluminum or alloy aluminum substrate wiring layer bonded to a resin insulating layer and has a function as an aluminum reflector. Is required. When bonding the wiring layer of the aluminum substrate and the insulating layer made of resin, the aluminum substrate is pretreated with sulfuric acid anodizing treatment or oxalic acid anodizing treatment or mechanically grained with aluminum. Although the substrate surface was roughened to improve the adhesion between the wiring layer of the aluminum substrate and the resin layer, the adhesive strength was still insufficient.

また、基板の配線層と、誘電特性に優れたフッ素樹脂製の基板とを貼り合せて作製される特殊基板の場合も、同様に接着力が不十分である。   Further, in the case of a special substrate manufactured by bonding a wiring layer of a substrate and a fluororesin substrate having excellent dielectric characteristics, the adhesive force is similarly insufficient.

特開2000−239629号公報JP 2000-239629 A

本発明は前記の課題を解決するためになされたもので、非金属基材と金属基材とを、従来よりも遥かに強く確りと接着させて、熱劣化が小さく耐熱性に優れ、引張られたり曲げられたりしても剥がれたり裂けたりしないプリント配線板用の積層基板を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. The non-metallic base material and the metallic base material are bonded to each other much more strongly and firmly than before, and the thermal degradation is small and the heat resistance is excellent. An object of the present invention is to provide a laminated substrate for a printed wiring board that does not peel off or tear even if it is bent or bent.

前記の目的を達成するためになされた特許請求の範囲の請求項1に記載の積層基板は、非金属の表面の水酸基の脱水素残基にヒドロシリル含有シリル基、ビニルシリル含有シリル基、アルコシキシリル含有シリル基、及び加水分解性基含有シリル基から選ばれる活性シリル基をシリルエーテル結合させた接着用非金属基材と、
それを被覆する金属の表面の水酸基の脱水素残基にヒドロシリル含有シリル基、ビニルシリル含有シリル基、アルコシキシリル含有シリル基、及び加水分解性基含有シリル基から選ばれる別な活性シリル基をシリルエーテル結合させた接着用金属基材とが、
両基材の夫々の活性シリル基に結合し得る反応性基を露出させたシリコーンゴム接着剤層を挟み込みつつ、該結合によって接着していることを特徴とする。
The laminated substrate according to claim 1, which has been made to achieve the above object, includes a hydrosilyl-containing silyl group, a vinylsilyl-containing silyl group, an alkoxysilyl group as a dehydrogenation residue of a hydroxyl group on a non-metallic surface. A non-metal substrate for adhesion in which an active silyl group selected from a containing silyl group and a hydrolyzable group-containing silyl group is bonded to a silyl ether;
Another active silyl group selected from hydrosilyl-containing silyl group, vinylsilyl-containing silyl group, alkoxysilyl-containing silyl group, and hydrolyzable-group-containing silyl group is silylated on the dehydrogenation residue of the hydroxyl group on the surface of the metal coating An ether-bonded metal substrate for bonding,
The silicone rubber adhesive layer exposing the reactive group capable of bonding to each active silyl group of both substrates is sandwiched and bonded by the bonding.

請求項2に記載の積層基板は、請求項1に記載されたもので、前記非金属基材と前記金属基材とに夫々、別々に前記ヒドロシリル含有シリル基又は前記ビニルシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基であるビニルシリル基を有した付加型シリコーンゴムで形成されていることを特徴とする。   The laminated substrate according to claim 2 is the laminate substrate according to claim 1, wherein the hydrosilyl-containing silyl group or the vinylsilyl-containing silyl group is separately bonded to the non-metallic base material and the metallic base material, respectively. The silicone rubber adhesive layer is formed of an addition type silicone rubber having a vinylsilyl group as the reactive group.

請求項3に記載の積層基板は、請求項1に記載されたもので、前記非金属基材と前記金属基材とに夫々、別々に前記アルコシキシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基である水酸基又はアルコシキシリル基を有した縮合型シリコーンゴムで形成されていることを特徴とする。   The laminated substrate according to claim 3 is the multilayer substrate according to claim 1, wherein the alkoxysilyl-containing silyl group is separately bonded to the nonmetallic base material and the metallic base material, The silicone rubber adhesive layer is formed of a condensation type silicone rubber having a hydroxyl group or alkoxysilyl group as the reactive group.

請求項4に記載の積層基板は、請求項3に記載されたもので、前記縮合型シリコーンゴムが、シラノールシリコーンゴムであることを特徴とする。   The laminated substrate according to a fourth aspect is the one according to the third aspect, wherein the condensation type silicone rubber is a silanol silicone rubber.

請求項5に記載の積層基板は、請求項1に記載されたもので、前記非金属基材と前記金属基材とに夫々、別々に前記ヒドロシリル含有シリル基又は前記ビニルシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基であるビニル基を有したパーオキサイド架橋シリコーンゴムであることを特徴とする。   The laminated substrate according to claim 5 is the multilayer substrate according to claim 1, wherein the hydrosilyl-containing silyl group or the vinylsilyl-containing silyl group is separately bonded to the non-metallic base material and the metallic base material, respectively. The silicone rubber adhesive layer is a peroxide-crosslinked silicone rubber having a vinyl group as the reactive group.

請求項6に記載の積層基板は、請求項1に記載されたもので、前記非金属基材と前記金属基材とが薄膜基材であり、それにより可撓性を有していることを特徴とする。   The multilayer substrate according to claim 6 is the multilayer substrate according to claim 1, wherein the non-metallic base material and the metallic base material are thin film base materials, thereby having flexibility. Features.

請求項7に記載の積層基板は、請求項1に記載されたもので、前記非金属基材が、樹脂、ゴム、ガラス、又はセラミックスで形成されていることを特徴とする。   A multilayer substrate according to a seventh aspect is the multilayer substrate according to the first aspect, wherein the non-metallic base material is formed of resin, rubber, glass, or ceramics.

請求項8に記載の積層基板は、請求項1に記載されたもので、前記金属基材が、銅、アルミニウム、又はアルミニウム合金で形成されていることを特徴とする。   A laminated substrate according to an eighth aspect is the multilayer substrate according to the first aspect, wherein the metal base is formed of copper, aluminum, or an aluminum alloy.

請求項9に記載の積層基板は、請求項1に記載されたもので、前記非金属の露出表面の水酸基、又は前記金属の露出表面の水酸基が各々、その表面に元来有している水酸基、酸化されて形成された水酸基、又はその表面をコロナ放電、大気圧プラズマ処理及び紫外線照射、金属ナトリウム処理の何れかの表面処理により生成させた水酸基であり、アルコキシシラン化合物のアルコキシシリル基由来の前記夫々の活性シリル基に前記シリルエーテル結合していることを特徴とする。   The laminated substrate according to claim 9 is the laminated substrate according to claim 1, wherein the hydroxyl group on the exposed surface of the nonmetal or the hydroxyl group on the exposed surface of the metal each has a hydroxyl group originally on the surface. A hydroxyl group formed by oxidation, or a hydroxyl group produced by surface treatment of any one of corona discharge, atmospheric pressure plasma treatment and ultraviolet irradiation, and metal sodium treatment, and derived from an alkoxysilyl group of an alkoxysilane compound. The silyl ether bond is formed on each of the active silyl groups.

請求項10に記載の積層基板は、請求項1に記載されたもので、前記非金属の露出表面の水酸基、又は前記金属の露出表面の水酸基が各々、前記アルコキシシラン化合物で前記シリルエーテル結合することにより、単分子膜、又は薄膜が形成されていることを特徴とする。   The laminated substrate according to claim 10 is the multilayer substrate according to claim 1, wherein the hydroxyl group on the exposed surface of the nonmetal or the hydroxyl group on the exposed surface of the metal is bonded to the silyl ether with the alkoxysilane compound. Thus, a monomolecular film or a thin film is formed.

請求項11に記載の積層基板は、請求項1に記載されたもので、前記夫々の活性シリル基が、
モノヒドロシリル基含有シリル基及びジヒドロシリル基含有シリル基から選ばれる前記ヒドロシリル含有シリル基;
モノビニルシリル基含有シリル基である前記ビニルシリル含有シリル基;
トリアルコキシシリル末端基含有シリル基及びジアルコキシシリル末端基含有シリル基から選ばれる前記アルコキシシリル含有シリル基;又は
アシルオキシシリル基、アルケニルオキシシリル基、アルカンイミノオキシシリル基、アルキルオキシシリル基、アルキルアミノシリル基、ジアルキルアミノシリル基、含窒素複素環置換シリル基、及びアリールアミノシリル基から選ばれる加水分解性官能基を有している前記加水分解性基含有シリル基
であることを特徴とする。
The multilayer substrate according to claim 11 is the one described in claim 1, wherein each of the active silyl groups is
The hydrosilyl-containing silyl group selected from a monohydrosilyl group-containing silyl group and a dihydrosilyl group-containing silyl group;
The vinylsilyl-containing silyl group which is a monovinylsilyl group-containing silyl group;
The alkoxysilyl-containing silyl group selected from trialkoxysilyl end group-containing silyl group and dialkoxysilyl end group-containing silyl group; or acyloxysilyl group, alkenyloxysilyl group, alkaneiminooxysilyl group, alkyloxysilyl group, alkylamino The hydrolyzable group-containing silyl group has a hydrolyzable functional group selected from a silyl group, a dialkylaminosilyl group, a nitrogen-containing heterocyclic substituted silyl group, and an arylaminosilyl group.

請求項12に記載の積層基板は、請求項11に記載されたもので、前記夫々の活性シリル基が、その基の末端に-SiH(R1)2又は-SiH2(R2)(R1及びR2は、炭素数1〜4のアルキル基)を有し、又はその基の主鎖の途中に-SiH-基を有している前記ヒドロシリル含有シリル基であることを特徴とする。 The laminated substrate according to claim 12 is the multilayer substrate according to claim 11, wherein each of the active silyl groups has —SiH (R 1 ) 2 or —SiH 2 (R 2 ) (R 1 and R 2 are the hydrosilyl-containing silyl groups having an alkyl group having 1 to 4 carbon atoms, or having a —SiH— group in the middle of the main chain of the group.

請求項13に記載の積層基板は、請求項11に記載されたもので、前記夫々の活性シリル基が、その基の末端に、-Si-R3基(R3はビニル含有基)を有し、又はその基の主鎖の途中に-Si(R4)-基(R4はビニル含有基)を有している前記ビニルシリル含有シリル基であることを特徴とする。 A laminated substrate according to a thirteenth aspect is the one according to the eleventh aspect, wherein each of the active silyl groups has a —Si—R 3 group (R 3 is a vinyl-containing group) at the end of the group. Or a vinylsilyl-containing silyl group having a —Si (R 4 ) — group (R 4 is a vinyl-containing group) in the middle of the main chain of the group.

請求項14に記載の積層基板は、請求項11に記載されたもので、前記夫々の活性シリル基が、その基の末端に、-Si(OR5)2R6基(R5及びR6は炭素数1〜4のアルキル基)、又は-Si(OR7)3基(R7は炭素数1〜4のアルキル基)を有している前記アルコキシシリル含有シリル基であることを特徴とする。 A laminated substrate according to a fourteenth aspect is the one according to the eleventh aspect, wherein each of the active silyl groups has a —Si (OR 5 ) 2 R 6 group (R 5 and R 6 at the end of the group). Is an alkyl group having 1 to 4 carbon atoms) or an alkoxysilyl-containing silyl group having a —Si (OR 7 ) 3 group (R 7 is an alkyl group having 1 to 4 carbon atoms). To do.

請求項15に記載の積層基板は、請求項11に記載されたもので、前記夫々の活性シリル基が、-Si(R8)a(R9)3-a基(R8は、水素原子;ハロゲン原子;炭素数1〜12のアルキル基、アルケニル基、アルキルオキシ基、フッ素置換アルキル基;アラルキル基;アリール基であり、R9は、炭素数1〜12のアシルオキシ基、アルケニルオキシ基、アルカンイミノオキシ基、アルキルオキシ基、アルキルアミノ基、ジアルキルアミノ基;含窒素複素環基、及びアリールアミノ基であり、aは0〜3の数)で表わされる前記加水分解性官能基を有する前記加水分解性基含有シリル基であることを特徴とする。 A laminated substrate according to a fifteenth aspect is the one according to the eleventh aspect, wherein each of the active silyl groups is a —Si (R 8 ) a (R 9 ) 3-a group (R 8 is a hydrogen atom) A halogen atom; an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkyloxy group, a fluorine-substituted alkyl group; an aralkyl group; an aryl group, and R 9 is an acyloxy group having 1 to 12 carbon atoms, an alkenyloxy group, An alkaneiminooxy group, an alkyloxy group, an alkylamino group, a dialkylamino group; a nitrogen-containing heterocyclic group, and an arylamino group, and a having the hydrolyzable functional group represented by a) It is a hydrolyzable group-containing silyl group.

請求項16に記載の積層基板は、前記シリコーンゴム接着剤層が、窒化アルミニウム、炭化ケイ素、アルミナ、窒化ケイ素、グラファイトの何れかの粉末を含有していることを特徴とする。   The laminated substrate according to claim 16 is characterized in that the silicone rubber adhesive layer contains any powder of aluminum nitride, silicon carbide, alumina, silicon nitride, and graphite.

請求項17に記載のプリント配線板は、請求項1に記載の積層基板中のそれの金属基材に、回路パターンが形成されていることを特徴とする。   The printed wiring board according to claim 17 is characterized in that a circuit pattern is formed on a metal base material of the printed circuit board according to claim 1.

請求項18に記載のプリント配線板は、請求項17に記載されたもので、前記回路パターンに発光素子が接続されていることを特徴とする。   A printed wiring board according to an eighteenth aspect is the printed wiring board according to the seventeenth aspect, wherein a light emitting element is connected to the circuit pattern.

請求項19に記載のプリント配線板は、請求項18に記載されたもので、前記金属基材が前記非金属基材の側と反対の面で、又は前記非金属基材が前記金属基材の側と反対の面で、前記と同種のシリコーンゴム接着剤層を介して金属反射材に接着しており、前記発光素子が前記金属反射板に開いた穴から突出していることを特徴とする。   The printed wiring board according to claim 19 is the printed wiring board according to claim 18, wherein the metal base is a surface opposite to the non-metal base, or the non-metal base is the metal base. It is bonded to the metal reflector through the same type of silicone rubber adhesive layer as the above, and the light emitting element protrudes from the hole opened in the metal reflector. .

請求項20に記載のプリント配線板は、請求項19に記載されたもので、前記発光素子が、前記と同種のシリコーンゴム接着剤層を介して、前記金属反射材へ接着していることを特徴とする。   A printed wiring board according to claim 20 is the printed wiring board according to claim 19, wherein the light emitting element is bonded to the metal reflector through the same kind of silicone rubber adhesive layer as the above. Features.

本発明の積層基板は、接着剤層の吸湿やアウトガスの発生の恐れがなく、非金属基材と金属基材との接着性に優れ、引き剥がし強度が強いまま経時的に低下せず、熱劣化が小さく、耐熱性に優れ、可撓性に優れている。非金属基材が、摩擦係数の低いフッ素樹脂であっても、金属基材との接着性に優れており、その積層基板は、耐熱性が高く誘電損が少ないものである。   The laminated substrate of the present invention has no fear of moisture absorption or outgas generation of the adhesive layer, is excellent in adhesion between the non-metallic base material and the metallic base material, and does not deteriorate over time with a strong peeling strength, Deterioration is small, heat resistance is excellent, and flexibility is excellent. Even if the non-metallic base material is a fluororesin having a low friction coefficient, it has excellent adhesion to the metallic base material, and the laminated substrate has high heat resistance and low dielectric loss.

積層基板は、金属基材が銅、アルミニウム、アルミニウム合金、中でも特にアルミニウム製であると、積層基板は特に放熱性や光反射効率を高いものとすることができる。しかも、積層基板のシリコーンゴム接着剤層に放熱を促進する放熱性粉末を含んでいると優れた放熱性を示し、劣化を防ぎ、一層長期間の使用ができるようになる。   When the metal substrate is made of copper, aluminum, or an aluminum alloy, particularly aluminum, the multilayer substrate can have particularly high heat dissipation and light reflection efficiency. In addition, when the silicone rubber adhesive layer of the laminated substrate contains a heat dissipating powder that promotes heat dissipation, excellent heat dissipating properties are exhibited, deterioration is prevented, and a longer period of use can be achieved.

この積層基板の基材表面は、バルクの固体だけではなく、蒸着や、めっき、塗装など粉体や液体に分散している素材や溶融素材の表面に積層することが可能なのも勿論である。   Of course, the substrate surface of the laminated substrate can be laminated not only on a bulk solid but also on the surface of a material or a molten material dispersed in a powder or liquid, such as vapor deposition, plating, and coating.

この積層基板を用いて作製されたプリント配線板は、熱に安定であり、さらに非金属基材と金属基材とが確りと接着しているから剥離等の破損を引き起こし難く、信頼性が高い。しかも、この積層基板は、シリコーンポリマーを介しているため、熱や衝撃による応力に対し、非常に強い剥離強度を示すことができる。   The printed wiring board produced using this multilayer substrate is heat-stable, and since non-metallic base material and metallic base material are firmly bonded, it is difficult to cause damage such as peeling, and has high reliability. . And since this laminated substrate is via the silicone polymer, it can show very strong peeling strength with respect to the stress by heat or an impact.

プリント配線板は、発光素子、例えば発光ダイオード(LED)、特にパワーLEDを用いる照明器具に用いることができる。   The printed wiring board can be used for a lighting device using a light emitting element, for example, a light emitting diode (LED), particularly a power LED.

発明を実施するための好ましい形態Preferred form for carrying out the invention

以下、本発明の実施の好ましい形態について詳細に説明するが、本発明の範囲はこれらの形態に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail, but the scope of the present invention is not limited to these embodiments.

本発明を適用する積層基板は、以下のようにして製造される。   The laminated substrate to which the present invention is applied is manufactured as follows.

金属基材である銅薄膜基材の表面に、コロナ放電処理を施し、その基材表面の金属の酸化物分子に由来する水酸基を生成させると、その基材表面で、機能性アルコキシシラン化合物との反応性が向上する。又は、金属基材の表面に、不純異物例えば有機物のような汚れが付着していると、コロナ放電処理により酸化されて金属基材表面に、有機物由来のカルボキシル基が生じ、それに起因する水酸基を生成させ、その基材表面で、アルコキシシラン化合物との反応性が向上する。   When the surface of the copper thin film substrate, which is a metal substrate, is subjected to corona discharge treatment to generate hydroxyl groups derived from metal oxide molecules on the substrate surface, the functional alkoxysilane compound and The reactivity of is improved. Or, if impurities such as impurities are attached to the surface of the metal substrate, it is oxidized by corona discharge treatment, and a carboxyl group derived from the organic matter is generated on the surface of the metal substrate. And the reactivity with the alkoxysilane compound is improved on the surface of the substrate.

一方、非金属基材であるポリイミド樹脂基材の表面も同様にコロナ放電処理を施し、水酸基を生成させる。例えば、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルとから得られるポリイミド樹脂は、4,4’−ジアミノジフェニルエーテルの一方のフェニル基のエーテル基のオルト位に水酸基が導入される。その水酸基の導入の結果、その基材表面で、アルコキシシラン化合物との反応性が向上する。   On the other hand, the surface of the polyimide resin substrate which is a non-metallic substrate is similarly subjected to corona discharge treatment to generate hydroxyl groups. For example, in a polyimide resin obtained from pyromellitic dianhydride and 4,4'-diaminodiphenyl ether, a hydroxyl group is introduced at the ortho position of the ether group of one phenyl group of 4,4'-diaminodiphenyl ether. As a result of the introduction of the hydroxyl group, the reactivity with the alkoxysilane compound is improved on the surface of the substrate.

その非金属基材と金属基材との夫々の水酸基に反応してシリルエーテルを形成させるHSi(CH3)2OSi(CH3)2CH2CH2CH2Si(OC2H5)3のような機能性アルコキシシリル化合物と溶媒との溶液を、水酸基が生成しているこれら基材表面に付し、乾燥させた後、加熱する。この機能性アルコキシシリル化合物のトリエトキシシリル基が、基材表面上の水酸基に反応し、活性シリル基となり、水酸基の脱水素残基とともに、化学的に強固なシリルエーテル結合を形成する。このアルコキシシリル化合物により、ヒドロシリル含有シリル基のようなシリル基がエーテル結合したシリルエーテルの単分子膜で被覆された接着用非金属基材及び接着用金属基材が得られる。 HSi (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 reacts with the respective hydroxyl groups of the non-metal substrate and metal substrate to form silyl ethers. A solution of such a functional alkoxysilyl compound and a solvent is applied to the surface of these base materials on which hydroxyl groups are formed, dried, and then heated. The triethoxysilyl group of this functional alkoxysilyl compound reacts with a hydroxyl group on the surface of the substrate to become an active silyl group, and forms a chemically strong silyl ether bond together with the dehydrogenated residue of the hydroxyl group. By this alkoxysilyl compound, a non-metal substrate for adhesion and a metal substrate for adhesion coated with a monomolecular film of silyl ether in which a silyl group such as a hydrosilyl-containing silyl group is ether-bonded are obtained.

この非金属基材のシリルエーテル被覆面側と金属基材のシリルエーテル被覆面側との間に、活性シリル基に結合し得る反応性基を露出させたシリコーンゴム接着剤層であるビニルシリル基含有付加型シリコーンゴムを、挟み込み、硬化させる。すると、ビニルシリル基含有付加型シリコーンゴムが、非金属基材上と金属基材上との各々のシリルエーテルの単分子膜に作用して、非金属基材と金属基材とが接着され、積層基板が得られる。基材表面上のシリルエーテル分子とシリコーンゴム接着剤層とは、シリルエーテル分子とシリコーンゴム分子とが化学反応し共有結合を形成して化学的に架橋したり、シリル基同士で引き付け合って相互作用して電気化学的に架橋したりして、強固に結合している。そのため、積層基板は、強い接着強度を有し、非金属基材上と金属基材上とが剥がれ難くなっているものと推察される。   Contains a vinyl silyl group which is a silicone rubber adhesive layer in which a reactive group capable of bonding to an active silyl group is exposed between the silyl ether-coated surface side of the non-metallic substrate and the silyl ether-coated surface side of the metal substrate. Addition-type silicone rubber is sandwiched and cured. Then, the addition type silicone rubber containing vinyl silyl group acts on the monomolecular film of each silyl ether on the non-metal substrate and the metal substrate, and the non-metal substrate and the metal substrate are bonded to each other and laminated. A substrate is obtained. The silyl ether molecule and the silicone rubber adhesive layer on the surface of the substrate are chemically cross-linked by a chemical reaction between the silyl ether molecule and the silicone rubber molecule to form a chemical bond, or are mutually attracted by silyl groups. It acts and electrochemically crosslinks, and is firmly bonded. Therefore, it is assumed that the laminated substrate has a strong adhesive strength, and the non-metal base and the metal base are hardly peeled off.

ヒドロシリル含有シリル基のようなシリル基でシリルエーテル結合した積層基板の例を示したが、ビニルシリル含有シリル基で例示されるビニル含有シリル基、アルコキシシリル末端含有シリル基、加水分解性基含有シリル基のような活性シリル基でシリルエーテル結合したものであってもよい。   An example of a laminated substrate having a silyl ether bond with a silyl group such as a hydrosilyl-containing silyl group was shown, but a vinyl-containing silyl group exemplified by a vinylsilyl-containing silyl group, an alkoxysilyl terminal-containing silyl group, a hydrolyzable group-containing silyl group A silyl ether bond with an active silyl group may be used.

このような活性シリル基は何れも、これら基材の表面の水酸基に機能性アルコキシシリル化合物のアルコキシシリル基が反応することにより、形成されるものである。   Any of such active silyl groups is formed by the reaction of the alkoxysilyl group of the functional alkoxysilyl compound with the hydroxyl group on the surface of these substrates.

このようなヒドロシリル含有シリル基で、これら基材(Sub.:Substrate)に形成されるシリルエーテル結合は、下記化学式[1]
Sub.−O−SiR20 ・・・[1]
で表わされる。ヒドロシリル含有シリル基−SiR20は、R20が末端に-SiH(R1)2又は-SiH2(R2)(R1及びR2は、炭素数1〜4のアルキル基)を有し、又はその主鎖の途中に-SiH-基を有しているというもので、ポリシロキシ基となっていてもよいというものである。
With such a hydrosilyl-containing silyl group, the silyl ether bond formed on these substrates (Sub .: Substrate) has the following chemical formula [1]
Sub.-O-SiR 20 ... [1]
It is represented by Hydrosilyl-containing silyl group —SiR 20 has R 20 having —SiH (R 1 ) 2 or —SiH 2 (R 2 ) (R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms) at the end, Alternatively, it has a —SiH— group in the middle of its main chain and may be a polysiloxy group.

−SiR20は、より具体的には、
-(C2H5O)2SiCH2CH2CH2Si(CH3)2H、
-(CH3O)2SiCH2CH2CH2Si(CH3)2H、
-(i-C3H7O)2SiCH2CH2CH2Si(CH3)H2
-(n-C3H7O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2Si(CH3)2Si(CH3)2H、
-(n-C4H9O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(t-C4H9O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(C2H5O)CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(CH3O)CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2Si(CH3)2Si(CH3)2H、
-(CH3)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(C2H5O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(n-C3H7)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(i-C3H7O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(n-C4H9)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-(t-C4H9O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
-[(-O)(-)SiCH2CH2CH2Si(CH3)2OSi(CH3)2H]k1
-[(-O)(-)SiCH2CH2Si(CH3)2OSi(CH3)2H]k2
-[(-O)(-)SiCH2CH2CH2CH2Si(CH3)2OSi(CH3)2H]k3
-[(-O)(-)SiCH2CH2CH2CH2CH2CH2Si(CH3)2OSi(CH3)2H]k4
-[(-O)(-)SiCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2Si(CH3)2OSi(CH3)2H]k5
-(CH3O)2SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
-(CH3O)CH3SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
-(CH3)2SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
-[(-O)(-)SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H]k6
-[(-O)(-)SiCH2CH2CH2Si(CH3)2C6H4OC6H4Si(CH3)2H]k7
-[(-O)(-)SiCH2CH2CH2Si(CH3)2C2H4Si(CH3)2H]k8
-(C2H5O)2SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]m1Si(CH3)2H、
-(C2H5)2SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]m2Si(C2H5)2H、
-(C2H5O)CH3SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]m3Si(CH3)2H、
(CH3)3SiO[-Si(CH3)]O[SiH(CH3)O]m4Si(CH3)3
(CH3)3SiO[(-Si(CH3)CH2CH2CH2)(-)SiCH3]O[SiH(CH3)O]m5Si(CH3)3
(CH3)3SiO[(-Si(OCH3)CH2CH2CH2)(-)SiCH3]O[SiH(CH3)O]m6Si(CH3)3
(CH3)3SiO[(-Si(CH3)CH2CH2CH2)(-)SiCH3]O[SiH(CH3)O]m7Si(CH3)3
(CH3)3SiO[(-Si(O-)CH2CH2CH2)SiCH3]O[SiH(CH3)O]m8Si(CH3)3
(CH3)3SiO[(-Si(CH3)O[SiH(CH3)O]m9[Si(CH3)2O]n1Si(CH3)3
(CH3)3SiO[(-Si(CH3)CH2CH2CH2CH2CH2CH2)(-)Si(CH3)O][SiH(CH3)O]m10[Si(CH3)2O]n2Si(CH3)3
(CH3)3SiO[(-Si(OCH3)CH2CH2CH2CH2CH2CH2)(-)Si(CH3)O][SiH(CH3)O]m11[Si(CH3)2O]n3Si(CH3)3
(CH3)3SiO[(-Si(O-)CH2CH2CH2CH2CH2CH2)Si(CH3)O][SiH(CH3)O]m12[Si(CH3)2O]n4Si(CH3)3
(CH3)3SiO[(-Si(OCH3)CH2CH2CH2CH2CH2CH2)(-)Si(CH3)O][SiH(CH3)O]m13[Si(CH3)2O]n5Si(CH3)3
(CH3)3SiO[-Si(C2H5)O][SiH(C2H5)O]m14Si(CH3)3
(CH3)3SiO[(-Si(O-)CH2CH2CH2CH2CH2CH2)Si(C2H5)]O[SiH(C2H5)O]m15Si(CH3)3
(CH3)3SiO[(-Si(CH3)CH2CH2CH2CH2CH2CH2)(-)Si(C2H5)]O[SiH(C2H5)O]m16Si(CH3)3
-Si(CH3)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[HSi(CH3)2OSiC6H5O]m17Si(CH3)2H、
-Si(OCH3)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[HSi(CH3)2OSiC6H5O]m18Si(CH3)2H、
-Si(O-)CH2CH2CH2CH2CH2CH2(CH3)2SiO[HSi(CH3)2OSiC6H5O]m19Si(CH3)2H、
H(CH3)2SiO[(-Si(CH3)2CH2CH2CH2)Si(CH3)O][HSiCH3O]m20Si(CH3)2H、
H(CH3)2SiO[(-Si(CH3)2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m21Si(CH3)2H、
H(CH3)2SiO[(-Si(CH3)2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m22Si(CH3)2H、
H(CH3)2SiO[(-Si(CH3)2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m23Si(CH3)2H、
H(CH3)2SiO[(-Si(CH3)2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m24Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m25Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]m26Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m27Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m28Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2CH2)Si(CH3)O][HSiCH3O]m29Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m30Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m31Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m32Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m33Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m34Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]m35Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m36Si(CH3)2H、
H(CH3)2SiO[(-Si(OCH3)2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m37Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m38Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]m39Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m40Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)C6H4CH2CH2)Si(CH3)O][HSiCH3O]m41Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2CH2)Si(CH3)O][HSiCH3O]m42Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m43Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m44Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m45Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]m46Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m47Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]m48Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]m49Si(CH3)2H、
H(CH3)2SiO[(-Si(O-)C6H4CH2CH2)Si(CH3)O][HSiCH3O]m50Si(CH3)2H、
H(CH3)2SiO[(-)Si(CH3)CH2CH2CH2CH2CH2CH2Si(CH3)2OSiC6H5O]m51[HSi(CH3)2OSiC6H5O]n6Si(CH3)2H、
H(CH3)2SiO[(-)Si(OCH3)CH2CH2CH2CH2CH2CH2Si(CH3)2OSiC6H5O]m52[HSi(CH3)2OSiC6H5O]n7Si(CH3)2H、
H(CH3)2SiO[(-)Si(O-)CH2CH2CH2CH2CH2CH2Si(CH3)2OSiC6H5O]m53[HSi(CH3)2OSiC6H5O]n8Si(CH3)2H、
-(CH3)2SiO[SiH(CH3)O]m54[SiCH3(C6H5)O]n9Si(CH3)2H、
-Si(OC2H5)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[SiH(CH3)O]m55[SiCH3(C6H5)O]n10Si(CH3)2H、
-Si(O-)CH2CH2CH2CH2CH2CH2(CH3)2SiO[SiH(CH3)O]m56[SiCH3(C6H5)O]n11Si(CH3)2H、
-Si(CH3)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[SiH(CH3)O]m57[SiCH3(C6H5)O]n12Si(CH3)2H、
H(CH3)2SiO(-)Si(CH3)O[SiH(CH3)O]m58[SiCH3(C6H5)O]n13Si(CH3)2H、
H(CH3)2SiO[(-)Si(OC2H5)2CH2CH2CH2Si(CH3)]O[SiH(CH3)O]m59[SiCH3(C6H5)O]n14Si(CH3)2H、
H(CH3)2SiO[(-)Si(O-)CH2CH2CH2Si(CH3)]O[SiH(CH3)O]m60[SiCH3(C6H5)O]n15Si(CH3)2H、
H(CH3)2SiO[(-)Si(CH3)2CH2CH2CH2Si(CH3)]O[SiH(CH3)O]m61[SiCH3(C6H5)O]n16Si(CH3)2H
が挙げられる。これらの基中、k1〜k8、m1〜m61及びn1〜n16は1〜100までの数である。一つの基に、ヒドロシリル基(SiH基)を、1〜99個有していることが好ましい。
More specifically, -SiR 20 is
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 H,
-(CH 3 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 H,
-(iC 3 H 7 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) H 2 ,
-(nC 3 H 7 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 Si (CH 3 ) 2 Si (CH 3 ) 2 H,
-(nC 4 H 9 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(tC 4 H 9 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(C 2 H 5 O) CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(CH 3 O) CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 Si (CH 3 ) 2 Si (CH 3 ) 2 H,
-(CH 3 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(nC 3 H 7 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(iC 3 H 7 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(nC 4 H 9 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-(tC 4 H 9 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
-[(-O) (-) SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H] k1
-[(-O) (-) SiCH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H] k2 ,
-[(-O) (-) SiCH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H] k3 ,
-[(-O) (-) SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H] k4 ,
-[(-O) (-) SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H] k5 ,
-(CH 3 O) 2 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
-(CH 3 O) CH 3 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
-(CH 3 ) 2 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
-[(-O) (-) SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H] k6 ,
-[(-O) (-) SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 OC 6 H 4 Si (CH 3 ) 2 H] k7 ,
-[(-O) (-) SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 C 2 H 4 Si (CH 3 ) 2 H] k8 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] m1 Si (CH 3 ) 2 H,
-(C 2 H 5 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] m2 Si (C 2 H 5 ) 2 H,
-(C 2 H 5 O) CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] m3 Si (CH 3 ) 2 H,
(CH 3 ) 3 SiO [-Si (CH 3 )] O [SiH (CH 3 ) O] m4 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (CH 3 ) CH 2 CH 2 CH 2 ) (-) SiCH 3 ] O [SiH (CH 3 ) O] m5 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (OCH 3 ) CH 2 CH 2 CH 2 ) (-) SiCH 3 ] O [SiH (CH 3 ) O] m6 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (CH 3 ) CH 2 CH 2 CH 2 ) (-) SiCH 3 ] O [SiH (CH 3 ) O] m7 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (O-) CH 2 CH 2 CH 2 ) SiCH 3 ] O [SiH (CH 3 ) O] m8 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (CH 3 ) O [SiH (CH 3 ) O] m9 [Si (CH 3 ) 2 O] n1 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) (-) Si (CH 3 ) O] [SiH (CH 3 ) O] m10 [Si (CH 3 ) 2 O] n2 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (OCH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) (-) Si (CH 3 ) O] [SiH (CH 3 ) O] m11 [Si (CH 3 ) 2 O] n3 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [( -Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [SiH (CH 3 ) O] m12 [Si (CH 3 ) 2 O] n4 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (OCH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) (-) Si (CH 3 ) O] [SiH (CH 3 ) O] m13 [Si (CH 3 ) 2 O] n5 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [-Si (C 2 H 5 ) O] [SiH (C 2 H 5 ) O] m14 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (C 2 H 5 )] O [SiH (C 2 H 5 ) O] m15 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(-Si (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) (-) Si (C 2 H 5 )] O [SiH (C 2 H 5 ) O] m16 Si (CH 3 ) 3 ,
-Si (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [HSi (CH 3 ) 2 OSiC 6 H 5 O] m17 Si (CH 3 ) 2 H,
-Si (OCH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [HSi (CH 3 ) 2 OSiC 6 H 5 O] m18 Si (CH 3 ) 2 H,
-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [HSi (CH 3 ) 2 OSiC 6 H 5 O] m19 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (CH 3 ) 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m20 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (CH 3) 2 CH 2 CH 2 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m21 Si (CH 3) 2 H,
H (CH 3 ) 2 SiO [(-Si (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m22 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m23 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m24 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m25 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 C 6 H 4 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m26 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m27 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (OCH 3) 2 C 6 H 4 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m28 Si (CH 3) 2 H,
H (CH 3) 2 SiO [ (- Si (OCH 3) 2 CH 2 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m29 Si (CH 3) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m30 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (OCH 3) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m31 Si (CH 3) 2 H,
H (CH 3) 2 SiO [ (- Si (OCH 3) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m32 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m33 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m34 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 C 6 H 4 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m35 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m36 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (OCH 3 ) 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m37 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m38 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 C 6 H 4 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m39 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m40 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (O-) C 6 H 4 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m41 Si (CH 3) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m42 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m43 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m44 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m45 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m46 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m47 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (O-) CH 2 C 6 H 4 CH 2 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m48 Si (CH 3) 2 H,
H (CH 3 ) 2 SiO [(-Si (O-) CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] m49 Si (CH 3 ) 2 H,
H (CH 3) 2 SiO [ (- Si (O-) C 6 H 4 CH 2 CH 2) Si (CH 3) O] [HSiCH 3 O] m50 Si (CH 3) 2 H,
H (CH 3 ) 2 SiO [(-) Si (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSiC 6 H 5 O] m51 [HSi (CH 3 ) 2 OSiC 6 H 5 O] n6 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-) Si (OCH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSiC 6 H 5 O] m52 [HSi (CH 3 ) 2 OSiC 6 H 5 O] n7 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-) Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSiC 6 H 5 O] m53 [HSi (CH 3 ) 2 OSiC 6 H 5 O] n8 Si (CH 3 ) 2 H,
-(CH 3 ) 2 SiO [SiH (CH 3 ) O] m54 [SiCH 3 (C 6 H 5 ) O] n9 Si (CH 3 ) 2 H,
-Si (OC 2 H 5 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [SiH (CH 3 ) O] m55 [SiCH 3 (C 6 H 5 ) O] n10 Si ( CH 3 ) 2 H,
-Si (O-) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [SiH (CH 3 ) O] m56 [SiCH 3 (C 6 H 5 ) O] n11 Si (CH 3 ) 2 H,
-Si (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [SiH (CH 3 ) O] m57 [SiCH 3 (C 6 H 5 ) O] n12 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO (-) Si (CH 3 ) O [SiH (CH 3 ) O] m58 [SiCH 3 (C 6 H 5 ) O] n13 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-) Si (OC 2 H 5 ) 2 CH 2 CH 2 CH 2 Si (CH 3 )] O [SiH (CH 3 ) O] m59 [SiCH 3 (C 6 H 5 ) O] n14 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-) Si (O-) CH 2 CH 2 CH 2 Si (CH 3 )] O [SiH (CH 3 ) O] m60 [SiCH 3 (C 6 H 5 ) O] n15 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(-) Si (CH 3 ) 2 CH 2 CH 2 CH 2 Si (CH 3 )] O [SiH (CH 3 ) O] m61 [SiCH 3 (C 6 H 5 ) O] n16 Si (CH 3 ) 2 H
Is mentioned. In these groups, k1 to k8, m1 to m61, and n1 to n16 are numbers from 1 to 100. One group preferably has 1 to 99 hydrosilyl groups (SiH groups).

このようなヒドロシリル含有シリル基を形成する機能性アルコキシシリル化合物の例として、
(CH3O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(CH3O)3SiCH2CH2CH2Si(OCH3)2OSi(OCH3)3
(C2H5O)3SiCH2CH2CH2Si(OCH3)2OSi(OCH3)3
(C2H5O)3SiCH2CH2CH2Si(CH3)2H、
(CH3O)3SiCH2CH2CH2Si(CH3)2H、
(i-C3H7O)3SiCH2CH2CH2Si(CH3)H
(n-C3H7O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2Si(CH3)2Si(CH3)2H、
(n-C4H9O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(t-C4H9O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)2CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(CH3O)2CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2Si(CH3)2Si(CH3)2H、
CH3O(CH3)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(n-C3H7)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(i-C3H7O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(n-C4H9)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(t-C4H9O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2CH2CH2CH2CH2Si(CH3)2OSi(CH3)2H、
(C2H5O)3SiCH2CH2CH2CH2CH2CH2CH2CH2CH2CH2Si(CH3)2OSi(CH3)2H、
(CH3O)3SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
(CH3O)2CH3SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
CH3O(CH3)2SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
(C2H5O)3SiCH2C6H4CH2CH2Si(CH3)2C6H4Si(CH3)2H、
(C2H5O)3SiCH2CH2CH2Si(CH3)2C6H4OC6H4Si(CH3)2H、
(C2H5O)3SiCH2CH2CH2Si(CH3)2C2H4Si(CH3)2H、
(C2H5O)3SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]p1Si(CH3)2H、
C2H5O(CH3)2SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]p2Si(C2H5)2H、
(C2H5O)2CH3SiCH2CH2CH2Si(CH3)2O[Si(CH3)2O]p3Si(CH3)2H、
(CH3)3SiOSiH(CH3)O[SiH(CH3)O]p4Si(CH3)3
(CH3)3SiO[(C2H5OSi(CH3)CH2CH2CH2)SiCH3]O[SiH(CH3)O]p5Si(CH3)3
(CH3)3SiO[(C2H5OSiOCH3CH2CH2CH2)SiCH3]O[SiH(CH3)O]p6Si(CH3)3
(CH3)3SiO[(C2H5OSi(CH3)CH2CH2CH2)SiCH3]O[SiH(CH3)O]p7Si(CH3)3
(CH3)3SiO[(Si(OC2H5)2CH2CH2CH2)SiCH3]O[SiH(CH3)O]p8Si(CH3)3
(CH3)3SiOSi(OC2H5)2O[SiH(CH3)O]p9[Si(CH3)2O]q1Si(CH3)3
(CH3)3SiO[(C2H5Osi(CH3)CH2CH2CH2CH2CH2CH2)Si(CH3)O][SiH(CH3)O]p10[Si(CH3)2O]q2Si(CH3)3
(CH3)3SiO[(Si(OCH3)3CH2CH2CH2CH2CH2CH2)Si(CH3)O][SiH(CH3)O]p11[Si(CH3)2O]q3Si(CH3)3
(CH3)3SiOSi(OC2H5)2O[SiH(C2H5)O]p12Si(CH3)3
(CH3)3SiO[(Si(OC2H5)2CH2CH2CH2CH2CH2CH2)Si(C2H5)]O[SiH(C2H5)O]p13Si(CH3)3
(CH3)3SiO[(C2H5OSi(CH3)CH2CH2CH2CH2CH2CH2)Si(C2H5)]O[SiH(C2H5)O]p14Si(CH3)3
C2H5OSi(CH3)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[HSi(CH3)2OSiC6H5O]p15Si(CH3)2H、
Si(OCH3)3CH2CH2CH2CH2CH2CH2(CH3)2SiO[HSi(CH3)2OSiC6H5O]p16Si(CH3)2H、
H(CH3)2SiO[(C2H5OSi(CH3)2CH2CH2CH2)Si(CH3)O][HSiCH3O]p17Si(CH3)2H、
H(CH3)2SiO[(C2H5OSi(CH3)2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p18Si(CH3)2H、
H(CH3)2SiO[(C2H5OSi(CH3)2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p19Si(CH3)2H、
H(CH3)2SiO[(C2H5OSi(CH3)2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p20Si(CH3)2H、
H(CH3)2SiO[(C2H5OSi(CH3)2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p21Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]p22Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]p23Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]p24Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3C6H4CH2CH2)Si(CH3)O][HSiCH3O]p25Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2CH2)Si(CH3)O][HSiCH3O]p26Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p27Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p28Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p29Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2)Si(CH3)O][HSiCH3O]p30Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]p31Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2C6H4CH2CH2CH2)Si(CH3)O][HSiCH3O]p32Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]p33Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3C6H4CH2CH2)Si(CH3)O][HSiCH3O]p34Si(CH3)2H、
H(CH3)2SiO[(Si(OCH3)3CH2CH2C6H4CH2CH2)Si(CH3)O][HSiCH3O]p35Si(CH3)2H、
H(CH3)2SiO[(CH3O)Si(CH3)CH2CH2CH2CH2CH2CH2Si(CH3)2OSiC6H5O]p36[HSi(CH3)2OSiC6H5O]q4Si(CH3)2H、
H(CH3)2SiO[Si(OCH3)2CH2CH2CH2CH2CH2CH2Si(CH3)2OSiC6H5O]p37[HSi(CH3)2OSiC6H5O]q5Si(CH3)2H、
C2H5O(CH3)2SiO[SiH(CH3)O]p38[SiCH3(C6H5)O]q6Si(CH3)2H、
Si(OC2H5)3CH2CH2CH2CH2CH2CH2(CH3)2SiO[SiH(CH3)O]p39[SiCH3(C6H5)O]q7Si(CH3)2H、
C2H5OSi(CH3)2CH2CH2CH2CH2CH2CH2(CH3)2SiO[SiH(CH3)O]p40[SiCH3(C6H5)O]q8Si(CH3)2H、
H(CH3)2SiO(C2H5O)Si(CH3)O[SiH(CH3)O]p41[SiCH3(C6H5)O]q9Si(CH3)2H、
H(CH3)2SiO[Si(OC2H5)3CH2CH2CH2Si(CH3)]O[SiH(CH3)O]p42[SiCH3(C6H5)O]q10Si(CH3)2H
が挙げられる。これらの基中、p1〜p42及びq1〜q10は1〜100までの数である。一つの分子に、ヒドロシリル基を、1〜99個有していることが好ましい。
Examples of functional alkoxysilyl compounds that form such hydrosilyl-containing silyl groups include:
(CH 3 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 Si (OCH 3 ) 2 OSi (OCH 3 ) 3 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (OCH 3 ) 2 OSi (OCH 3 ) 3 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 H,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 H,
(iC 3 H 7 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) H 2 ,
(nC 3 H 7 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 Si (CH 3 ) 2 Si (CH 3 ) 2 H,
(nC 4 H 9 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(tC 4 H 9 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 2 CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(CH 3 O) 2 CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 Si (CH 3 ) 2 Si (CH 3 ) 2 H,
CH 3 O (CH 3 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(nC 3 H 7 ) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(iC 3 H 7 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(nC 4 H 9 ) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(tC 4 H 9 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 H,
(CH 3 O) 3 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
(CH 3 O) 2 CH 3 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
CH 3 O (CH 3 ) 2 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 C 6 H 4 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 C 6 H 4 OC 6 H 4 Si (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 C 2 H 4 Si (CH 3 ) 2 H,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] p1 Si (CH 3 ) 2 H,
C 2 H 5 O (CH 3 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] p2 Si (C 2 H 5 ) 2 H,
(C 2 H 5 O) 2 CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 O [Si (CH 3 ) 2 O] p3 Si (CH 3 ) 2 H,
(CH 3 ) 3 SiOSiH (CH 3 ) O [SiH (CH 3 ) O] p4 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(C 2 H 5 OSi (CH 3 ) CH 2 CH 2 CH 2 ) SiCH 3 ] O [SiH (CH 3 ) O] p5 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(C 2 H 5 OSiOCH 3 CH 2 CH 2 CH 2 ) SiCH 3 ] O [SiH (CH 3 ) O] p6 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(C 2 H 5 OSi (CH 3 ) CH 2 CH 2 CH 2 ) SiCH 3 ] O [SiH (CH 3 ) O] p7 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(Si (OC 2 H 5 ) 2 CH 2 CH 2 CH 2 ) SiCH 3 ] O [SiH (CH 3 ) O] p8 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiOSi (OC 2 H 5 ) 2 O [SiH (CH 3 ) O] p9 [Si (CH 3 ) 2 O] q1 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(C 2 H 5 Osi (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [SiH (CH 3 ) O] p10 [Si (CH 3 ) 2 O] q2 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [SiH (CH 3 ) O] p11 [Si (CH 3 ) 2 O] q3 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiOSi (OC 2 H 5 ) 2 O [SiH (C 2 H 5 ) O] p12 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(Si (OC 2 H 5 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (C 2 H 5 )] O [SiH (C 2 H 5 ) O] p13 Si (CH 3 ) 3 ,
(CH 3 ) 3 SiO [(C 2 H 5 OSi (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (C 2 H 5 )] O [SiH (C 2 H 5 ) O] p14 Si (CH 3 ) 3 ,
C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [HSi (CH 3 ) 2 OSiC 6 H 5 O] p15 Si (CH 3 ) 2 H,
Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [HSi (CH 3 ) 2 OSiC 6 H 5 O] p16 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p17 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p18 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p19 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p20 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p21 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p22 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 C 6 H 4 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p23 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p24 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p25 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p26 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p27 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p28 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p29 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p30 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p31 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 C 6 H 4 CH 2 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p32 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p33 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p34 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(Si (OCH 3 ) 3 CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) Si (CH 3 ) O] [HSiCH 3 O] p35 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [(CH 3 O) Si (CH 3 ) CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSiC 6 H 5 O] p36 [HSi (CH 3 ) 2 OSiC 6 H 5 O] q4 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [Si (OCH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (CH 3 ) 2 OSiC 6 H 5 O] p37 [HSi (CH 3 ) 2 OSiC 6 H 5 O] q5 Si (CH 3 ) 2 H,
C 2 H 5 O (CH 3 ) 2 SiO [SiH (CH 3 ) O] p38 [SiCH 3 (C 6 H 5 ) O] q6 Si (CH 3 ) 2 H,
Si (OC 2 H 5 ) 3 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [SiH (CH 3 ) O] p39 [SiCH 3 (C 6 H 5 ) O] q7 Si (CH 3 ) 2 H,
C 2 H 5 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 (CH 3 ) 2 SiO [SiH (CH 3 ) O] p40 [SiCH 3 (C 6 H 5 ) O] q8 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO (C 2 H 5 O) Si (CH 3 ) O [SiH (CH 3 ) O] p41 [SiCH 3 (C 6 H 5 ) O] q9 Si (CH 3 ) 2 H,
H (CH 3 ) 2 SiO [Si (OC 2 H 5 ) 3 CH 2 CH 2 CH 2 Si (CH 3 )] O [SiH (CH 3 ) O] p42 [SiCH 3 (C 6 H 5 ) O] q10 Si (CH 3 ) 2 H
Is mentioned. In these groups, p1 to p42 and q1 to q10 are numbers from 1 to 100. One molecule preferably has 1 to 99 hydrosilyl groups.

またビニルシリル含有シリル基で、これら基材(Sub.)に形成されるシリルエーテル結合は、下記化学式[2]
Sub.−O−SiR21 ・・・[2]
で表わされる。ビニルシリル含有シリル基−SiR21は、R21が-Si-R3基(R3はビニル含有基)を有し、又は該基の主鎖の途中に-Si(R4)-基(R4はビニル含有基)を有しているというものである。
The silyl ether bond formed on these substrates (Sub.) With a vinylsilyl-containing silyl group has the following chemical formula [2]
Sub.-O-SiR 21 ... [2]
It is represented by In the vinylsilyl-containing silyl group —SiR 21 , R 21 has a —Si—R 3 group (R 3 is a vinyl-containing group), or a —Si (R 4 ) — group (R 4 ) in the middle of the main chain of the group. Has a vinyl-containing group).

−SiR21は、より具体的には、
-(C2H5O)2SiCH2-CH=CH2
-(C2H5O)2SiCH2CH2-CH=CH2
-(C2H5O)2SiCH2CH2CH2CH2-CH=CH2
-(C2H5O)2SiCH2CH2CH2CH2CH2CH2-CH=CH2
-C2H5OSi(CH=CH2)OSi(OC2H5)-CH=CH2
-(CH3O)2SiCH2CH2C6H4-CH=CH2
-(CH3O)Si(CH=CH2)O[SiOCH3(CH=CH2)O]r1Si(OCH3)2-CH=CH2
-(C2H5O)Si(CH=CH2)O[SiOC2H5(CH=CH2)O]r2Si(OC2H5)2-CH=CH2
-(C2H5O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]r3-CH=CH2
-(CH3O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]r4-CH=CH2
-(CH3)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]r5-CH=CH2
-(C2H5O)CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]r6-CH=CH2
-(-O)SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]r7-CH=CH2
-(C2H5O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2(Si(CH3)3O)Si(CH3)O[SiCH3(-)O]s1Si(CH3)3
-(C2H5O)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2(Si(CH3)3O)Si(CH3)O[SiCH3(-)O]s2[Si(CH3)2O]r8Si(CH3)3
-C2H5OSi(CH=CH2)O[SiCH3(-)O]s3Si(OC2H5)2CH=CH2
-C2H5OSi(CH=CH2)O[SiCH3(-)O]s4Si(CH=CH2)OC2H5-CH=CH2
-(-O)Si(CH=CH2)O[SiCH3(-)O]s5Si(OC2H5)2CH=CH2
-(-O)Si(CH=CH2)O[SiCH3(-)O]s6Si(CH=CH2)(O-)-CH=CH2
-(-O)Si(CH=CH2)O[SiCH3(-)(O-)]s7Si(CH=CH2)(O-)-CH=CH2
-Si(CH=CH2)O[Si(-)OC2H5]s8[Si(O-)CH=CH2]2
-Si(CH=CH2)O[Si(O-)]r9[Si(-)OC2H5]s9[Si(OC2H5)2CH=CH2]2
-Si(CH=CH2)O[Si(-)(O-)]s10[Si(O-)CH=CH2]2
が挙げられる。これらの基中、r1〜r9及びs1〜s10は、1〜30の数である。一つの基に、ビニル基(CH=CH2基)を、1〜30個有していることが好ましい。
-SiR 21 is more specifically
-(C 2 H 5 O) 2 SiCH 2 -CH = CH 2 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 -CH = CH 2 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 CH 2 -CH = CH 2 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 -CH = CH 2 ,
-C 2 H 5 OSi (CH = CH 2 ) OSi (OC 2 H 5 ) -CH = CH 2 ,
-(CH 3 O) 2 SiCH 2 CH 2 C 6 H 4 -CH = CH 2 ,
-(CH 3 O) Si (CH = CH 2 ) O [SiOCH 3 (CH = CH 2 ) O] r1 Si (OCH 3 ) 2 -CH = CH 2 ,
-(C 2 H 5 O) Si (CH = CH 2 ) O [SiOC 2 H 5 (CH = CH 2 ) O] r2 Si (OC 2 H 5 ) 2 -CH = CH 2 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] r3 -CH = CH 2 ,
-(CH 3 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] r4 -CH = CH 2 ,
-(CH 3 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] r5 -CH = CH 2 ,
-(C 2 H 5 O) CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] r6 -CH = CH 2 ,
-(-O) SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] r7 -CH = CH 2 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 (Si (CH 3 ) 3 O) Si (CH 3 ) O [SiCH 3 ( -) O] s1 Si (CH 3 ) 3 ,
-(C 2 H 5 O) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 (Si (CH 3 ) 3 O) Si (CH 3 ) O [SiCH 3 ( -) O] s2 [Si (CH 3 ) 2 O] r8 Si (CH 3 ) 3 ,
-C 2 H 5 OSi (CH = CH 2 ) O [SiCH 3 (-) O] s3 Si (OC 2 H 5 ) 2 CH = CH 2 ,
-C 2 H 5 OSi (CH = CH 2 ) O [SiCH 3 (-) O] s4 Si (CH = CH 2 ) OC 2 H 5 -CH = CH 2 ,
-(-O) Si (CH = CH 2 ) O [SiCH 3 (-) O] s5 Si (OC 2 H 5 ) 2 CH = CH 2 ,
-(-O) Si (CH = CH 2 ) O [SiCH 3 (-) O] s6 Si (CH = CH 2 ) (O-)-CH = CH 2 ,
-(-O) Si (CH = CH 2 ) O [SiCH 3 (-) (O-)] s7 Si (CH = CH 2 ) (O-)-CH = CH 2 ,
-Si (CH = CH 2 ) O [Si (-) OC 2 H 5 ] s8 [Si (O-) CH = CH 2 ] 2 ,
-Si (CH = CH 2 ) O [Si (O-)] r9 [Si (-) OC 2 H 5 ] s9 [Si (OC 2 H 5 ) 2 CH = CH 2 ] 2 ,
-Si (CH = CH 2 ) O [Si (-) (O-)] s10 [Si (O-) CH = CH 2 ] 2
Is mentioned. In these groups, r1 to r9 and s1 to s10 are numbers from 1 to 30. One group preferably has 1 to 30 vinyl groups (CH═CH 2 groups).

ビニルシリル含有シリル基を形成する機能性アルコキシシリル化合物の例として、
(C2H5O)3SiCH2CH=CH2
(CH3O)3SiCH2CH2CH=CH2
(C2H5O)3SiCH2CH2CH=CH2
(CH3O)3SiCH2CH2CH2CH2CH=CH2
(C2H5O)3SiCH2CH2CH2CH2CH=CH2
(C2H5O)3SiCH2CH2CH2CH2CH2CH2CH=CH2
(CH3O)3SiCH2(CH2)7CH=CH2
(C2H5O)2Si(CH=CH2)OSi(OC2H5)CH=CH2
(CH3O)3SiCH2CH2C6H4CH=CH2
(CH3O)2Si(CH=CH2)O[SiOCH3(CH=CH2)O]t1Si(OCH3)2CH=CH2
(C2H5O)2Si(CH=CH2)O[SiOC2H5(CH=CH2)O]t2Si(OC2H5)3
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]t3CH=CH2
(CH3O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]t4CH=CH2
CH3O(CH3)2SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]t5CH=CH2
(C2H5O)2CH3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]t6CH=CH、
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2[Si(CH3)2O]t7CH=CH、
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2(Si(CH3)3O)Si(CH3)O[SiCH3(-)O]u1Si(CH3)3CH=CH2
(C2H5O)3SiCH2CH2CH2Si(CH3)2OSi(CH3)2CH2CH2(Si(CH3)3O)Si(CH3)O[SiCH3(-)O]u2[Si(CH3)2O]t8Si(CH3)3CH=CH2
(C2H5O)2Si(CH=CH2)O[SiCH3(OC2H5)O]u3Si(OC2H5)2CH=CH2
(C2H5O)2Si(CH=CH2)O[Si(OC2H5)2O]u4Si(OC2H5)2CH=CH2
(C2H5O)2Si(CH=CH2)O[Si(OC2H5)2O]u5Si(OC2H5)2CH=CH2
が挙げられる。これらの基中、t1〜t8及びu1〜u5は1〜30までの数である。一つの分子に、ビニル基を、1〜30個有していることが好ましい。
Examples of functional alkoxysilyl compounds that form vinylsilyl-containing silyl groups include:
(C 2 H 5 O) 3 SiCH 2 CH = CH 2 ,
(CH 3 O) 3 SiCH 2 CH 2 CH = CH 2 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH = CH 2 ,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH = CH 2 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH = CH 2 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 CH = CH 2 ,
(CH 3 O) 3 SiCH 2 (CH 2 ) 7 CH = CH 2 ,
(C 2 H 5 O) 2 Si (CH = CH 2 ) OSi (OC 2 H 5 ) CH = CH 2 ,
(CH 3 O) 3 SiCH 2 CH 2 C 6 H 4 CH = CH 2 ,
(CH 3 O) 2 Si (CH = CH 2 ) O [SiOCH 3 (CH = CH 2 ) O] t1 Si (OCH 3 ) 2 CH = CH 2 ,
(C 2 H 5 O) 2 Si (CH = CH 2 ) O [SiOC 2 H 5 (CH = CH 2 ) O] t2 Si (OC 2 H 5 ) 3 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] t3 CH = CH 2 ,
(CH 3 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] t4 CH = CH 2 ,
CH 3 O (CH 3 ) 2 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] t5 CH = CH 2 ,
(C 2 H 5 O) 2 CH 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] t6 CH = CH,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 [Si (CH 3 ) 2 O] t7 CH = CH,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 (Si (CH 3 ) 3 O) Si (CH 3 ) O [SiCH 3 (- ) O] u1 Si (CH 3 ) 3 CH = CH 2 ,
(C 2 H 5 O) 3 SiCH 2 CH 2 CH 2 Si (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 (Si (CH 3 ) 3 O) Si (CH 3 ) O [SiCH 3 (- ) O] u2 [Si (CH 3 ) 2 O] t8 Si (CH 3 ) 3 CH = CH 2 ,
(C 2 H 5 O) 2 Si (CH = CH 2 ) O [SiCH 3 (OC 2 H 5 ) O] u3 Si (OC 2 H 5 ) 2 CH = CH 2 ,
(C 2 H 5 O) 2 Si (CH = CH 2 ) O [Si (OC 2 H 5 ) 2 O] u4 Si (OC 2 H 5 ) 2 CH = CH 2 ,
(C 2 H 5 O) 2 Si (CH = CH 2 ) O [Si (OC 2 H 5 ) 2 O] u5 Si (OC 2 H 5 ) 2 CH = CH 2
Is mentioned. In these groups, t1 to t8 and u1 to u5 are numbers from 1 to 30. One molecule preferably has 1 to 30 vinyl groups.

また、アルコキシシリル末端含有シリル基で、これら基材(Sub.)に形成されるシリルエーテル結合は、下記化学式[3]
Sub.−O−SiR22 ・・・[3]
で表わされる。アルコキシシリル末端含有シリル基−SiR22は、R22が-Si(OR5)2R6基(R5及びR6は炭素数1〜4のアルキル基)、又は-Si(OR7)3基(R7は炭素数1〜4のアルキル基)を有しているものである。−SiR22は、より具体的には、
-(C2H5O)2SiCH2CH2Si(OC2H5)3
-(C2H5O)CH3SiCH2CH2Si(OC2H5)3
-(C2H5O)2SiCH=CHSi(OC2H5)3、
-(CH3O)2SiCH2CH2Si(OCH3)3、
-(CH3O)2SiCH2CH2C6H4CH2CH2Si(OCH3)3
-(CH3O)2Si[CH2CH2]3Si(OCH3)3
-(CH3O)2Si[CH2CH2]4Si(OCH3)3、
-(CH3O)CH3SiCH2CH2Si(OCH3)2CH3
-(C2H5O)CH3SiOSi(OC2H5)2CH3
-(C2H5O)Si(OC2H5)2
が挙げられる。
In addition, the silyl ether bond formed on these substrates (Sub.) With an alkoxysilyl terminal-containing silyl group has the following chemical formula [3]:
Sub.-O-SiR 22 ... [3]
It is represented by In the alkoxysilyl terminal-containing silyl group —SiR 22 , R 22 is —Si (OR 5 ) 2 R 6 group (R 5 and R 6 are alkyl groups having 1 to 4 carbon atoms), or —Si (OR 7 ) 3 group. (R 7 is an alkyl group having 1 to 4 carbon atoms). -SiR 22 is more specifically
-(C 2 H 5 O) 2 SiCH 2 CH 2 Si (OC 2 H 5 ) 3 ,
-(C 2 H 5 O) CH 3 SiCH 2 CH 2 Si (OC 2 H 5 ) 3 ,
-(C 2 H 5 O) 2 SiCH = CHSi (OC 2 H 5 ) 3,
-(CH 3 O) 2 SiCH 2 CH 2 Si (OCH 3 ) 3,
-(CH 3 O) 2 SiCH 2 CH 2 C 6 H 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
-(CH 3 O) 2 Si [CH 2 CH 2 ] 3 Si (OCH 3 ) 3 ,
-(CH 3 O) 2 Si [CH 2 CH 2 ] 4 Si (OCH 3 ) 3,
-(CH 3 O) CH 3 SiCH 2 CH 2 Si (OCH 3 ) 2 CH 3 ,
-(C 2 H 5 O) CH 3 SiOSi (OC 2 H 5 ) 2 CH 3 ,
-(C 2 H 5 O) Si (OC 2 H 5 ) 2
Is mentioned.

アルコキシシリル末端含有シリル基を形成する機能性アルコキシシリル化合物の例として、
(C2H5O)3SiCH2CH2Si(OC2H5)3
(C2H5O)2CH3SiCH2CH2Si(OC2H5)3
(C2H5O)3SiCH=CHSi(OC2H5)3
(CH3O)3SiCH2CH2Si(OCH3)3(CH3O)3SiCH2CH2C6H4CH2CH2Si(OCH3)3
(CH3O)3Si[CH2CH2]3Si(OCH3)3
(CH3O)2Si[CH2CH2]4Si(OCH3)3
(C2H5O)2Si(OC2H5)2
(CH3O)2CH3SiCH2CH2Si(OCH3)2CH3
(C2H5O)2CH3SiOSi(OC2H5)2CH3
(CH3O)3SiO[Si(OCH3)2O]v1Si(OCH3)3
(C2H5O)3SiO[Si(OC2H5)2O]v2Si(OC2H5)3
(C3H7O)3SiO[Si(OC3H7)2O]v3Si(OC3H7)3
が挙げられる。これらの基中、v1〜v3は0〜30までの数である。
Examples of functional alkoxysilyl compounds that form alkoxysilyl terminal-containing silyl groups include:
(C 2 H 5 O) 3 SiCH 2 CH 2 Si (OC 2 H 5 ) 3 ,
(C 2 H 5 O) 2 CH 3 SiCH 2 CH 2 Si (OC 2 H 5 ) 3 ,
(C 2 H 5 O) 3 SiCH = CHSi (OC 2 H 5 ) 3 ,
(CH 3 O) 3 SiCH 2 CH 2 Si (OCH 3 ) 3 (CH 3 O) 3 SiCH 2 CH 2 C 6 H 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
(CH 3 O) 3 Si [CH 2 CH 2 ] 3 Si (OCH 3 ) 3 ,
(CH 3 O) 2 Si [CH 2 CH 2 ] 4 Si (OCH 3 ) 3 ,
(C 2 H 5 O) 2 Si (OC 2 H 5 ) 2 ,
(CH 3 O) 2 CH 3 SiCH 2 CH 2 Si (OCH 3 ) 2 CH 3 ,
(C 2 H 5 O) 2 CH 3 SiOSi (OC 2 H 5 ) 2 CH 3 ,
(CH 3 O) 3 SiO [Si (OCH 3 ) 2 O] v1 Si (OCH 3 ) 3 ,
(C 2 H 5 O) 3 SiO [Si (OC 2 H 5 ) 2 O] v2 Si (OC 2 H 5 ) 3 ,
(C 3 H 7 O) 3 SiO [Si (OC 3 H 7 ) 2 O] v3 Si (OC 3 H 7 ) 3
Is mentioned. In these groups, v1 to v3 are numbers from 0 to 30.

また、加水分解性基含有シリル基で被接着基材(Sub.)に形成されるシリルエーテル結合は、下記化学式[4]
Sub.−O−Si(R8)a(R9)3-a ・・・[4]
(R8は、水素原子;ハロゲン原子;炭素数1〜12のアルキル基、アルケニル基、アルキルオキシ基、フッ素置換アルキル基;アラルキル基;アリール基であり、R9は、炭素数1〜12のアシルオキシ基、アルケニルオキシ基、アルカンイミノオキシ基、アルキルオキシ基、アルキルアミノ基、ジアルキルアミノ基;含窒素複素環基、及びアリールアミノ基であり、aは0〜3の数)で表わされる。より具体的には、加水分解性基含有シリル基−Si(R8)a(R9)3-a中、R8は、H-、F-、CH3-、C2H5-、CH2=CH-、n-C3H7-、i-C3H7-、CH2=CHCH2-、C4H9-、C6H13-、C8H17-、C6H5-、CH3C6H4-、C6H5CH2-、CF3CF2CH2CH2-、CF3CF2CF2CH2CH2-、CF3CF2CF2CF2CF2CF2CF2CH2CH2-、CH3O-、C2H5O-が挙げられ、R9は、CH3COO-、CH2=C(CH3)O-、C2H5(CH3)C=NO-、CH3O-、(CH3)2N-、(C2H5)2N-、(i-C3H7)2N-、O(CH2CH2)2N-、(CH3)3CNH-、C6H10NH-、C6H5NH-が挙げられる。
The silyl ether bond formed on the substrate to be bonded (Sub.) With a hydrolyzable group-containing silyl group is represented by the following chemical formula [4]:
Sub.-O-Si (R 8 ) a (R 9 ) 3-a ... [4]
(R 8 is a hydrogen atom; a halogen atom; an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkyloxy group, a fluorine-substituted alkyl group; an aralkyl group; an aryl group, and R 9 is an alkyl group having 1 to 12 carbon atoms. An acyloxy group, an alkenyloxy group, an alkaneiminooxy group, an alkyloxy group, an alkylamino group, a dialkylamino group; a nitrogen-containing heterocyclic group, and an arylamino group, where a is a number from 0 to 3. More specifically, in the hydrolyzable group-containing silyl group -Si (R 8 ) a (R 9 ) 3-a , R 8 is H-, F-, CH 3- , C 2 H 5- , CH 2 = CH-, nC 3 H 7 -, iC 3 H 7 -, CH 2 = CHCH 2 -, C 4 H 9 -, C 6 H 13 -, C 8 H 17 -, C 6 H 5 -, CH 3 C 6 H 4 -, C 6 H 5 CH 2 -, CF 3 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CH 2 CH 2 -, CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 2- , CH 3 O-, C 2 H 5 O-, and R 9 is CH 3 COO-, CH 2 = C (CH 3 ) O-, C 2 H 5 (CH 3 ) C = NO-, CH 3 O-, (CH 3 ) 2 N-, (C 2 H 5 ) 2 N-, (iC 3 H 7 ) 2 N-, O (CH 2 CH 2 ) 2 N-, (CH 3 ) 3 CNH-, C 6 H 10 NH-, C 6 H 5 NH-.

加水分解性基含有シリル基を形成する機能性アルコキシシリル化合物の例として、
CH3Si(OCOCH3)3、(CH3)2Si(OCOCH3)2、n-C3H7Si(OCOCH3)3、CH2=CHCH2Si(OCOCH3)3、C6H5Si(OCOCH3)3、CF3CF2CH2CH2Si(OCOCH3)3、CH2=CHCH2Si(OCOCH3)3、CH3OSi(OCOCH3)3、C2H5OSi(OCOCH3)3、CH3Si(OCOC3H7)3、CH3Si[OC(CH3)=CH2]3、(CH3)2Si[OC(CH3)=CH2]3、n-C3H7Si[OC(CH3)=CH2]3、CH2=CHCH2Si[OC(CH3)=CH2]3、C6H5Si[OC(CH3)=CH2]3、CF3CF2CH2CH2Si[OC(CH3)=CH2]3、CH2=CHCH2Si[OC(CH3)=CH2]3、CH3OSi[OC(CH3)=CH2]3、C2H5OSi[OC(CH3)=CH2]3、CH3Si[ON=C(CH3)C2H5]3、(CH32Si[ON=C(CH3)C2H5]2、n-C3H7Si[ON=C(CH3)C2H5]3、CH2=CHCH2Si[ON=C(CH3)C2H5]3、C6H5Si[ON=C(CH3)C2H5]3、CF3CF2CH2CH2Si[ON=C(CH3)C2H5]3、CH2=CHCH2Si[ON=C(CH3)C2H5]3、CH3OSi[ON=C(CH3)C2H5]3、C2H5OSi[ON=C(CH3)C2H5]]3、CH3Si[ON=C(CH3)C2H5]3、CH3Si[N(CH3)]3、(CH3)2Si[N(CH3)]2、n-C3H7Si[N(CH3)]3、CH2=CHCH2Si[N(CH3)]3、C6H5Si[N(CH3)]3、CF3CF2CH2CH2Si[N(CH3)]3、CH2=CHCH2Si[N(CH3)]3、CH3OSi[N(CH3)]3、C2H5OSi[N(CH3)]3、CH3Si[N(CH3)]3などの昜加水分解性オルガノシランが挙げられる。
As an example of a functional alkoxysilyl compound that forms a hydrolyzable group-containing silyl group,
CH 3 Si (OCOCH 3 ) 3 , (CH 3 ) 2 Si (OCOCH 3 ) 2 , nC 3 H 7 Si (OCOCH 3 ) 3 , CH 2 = CHCH 2 Si (OCOCH 3 ) 3 , C 6 H 5 Si ( OCOCH 3 ) 3 , CF 3 CF 2 CH 2 CH 2 Si (OCOCH 3 ) 3 , CH 2 = CHCH 2 Si (OCOCH 3 ) 3 , CH 3 OSi (OCOCH 3 ) 3 , C 2 H 5 OSi (OCOCH 3 ) 3 , CH 3 Si (OCOC 3 H 7 ) 3 , CH 3 Si [OC (CH 3 ) = CH 2 ] 3 , (CH 3 ) 2 Si [OC (CH 3 ) = CH 2 ] 3 , nC 3 H 7 Si [OC (CH 3 ) = CH 2 ] 3 , CH 2 = CHCH 2 Si [OC (CH 3 ) = CH 2 ] 3 , C 6 H 5 Si [OC (CH 3 ) = CH 2 ] 3 , CF 3 CF 2 CH 2 CH 2 Si [OC (CH 3 ) = CH 2 ] 3 , CH 2 = CHCH 2 Si [OC (CH 3 ) = CH 2 ] 3 , CH 3 OSi [OC (CH 3 ) = CH 2 ] 3 , C 2 H 5 OSi [OC (CH 3 ) = CH 2 ] 3 , CH 3 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , (CH 3 ) 2 Si [ON = C (CH 3 ) C 2 H 5 ] 2 , nC 3 H 7 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , CH 2 = CHCH 2 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , C 6 H 5 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , CF 3 CF 2 CH 2 CH 2 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , CH 2 = CHCH 2 Si [ ON = C (CH 3 ) C 2 H 5 ] 3 , CH 3 OSi [ON = C (CH 3 ) C 2 H 5 ] 3 , C 2 H 5 OSi [ON = C (CH 3 ) C 2 H 5 ] ] 3 , CH 3 Si [ON = C (CH 3 ) C 2 H 5 ] 3 , CH 3 Si [ N (CH 3 )] 3 , (CH 3 ) 2 Si [N (CH 3 )] 2 , nC 3 H 7 Si [N (CH 3 )] 3 , CH 2 = CHCH 2 Si [N (CH 3 )] 3 , C 6 H 5 Si [N (CH 3 )] 3 , CF 3 CF 2 CH 2 CH 2 Si [N (CH 3 )] 3 , CH 2 = CHCH 2 Si [N (CH 3 )] 3 , CH 3 OSi [N (CH 3 )] 3 , C 2 H 5 OSi [N (CH 3 )] 3 , and CH 3 Si [N (CH 3 )] 3 are examples of hydrolyzable organosilanes.

これらの機能性アルコキシシリル化合物は、水、メタノール、エタノール、イソプロパノール、エチレングリコールなどのアルコール類;アセトン、メチルエチルケトンなどのケトン類;酢酸エチルなどのエステル類;塩化メチレンなどのハロゲン化物、ブタン、ヘキサンなどのオレフィン類;テトラヒドロフラン、ブチルエーテルなどのエーテル類、ベンゼン、トルエンなどの芳香族類;ジメチルホルムアミド、メチルピロリドンなどのアミド類;及びこれらの混合溶媒などに溶解して使用される。   These functional alkoxysilyl compounds include water, methanol, ethanol, isopropanol, ethylene glycol and other alcohols; acetone, methyl ethyl ketone and other ketones; ethyl acetate and other esters; methylene chloride and other halides, butane, hexane, etc. These olefins are used by dissolving in ethers such as tetrahydrofuran and butyl ether, aromatics such as benzene and toluene, amides such as dimethylformamide and methylpyrrolidone, and mixed solvents thereof.

機能性アルコキシシリル化合物の添加量は、概ね上記の溶剤100gに対して、0.001〜5gの範囲が適当である。0.001g以下では接着効果が十分ではなく、5g以上では条件を制御しても多層薄膜が生成するので好ましくない。   The amount of the functional alkoxysilyl compound added is generally in the range of 0.001 to 5 g with respect to 100 g of the solvent. If it is 0.001 g or less, the adhesive effect is not sufficient, and if it is 5 g or more, a multilayer thin film is formed even if the conditions are controlled, such being undesirable.

非金属基材として、ポリイミド樹脂基材の例を示したが、より具体的には、ピロメリット酸無水物(PMDA)と4,4’−ジアミノジフェニルエーテル(4、4’−ODA)から合成されるポリイミド樹脂であるカプトン(デュポン社製;登録商標)で形成された基材が挙げられる。非金属基材として、それ以外の高分子樹脂、例えば、エチレン・四フッ化エチレン共重合体(FEP)、テトラフルオトエチレン・パーフルオロアルキルビニルエーテル共重合体(PEFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリビニリデンフルオライド(PVDF)、ポリビニルフルオライド(PVF)で例示されるフッ素含有樹脂;6−ナイロンのようなナイロン樹脂(ナイロンは登録商標)で例示されるポリアミド樹脂;ポリブチレンテレフタレート(PBT)で例示されるポリエステル樹脂;液晶ポリマー;セルロース、ヒドロキシエチルセルロース、デンプン、二酢酸セルロースのようなセルロース誘導体;表面ケン化酢酸ビニル樹脂;低密度ポリエチレン、高密度ポリエチレン、i-ポリプロピレン;石油樹脂;ポリスチレン、s‐ポリスチレン;クロマン・インデン樹脂;テルペン樹脂;スチレン−ジビニルベンゼン共重合体;アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂);ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリルニトリル、メタクリル酸メチル、メタクリル酸エチル、ポリシアノアクリレート;ポリ酢酸ビニル;ポリビニルアルコール;ポリビニルホルマール;ポリビニルアセタール:ポリ塩化ビニル;塩化ビニル・酢酸ビニル共重合体;塩化ビニル・エチレン共重合体;ポリフッ化ビニリデン;フッ化ビニリデン・エチレン共重合体;フッ化ビニリデン・プロピレン共重合体;1,4‐トランスポリブタジエン;ポリオキシメチレン;ポリエチレングリコール、ポリプロピレングリコール;フェノール・ホルマリン樹脂;クレゾール・フォルマリン樹脂;レゾルシン樹脂;メラミン樹脂;キシレン樹脂;トルエン樹脂;グリプタル樹脂、変性グリプタル樹脂;ポリエチレンテレフタレート(PET)、ポリブテレンテレフタレート、不飽和ポリエステル樹脂、アリルエステル樹脂のようなポリエステル樹脂;ポリカーボネート;6−ナイロン(ナイロンは登録商標)、6'6−ナイロン、6'10-ナイロンのようなポリアミド;ポリベンズイミダゾール;ポリアミドイミド;ケイ素樹脂、シリコーンゴム、シリコーン樹脂、フラン樹脂、ポリウレタン樹脂、エポキシ樹脂;ポリフェニレンオキサイド;ポリジメチルフェニレンオキサイド;ポリキシレン;ポリフェニレンスルファイド(PPS);ポリスルホン(PSF);ポリエーテルスルホン(PES);ポリエーテルエーテルケトン(PEEK);液晶樹脂;ケブラー繊維;炭素繊維とこれら複数材料のブレンド物で例示される高分子材料、
又は天然ゴム;1,4‐シスブタジエンゴム;イソプレンゴム;ポリクロロプレン;スチレン・ブタジエン共重合ゴム;水素添加スチレン・ブタジエン共重合ゴム;アクリルニトリル・ブタジエン共重合ゴム;水素添加アクリルニトリル・ブタジエン共重合ゴム;ポリブテン;ポリイソブチレン;エチレン・プロピレンゴム;エチレン・プロピレン・ターポリマー;塩素化ポリエチレン;クロルスルフォン化ポリエチレン;アルキル化クロルスルフォン化ポリエチレン;クロロプレンゴム;塩素化アクリルゴム;臭素化アクリルゴム;フッ素ゴム;エピクロルヒドリンとその共重合ゴム;塩素化エチレンプロピレンゴム;塩素化ブチルゴム;臭素化ブチルゴムで例示されゴム材料が挙げられる。これらの混合物又はこれらの架橋物であってもよい。
An example of a polyimide resin base material has been shown as the non-metal base material. More specifically, it is synthesized from pyromellitic anhydride (PMDA) and 4,4′-diaminodiphenyl ether (4,4′-ODA). And a base material formed of Kapton (manufactured by DuPont; registered trademark). Other non-metallic base materials include other polymer resins such as ethylene / tetrafluoroethylene copolymer (FEP), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PEFA), polychlorotrifluoroethylene ( PCTFE), fluorine-containing resins exemplified by polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF); polyamide resins exemplified by nylon resins such as 6-nylon (nylon is a registered trademark); polybutylene terephthalate ( Polyester resin exemplified by PBT); liquid crystal polymer; cellulose derivatives such as cellulose, hydroxyethyl cellulose, starch, cellulose diacetate; surface saponified vinyl acetate resin; low density polyethylene, high density polyethylene, i-polypropylene; petroleum resin Polystyrene, s-polystyrene; Chroman indene resin; Terpene resin; Styrene-divinylbenzene copolymer; Acrylonitrile-butadiene-styrene resin (ABS resin); Polymethyl acrylate, Polyethyl acrylate, Polyacrylonitrile, Methyl methacrylate , Ethyl methacrylate, polycyanoacrylate, polyvinyl acetate, polyvinyl alcohol, polyvinyl formal, polyvinyl acetal, polyvinyl chloride, vinyl chloride / vinyl acetate copolymer, vinyl chloride / ethylene copolymer, polyvinylidene fluoride, vinylidene fluoride・ Ethylene copolymer; Vinylidene fluoride / propylene copolymer; 1,4-Trans polybutadiene; Polyoxymethylene; Polyethylene glycol, Polypropylene glycol; Phenol / former Resin; cresol / formalin resin; resorcin resin; melamine resin; xylene resin; toluene resin; glyphtal resin, modified glyphtal resin; polyethylene terephthalate (PET), polybutene terephthalate, unsaturated polyester resin, allyl ester resin, etc. Polyester resin; Polycarbonate; Polyamide such as 6-nylon (Nylon is registered trademark), 6'6-nylon, 6'10-nylon;Polybenzimidazole;Polyamideimide; Silicon resin, silicone rubber, silicone resin, furan resin, Polyurethane resin, epoxy resin; polyphenylene oxide; polydimethylphenylene oxide; polyxylene; polyphenylene sulfide (PPS); polysulfone (PSF); polyethersulfone (PES); Terketone (PEEK); Liquid crystal resin; Kevlar fiber; Polymer material exemplified by blend of carbon fiber and these materials,
Or natural rubber; 1,4-cis butadiene rubber; isoprene rubber; polychloroprene; styrene / butadiene copolymer rubber; hydrogenated styrene / butadiene copolymer rubber; acrylonitrile / butadiene copolymer rubber; hydrogenated acrylonitrile / butadiene copolymer Polybutene; Polyisobutylene; Ethylene / propylene rubber; Ethylene / propylene terpolymer; Chlorinated polyethylene; Chlorsulfonated polyethylene; Alkylated chlorosulfonated polyethylene; Chloroprene rubber; Chlorinated acrylic rubber; Brominated acrylic rubber; An epichlorohydrin and its copolymer rubber; a chlorinated ethylene propylene rubber; a chlorinated butyl rubber; and a brominated butyl rubber. A mixture thereof or a cross-linked product thereof may be used.

非金属基材は、ガラスであってもよく、Mg、Ti、Be、Ca、Li、Al、Mn、Zn、Cr、Ga、Fe、Cd、In、Ta、Co、Ni、Sn、Sb、Bi、Pb、Cu、及びAgなど金属材料の焼結体、これらの金属材料の酸化物やチッ化物の焼結体、これらの金属材料の二元合金の酸化物の焼結体、三元合金の酸化物の焼結体、多元合金の酸化物の焼結体であってもよい。   The non-metallic substrate may be glass, Mg, Ti, Be, Ca, Li, Al, Mn, Zn, Cr, Ga, Fe, Cd, In, Ta, Co, Ni, Sn, Sb, Bi Sintered metal materials such as Pb, Cu, and Ag, sintered oxides and nitrides of these metal materials, sintered oxides of binary alloys of these metal materials, ternary alloys It may be a sintered body of an oxide or a sintered body of an oxide of a multi-component alloy.

非金属基材は、ポリイミド樹脂、フッ素含有樹脂、ポリアミド樹脂、ポリエステル樹脂、液晶ポリマーの少なくとも何れかを含む樹脂;ガラス;又は、酸化チタン、酸化アルミニウム、炭化ケイ素、チッ化ケイ素、チッ化アルミニウムの少なくとも何れかを含むセラミックスであることが好ましい。   The non-metallic substrate is a resin containing at least one of polyimide resin, fluorine-containing resin, polyamide resin, polyester resin, and liquid crystal polymer; glass; or titanium oxide, aluminum oxide, silicon carbide, silicon nitride, aluminum nitride A ceramic containing at least one of them is preferable.

非金属基材は、これら高分子樹脂やセラミックスで形成されたものであればよく、粒子であってもよく、長方形、正方形、多角形のような形状のフィルム、板、布であってもよい。   The non-metallic substrate may be formed of these polymer resins and ceramics, and may be particles, or may be a film, plate, or cloth having a shape such as a rectangle, square, or polygon. .

金属基材として、銅薄膜基材の例を示したが、アルミニウム薄膜基材であってもよい。またこの金属材料として、Mg、Ti、Be、Ca、Li、Al、Mn、Zn、Cr、Ga、Fe、Cd、In、Ta、Co、Ni、Sn、Sb、Bi、Pb、Cu、Ag、Pt、Pd、及びAuのような金属製の金属材料;これら金属材料の二元合金、三元合金、多元合金であってもよい。このような合金として、例えばMg合金、Al合金、Fe‐Cr‐Ni合金、Ni合金、Co合金、Cu-Zn合金、Cu-Sn合金、Cu-Ni合金、Ag合金が挙げられる。いずれの金属製や合金製の被接着基材も、表面に水酸基を導入できるように酸化被膜を生成しているものである。   Although the example of the copper thin film base material was shown as a metal base material, an aluminum thin film base material may be sufficient. As this metal material, Mg, Ti, Be, Ca, Li, Al, Mn, Zn, Cr, Ga, Fe, Cd, In, Ta, Co, Ni, Sn, Sb, Bi, Pb, Cu, Ag, Metallic metal materials such as Pt, Pd, and Au; binary alloys, ternary alloys, and multicomponent alloys of these metal materials may be used. Examples of such alloys include Mg alloy, Al alloy, Fe—Cr—Ni alloy, Ni alloy, Co alloy, Cu—Zn alloy, Cu—Sn alloy, Cu—Ni alloy, and Ag alloy. Any metal or alloy adherend substrate is one in which an oxide film is formed so that a hydroxyl group can be introduced to the surface.

これら基材の水酸基は、一般的な金属の酸化物に由来する水酸基、水酸基を有するポリマー、セラミックスが有する水酸基であってもよい。   The hydroxyl group of these base materials may be a hydroxyl group derived from a general metal oxide, a polymer having a hydroxyl group, or a hydroxyl group possessed by ceramics.

これら基材にコロナ放電を施して水酸基を導入する例を示したが、大気圧プラズマ処理又は紫外線照射を施してもよい。   Although an example in which a hydroxyl group is introduced by performing corona discharge on these base materials has been shown, atmospheric pressure plasma treatment or ultraviolet irradiation may be performed.

コロナ放電は、「コロナ処理」、日本接着学会誌、Vol.36,No.3,126(2000)に記載の方法に準じて、大気圧プラズマ処理は、「プラズマ処理」、日本接着学会誌、Vol.41,No.1,4(2005)に準じて、紫外線照射は、紫外線に暴露させて、夫々処理するというものである。コロナ放電等のこれらの処理後は、水酸基、カルボン酸基、カルボニル基等が生じ、濡れ性が増し、一層接着しやすくなる。これらの処理によって、L.J.Gerenser:J.Adhesion Sci.Technol.7,1019(1997)に記載のように、金属、高分子樹脂、ガラス又はセラミックス製の基材の表面に、水酸基、カルボキシル基、カルボニル基などが生成したり、表面に出現したりする。   Corona discharge is performed according to the method described in “Corona Treatment”, Journal of the Adhesion Society of Japan, Vol. 36, No. 3, 126 (2000). Atmospheric pressure plasma treatment is performed using “plasma treatment”, Journal of the Adhesion Society of Japan, Vol. In accordance with 41, No. 1, 4 (2005), ultraviolet irradiation involves exposure to ultraviolet rays and treatment. After these treatments such as corona discharge, a hydroxyl group, a carboxylic acid group, a carbonyl group and the like are generated, wettability is increased, and adhesion is further facilitated. By these treatments, as described in LJ Gerenser: J. Adhesion Sci. Technol. 7, 1019 (1997), the surface of a base material made of metal, polymer resin, glass, or ceramics, hydroxyl group, carboxyl group, carbonyl A group or the like is generated or appears on the surface.

前記の高分子樹脂は、元々水酸基を有するものと有しないものとがあるが、高分子樹脂製の基材表面に水酸基を有しなくともコロナ放電、大気圧プラズマ処理又は紫外線照射の処理を施すことにより、そこに水酸基が効率よく生成される。   The above polymer resins may or may not have a hydroxyl group from the beginning, but a corona discharge, atmospheric pressure plasma treatment or ultraviolet irradiation treatment is performed even if the polymer resin substrate surface does not have a hydroxyl group. Thus, hydroxyl groups are efficiently generated there.

それらの最適処理条件は、基材表面の材質の種類や履歴によって異なるが、その表面に55kJ/m以上の表面張力が得られるまで処理し続けることが重要である。これにより、十分な接着強度が得られる。   These optimum processing conditions vary depending on the type and history of the material on the surface of the base material, but it is important to continue the processing until a surface tension of 55 kJ / m or more is obtained on the surface. Thereby, sufficient adhesive strength is obtained.

具体的には、これら基材の表面のコロナ放電処理は、コロナ表面改質装置(例えば、信光電気計測(株)製コロナマスター)を用いて、電源:AC100V、出力電圧:0〜20kV,発振周波数:0〜40kHzで0.1秒〜60秒、温度0〜60℃の条件で行われる。   Specifically, the corona discharge treatment of the surface of these base materials is performed using a corona surface reformer (for example, Corona Master manufactured by Shinko Electric Measurement Co., Ltd.), power supply: AC 100 V, output voltage: 0 to 20 kV, oscillation. Frequency: 0 to 40 kHz, 0.1 second to 60 seconds, temperature 0 to 60 ° C.

また、これら基材の表面の大気圧プラズマ処理は、大気圧プラズマ発生装置(例えば、松下電工(株)製:商品名Aiplasuma)を用いて、プラズマ処理速度10〜100mm/s,電源:200又は220V AC(30A)、圧縮エア:0.5MPa(1NL/min),10kHz/300W〜5GHz、電力:100W〜400W,照射時間:0.1秒〜60秒の条件で行われる。   Moreover, the atmospheric pressure plasma treatment of the surface of these base materials is performed using an atmospheric pressure plasma generator (for example, trade name: Aiplasuma manufactured by Matsushita Electric Works Co., Ltd.), plasma treatment speed of 10 to 100 mm / s, power source: 200 or 220V AC (30A), compressed air: 0.5 MPa (1 NL / min), 10 kHz / 300 W to 5 GHz, power: 100 W to 400 W, irradiation time: 0.1 second to 60 seconds.

また、これら基材の表面の紫外線照射は、紫外線−発光ダイオード(UV−LED)照射装置(例えば、(株)オムロン製のUV−LED照射装置:商品名ZUV-C30H)を用いて、波長:200〜400nm、電源:100V AC,光源ピーク照度:400〜3000mW/cm,照射時間:1〜60秒の条件で行われる。 Moreover, the ultraviolet irradiation of the surface of these base materials is carried out using an ultraviolet-light emitting diode (UV-LED) irradiation device (for example, UV-LED irradiation device manufactured by OMRON Corporation: trade name ZUV-C30H), wavelength: 200 to 400 nm, power supply: 100 V AC, light source peak illuminance: 400 to 3000 mW / cm 2 , irradiation time: 1 to 60 seconds.

コロナ放電などの前処理により表面に水酸基を生成しているこれら基材の表面を、機能性アルコキシシリル化合物の溶液に浸漬又は噴霧によって接触させてもよい。浸漬及び噴霧の時間に制限はなく、これら基材表面が一様に湿潤していることが重要である。   You may make the surface of these base materials which have produced | generated the hydroxyl group on the surface by pretreatments, such as corona discharge, contact the solution of a functional alkoxysilyl compound by immersion or spraying. There is no limitation on the dipping and spraying time, and it is important that the surface of the substrate is uniformly moistened.

機能性アルコキシシリル化合物を付したこれら基材を、オーブンに入れたり、ドライヤーで温風を送風したり、高周波を照射したりすることにより、加熱しながら乾燥する。加熱・乾燥は、50〜250℃の温度範囲で、1〜60分間行われる。50℃以下では、これら基材表面に生成した水酸基と機能性アルコキシシリル化合物との反応時間が長くかかりすぎて、生産性が低下し、コストの高騰を招く。また、250℃以上では、加熱乾燥時間が短くても基材表面が変形したり、分解したりしてしまう。1分間以下の加熱乾燥では熱の伝達が不十分であるため、これら基材表面の水酸基と機能性アルコキシシリル化合物との結合が不十分となる。また、60分以上では生産性が低下する。   These base materials to which the functional alkoxysilyl compound is attached are dried while being heated by placing them in an oven, blowing warm air with a dryer, or irradiating a high frequency. Heating and drying are performed in a temperature range of 50 to 250 ° C. for 1 to 60 minutes. When the temperature is 50 ° C. or lower, the reaction time between the hydroxyl group generated on the substrate surface and the functional alkoxysilyl compound is too long, resulting in a decrease in productivity and an increase in cost. Further, at 250 ° C. or higher, the substrate surface is deformed or decomposed even if the heat drying time is short. Since heat transfer is insufficient in heat drying for 1 minute or less, the bond between the hydroxyl group on the substrate surface and the functional alkoxysilyl compound becomes insufficient. Moreover, productivity will fall in 60 minutes or more.

これら基材表面の水酸基と機能性アルコキシシリル化合物との反応が不十分な場合には、上記の浸漬と乾燥とを1〜5回程度繰り返してもよい。それにより1回当たりの浸漬及び乾燥時間を短縮し、反応回数を増やす方が反応を十分に進行させることができる。   When the reaction between the hydroxyl group on the substrate surface and the functional alkoxysilyl compound is insufficient, the above immersion and drying may be repeated about 1 to 5 times. As a result, it is possible to sufficiently advance the reaction by shortening the time of dipping and drying per time and increasing the number of reactions.

さらに、前記の機能性アルコキシシリル化合物とシラン化合物とを組み合わせて用いることにより、架橋反応性を有するシリルエーテルを、これら基材表面に形成させることができる。   Furthermore, by using a combination of the functional alkoxysilyl compound and the silane compound, a silyl ether having crosslinking reactivity can be formed on the surface of these base materials.

たとえば、上記の機能性アルコキシシリル化合物でこれら基材の水酸基とを反応させた後、シラン化合物、例えば
HSi(CH3)2C6H4Si(CH3)2H、
HSi(CH3)2C6H4OC6H4Si(CH3)2H、
CH3Si(H)2C2H4Si(H)2CH3
HSi(CH3)2C2H4Si(CH3)2H、
HSi(CH3)2OSi(CH3)2H、
HSi(CH3)2O[Si(CH3)2O]x1Si(CH3)2H(但しx1=1〜840)、
(CH3)3SiO[SiH(R17)O]x2[Si(CH3)2O]y1Si(CH3)3(但しR17=CH3-、C2H5-、C6H5-;y1=1〜50;x2=0〜50)、
HSi(CH3)2O[SiC6H5(OSi(CH3)2H)]x3Si(CH3)2H(x3=1〜5)、
HSi(CH3)2O[SiCH3(H)O]x4[SiCH3(C6H5)O]y2Si(CH3)2H(x4=1〜10、y2=1〜10)
が挙げられる。これらのシラン化合物の0.01〜5%アルコール溶液に浸漬して、0〜200℃に1〜60分間加熱することによって、積層基板を形成するための基材が得られる。0.01%以下では反応時間がかかりすぎ、5%以上では洗浄・回収のコストがかかってしまう。0℃以下では反応性が低く、200℃以上では生産性が劣る。1分間以下では反応が完結せず、60分間以上では生産性が劣る。
For example, after reacting the hydroxyl groups of these substrates with the above functional alkoxysilyl compound, a silane compound such as
HSi (CH 3 ) 2 C 6 H 4 Si (CH 3 ) 2 H,
HSi (CH 3 ) 2 C 6 H 4 OC 6 H 4 Si (CH 3 ) 2 H,
CH 3 Si (H) 2 C 2 H 4 Si (H) 2 CH 3 ,
HSi (CH 3 ) 2 C 2 H 4 Si (CH 3 ) 2 H,
HSi (CH 3 ) 2 OSi (CH 3 ) 2 H,
HSi (CH 3 ) 2 O [Si (CH 3 ) 2 O] x1 Si (CH 3 ) 2 H (where x1 = 1 to 840),
(CH 3 ) 3 SiO [SiH (R 17 ) O] x2 [Si (CH 3 ) 2 O] y1 Si (CH 3 ) 3 (where R 17 = CH 3- , C 2 H 5- , C 6 H 5 -; Y1 = 1-50; x2 = 0-50)
HSi (CH 3 ) 2 O [SiC 6 H 5 (OSi (CH 3 ) 2 H)] x3 Si (CH 3 ) 2 H (x3 = 1-5),
HSi (CH 3 ) 2 O [SiCH 3 (H) O] x4 [SiCH 3 (C 6 H 5 ) O] y2 Si (CH 3 ) 2 H (x4 = 1-10, y2 = 1-10)
Is mentioned. The base material for forming a laminated substrate is obtained by immersing in the 0.01-5% alcohol solution of these silane compounds, and heating at 0-200 degreeC for 1 to 60 minutes. If it is 0.01% or less, it takes too much reaction time, and if it is 5% or more, cleaning and recovery costs are required. The reactivity is low at 0 ° C. or lower, and the productivity is inferior at 200 ° C. or higher. The reaction is not completed in 1 minute or less, and the productivity is inferior in 60 minutes or more.

同様に、以下の不飽和アルコキシシラン化合物、例えば
CH2=CHCH2Si(OC2H5)3
CH2=CHCH2CH2Si(OC2H5)3
CH2=CHCH2CH2CH2CH2Si(OC2H5)3
CH2=CHCH2CH2CH2CH2CH2CH2Si(OCH3)3
CH2=CHSi(OC2H5)2OSi(OC2H5)2CH=CH2
CH2=CHC6H4CH2CH2Si(OCH3)3
CH2=CHSi(OCH3)2O[SiOCH3(CH=CH2)O]x5Si(OCH3)2CH=CH2 (但し、x5=1〜30)、
CH2=CHSi(CH3)2O[Si(CH3)2O]y3[Si(R18)2O]x6Si(CH3)2CH=CH2(但し、R18=CH3−,C2H5−,C6H5−,又はCF3CH2CH3−、x6=0〜2100、y3=0〜2100)、
(CH3)3SiO[Si(CH3)2O]y4[SiCH3(CH=CH2)O]x7Si(CH3)3(但し、x7=0〜2100、y4=0〜2100)、
(CH3)3SiO[Si(CH3)2O]y5[SiCH3(CH=CH2)O]x8[SiCH3(R19)O]z1Si(CH3)3(R19=CH3−,C2H5−,C6H5−,又はCF3CH2CH3−、x8=0〜2100、y5=0〜2100、z1=0〜2100)
が挙げられる。これらの不飽和アルコキシシラン化合物でこれら基材表面の水酸基と反応させた後、前記のシラン化合物の0.01〜5%と、白金触媒の10〜1000ppmとの混合物の懸濁液に、0〜200℃、1〜60分間浸漬しても積層基板が得られる。
Similarly, the following unsaturated alkoxysilane compounds, such as
CH 2 = CHCH 2 Si (OC 2 H 5 ) 3 ,
CH 2 = CHCH 2 CH 2 Si (OC 2 H 5 ) 3 ,
CH 2 = CHCH 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 ,
CH 2 = CHCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 ,
CH 2 = CHSi (OC 2 H 5 ) 2 OSi (OC 2 H 5 ) 2 CH = CH 2 ,
CH 2 = CHC 6 H 4 CH 2 CH 2 Si (OCH 3 ) 3 ,
CH 2 = CHSi (OCH 3 ) 2 O [SiOCH 3 (CH = CH 2 ) O] x5 Si (OCH 3 ) 2 CH = CH 2 (however, x5 = 1-30),
CH 2 = CHSi (CH 3 ) 2 O [Si (CH 3 ) 2 O] y3 [Si (R 18 ) 2 O] x6 Si (CH 3 ) 2 CH = CH 2 (However, R 18 = CH 3 −, C 2 H 5 −, C 6 H 5 −, or CF 3 CH 2 CH 3 −, x6 = 0 to 2100, y3 = 0 to 2100),
(CH 3 ) 3 SiO [Si (CH 3 ) 2 O] y4 [SiCH 3 (CH = CH 2 ) O] x7 Si (CH 3 ) 3 (where x7 = 0 to 2100, y4 = 0 to 2100),
(CH 3 ) 3 SiO [Si (CH 3 ) 2 O] y5 [SiCH 3 (CH = CH 2 ) O] x8 [SiCH 3 (R 19 ) O] z1 Si (CH 3 ) 3 (R 19 = CH 3 −, C 2 H 5 −, C 6 H 5 −, or CF 3 CH 2 CH 3 −, x8 = 0 to 2100, y5 = 0 to 2100, z1 = 0 to 2100)
Is mentioned. After reacting with these hydroxyl groups on the surface of the substrate with these unsaturated alkoxysilane compounds, a suspension of a mixture of 0.01 to 5% of the silane compound and 10 to 1000 ppm of the platinum catalyst is used. Even when immersed at 200 ° C. for 1 to 60 minutes, a laminated substrate can be obtained.

このときシラン化合物濃度が0.01%以下では反応時間がかかりすぎ、5%以上では洗浄・回収のコストがかかってしまう。白金触媒濃度が10ppmでは反応速度が遅すぎ、1000ppm以上ではコストが問題となってしまう。0℃以下では反応性が低いので生産性が低く、また200℃以上ではSiH基が酸化されて性能が低下する。1分間以下では反応が完結しない場合もあり、60分間以上では生産性が劣る。   At this time, if the silane compound concentration is 0.01% or less, the reaction time is too long, and if it is 5% or more, cleaning and recovery costs are required. If the platinum catalyst concentration is 10 ppm, the reaction rate is too slow, and if it is 1000 ppm or more, the cost becomes a problem. Below 0 ° C., the reactivity is low, so the productivity is low, and above 200 ° C., SiH groups are oxidized and the performance is lowered. The reaction may not be completed in 1 minute or less, and the productivity is inferior in 60 minutes or more.

また、機能性ポリアルコキシシランでこれら基材の水酸基と反応させた後、HOSi(CH3)2O[Si(CH3)2O]2Si(CH3)2OHのようなシラノール末端シロキサンの0.01〜5%のメタノール溶液に0〜200℃、1〜60分間浸漬すると、シラノール基を表面に含有した基材が得られる。 In addition, after reacting with the hydroxyl groups of these substrates with functional polyalkoxysilane, silanol-terminated siloxanes such as HOSi (CH 3 ) 2 O [Si (CH 3 ) 2 O] 2 Si (CH 3 ) 2 OH When immersed in a 0.01 to 5% methanol solution at 0 to 200 ° C. for 1 to 60 minutes, a substrate containing silanol groups on the surface is obtained.

このシラノール末端シロキサン濃度が0.01%以下では反応時間がかかりすぎ、5%以上では洗浄・回収のコストがかかってしまう。0℃以下では反応性が低いので生産性が劣り、また200℃以上では多分子膜になる場合もあるので好ましくない。1分間以下では反応が完結しない場合もあり、60分間以上では生産性が劣る。   If the silanol-terminated siloxane concentration is 0.01% or less, the reaction time is too long, and if it is 5% or more, cleaning and recovery costs are required. Below 0 ° C., the reactivity is low, so the productivity is inferior. Above 200 ° C., a multimolecular film may be formed, which is not preferable. The reaction may not be completed in 1 minute or less, and the productivity is inferior in 60 minutes or more.

前記のようにして得られたヒドロシリル(SiH)基、不飽和基、及びシラノール(SiOH)基などの架橋反応性基が導入されたこれら基材は、以下に説明するようなビニルシリル基含有付加型シリコーンゴムと接触させて、放置又は加熱することにより架橋接着を起こす。   These base materials into which crosslinking reactive groups such as hydrosilyl (SiH) groups, unsaturated groups, and silanol (SiOH) groups obtained as described above are introduced are those containing vinylsilyl group-containing addition type as described below. It is brought into contact with silicone rubber and left or heated to cause cross-linking adhesion.

非金属基材と金属基材との各々のシリルエーテル露出面を向き合わせ、その間にビニルシリル基含有付加型シリコーンゴムの接着剤層を挟み込んで接触させて、0〜200℃で1〜240分間、大気圧から100kg/cmの圧力下で処理すると積層基板が得られる。 Face each silyl ether exposed surface of the non-metal substrate and the metal substrate, and sandwich and contact the adhesive layer of vinylsilyl group-containing addition type silicone rubber between them, at 0 to 200 ° C. for 1 to 240 minutes, When the treatment is performed at a pressure from atmospheric pressure to 100 kg / cm 2 , a laminated substrate is obtained.

このとき0℃以下では架橋速度が遅くて生産性に劣るが、200℃以上では使用する高分子樹脂に熱安定性の限界があり好ましくない。1分以下では架橋反応が十分でなく接着しない場合が多く、240分以上では生産性が劣り好ましくない。通常発泡体を製造する以外は大気圧以下では積層基板の強度が低くなり、100kg/cm以上にしても特段益がないので好ましくない。 At this time, if it is 0 ° C. or lower, the crosslinking rate is slow and the productivity is inferior. If it is 1 minute or less, the crosslinking reaction is not sufficient and often does not adhere. Usually, the strength of the laminated substrate is lowered at atmospheric pressure or lower except for producing a foam, and even if it is 100 kg / cm 2 or higher, there is no particular advantage, which is not preferable.

ビニルシリル基含有付加型シリコーンゴムは、非金属基材と金属基材とに、夫々別々にヒドロシリル含有シリル基又はビニルシリル含有シリル基が結合している場合に、用いられるもので、具体的には、KE−1935−A/B(信越化学工業株式会社製;商品名)が挙げられる。   The vinylsilyl group-containing addition-type silicone rubber is used when a hydrosilyl-containing silyl group or a vinylsilyl-containing silyl group is bonded to a nonmetallic substrate and a metal substrate, respectively, specifically, KE-1935-A / B (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name).

ビニルシリル基含有付加型シリコーンゴムに代えて、水酸基含有縮合型シリコーンゴムやアルコシキシリル基含有縮合型シリコーンゴムを用いてもよい。これらの縮合型シリコーンゴムは、非金属基材と金属基材とに、夫々別々にアルコシキシリル含有シリル基が結合している場合に、用いられるもので、具体的には、KE108(信越化学工業株式会社製;商品名)が挙げられる。   Instead of the vinylsilyl group-containing addition-type silicone rubber, a hydroxyl group-containing condensation-type silicone rubber or an alkoxysilyl group-containing condensation-type silicone rubber may be used. These condensation-type silicone rubbers are used when an alkoxysilyl-containing silyl group is bonded to a non-metal base and a metal base, respectively. Specifically, KE108 (Shin-Etsu Chemical) Kogyo Co., Ltd .; trade name).

ビニルシリル基含有付加型シリコーンゴムに代えて、ビニル基含有パーオキサイド架橋シリコーンゴムを用いてもよい。このビニル基含有パーオキサイド架橋シリコーンゴムは、非金属基材と金属基材とに、夫々別々にヒドロシリル含有シリル基又は前記ビニルシリル含有シリル基が結合している場合に用いられるもので、具体的には、SH−851−U(東レ・ダウコーニング株式会社製;商品名)が挙げられる。   Instead of the vinylsilyl group-containing addition type silicone rubber, a vinyl group-containing peroxide-crosslinked silicone rubber may be used. This vinyl group-containing peroxide-crosslinked silicone rubber is used when a hydrosilyl-containing silyl group or the vinylsilyl-containing silyl group is bonded to a non-metal base and a metal base, respectively. Is SH-851-U (manufactured by Toray Dow Corning Co., Ltd .; trade name).

シリコーンゴム接着剤層は上記シリコーンゴム成分の他に、充填剤、架橋剤、触媒が加えられていてもよい。   In addition to the silicone rubber component, the silicone rubber adhesive layer may contain a filler, a crosslinking agent, and a catalyst.

充填剤は、湿式シリカ、乾式シリカ、タルク、ニプシル、カーボンブラック、金属酸化物が挙げられ、10〜100部の範囲内で添加される。10部以下では補強効果が十分でなく、また100以上では充填が困難になってしまう。   Examples of the filler include wet silica, dry silica, talc, nipsil, carbon black, and metal oxide, and are added in the range of 10 to 100 parts. If it is 10 parts or less, the reinforcing effect is not sufficient, and if it is 100 parts or more, filling becomes difficult.

付加型シリコーンゴムを用いる場合には、付加型架橋に使用される触媒として、塩化白金酸、白金カルボニルシクロビニルメチルシロキサン錯体、白金ジビニルテトラメチルジシロキサン錯体、白金シクロビニルメチルシロキサン錯体、白金オクタナル/オクタノール錯体、トリス(ジブチルスルフィド)ロジュウムトリクロリドなどを1〜100ppmの範囲内で添加して使用される。これが1ppm以下では架橋が不十分であり、また100ppm以上ではコスト高となるので好ましくない。   When the addition type silicone rubber is used, the catalyst used for addition type crosslinking is chloroplatinic acid, platinum carbonylcyclovinylmethylsiloxane complex, platinum divinyltetramethyldisiloxane complex, platinum cyclovinylmethylsiloxane complex, platinum octanal / An octanol complex, tris (dibutyl sulfide) rhodium trichloride, etc. are added and used within the range of 1 to 100 ppm. If this is 1 ppm or less, crosslinking is insufficient, and if it is 100 ppm or more, the cost increases, which is not preferable.

縮合型シリコーンゴムを用いる場合、縮合型架橋剤として、CH3Si(OCOCH3)3、C2H5OSi(OCOCH3)3、CH3Si[OC(CH3)=CH2]3、CH3Si[ON=C(CH3)C2H5]]3、CH3OSi[ON=C(CH3)C2H5]]3、CH3Si[N(CH3)]3などが0.5〜10部、及び触媒としてビス(エチルヘキシル)スズ、ビス(ネオデカネート)スズ、ジブチルラアウリルスズなどの有機スズ化合物、オクチル酸亜鉛、オクチル酸鉄などの金属塩や、チタン酸エステル、チタンキレート化合物、アミン類などが0.5〜10部添加される。 When using condensation type silicone rubber, CH 3 Si (OCOCH 3 ) 3 , C 2 H 5 OSi (OCOCH 3 ) 3 , CH 3 Si [OC (CH 3 ) = CH 2 ] 3 , CH 3 Si [ON = C (CH 3 ) C 2 H 5 ]] 3 , CH 3 OSi [ON = C (CH 3 ) C 2 H 5 ]] 3 , CH 3 Si [N (CH 3 )] 3 etc. 0.5 to 10 parts, and organotin compounds such as bis (ethylhexyl) tin, bis (neodecanate) tin and dibutylralauryltin as catalysts, metal salts such as zinc octylate and iron octylate, titanate esters, 0.5-10 parts of titanium chelate compound, amines and the like are added.

パーオキサイド型シリコーンゴムを用いる場合、積層基板は80〜200℃の温度範囲で1〜60分間加熱すると得られる。80℃以下では接着物が得られがたく、また200℃以上ではシリコーンゴムが黄変する場合がある。1分以下では架橋が不十分であり、また60分以上では生産性が低くコスト高となる。   When using the peroxide type silicone rubber, the laminated substrate can be obtained by heating in the temperature range of 80 to 200 ° C. for 1 to 60 minutes. Adhesives are difficult to obtain at 80 ° C. or lower, and silicone rubber may turn yellow at 200 ° C. or higher. If it is less than 1 minute, crosslinking is insufficient, and if it is more than 60 minutes, the productivity is low and the cost is high.

基質として例えばアルミニウムのような金属製で洗浄した金属基板に、コロナ放電処理のような表面処理を施し、基板上に水酸基を生成させ、(CH2=CH-)(CH3O-)2Si-O-[(CH2=CH-)(CH3O-)Si-O]b1-Si(-OCH3)2(-CH=CH2)のようなビニル含有シリル化合物の溶液に浸漬させて熱処理すると、基板上の水酸基にビニル含有シリル化合物が反応する。それを、白金含有触媒、例えば白金−テトラメチルジビニルジシロキサン錯体のような白金錯体のヘキサン液に浸漬させ、乾燥させると、基板上に白金含有触媒が付されている基材が得られる。その化学的構造は必ずしも明らかではないが、基材の表面で生成した複数のビニル含有シリル基に、白金錯体の白金原子が配位しているものと推察される。 A substrate made of a metal such as aluminum as a substrate is subjected to a surface treatment such as corona discharge treatment to generate hydroxyl groups on the substrate, and (CH 2 = CH-) (CH 3 O-) 2 Si -O-[(CH 2 = CH-) (CH 3 O-) Si-O] b1 -Si (-OCH 3 ) 2 (-CH = CH 2 ) When heat-treated, the vinyl-containing silyl compound reacts with the hydroxyl group on the substrate. When it is immersed in a platinum-containing catalyst, for example, a hexane solution of a platinum complex such as a platinum-tetramethyldivinyldisiloxane complex, and dried, a base material having a platinum-containing catalyst on a substrate is obtained. Although the chemical structure is not necessarily clear, it is assumed that the platinum atom of the platinum complex is coordinated to a plurality of vinyl-containing silyl groups generated on the surface of the substrate.

この基材に、ヒドロシリル基含有ポリシロキサン、又はさらにビニル基含有ポリシロキサンや必要に応じて白金含有触媒を含む組成物を塗布し、硬化させる。すると、ヒドロシリル基含有ポリシロキサンのヒドロシリル基が、基材のビニル含有シリル基同士の架橋重合よりも優先的に、そのビニル含有シリル基の二重結合へヒドロシリル化反応して、高分子量化し、基材の基質の表面の上に、ポリシロキサン類で形成されるシリコーンゴムが被覆されて接着されたシリコーンゴム接着体の積層体として積層基板が、得られる。   A hydrosilyl group-containing polysiloxane, or a vinyl group-containing polysiloxane and, if necessary, a composition containing a platinum-containing catalyst are applied to the substrate and cured. Then, the hydrosilyl group of the hydrosilyl group-containing polysiloxane undergoes a hydrosilylation reaction to the double bond of the vinyl-containing silyl group preferentially over the cross-linking polymerization of the vinyl-containing silyl groups of the base material, thereby increasing the molecular weight. A laminated substrate is obtained as a laminated body of a silicone rubber adhesive body in which a silicone rubber formed of polysiloxanes is coated and adhered on the surface of the substrate of the material.

白金含有触媒として、例えば白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液、1.85〜2.1%の白金カルボニルシクロビニルメチルシロキサン錯体のビニルメチル環状シロキサン溶液であるSIP6829.2(Gelest社製の商品名)、3〜3.5%の白金−ジビニルテトラメチルジシロキサン錯体の両末端ビニルポリジメチルシロキサン溶液であるSIP6830.3(Gelest社製の商品名)、2.1〜2.4%の白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液であるSIP6831.2(Gelest社製の商品名)、2.1〜2.4%の白金−ジビニルテトラメチルジシロキサン錯体のキシレン溶液の低着色タイプであるSIP6831.2LC(Gelest社製の商品名)、2〜2.5%の白金−シクロビニルメチルシロキサン錯体の環状メチルビニルシロキサン溶液であるSIP6832.2(Gelest社製の商品名)、2〜2.5%の白金−オクタナル/オクタノール錯体のオクタノール溶液であるSIP6833.2(Gelest社製の商品名)のような白金錯体が挙げられる。白金含有触媒にかえて、ロジウム含有触媒、例えば、3〜3.5%のトリス(ジブチルスルフィド)ロジウムトリクロライドのトルエン溶液であるINRH078(Gelest社製の商品名)のようなロジウム錯体であってもよい。   As a platinum-containing catalyst, for example, SIP6829.2 (manufactured by Gelest), which is a hexane solution of a platinum-tetramethyldivinyldisiloxane complex, a vinylmethyl cyclic siloxane solution of a 1.85 to 2.1% platinumcarbonylcyclovinylmethylsiloxane complex. (Trade name), SIP6830.3 (trade name made by Gelest) which is a vinyl polydimethylsiloxane solution at both ends of 3 to 3.5% platinum-divinyltetramethyldisiloxane complex, 2.1 to 2.4% SIP6831.2 (trade name, manufactured by Gelest) which is a xylene solution of a platinum-divinyltetramethyldisiloxane complex, 2.1 to 2.4% of a xylene solution of a xylene solution of 2.1 to 2.4%. A SIP6831.2LC (trade name, manufactured by Gelest), a cyclic methylvinylsiloxane solution of 2-2.5% platinum-cyclovinylmethylsiloxane complex. SIP6832.2 (Gelest Inc. of trade name), from 2 to 2.5% of platinum - it includes platinum complexes such as octanal / octanol complex which is the octanol solution SIP6833.2 (Gelest Inc. of trade name). In place of the platinum-containing catalyst, a rhodium-containing catalyst such as a rhodium complex such as INRH078 (trade name manufactured by Gelest), which is a toluene solution of 3-3.5% tris (dibutyl sulfide) rhodium trichloride, Also good.

単数の非金属基材と単数の金属基材を接着させる例を示したが、複数、例えば2枚ずつの非金属基材と金属基材とを交互に重ね、活性シリル基によりシリルエーテル結合した面同士で向かい合わせ、その間に、シリコーンゴム接着剤を塗布したり、粒状、布状、薄膜状、フィルム状又は板状のシリコーンゴムを介在させたりしてシリコーンゴム接着剤層を挟み込んだ後、必要に応じて加熱することにより、積層基板を作製してもよい。複数の非金属基材や金属基剤やシリコーンゴム接着剤層は、同質であっても異質であってもよい。   Although an example in which a single non-metallic substrate and a single metallic substrate are bonded is shown, a plurality of, for example, two non-metallic substrates and metallic substrates are alternately stacked, and silyl ether bonds are made by active silyl groups. Face each other, between which the silicone rubber adhesive is applied, or the silicone rubber adhesive layer is sandwiched by interposing a granular, cloth-like, thin film-like, film-like or plate-like silicone rubber, You may produce a laminated substrate by heating as needed. The plurality of non-metallic substrates, metal bases, and silicone rubber adhesive layers may be the same or different.

積層基板の放熱性を向上させるために、シリコーンゴム接着剤層に放熱性の粉末、例えば、窒化アルミニウム、炭化ケイ素、アルミナ、窒化ケイ素、グラファイトの何れかの粉末、特にポリイミドフィルムを2000℃以上で焼結して得られるグラファイトの粉末が含まれていることが、好ましい。   In order to improve the heat dissipation of the multilayer substrate, heat dissipation powder, such as aluminum nitride, silicon carbide, alumina, silicon nitride, or graphite powder, especially polyimide film is applied to the silicone rubber adhesive layer at 2000 ° C. or higher. It is preferable that graphite powder obtained by sintering is contained.

本発明のプリント配線板30の一態様は、図1の(a)の部分平面図及び(b)の部分断面図に示すように、非金属基材11と金属基材13例えば銅箔との間にシリコーンゴム接着剤層12が挟まれている積層基板10を、有しており、その金属基材13に回路パターン14a・14bが付されたものである。その回路パターン14aと14bとに発光素子22例えば発光ダイオードからの2本の端子21aと21bとが夫々、別々に半田付けされている。   As shown in the partial plan view of FIG. 1 (a) and the partial cross-sectional view of FIG. 1 (b), one embodiment of the printed wiring board 30 of the present invention includes a non-metallic substrate 11 and a metal substrate 13 such as a copper foil. A laminated substrate 10 having a silicone rubber adhesive layer 12 sandwiched therebetween is provided, and circuit patterns 14 a and 14 b are attached to the metal base 13. Two terminals 21a and 21b from the light emitting element 22, for example, a light emitting diode, are respectively soldered to the circuit patterns 14a and 14b.

回路パターン14a・14bは、非金属基材に接着させた箔膜状の金属基材をリソグラフィーやエッチング処理により形成されたものであってもよく、金属基材を予めそのパターンに成形してから非金属基材に接着させたものであってもよい。   The circuit patterns 14a and 14b may be formed by lithography or etching treatment on a foil film-like metal base material bonded to a non-metallic base material. It may be bonded to a non-metallic substrate.

プリント配線板30の別な態様は、図2に示すように、図1と同様な非金属基材11とシリコーンゴム接着剤層12と金属基材13とが積層している積層基板10上で、その金属基材13に別なシリコーンゴム層15を介して金属反射板16例えばアルミニウム箔、アルミニウム板、銀箔が接着されたものである。その金属基材13に付され互いに離れていることにより絶縁されている回路パターン14aと14bとに発光素子22からの端子21aと21bとが半田付けされている。発光素子22が、金属反射板16に開けられた穴17から突出している。   As shown in FIG. 2, another aspect of the printed wiring board 30 is formed on a laminated substrate 10 in which a non-metal base material 11, a silicone rubber adhesive layer 12, and a metal base material 13 similar to those in FIG. A metal reflector 16 such as an aluminum foil, an aluminum plate, or a silver foil is bonded to the metal base 13 via another silicone rubber layer 15. Terminals 21a and 21b from the light emitting element 22 are soldered to circuit patterns 14a and 14b that are attached to the metal base 13 and insulated by being separated from each other. The light emitting element 22 protrudes from the hole 17 formed in the metal reflector 16.

金属基材13と金属反射板16とは、シリコーンゴム接着剤層12で用いられる前記のシリコーンゴムを用い金属基材13と非金属基材11とを接着したのと同様にしてそのシリコーンゴム接着剤層15で接着させたものである。金属基材13と金属反射板16とは、リコーンゴム接着剤層15により、絶縁されている。さらに発光素子22と金属反射板16とを同様にシリコーンゴム接着剤層(不図示)で接着してもよい。   The metal base 13 and the metal reflector 16 are bonded to each other in the same manner as when the metal base 13 and the non-metal base 11 are bonded using the silicone rubber used in the silicone rubber adhesive layer 12. The adhesive layer 15 is adhered. The metal base 13 and the metal reflector 16 are insulated by a ricone rubber adhesive layer 15. Further, the light emitting element 22 and the metal reflector 16 may be similarly bonded with a silicone rubber adhesive layer (not shown).

プリント配線板30のさらに別な態様は、図3に示すように、非金属基材11の下側にシリコーンゴム接着剤層12を介して金属基材13が積層している積層基板10を有し、その金属基材13に回路パターン14a・14bが付され、非金属基材11の上側に、同様にシリコーンゴム接着剤層15を介して金属反射板16が接着されている。シリコーンゴム接着剤層12、非金属基材11、シリコーンゴム接着剤層15、及び反射板16を貫通して、穴17が開けられている。回路パターン14aと14bとに発光素子22からの端子21aと21bとが半田付けされ、発光素子22が、穴17から突出している。   As shown in FIG. 3, the printed wiring board 30 has a laminated substrate 10 in which a metal substrate 13 is laminated on a lower side of a non-metal substrate 11 with a silicone rubber adhesive layer 12 interposed therebetween. Then, circuit patterns 14 a and 14 b are attached to the metal substrate 13, and a metal reflector 16 is similarly bonded to the upper side of the non-metal substrate 11 through a silicone rubber adhesive layer 15. A hole 17 is formed through the silicone rubber adhesive layer 12, the non-metallic substrate 11, the silicone rubber adhesive layer 15, and the reflector 16. Terminals 21 a and 21 b from the light emitting element 22 are soldered to the circuit patterns 14 a and 14 b, and the light emitting element 22 protrudes from the hole 17.

以下、本発明の積層基板である積層体及びそれを用いたプリント配線板を試作した実施例を詳細に説明する。   Hereinafter, the Example which produced the laminated body which is the laminated substrate of this invention, and the printed wiring board using the same is demonstrated in detail.

(実施例1)H末端ジメチルシロキサン(HSi(CH3)2OSi(CH3)2H、bp:70℃)と不飽和シラン(CH2=CHCH2Si(OC2H5)3、bp:176℃)の反応:
HSi(CH3)2OSi(CH3)2H 0.5モル(67g)、CH2=CHCH2Si(OC2H5) 0.1モル(20.4g)、常温反応型白金触媒溶液(Gelest社製SIP6830.3)0.2mlを200mlの三角フラスコに入れて、窒素気流下で50℃、24時間攪拌した。反応終了後、反応混合物を蒸留すると未反応のHSi(CH3)2OSi(CH3)2Hが留去され、粗製のHSi(CH3)2OSi(CH3)2CH2CH2CH2Si(OC2H5)3 33.8gが得られた。これを82−3℃/10mmHgの減圧下蒸留して生成した。
元素分析 Found(Calcud):C;46.0%(46.10%)、H;8.9%(8.93%)
(Example 1) H-terminal dimethylsiloxane (HSi (CH 3 ) 2 OSi (CH 3 ) 2 H, bp: 70 ° C) and unsaturated silane (CH 2 = CHCH 2 Si (OC 2 H 5 ) 3, bp: 176 ° C) reaction:
HSi (CH 3 ) 2 OSi (CH 3 ) 2 H 0.5 mol (67 g), CH 2 = CHCH 2 Si (OC 2 H 5 ) 3 0.1 mol (20.4 g), room temperature reaction type platinum catalyst solution (Gelest SIP6830 .3) 0.2 ml was placed in a 200 ml Erlenmeyer flask and stirred at 50 ° C. for 24 hours under a nitrogen stream. When the reaction mixture is distilled after completion of the reaction, unreacted HSi (CH 3 ) 2 OSi (CH 3 ) 2 H is distilled off, and crude HSi (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 33.8 g of Si (OC 2 H 5 ) 3 was obtained. This was produced by distillation under reduced pressure of 82-3 ° C./10 mmHg.
Elemental analysis Found (Calcud): C; 46.0% (46.10%), H; 8.9% (8.93%)

(実施例2) SiH基材表面の作製法A:
ポリエチレンテレフタレート(PET)樹脂板(30mm×50mm)、ポリイミド(PI)樹脂フィルム(30mm×50mm)、Al板(30mm×50mm)及びガラス板(30mm×50mm)などの基材表面をコロナ放電処理(コロナマスター)後、HSi(CH3)2OSi(CH3)2CH2CH2CH2Si(OC2H5)3のメタノール−水混合溶液(95/5,0.5wt%)に2分間浸漬し、室温乾燥後、150℃で10分間するとHSi基含有基材表面が得られた。
(Example 2) SiH substrate surface preparation method A:
Corona discharge treatment of substrate surfaces such as polyethylene terephthalate (PET) resin plate (30mm x 50mm), polyimide (PI) resin film (30mm x 50mm), Al plate (30mm x 50mm) and glass plate (30mm x 50mm) Corona master), then immersed for 2 minutes in a methanol-water mixed solution (95/5, 0.5 wt%) of HSi (CH 3 ) 2 OSi (CH 3 ) 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 After drying at room temperature for 10 minutes at 150 ° C., an HSi group-containing substrate surface was obtained.

ポリテトラフルオロエチレン(PTFE)樹脂板(30mm×50mm)の場合は、金属ナトリウム処理液 テトラH(コーエイシステム株式会社製;商品名)に10秒間浸漬後すぐ取り出しアルコールで洗浄乾燥させ、その後、基材表面をコロナ放電処理(コロナマスター)後、上記の通り行なった。   In the case of a polytetrafluoroethylene (PTFE) resin plate (30 mm x 50 mm), it is taken out immediately after being immersed in a metal sodium treatment solution Tetra H (manufactured by Koei System Co., Ltd .; trade name) for 10 seconds, washed with alcohol and dried The surface of the material was subjected to corona discharge treatment (corona master) and then as described above.

得られたHSi基含有基材表面をXPS(PHI社製ESCA-5600、Al出力:350W,取込角;45度)により測定した結果、いずれもC1s:184eV、Si1s for HSi;ev,Si1s for SiCH3;が認められたことからHSi基含有基材表面がPET樹脂板、PI樹脂フィルム、Al板、ガラス板及びPTFE樹脂板のいずれの基板にも生成していることがわかった。 As a result of measuring the surface of the obtained HSi group-containing base material by XPS (ESCA-5600 manufactured by PHI, Al output: 350 W, take-in angle: 45 degrees), all were C1s: 184 eV, Si1s for HSi; ev, Si1s for From the fact that SiCH 3 ; was observed, it was found that the surface of the HSi group-containing substrate was formed on any of the PET resin plate, PI resin film, Al plate, glass plate, and PTFE resin plate.

(実施例3) SiH基材表面の作製法B:
PET樹脂板(30mm×50mm)、PI樹脂板(30mm×50mm)、Al板(30mm×50mm)及びガラス板(30mm×50mm)などの基材表面をコロナ放電処理(コロナマスター)後に、またポリテトラフルオロエチレン(PTFE)樹脂板(30mm×50mm)を金属ナトリウム処理液(商品名テトラH)に10秒間浸漬後に、すぐ取り出しアルコールで洗浄乾燥させ、その後、基材表面をコロナ放電処理(コロナマスター)後、CH2=CHCH2CH2CH2CH2CH2CH2Si(OCH3)3のメタノール溶液(0.2wt%)に2分間浸漬し、室温乾燥後、150℃で10分間するとCH2=CH基含有基材表面が得られた。これをHSi(CH3)2OSi(CH3)2H10gと白金触媒溶液(Gelest社製SIP6830.3)0.2mlのイソプロパノール溶液100mlに70℃で10分間浸漬すると、HSi基含有基材表面が得られた。得られたHSi基含有基材表面をX線誘起光電子分光(XPS)分析器(PHI社製ESCA-5600、Al出力:350W,取込角;45度)により測定した結果、いずれもC1s:184eV、Si1s for HSi;ev,Si1s for SiCH3;が認められたことからHSi基含有基材表面がPET樹脂板、PI樹脂板、Al板、ガラス板及びPTFE樹脂板のいずれの基板にも生成していることがわかった。
(Example 3) Production method B of SiH substrate surface:
After corona discharge treatment (corona master) on the substrate surface such as PET resin plate (30mm × 50mm), PI resin plate (30mm × 50mm), Al plate (30mm × 50mm) and glass plate (30mm × 50mm) A tetrafluoroethylene (PTFE) resin plate (30 mm x 50 mm) is immersed in a metal sodium treatment solution (trade name Tetra H) for 10 seconds, then immediately removed, washed with alcohol and dried, and then the substrate surface is treated with corona discharge (corona master) ) After that, soak in a methanol solution (0.2 wt%) of CH 2 = CHCH 2 CH 2 CH 2 CH 2 CH 2 CH 2 Si (OCH 3 ) 3 for 2 minutes, dry at room temperature, and then at 150 ° C for 10 minutes, CH 2 = CH group-containing substrate surface was obtained. When this is dipped in 100 ml of HSi (CH 3 ) 2 OSi (CH 3 ) 2 H10 g and platinum catalyst solution (Gelest SIP6830.3) 0.2 ml isopropanol solution at 70 ° C. for 10 minutes, the surface of the substrate containing HSi group is obtained. It was. As a result of measuring the surface of the obtained HSi group-containing base material with an X-ray induced photoelectron spectroscopy (XPS) analyzer (ESCA-5600 manufactured by PHI, Al output: 350 W, take-in angle: 45 degrees), all C1s: 184 eV , Si1s for HSi; ev, Si1s for SiCH 3 ; was recognized, and the surface of the HSi group-containing base material was formed on any of the PET resin plate, PI resin plate, Al plate, glass plate and PTFE resin plate. I found out.

(実施例4) CH2=CH基含有基材表面の作製法C:
PET樹脂板(30mm×50mm)、PI樹脂板(30mm×50mm)、Al板(30mm×50mm)及びガラス板(30mm×50mm)などの基材表面をコロナ放電処理(コロナマスター)後に、またポリテトラフルオロエチレン(PTFE)樹脂板(30mm×50mm)を金属ナトリウム処理液(商品名テトラH)に10秒間浸漬後に、すぐ取り出しアルコールで洗浄乾燥させ、その後、基材表面をコロナ放電処理(コロナマスター)後、CH2=CHSi(OCH3)2O[SiOCH3(CH=CH2)O]2 Si(OCH3)2CH=CH2のメタノール−水混合溶液(95/5,0.1wt%)に2分間浸漬し、室温乾燥後、170℃で5分間するとCH2=CH基含有基材表面が得られた。得られたCH2=CH基含有基材表面をXPS(PHI社製ESCA-5600、Al出力:350W,取込角;45度)により測定した結果、いずれもC1s for CH2=CH:184eV;が認められたことからCH2=CH基含有基材表面がPET樹脂板、PI樹脂板、Al板、ガラス板及びPTFE樹脂板のいずれの基板にも生成していることがわかった。
(Example 4) Preparation method of CH 2 = CH-group-containing substrate surface C:
After corona discharge treatment (corona master) on the substrate surface such as PET resin plate (30mm × 50mm), PI resin plate (30mm × 50mm), Al plate (30mm × 50mm) and glass plate (30mm × 50mm) A tetrafluoroethylene (PTFE) resin plate (30 mm x 50 mm) is immersed in a metal sodium treatment solution (trade name Tetra H) for 10 seconds, then immediately removed, washed with alcohol and dried, and then the substrate surface is treated with corona discharge (corona master) ) CH 2 = CHSi (OCH 3 ) 2 O [SiOCH 3 (CH = CH 2 ) O] 2 Si (OCH 3 ) 2 CH = CH 2 in methanol-water mixed solution (95 / 5,0.1wt%) Was immersed in the substrate for 2 minutes, dried at room temperature, and then at 170 ° C. for 5 minutes, a CH 2 ═CH group-containing substrate surface was obtained. As a result of measuring the obtained CH 2 = CH group-containing substrate surface by XPS (PCA ESCA-5600, Al output: 350 W, take-in angle: 45 degrees), all were C1s for CH 2 = CH: 184 eV; From these results, it was found that the surface of the CH 2 ═CH group-containing substrate was formed on any of the PET resin plate, PI resin plate, Al plate, glass plate, and PTFE resin plate.

(実施例5) アルコキシシリル基含有基材表面の作製法D:
PET樹脂板(30mm×50mm)、PI樹脂板(30mm×50mm)、Al板(30mm×50mm)及びガラス板(30mm×50mm)などの基材表面をコロナ放電処理(コロナマスター)後に、またポリテトラフルオロエチレン(PTFE)樹脂板(30mm×50mm)を金属ナトリウム処理液(商品名テトラH)に10秒間浸漬後に、すぐ取り出しアルコールで洗浄乾燥させ、その後、基材表面をコロナ放電処理(コロナマスター)後、(C2H5O)3SiCH2CH2Si(OC2H5)3のエタノール−水混合溶液(95/5,0.1wt%)に2分間浸漬し、室温乾燥後、120℃で60分間するとC2H5OSi基含有基材表面が得られた。得られたC2H5OSi基含有基材表面をXPS(PHI社製ESCA-5600、Al出力:350W,取込角;45度)により測定した結果、いずれもC1s for C2H5OSi:184eV; O1s for C2H5OSi:184eV;Si1s for C2H5OSi:184eV;が認められたことからC2H5OSi基含有基材表面がPET樹脂板、PI樹脂板、Al板、ガラス板及びPTFE樹脂板のいずれの基板にも生成していることがわかった。
(Example 5) Preparation method D of alkoxysilyl group-containing substrate surface:
After corona discharge treatment (corona master) on the substrate surface such as PET resin plate (30mm × 50mm), PI resin plate (30mm × 50mm), Al plate (30mm × 50mm) and glass plate (30mm × 50mm) A tetrafluoroethylene (PTFE) resin plate (30 mm x 50 mm) is immersed in a metal sodium treatment solution (trade name Tetra H) for 10 seconds, then immediately removed, washed and dried with alcohol, and then the substrate surface is treated with corona discharge (corona master) ), Then immersed in an ethanol-water mixed solution (95/5, 0.1 wt%) of (C 2 H 5 O) 3 SiCH 2 CH 2 Si (OC 2 H 5 ) 3 for 2 minutes, dried at room temperature, and then 120 ° C At 60 minutes, a C 2 H 5 OSi group-containing substrate surface was obtained. As a result of measuring the obtained C 2 H 5 OSi group-containing substrate surface by XPS (ESCA-5600, manufactured by PHI, Al output: 350 W, take-in angle: 45 degrees), all were C1s for C 2 H 5 OSi: 184 eV; O1s for C 2 H 5 OSi: 184 eV; Si1s for C 2 H 5 OSi: 184 eV; was recognized, so the surface of the C 2 H 5 OSi group-containing substrate was a PET resin plate, PI resin plate, Al plate, It was found that it was formed on both the glass plate and the PTFE resin plate.

(実施例6)基材表面とシリコーンゴムの接着物:
末端ビニル型シリコーン100部(チッソ株式会社製、DMS-V31、分子量;28000)とヘキサメチルシラザン処理シリカ30部の混合物とメチルHシロキサンコポリマー3部と白金触媒2ml(200ppm含有、チッソ株式会社製SIP6830)の混合物をミキサーで混合してシリコーンゴム配合物とした。上記の基材表面作製法A,B及びCで作製したそれぞれの基材表面を金型に入れ、これにシリコーンゴム配合物を2cmの厚さまで注ぎ、40℃で放置すると接着物が得られた。接着物に1幅の切身を入れて、5mm/minの引張速度で剥離強度を測定した結果、本発明の基材表面を用いなかった比較例では全く接着物が得られず、剥離強度はいずれも0kN/mであるが、不飽和基やSiH基が導入された基材表面を用いて得られた接着物はいずれも4kN/m以上の値を示し、破断面はシリコーンゴム層破壊であった。この結果は不飽和基やSiH基が導入された基材表面は付加型シリコーンゴムと容易に接着することを示す。
(Example 6) Adhesive of base material surface and silicone rubber:
A mixture of 100 parts of terminal vinyl type silicone (manufactured by Chisso Corporation, DMS-V31, molecular weight; 28000) and 30 parts of hexamethylsilazane-treated silica, 3 parts of methyl H siloxane copolymer and 2 ml of platinum catalyst (containing 200 ppm, SIP6830 from Chisso Corporation) ) Was mixed with a mixer to obtain a silicone rubber compound. Each substrate surface prepared by the above-mentioned substrate surface preparation methods A, B and C was put in a mold, and a silicone rubber compound was poured to a thickness of 2 cm, and an adhesive was obtained when left at 40 ° C. . As a result of measuring the peel strength at a tensile rate of 5 mm / min by putting a 1 width fillet into the adhesive, no adhesive was obtained in the comparative example in which the substrate surface of the present invention was not used, and the peel strength was Is 0 kN / m, but all the adhesives obtained using the surface of the base material into which unsaturated groups or SiH groups were introduced showed a value of 4 kN / m or more, and the fracture surface was silicone rubber layer failure. It was. This result shows that the surface of the base material into which the unsaturated group or SiH group is introduced easily adheres to the addition type silicone rubber.

(実施例7) 基材表面とシリコーンゴムの接着物:
シラノールシリコーン類(チッソ株式会社製、DMS-S33,分子量43500)100部、ヘキサメチルシラザン処理シリカ50部、CH3Si(OCOCH3)3の4g,及びジブチル錫マレート0.1gを混合してシリコーンゴム配合物を調製する。アルコキシシリル基含有基材表面を金型に入れ、これにシリコーンゴム配合物を入れて、140℃で20分間加熱すると接着物が得られた。接着物に1幅の切身を入れて、5mm/minの引張速度で剥離強度を測定した結果、比較例では全く接着物が得られず、剥離強度はいずれも0kN/mであるが、不飽和基やSiH基が導入された基材表面を用いて得られた接着物はいずれも5kN/m以上の値を示し、破断面はシリコーンゴム層破壊であった。この結果はアルコキシシリル基が導入された基材表面は縮合系のシラノールシリコーン類ゴムと容易に接着することを示す。
(Example 7) Adhesive of base material surface and silicone rubber:
Silanol silicone (mixed by Chisso Corporation, DMS-S33, molecular weight 43500) 100 parts, 50 parts of hexamethylsilazane-treated silica, 4 g of CH 3 Si (OCOCH 3 ) 3 and 0.1 g of dibutyltin malate are mixed to form a silicone rubber A formulation is prepared. The surface of the alkoxysilyl group-containing substrate was placed in a mold, and the silicone rubber compound was placed in the mold and heated at 140 ° C. for 20 minutes to obtain an adhesive. As a result of measuring the peel strength at a tensile speed of 5 mm / min by putting a 1-width fillet on the adhesive, no adhesive was obtained in the comparative example, and the peel strength was 0 kN / m, but unsaturated. All of the adhesives obtained using the surface of the base material into which a group or SiH group was introduced showed a value of 5 kN / m or more, and the fracture surface was a silicone rubber layer fracture. This result shows that the surface of the base material into which the alkoxysilyl group is introduced easily adheres to the condensed silanol silicone rubber.

(実施例8) 基材表面とシリコーンゴムの接着物:
末端ビニル型シリコーンVDF-131(チッソ株式会社製;商品名)の100部とヘキサメチルシラザン処理シリカ40部の混合物にジクミルペルオキシド4部で混合してシリコーンゴム配合物とする。CH2=CH基含有基材表面をそれぞれ金型に入れ、これにシリコーンゴム配合物をのせて、150℃で20分間加熱すると接着物が得られた。接着物に1幅の切身を入れて、5mm/minの引張速度で剥離強度を測定した結果、比較例では全く接着物が得られず、剥離強度はいずれも0kN/mであるが、不飽和基やSiH基が導入された基材表面を用いて得られた接着物はいずれも6kN/m以上の値を示し、破断面はシリコーンゴム層破壊であった。この結果はCH2=CH基含有基材表面はパーオキサイド架橋系により容易に接着することを示す。
(Example 8) Adhesive of base material surface and silicone rubber:
A mixture of 100 parts of terminal vinyl type silicone VDF-131 (manufactured by Chisso Corporation; trade name) and 40 parts of hexamethylsilazane-treated silica is mixed with 4 parts of dicumyl peroxide to obtain a silicone rubber compound. Each surface of the CH 2 ═CH group-containing substrate was placed in a mold, and a silicone rubber compound was placed on the surface and heated at 150 ° C. for 20 minutes to obtain an adhesive. As a result of measuring the peel strength at a tensile speed of 5 mm / min by putting a 1-width fillet on the adhesive, no adhesive was obtained in the comparative example, and the peel strength was 0 kN / m, but unsaturated. All of the adhesives obtained using the surface of the base material into which a group or SiH group was introduced showed a value of 6 kN / m or more, and the fracture surface was a silicone rubber layer fracture. This result shows that the surface of the CH 2 ═CH group-containing substrate is easily bonded by the peroxide crosslinking system.

(実施例9) 別な接着用基材及びシリコーンゴム積層体
(接着用基材の調製) 基質としてAl板を、アセトン中で30分間超音波照射して洗浄し、次いでイオン交換水中で、10分間ずつ2回超音波照射して洗浄処理した。その基質表面を大気雰囲気下でコロナ放電処理し、表面酸化して表面に水酸基を生じさせた。その基質の6枚を夫々、(CH2=CH-)(CH3O-)2Si-O-[(CH2=CH-)(CH3O-)Si-O]b1-Si(-OCH3)2(-CH=CH2) (但しb1は3.78で、平均分子量が635.6)で示されるビニルメトキシシロキサン(VMS)の0.1g/L、0.5g/L、1.0g/L、2.0g/L、3.0g/L、5.0g/L及び10g/Lのエタノール水溶液(エタノール:水の体積比 95:5)に5分間浸漬させた。その基質を引き上げ、150℃で10分間加熱処理し、未反応のビニルメトキシシロキサン(VMS)をエタノールで洗浄後、乾燥して、接着用基材(VMS-Al)を得た。洗浄処理したAl基板と得られた接着用基材とについて、X線光電子分光測定(XPS測定)による表面分析を行った。その結果を、図4に示す。また、洗浄処理したAl基板と得られた接着用基材とについて、その表面の元素の割合を表1に示す。
(Example 9) Another adhesive substrate and silicone rubber laminate
(Preparation of Adhesive Substrate) An Al plate as a substrate was cleaned by irradiating ultrasonically in acetone for 30 minutes, and then subjected to cleaning treatment by irradiating twice for 10 minutes in ion-exchanged water. The surface of the substrate was subjected to corona discharge treatment in an air atmosphere, and the surface was oxidized to generate hydroxyl groups on the surface. Each of the six substrates is (CH 2 = CH-) (CH 3 O-) 2 Si-O-[(CH 2 = CH-) (CH 3 O-) Si-O] b1 -Si (-OCH 3 ) 2 (—CH═CH 2 ) (wherein b1 is 3.78 and average molecular weight is 635.6) 0.1 g / L, 0.5 g / L, 1.0 g / L of vinylmethoxysiloxane (VMS) , 2.0 g / L, 3.0 g / L, 5.0 g / L and 10 g / L of ethanol aqueous solution (ethanol: water volume ratio 95: 5) was immersed for 5 minutes. The substrate was pulled up and heat-treated at 150 ° C. for 10 minutes. Unreacted vinylmethoxysiloxane (VMS) was washed with ethanol and dried to obtain a bonding substrate (VMS-Al). The surface analysis by X-ray photoelectron spectroscopy (XPS measurement) was performed on the cleaned Al substrate and the obtained base material for adhesion. The result is shown in FIG. Table 1 shows the ratio of elements on the surface of the cleaned Al substrate and the obtained base material for adhesion.

Figure 2009056791
Figure 2009056791

図4及び表1から明らかな通り、Al板表面には、ビニルメトキシシロキサン(VMS)が導入されていた。   As apparent from FIG. 4 and Table 1, vinyl methoxysiloxane (VMS) was introduced on the surface of the Al plate.

(シリコーンゴム積層体の調製) 次いでポリ(メチルビニルシロキサン)及びポリ(メチルシロキサン)である信越化学工業株式会社製の商品名KE−1935−A/Bと、白金含有触媒とを、用時混合した後、真空に減圧して脱気し、液状のシリコーンゴム形成用組成物を調製した。この組成物を、接着用基材(VMS-Al)に塗布し、その上に上記Al板を乗せ、50℃に加熱して硬化させ、接着用基材上のビニルメトキシシロキサン(VMS)由来のビニル基に反応させて架橋したシリコーンゴムにすると、ビニルメトキシシロキサン(VMS)のエタノール溶液の濃度毎に6種類のシリコーンゴム積層体が得られた。なお、対照のため、ビニルメトキシシロキサン(VMS)のエタノール溶液を用いないこと以外は同様にして対照シリコーンゴム積層体を得た。これらのシリコーンゴム積層体について、JIS K6256−2:2005の試験法に準じシリコーンゴム積層体を剥離させる90°ピール試験を行い剥離強度を測定した。ビニルメトキシシロキサン(VMS)のエタノール溶液の濃度と剥離強度との相関を図5に示す。   (Preparation of Silicone Rubber Laminate) Next, poly (methylvinylsiloxane) and poly (methylsiloxane), trade name KE-1935A / B manufactured by Shin-Etsu Chemical Co., Ltd., and a platinum-containing catalyst were mixed at the time of use. After that, the pressure was reduced to a vacuum and deaerated to prepare a liquid silicone rubber forming composition. This composition is applied to an adhesive base material (VMS-Al), and the Al plate is placed thereon, cured by heating to 50 ° C., and derived from vinyl methoxysiloxane (VMS) on the adhesive base material. When cross-linked silicone rubber was reacted with vinyl groups, six types of silicone rubber laminates were obtained for each concentration of vinyl methoxysiloxane (VMS) ethanol solution. For comparison, a control silicone rubber laminate was obtained in the same manner except that an ethanol solution of vinyl methoxysiloxane (VMS) was not used. About these silicone rubber laminated bodies, the 90 degree peel test which peels a silicone rubber laminated body according to the test method of JISK6256-2: 2005 was performed, and peeling strength was measured. FIG. 5 shows the correlation between the concentration of vinyl methoxysiloxane (VMS) in ethanol and the peel strength.

図5から明らかな通り、シリコーンゴム積層体の剥離強度は、ビニルメトキシシロキサン(VMS)のエタノール溶液の濃度が0.1〜1.0g/Lの場合、濃いほど強かったが、1.0g/Lを超えると約1.0kN/mで略一定となった。何れの場合もビニルメトキシシロキサン(VMS)のエタノール溶液を用いずその濃度が0g/Lの場合である対照シリコーンゴム積層体の剥離強度の0.4kN/mに比べ、強くなっていた。   As is clear from FIG. 5, the peel strength of the silicone rubber laminate was stronger when the concentration of the ethanol solution of vinyl methoxysiloxane (VMS) was 0.1 to 1.0 g / L, but when it exceeded 1.0 g / L, It became almost constant at about 1.0 kN / m. In any case, the strength was higher than the peel strength of 0.4 kN / m of the control silicone rubber laminate in which the ethanol solution of vinyl methoxysiloxane (VMS) was not used and the concentration was 0 g / L.

(実施例10) 別な接着用基材及びシリコーンゴム積層体
(接着用基材の調製) 実施例9の(接着用基材の調製)と同様にして、ビニルメトキシシロキサン(VMS)の1.0g/Lのエタノール水溶液を用い、接着用基材(VMS-Al)を得た。これの7枚を100ppmの白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液に、1分間、2分間、3分間、4分間、5分間、7分間及び10分間、夫々浸漬させた後、取り出して乾燥させ、表面に白金含有触媒が付された接着用基材(Pt-VMS-Al)を得た。
(Example 10) Another base material for adhesion and silicone rubber laminate
(Preparation of adhesive substrate) In the same manner as in Example 9 (Preparation of adhesive substrate), a 1.0 g / L aqueous ethanol solution of vinylmethoxysiloxane (VMS) was used, and the adhesive substrate (VMS-Al ) Seven of these were dipped in a hexane solution of 100 ppm platinum-tetramethyldivinyldisiloxane complex for 1, 2, 3, 4, 5, 7, and 10 minutes, respectively, and then removed and dried. To obtain an adhesive base material (Pt-VMS-Al) having a platinum-containing catalyst on the surface.

(シリコーンゴム積層体の調製) 次いで実施例9と同様にポリ(メチルビニルシロキサン)とポリ(メチルシロキサン)と白金含有触媒とを用時混合した後、真空に減圧して脱気し、液状のシリコーンゴム形成用組成物を調製した。この組成物を、接着用基材(Pt-VMS-Al)に塗布し、その上に上記Al板を乗せ、50℃に加熱して硬化させ、接着用基材上のビニルメトキシシロキサン(VMS)由来のビニル基に反応させて架橋したシリコーンゴムにすると、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の浸漬時間毎に7種類のシリコーンゴム積層体が得られた。なお、対照のため、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液を用いないこと以外は同様にして対照シリコーンゴム積層体を得た。これらのシリコーンゴム積層体について、実施例9と同様にしてシリコーンゴムを剥離させる90°ピール試験を行い、剥離強度を測定した。白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の浸漬時間と剥離強度との相関を図6に示す。   (Preparation of Silicone Rubber Laminate) Next, poly (methyl vinyl siloxane), poly (methyl siloxane) and a platinum-containing catalyst were mixed at the time of use in the same manner as in Example 9, and then degassed by reducing the pressure to a vacuum. A silicone rubber forming composition was prepared. This composition is applied to an adhesive base material (Pt-VMS-Al), and the Al plate is placed thereon, cured by heating to 50 ° C., and vinyl methoxysiloxane (VMS) on the adhesive base material. When the crosslinked silicone rubber was reacted with the derived vinyl group, seven types of silicone rubber laminates were obtained for each immersion time of the hexane solution of the platinum-tetramethyldivinyldisiloxane complex. For comparison, a control silicone rubber laminate was obtained in the same manner except that a hexane solution of a platinum-tetramethyldivinyldisiloxane complex was not used. About these silicone rubber laminated bodies, the 90 degree peel test which peels a silicone rubber was performed like Example 9, and the peeling strength was measured. FIG. 6 shows the correlation between the immersion time of the platinum-tetramethyldivinyldisiloxane complex in a hexane solution and the peel strength.

図6から明らかな通り、シリコーンゴム積層体の剥離強度は、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の浸漬時間が1〜2分間の場合、長く浸漬するほど強かったが、2分間を超えると約4.0kN/mで略一定となった。何れの場合も白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液を用いずその浸漬時間が0分間の場合である対照シリコーンゴム積層体の剥離強度の約1.0kN/mに比べ、強くなっていた。   As is clear from FIG. 6, the peel strength of the silicone rubber laminate was stronger as it was immersed longer when the immersion time of the platinum-tetramethyldivinyldisiloxane complex in the hexane solution was 1 to 2 minutes, but exceeded 2 minutes. It became almost constant at about 4.0kN / m. In any case, the peel strength of the control silicone rubber laminate was about 1.0 kN / m, which was a case where the immersion time was 0 minutes without using the hexane solution of the platinum-tetramethyldivinyldisiloxane complex.

(実施例11) 別な接着用基材及びシリコーンゴム積層体
(接着用基材の調製) 実施例9の(接着用基材の調製)と同様にして、ビニルメトキシシロキサン(VMS)の1.0g/Lのエタノール水溶液を用い、接着用基材(VMS-Al)を得た。これの4枚を、20ppm、60ppm、100ppm及び200ppmの白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液に3分間、夫々浸漬させ後、取り出して乾燥させ、表面に白金含有触媒が付された接着用基材(Pt-VMS-Al)を得た。
Example 11 Another Adhesive Base Material and Silicone Rubber Laminate
(Preparation of adhesive substrate) In the same manner as in Example 9 (Preparation of adhesive substrate), a 1.0 g / L aqueous ethanol solution of vinylmethoxysiloxane (VMS) was used, and the adhesive substrate (VMS-Al ) Four of these were immersed in hexane solutions of 20 ppm, 60 ppm, 100 ppm and 200 ppm of platinum-tetramethyldivinyldisiloxane complex for 3 minutes, then taken out and dried, and the surface was attached with a platinum-containing catalyst. A substrate (Pt-VMS-Al) was obtained.

(シリコーンゴム積層体の調製) 次いで実施例9と同様にポリ(メチルビニルシロキサン)とポリ(メチルシロキサン)と白金含有触媒とを用時混合した後、真空に減圧して脱気し、液状のシリコーンゴム形成用組成物を調製した。この組成物を、接着用基材(Pt-VMS-Al)に塗布し、その上に上記Al板を乗せ、50℃に加熱して硬化させ、接着用基材上のビニルメトキシシロキサン(VMS)由来のビニル基に反応させて架橋したシリコーンゴムにすると、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の濃度毎に4種類のシリコーンゴム積層体が得られた。なお、対照のため、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液を用いないこと以外は同様にして対照シリコーンゴム積層体を得た。これらのシリコーンゴム積層体について、実施例9と同様にしてシリコーンゴムを剥離させる90°ピール試験を行い、剥離強度を測定した。白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の濃度と剥離強度との相関を図7に示す。   (Preparation of Silicone Rubber Laminate) Next, poly (methyl vinyl siloxane), poly (methyl siloxane) and a platinum-containing catalyst were mixed at the time of use in the same manner as in Example 9, and then degassed by reducing the pressure to a vacuum. A silicone rubber forming composition was prepared. This composition is applied to an adhesive base material (Pt-VMS-Al), and the Al plate is placed thereon, cured by heating to 50 ° C., and vinyl methoxysiloxane (VMS) on the adhesive base material. When the crosslinked silicone rubber was reacted with the derived vinyl group, four types of silicone rubber laminates were obtained for each concentration of platinum-tetramethyldivinyldisiloxane complex in hexane solution. For comparison, a control silicone rubber laminate was obtained in the same manner except that a hexane solution of a platinum-tetramethyldivinyldisiloxane complex was not used. About these silicone rubber laminated bodies, the 90 degree peel test which peels a silicone rubber was performed like Example 9, and the peeling strength was measured. The correlation between the concentration of the hexane solution of the platinum-tetramethyldivinyldisiloxane complex and the peel strength is shown in FIG.

図7から明らかな通り、シリコーンゴム積層体の剥離強度は、白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液の濃度が200ppm以上で約4.0kN/mで略一定となった。何れの場合も白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液を用いずその濃度が0g/Lの場合である対照シリコーンゴム積層体の剥離強度の約1.0kN/mに比べ、強くなっていた。   As is clear from FIG. 7, the peel strength of the silicone rubber laminate became substantially constant at a concentration of about 4.0 kN / m when the concentration of the hexane solution of the platinum-tetramethyldivinyldisiloxane complex was 200 ppm or more. In either case, the peel strength of the control silicone rubber laminate was about 1.0 kN / m, which was the case where the concentration was 0 g / L without using a hexane solution of the platinum-tetramethyldivinyldisiloxane complex.

(実施例12) 別な接着用基材及びシリコーンゴム積層体
実施例9中のAl板に代えてガラス板を用い、ビニルメトキシシロキサン(VMS)の1.0g/Lのエタノール水溶液を用いたこと以外は実施例9と同様にして、VMS-Alに代えて接着用基材(VMS-Glass)を得た。100ppmの白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液に、3分間浸漬させた後、取り出して乾燥させ、表面に白金含有触媒が付された接着用基材(Pt-VMS-Glass)を得た。次いで実施例9と同様にポリ(メチルビニルシロキサン)とポリ(メチルシロキサン)と白金含有触媒とを用時混合した後、真空に減圧して脱気し、液状のシリコーンゴム形成用組成物を調製した。この組成物を、接着用基材(Pt-VMS-Glass)に塗布し、150℃に加熱して硬化させ、接着用基材上のビニルメトキシシロキサン(VMS)由来のビニル基に反応させて架橋したシリコーンゴムにすると、シリコーンゴム積層体が得られた。このシリコーンゴム積層体について、実施例9と同様にしてシリコーンゴムを剥離させる90°ピール試験を行い、剥離強度を測定したところ、3.7kN/mであった。
(Example 12) Another adhesive substrate and silicone rubber laminate A glass plate was used in place of the Al plate in Example 9, except that a 1.0 g / L aqueous ethanol solution of vinyl methoxysiloxane (VMS) was used. In the same manner as in Example 9, an adhesive base material (VMS-Glass) was obtained instead of VMS-Al. After being immersed in a hexane solution of 100 ppm platinum-tetramethyldivinyldisiloxane complex for 3 minutes, it was taken out and dried to obtain a bonding substrate (Pt-VMS-Glass) having a platinum-containing catalyst on the surface. . Next, poly (methyl vinyl siloxane), poly (methyl siloxane) and a platinum-containing catalyst were mixed at the time of use in the same manner as in Example 9 and then degassed under reduced pressure to prepare a liquid silicone rubber-forming composition. did. This composition is applied to an adhesive substrate (Pt-VMS-Glass), heated to 150 ° C. to cure, and reacted with vinyl groups derived from vinyl methoxysiloxane (VMS) on the adhesive substrate to crosslink. When the obtained silicone rubber was used, a silicone rubber laminate was obtained. This silicone rubber laminate was subjected to a 90 ° peel test for peeling the silicone rubber in the same manner as in Example 9, and the peel strength was measured. The result was 3.7 kN / m.

(実施例13〜17) 別な接着用基材及びシリコーンゴム積層体
実施例12中のガラス板に代えてエポキシ樹脂(EpoxyResin)板、ポリプロピレン(PP)板、ポリエチレン(PE)板、PI板、PTFE板を用いたこと以外は、実施例12と同様にして、接着用基材(Pt-VMS-EpoxyResin)、接着用基材(Pt-VMS-PP)、接着用基材(Pt-VMS-PE)、接着用基材(Pt-VMS-PI)、接着用基材(Pt-VMS-PTFE)及びそれらのシリコーンゴム積層体を得た。同様にしてシリコーンゴムを剥離させる90°ピール試験を行い、剥離強度を測定したところ、接着用基材(Pt-VMS-EpoxyResin)から得たシリコーンゴム積層体が3.8kN/m、接着用基材(Pt-VMS-PP)から得たシリコーンゴム積層体が3.2kN/m、接着用基材(Pt-VMS-PE)から得たシリコーンゴム積層体が3.3kN/m、接着用基材(Pt-VMS-PI)から得たシリコーンゴム積層体が3.4kN/m、接着用基材(Pt-VMS-PTFE)から得たシリコーンゴム積層体が3.1kN/mであった。
(Examples 13 to 17) Another adhesive substrate and silicone rubber laminate In place of the glass plate in Example 12, an epoxy resin (EpoxyResin) plate, a polypropylene (PP) plate, a polyethylene (PE) plate, a PI plate, Except that a PTFE plate was used, in the same manner as in Example 12, an adhesive substrate (Pt-VMS-EpoxyResin), an adhesive substrate (Pt-VMS-PP), an adhesive substrate (Pt-VMS-) PE), a base material for adhesion (Pt-VMS-PI), a base material for adhesion (Pt-VMS-PTFE) and their silicone rubber laminates were obtained. Similarly, the 90 ° peel test for peeling the silicone rubber was conducted and the peel strength was measured. As a result, the silicone rubber laminate obtained from the adhesive base material (Pt-VMS-EpoxyResin) was 3.8 kN / m. Silicone rubber laminate obtained from (Pt-VMS-PP) is 3.2 kN / m, Silicone rubber laminate obtained from adhesive substrate (Pt-VMS-PE) is 3.3 kN / m, Adhesive substrate (Pt The silicone rubber laminate obtained from (VMS-PI) was 3.4 kN / m, and the silicone rubber laminate obtained from the adhesive substrate (Pt-VMS-PTFE) was 3.1 kN / m.

これらの実施例から明らかな通り、本発明を適用するシリコーンゴム積層体である積層基板は、接着強度が高いものであった。とりわけ接着表面にビニル含有シリル基を有し白金含有触媒等が付された接着用基材に、ヒドロシリルを反応基として有するシリコーンゴムのような固体と接着させると、シリコーンゴムが破断するほどの強度のシリコーンゴム積層体が得られた。   As is clear from these examples, the laminated substrate which is a silicone rubber laminate to which the present invention is applied has high adhesive strength. In particular, when the adhesive surface is bonded to a base material for adhesion with a vinyl-containing silyl group and a platinum-containing catalyst attached to a solid such as silicone rubber having hydrosilyl as a reactive group, the silicone rubber will break. A silicone rubber laminate was obtained.

次に、耐熱性について、本発明を適用する実施例と本発明を適用外の比較例との違いを検討した。   Next, regarding heat resistance, a difference between an example to which the present invention was applied and a comparative example to which the present invention was not applied was examined.

(実施例18)
基質としてCu箔を、アセトン中で30分間超音波照射して洗浄し、次いでイオン交換水中で、10分間ずつ2回超音波照射して洗浄処理した。その基質表面を大気雰囲気下で、コロナ放電処理装置コロナマスターPS-1M(信光電気計装株式会社製;商品名)を用いて電圧13kVで往復させてコロナ放電処理し、表面酸化して表面に水酸基を生じさせた。(CH2=CH-)(CH3O-)2Si-O-[(CH2=CH-)(CH3O-)Si-O]b1-Si(-OCH3)2(-CH=CH2) (但しb1が3.78で、平均分子量が635.6)で示されるビニルメトキシシロキサン(VMS)の0.1g/L、0.5g/L、1.0g/L、2.0g/L、3.0g/L、5.0g/L及び10g/Lのエタノール水溶液(エタノール:水の体積比 95:5)に5分間浸漬させた。その基質を引き上げ、120℃で10分間加熱処理し、未反応のビニルメトキシシロキサン(VMS)をエタノールで洗浄後、乾燥して、100ppmの白金−テトラメチルジビニルジシロキサン錯体のヘキサン溶液に3分間、浸漬させ後、取り出して乾燥させ、表面に白金含有触媒が付された接着用基材(Pt-VMS-Cu)を得た。基質としてポリイミド(PI)を上記同様に、脱脂後処理し、接着用基材(Pt-VMS-PI)を得た。接着用基材(Pt-VMS-PI)を金型に入れ、これの表面にシリコーンゴム配合物(末端ビニル型シリコーンであるDMS-V31(チッソ株式会社製;商品名、分子量;28000)の100部とヘキサメチルシラザン処理シリカ30部の混合物とメチルHシロキサンコポリマー3部と白金触媒であるSIP6830(チッソ株式会社製;商品名、200ppm含有)の2mlとの混合物をミキサーで混合してシリコーンゴム配合物)を2mmの厚さまで注ぎ、その上に接着用基材(Pt-VMS-Cu)を乗せて脱気後40℃で放置すると接着物が得られた。その後オーブンにより200℃で120分間、二次加硫し、積層基板とした。
(Example 18)
Cu foil as a substrate was cleaned by irradiating with ultrasonic waves in acetone for 30 minutes, and then cleaned by irradiating with ultrasonic waves twice for 10 minutes each in ion-exchanged water. The substrate surface was subjected to corona discharge treatment by reciprocating at a voltage of 13 kV using a corona discharge treatment device Corona Master PS-1M (manufactured by Shinko Electric Instrumentation Co., Ltd .; trade name) in an air atmosphere, and the surface was oxidized to the surface. A hydroxyl group was generated. (CH 2 = CH-) (CH 3 O-) 2 Si-O-[(CH 2 = CH-) (CH 3 O-) Si-O] b1 -Si (-OCH 3 ) 2 (-CH = CH 2 ) 0.1 g / L, 0.5 g / L, 1.0 g / L, 2.0 g / L, 3.0 g of vinylmethoxysiloxane (VMS) represented by the formula (where b1 is 3.78 and average molecular weight is 635.6) / L, 5.0 g / L and 10 g / L ethanol aqueous solution (ethanol: water volume ratio 95: 5) was immersed for 5 minutes. The substrate was pulled up, heated at 120 ° C. for 10 minutes, unreacted vinyl methoxysiloxane (VMS) was washed with ethanol, dried, and then added to a hexane solution of 100 ppm platinum-tetramethyldivinyldisiloxane complex for 3 minutes. After being immersed, it was taken out and dried to obtain an adhesive substrate (Pt-VMS-Cu) having a platinum-containing catalyst on the surface. Polyimide (PI) as a substrate was treated after degreasing in the same manner as described above to obtain an adhesive base material (Pt-VMS-PI). Adhesive base material (Pt-VMS-PI) is placed in a mold, and a silicone rubber compound (terminal vinyl type silicone DMS-V31 (manufactured by Chisso Corp .; trade name, molecular weight; 28000)) is placed on the surface of this. A mixture of 30 parts of hexamethylsilazane-treated silica, 3 parts of methyl H siloxane copolymer and 2 ml of SIP6830 (made by Chisso Corporation; trade name, containing 200 ppm) as a platinum catalyst is mixed with a silicone rubber. The product was poured to a thickness of 2 mm, and an adhesive base material (Pt-VMS-Cu) was placed on it. After deaeration, the product was left at 40 ° C. to obtain an adhesive. Thereafter, secondary vulcanization was performed in an oven at 200 ° C. for 120 minutes to obtain a laminated substrate.

(比較例1)
実施例18と同質の各基質を、アセトン中で30分間超音波照射して洗浄し、次いでイオン交換水中で、10分間ずつ2回超音波照射して洗浄処理し、その後市販のシラン系カップリング剤であるSH2200(東レダウコーニング社製;商品名)をウエスに含浸させ、そのウエスで基質に2回塗布し、150℃で10分間加熱処理後、乾燥して、接着用基材(SH2200-Cu及びSH2200-PI)を、夫々得た。接着用基材(SH2200-PI)を金型に入れ、これの表面にシリコーンゴム配合物(末端ビニル型シリコーンであるDMS-V31(チッソ株式会社製;商品名、分子量:28000)の100部とヘキサメチルシラザン処理シリカ30部の混合物とメチルHシロキサンコポリマー3部と白金触媒であるSIP6830(チッソ株式会社製;商品名、200ppm含有)の2mlとの混合物をミキサーで混合したシリコーンゴム配合物を2mmの厚さまで注ぎ、その上に接着用基材(SH2200-Cu)を乗せ40℃で放置すると接着物が得られた。その後オーブンを用いて、200℃で120分間、二次加硫し、積層基板である接着物とした。
(Comparative Example 1)
Each substrate of the same quality as in Example 18 was cleaned by irradiating with ultrasonic waves in acetone for 30 minutes, then cleaned by irradiating with ultrasonic waves twice for 10 minutes in ion-exchanged water, and then commercially available silane coupling. SH2200 (trade name) manufactured by Toray Dow Corning Co., Ltd. was impregnated into a waste cloth, applied twice to the substrate with the waste, heat-treated at 150 ° C. for 10 minutes, dried, and then bonded to the substrate (SH2200- Cu and SH2200-PI) were obtained respectively. Adhesive base material (SH2200-PI) is put in a mold, and 100 parts of silicone rubber compound (terminal vinyl type silicone DMS-V31 (made by Chisso Corporation; trade name, molecular weight: 28000)) 2mm of silicone rubber compound in which a mixture of 30 parts of hexamethylsilazane-treated silica, 3 parts of methyl H siloxane copolymer, and 2 ml of SIP6830 (trade name, containing 200 ppm) as a platinum catalyst was mixed with a mixer The adhesive was obtained by placing the adhesive substrate (SH2200-Cu) on it and leaving it to stand at 40 ° C. After that, it was secondarily vulcanized at 200 ° C. for 120 minutes using an oven, and then laminated. The adhesive was a substrate.

(耐熱試験)
実施例18及び比較例1の二次加硫した接着物に各々、接着物に1幅の切身を入れて、5mm/分の引張速度で、金属基材(Cu箔)−ゴム接着剤層の間と、非金属基材(PI)−ゴム接着剤層の間との剥離強度を、夫々測定した。その結果を表2に示す。
(Heat resistance test)
Each of the secondary vulcanized adhesives of Example 18 and Comparative Example 1 was filled with 1-width fillet, and the metal substrate (Cu foil) -rubber adhesive layer was pulled at a pulling speed of 5 mm / min. And the peel strength between the non-metallic substrate (PI) and the rubber adhesive layer were measured. The results are shown in Table 2.

Figure 2009056791
Figure 2009056791

表2から明らかな通り、本発明を適用する実施例18の二次加硫した接着物は、Cu箔-ゴム接着剤層の界面も、PI-ゴム接着剤層の界面も、3.0kN/m以上の接着強度を示し非常に強く接着しており、その破断面が何れもシリコーンゴム層破壊であった。一方、本発明を適用外の比較例1のように市販のカップリング剤を用いた場合、強固に接着した積層基材が得られず、Cu箔-ゴム接着剤層の界面も、PI-ゴム接着剤層の界面も、0〜0.1kN/mの接着強度を示し弱くしか接着されていなかった。   As is apparent from Table 2, the secondary vulcanized adhesive of Example 18 to which the present invention is applied has a Cu foil-rubber adhesive layer interface and a PI-rubber adhesive layer interface of 3.0 kN / m. The above adhesive strength was exhibited, and the adhesion was very strong, and the fracture surfaces were all broken silicone rubber layers. On the other hand, when a commercially available coupling agent is used as in Comparative Example 1 to which the present invention is not applied, a strongly bonded laminated base material cannot be obtained, and the interface of the Cu foil-rubber adhesive layer is also PI-rubber. The interface of the adhesive layer also showed an adhesive strength of 0 to 0.1 kN / m and was only weakly bonded.

次に、本発明を適用する積層基板を用いてプリント配線板を作製し、LED照明装置に用いる例を示す。   Next, an example in which a printed wiring board is manufactured using a multilayer substrate to which the present invention is applied and used in an LED lighting device will be described.

(実施例19)
図2に示すようなプリント配線基板を有するLED照明装置を作製した。実施例18で用いた接着用基材(Pt-VMS-PI)に代えて前記の接着用基材(Pt-VMS-EpoxyResin)を用いたこと以外は実施例18と同様にして接着物を得た。その表面の銅箔をエッチング処理し、配線パターンを形成した。その配線パターン上のLEDの配線を装着すべき部位にシリコーンゴム配合物が付されないようにマスキングテープでマスキングした。これに、付加型であるシリコーンゴムと放熱性粉末のアルミナ粉末とを含むシリコーンゴム配合物であるSH4400A/B(東レ・ダウコーニング株式会社製の商品名)を、マスキングした接着物へ0.5mmの厚さに塗布した。マスキングテープを剥がし、配線パターンにLEDの配線を半田付けした。鏡面アルミ板である金属反射板に、LEDよりも僅かに大きな穴を開けた。シリコーンゴム配合物の塗布面に、金属反射板を乗せ、その金属面上部でローラーを転がしてゴム配合物と金属板とのエアーギャップを取り除き、60℃に加熱すると、両者が接着し、LED照明装置に用いられるプリント配線基板が得られた。
(Example 19)
An LED lighting device having a printed wiring board as shown in FIG. 2 was produced. An adhesive was obtained in the same manner as in Example 18 except that the above-mentioned adhesive base material (Pt-VMS-EpoxyResin) was used instead of the adhesive base material (Pt-VMS-PI) used in Example 18. It was. The copper foil on the surface was etched to form a wiring pattern. Masking with a masking tape was performed so that the silicone rubber compound was not attached to the portion of the wiring pattern where the LED wiring should be mounted. Add SH4400A / B (trade name, manufactured by Toray Dow Corning Co., Ltd.), a silicone rubber compound containing addition type silicone rubber and heat-dissipating alumina powder to the masked adhesive to 0.5 mm. Applied to thickness. The masking tape was peeled off, and the LED wiring was soldered to the wiring pattern. A slightly larger hole than the LED was made in a metal reflector that was a mirror aluminum plate. Place a metal reflector on the silicone rubber compound application surface, roll the roller above the metal surface to remove the air gap between the rubber compound and metal plate, and heat to 60 ° C to bond them together, LED lighting A printed wiring board used in the apparatus was obtained.

この積層基板を用いて作製したプリント配線板は、熱に安定で、放熱性に優れ、確りと接着していた。このプリント配線板は、破損し難く、信頼性が高いものであった。   The printed wiring board produced using this multilayer substrate was stable to heat, excellent in heat dissipation, and firmly adhered. This printed wiring board was not easily damaged and was highly reliable.

本発明の積層基板は、携帯電話等の小型電子機器に信頼性の高い半導体素子搭載用基板として組み込まれて用いられる。この積層基板は、非金属基材と金属基材との接着性や耐熱性に優れ可撓性であって薄くて軽量であるから、これら電子機器のフレキシブルプリント配線板、ヒンジ部分の配線板を作製するのに有用である。また、この積層基板は、非金属基材とアルミニウム金属基材とを接着し、放熱性と光放射反射効率とを高めた回路基板として有用である。さらにこの積層基板は、発光ダイオード等の光源装置の固定構造と反射構造および放熱構造を有しているので、この光源装置の部材として有用である。
The multilayer substrate of the present invention is used as a highly reliable semiconductor element mounting substrate in a small electronic device such as a mobile phone. Since this laminated substrate is excellent in adhesion and heat resistance between a non-metallic base material and a metallic base material, and is flexible and thin and lightweight, the flexible printed wiring board of these electronic devices and the wiring board of the hinge part are used. Useful for making. In addition, this laminated substrate is useful as a circuit substrate in which a nonmetallic base material and an aluminum metal base material are bonded to each other to improve heat dissipation and light radiation reflection efficiency. Further, the laminated substrate is useful as a member of the light source device because it has a light source device fixing structure such as a light emitting diode, a reflection structure, and a heat dissipation structure.

本発明を適用する積層基板を用いたプリント配線板の部分平面図及び部分断面図である。It is the fragmentary top view and fragmentary sectional view of the printed wiring board using the multilayer substrate to which this invention is applied. 本発明を適用する積層基板を用いた別なプリント配線板の部分断面図である。It is a fragmentary sectional view of another printed wiring board using the multilayer substrate to which the present invention is applied. 本発明を適用する積層基板を用いた別なプリント配線板の部分断面図である。It is a fragmentary sectional view of another printed wiring board using the multilayer substrate to which the present invention is applied. 本発明を適用する積層基板のX線光電子分光測定による表面分析の結果を示す図である。It is a figure which shows the result of the surface analysis by the X-ray photoelectron spectroscopy measurement of the multilayer substrate to which this invention is applied. 本発明を適用する積層基板を作製する際に接着用基材を浸漬するビニルメトキシシロキサンの濃度と、得られたシリコーンゴム積層体の剥離強度との相関を示す図である。It is a figure which shows the correlation with the density | concentration of the vinyl methoxysiloxane which immerses the base material for adhesion when producing the laminated substrate to which this invention is applied, and the peeling strength of the obtained silicone rubber laminated body. 本発明を適用する積層基板を作製する際に接着用基材を浸漬する白金含有触媒の浸漬時間と、得られたシリコーンゴム積層体の剥離強度との相関を示す図である。It is a figure which shows correlation with the immersion time of the platinum containing catalyst which immerses the base material for adhesion when producing the laminated substrate which applies this invention, and the peeling strength of the obtained silicone rubber laminated body. 本発明を適用する積層基板を作製する際に接着用基材を浸漬する白金含有触媒の濃度と、得られたシリコーンゴム積層体の剥離強度との相関を示す図である。It is a figure which shows the correlation of the density | concentration of the platinum containing catalyst which immerses the base material for adhesion when producing the laminated substrate which applies this invention, and the peeling strength of the obtained silicone rubber laminated body.

Claims (20)

非金属の表面の水酸基の脱水素残基にヒドロシリル含有シリル基、ビニルシリル含有シリル基、アルコシキシリル含有シリル基、及び加水分解性基含有シリル基から選ばれる活性シリル基をシリルエーテル結合させた接着用非金属基材と、
それを被覆する金属の表面の水酸基の脱水素残基にヒドロシリル含有シリル基、ビニルシリル含有シリル基、アルコシキシリル含有シリル基、及び加水分解性基含有シリル基から選ばれる別な活性シリル基をシリルエーテル結合させた接着用金属基材とが、
両基材の夫々の活性シリル基に結合し得る反応性基を露出させたシリコーンゴム接着剤層を挟み込みつつ、該結合によって接着していることを特徴とする積層基板。
Adhesion of an active silyl group selected from hydrosilyl-containing silyl group, vinylsilyl-containing silyl group, alkoxysilyl-containing silyl group, and hydrolyzable group-containing silyl group to a dehydrogenated residue of a hydroxyl group on a nonmetallic surface A non-metallic substrate for,
Another active silyl group selected from hydrosilyl-containing silyl group, vinylsilyl-containing silyl group, alkoxysilyl-containing silyl group, and hydrolyzable-group-containing silyl group is silylated on the dehydrogenation residue of the hydroxyl group on the surface of the metal coating An ether-bonded metal substrate for bonding,
A laminated substrate characterized in that a silicon rubber adhesive layer exposing a reactive group capable of bonding to each active silyl group of both substrates is sandwiched and bonded by the bonding.
前記非金属基材と前記金属基材とに夫々、別々に前記ヒドロシリル含有シリル基又は前記ビニルシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基であるビニルシリル基を有した付加型シリコーンゴムで形成されていることを特徴とする請求項1に記載の積層基板。   The hydrosilyl-containing silyl group or the vinylsilyl-containing silyl group is separately bonded to the non-metal substrate and the metal substrate, respectively, and the silicone rubber adhesive layer has a vinylsilyl group that is the reactive group. 2. The laminated substrate according to claim 1, wherein the laminated substrate is made of an additional silicone rubber. 前記非金属基材と前記金属基材とに夫々、別々に前記アルコシキシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基である水酸基又はアルコシキシリル基を有した縮合型シリコーンゴムで形成されていることを特徴とする請求項1に記載の積層基板。   The alkoxysilyl-containing silyl group is separately bonded to the non-metal substrate and the metal substrate, and the silicone rubber adhesive layer has a hydroxyl group or an alkoxysilyl group as the reactive group. 2. The laminated substrate according to claim 1, wherein the laminated substrate is formed of a condensed type silicone rubber. 前記縮合型シリコーンゴムが、シラノールシリコーンゴムであることを特徴とする請求項3に記載の積層基板。   The laminated substrate according to claim 3, wherein the condensation type silicone rubber is silanol silicone rubber. 前記非金属基材と前記金属基材とに夫々、別々に前記ヒドロシリル含有シリル基又は前記ビニルシリル含有シリル基が結合しており、前記シリコーンゴム接着剤層が、前記反応性基であるビニル基を有したパーオキサイド架橋シリコーンゴムであることを特徴とする請求項1に記載の積層基板。   The hydrosilyl-containing silyl group or the vinylsilyl-containing silyl group is separately bonded to the non-metal substrate and the metal substrate, respectively, and the silicone rubber adhesive layer has a vinyl group that is the reactive group. The laminated substrate according to claim 1, which is a peroxide-crosslinked silicone rubber. 前記非金属基材と前記金属基材とが薄膜基材であり、それにより可撓性を有していることを特徴とする請求項1に記載の積層基板。   The multilayer substrate according to claim 1, wherein the non-metallic base material and the metallic base material are thin film base materials, thereby having flexibility. 前記非金属基材が、樹脂、ゴム、ガラス、又はセラミックスで形成されていることを特徴とする請求項1に記載の積層基板。   The multilayer substrate according to claim 1, wherein the non-metallic base material is formed of resin, rubber, glass, or ceramics. 前記金属基材が、銅、アルミニウム、又はアルミニウム合金で形成されていることを特徴とする請求項1に記載の積層基板。   The multilayer substrate according to claim 1, wherein the metal substrate is made of copper, aluminum, or an aluminum alloy. 前記非金属の露出表面の水酸基、又は前記金属の露出表面の水酸基が各々、その表面に元来有している水酸基、酸化されて形成された水酸基、又はその表面をコロナ放電、大気圧プラズマ処理及び紫外線照射、金属ナトリウム処理の何れかの表面処理により生成させた水酸基であり、アルコキシシラン化合物のアルコキシシリル基由来の前記夫々の活性シリル基に前記シリルエーテル結合していることを特徴とする請求項1に記載の積層基板。   The hydroxyl group on the exposed surface of the non-metal or the hydroxyl group on the exposed surface of the metal has a hydroxyl group originally present on the surface, a hydroxyl group formed by oxidation, or the surface thereof is subjected to corona discharge or atmospheric pressure plasma treatment. And a hydroxyl group generated by surface treatment of any one of ultraviolet irradiation and metal sodium treatment, and the silyl ether bond to each active silyl group derived from an alkoxysilyl group of an alkoxysilane compound. Item 2. The laminated substrate according to Item 1. 前記非金属の露出表面の水酸基、又は前記金属の露出表面の水酸基が各々、前記アルコキシシラン化合物で前記シリルエーテル結合することにより、単分子膜、又は薄膜が形成されていることを特徴とする請求項1に記載の積層基板。   The monomolecular film or the thin film is formed by bonding the hydroxyl group of the exposed surface of the nonmetal or the hydroxyl group of the exposed surface of the metal with the silyl ether bond with the alkoxysilane compound. Item 2. The laminated substrate according to Item 1. 前記夫々の活性シリル基が、
モノヒドロシリル基含有シリル基及びジヒドロシリル基含有シリル基から選ばれる前記ヒドロシリル含有シリル基;
モノビニルシリル基含有シリル基である前記ビニルシリル含有シリル基;
トリアルコキシシリル末端基含有シリル基及びジアルコキシシリル末端基含有シリル基から選ばれる前記アルコキシシリル含有シリル基;又は
アシルオキシシリル基、アルケニルオキシシリル基、アルカンイミノオキシシリル基、アルキルオキシシリル基、アルキルアミノシリル基、ジアルキルアミノシリル基、含窒素複素環置換シリル基、及びアリールアミノシリル基から選ばれる加水分解性官能基を有している前記加水分解性基含有シリル基
であることを特徴とする請求項1に記載の積層基板。
Each of the active silyl groups is
The hydrosilyl-containing silyl group selected from a monohydrosilyl group-containing silyl group and a dihydrosilyl group-containing silyl group;
The vinylsilyl-containing silyl group which is a monovinylsilyl group-containing silyl group;
The alkoxysilyl-containing silyl group selected from trialkoxysilyl end group-containing silyl group and dialkoxysilyl end group-containing silyl group; or acyloxysilyl group, alkenyloxysilyl group, alkaneiminooxysilyl group, alkyloxysilyl group, alkylamino The hydrolyzable group-containing silyl group having a hydrolyzable functional group selected from a silyl group, a dialkylaminosilyl group, a nitrogen-containing heterocyclic substituted silyl group, and an arylaminosilyl group. Item 2. The laminated substrate according to Item 1.
前記夫々の活性シリル基が、その基の末端に-SiH(R1)2又は-SiH2(R2)(R1及びR2は、炭素数1〜4のアルキル基)を有し、又はその基の主鎖の途中に-SiH-基を有している前記ヒドロシリル含有シリル基であることを特徴とする請求項11に記載の積層基板。 Each of the active silyl groups has —SiH (R 1 ) 2 or —SiH 2 (R 2 ) (R 1 and R 2 are alkyl groups having 1 to 4 carbon atoms) at the end of the group, or The multilayer substrate according to claim 11, wherein the hydrosilyl-containing silyl group has a -SiH- group in the middle of the main chain of the group. 前記夫々の活性シリル基が、その基の末端に、-Si-R3基(R3はビニル含有基)を有し、又はその基の主鎖の途中に-Si(R4)-基(R4はビニル含有基)を有している前記ビニルシリル含有シリル基であることを特徴とする請求項11に記載の積層基板。 Each of the active silyl groups has a -Si-R 3 group (R 3 is a vinyl-containing group) at the terminal of the group, or a -Si (R 4 )-group (in the middle of the main chain of the group) The laminated substrate according to claim 11, wherein R 4 is the vinylsilyl-containing silyl group having a vinyl-containing group. 前記夫々の活性シリル基が、その基の末端に、-Si(OR5)2R6基(R5及びR6は炭素数1〜4のアルキル基)、又は-Si(OR7)3基(R7は炭素数1〜4のアルキル基)を有している前記アルコキシシリル含有シリル基であることを特徴とする請求項11に記載の積層基板。 Each of the active silyl groups has a —Si (OR 5 ) 2 R 6 group (R 5 and R 6 are alkyl groups having 1 to 4 carbon atoms) or a —Si (OR 7 ) 3 group at the end of the group. The multilayer substrate according to claim 11, wherein the alkoxysilyl-containing silyl group having R 7 is an alkyl group having 1 to 4 carbon atoms. 前記夫々の活性シリル基が、-Si(R8)a(R9)3-a基(R8は、水素原子;ハロゲン原子;炭素数1〜12のアルキル基、アルケニル基、アルキルオキシ基、フッ素置換アルキル基;アラルキル基;アリール基であり、R9は、炭素数1〜12のアシルオキシ基、アルケニルオキシ基、アルカンイミノオキシ基、アルキルオキシ基、アルキルアミノ基、ジアルキルアミノ基;含窒素複素環基、及びアリールアミノ基であり、aは0〜3の数)で表わされる前記加水分解性官能基を有する前記加水分解性基含有シリル基であることを特徴とする請求項11に記載の積層基板。 Each of the active silyl groups is a —Si (R 8 ) a (R 9 ) 3-a group (R 8 is a hydrogen atom; a halogen atom; an alkyl group having 1 to 12 carbon atoms, an alkenyl group, an alkyloxy group, A fluorine-substituted alkyl group; an aralkyl group; an aryl group, and R 9 is an acyloxy group having 1 to 12 carbon atoms, an alkenyloxy group, an alkaneiminooxy group, an alkyloxy group, an alkylamino group, a dialkylamino group; The hydrolyzable group-containing silyl group having the hydrolyzable functional group represented by a cyclic group and an arylamino group, wherein a is a number of 0 to 3. Laminated substrate. 前記シリコーンゴム接着剤層が、窒化アルミニウム、炭化ケイ素、アルミナ、窒化ケイ素、グラファイトの何れかの粉末を含有していることを特徴とする請求項1に記載の積層基板。   The laminated substrate according to claim 1, wherein the silicone rubber adhesive layer contains any powder of aluminum nitride, silicon carbide, alumina, silicon nitride, and graphite. 請求項1に記載の積層基板中のそれの金属基材に、回路パターンが形成されていることを特徴とするプリント配線板。   A printed wiring board, wherein a circuit pattern is formed on a metal substrate of the laminated substrate according to claim 1. 前記回路パターンに発光素子が接続されていることを特徴とする請求項17に記載の積層基板。   The multilayer substrate according to claim 17, wherein a light emitting element is connected to the circuit pattern. 前記金属基材が前記非金属基材の側と反対の面で、又は前記非金属基材が前記金属基材の側と反対の面で、前記と同種のシリコーンゴム接着剤層を介して金属反射材に接着しており、前記発光素子が前記金属反射板に開いた穴から突出していることを特徴とする請求項18に記載のプリント配線板。   The metal substrate is a surface opposite to the non-metal substrate side, or the non-metal substrate is a surface opposite to the metal substrate side, and the metal is interposed through the same kind of silicone rubber adhesive layer. The printed wiring board according to claim 18, wherein the printed wiring board is bonded to a reflecting material, and the light emitting element protrudes from a hole opened in the metal reflecting plate. 前記発光素子が、前記と同種のシリコーンゴム接着剤層を介して、前記金属反射材へ接着していることを特徴とする請求項19に記載のプリント配線板。   The printed wiring board according to claim 19, wherein the light emitting element is bonded to the metal reflecting material through the same kind of silicone rubber adhesive layer as the above.
JP2007298179A 2007-08-07 2007-11-16 Laminated board Active JP5481024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298179A JP5481024B2 (en) 2007-08-07 2007-11-16 Laminated board

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007205617 2007-08-07
JP2007205617 2007-08-07
JP2007298179A JP5481024B2 (en) 2007-08-07 2007-11-16 Laminated board

Publications (2)

Publication Number Publication Date
JP2009056791A true JP2009056791A (en) 2009-03-19
JP5481024B2 JP5481024B2 (en) 2014-04-23

Family

ID=40552966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298179A Active JP5481024B2 (en) 2007-08-07 2007-11-16 Laminated board

Country Status (1)

Country Link
JP (1) JP5481024B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011148263A (en) * 2010-01-25 2011-08-04 Fine Rubber Kenkyusho:Kk Reflection sheet with metal foil
US20130157068A1 (en) * 2011-12-16 2013-06-20 Prologium Holding Inc. Pcb structure with a silicone layer as adhesive
JP2015150813A (en) * 2014-02-17 2015-08-24 住友電工プリントサーキット株式会社 Protective film for distributing board, coverlay and printed circuit board
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
WO2018173945A1 (en) * 2017-03-22 2018-09-27 デンカ株式会社 Resin composition for circuit board, and metal-base circuit board in which same is used
WO2018216767A1 (en) * 2017-05-26 2018-11-29 株式会社朝日ラバー Airflow generation device and manufacturing method for same
KR20190042602A (en) * 2016-08-08 2019-04-24 쉬르픽스 베붸 Modification method of solid surface
RU2730586C1 (en) * 2019-08-02 2020-08-24 Пролоджиум Текнолоджи Ко., Лтд. Printed-circuit board structure with silicone layer as adhesive
US11089693B2 (en) 2011-12-16 2021-08-10 Prologium Technology Co., Ltd. PCB structure with a silicone layer as adhesive

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231239B2 (en) 2007-05-30 2016-01-05 Prologium Holding Inc. Electricity supply element and ceramic separator thereof
JP2011148263A (en) * 2010-01-25 2011-08-04 Fine Rubber Kenkyusho:Kk Reflection sheet with metal foil
US11089693B2 (en) 2011-12-16 2021-08-10 Prologium Technology Co., Ltd. PCB structure with a silicone layer as adhesive
US20130157068A1 (en) * 2011-12-16 2013-06-20 Prologium Holding Inc. Pcb structure with a silicone layer as adhesive
JP2013128108A (en) * 2011-12-16 2013-06-27 Prologium Holding Inc Pcb structure with silicone layer as adhesive
KR101432906B1 (en) * 2011-12-16 2014-08-21 프로로지움 홀딩 인크. Pcb structure with a silicone layer as adhesive
JP2015150813A (en) * 2014-02-17 2015-08-24 住友電工プリントサーキット株式会社 Protective film for distributing board, coverlay and printed circuit board
KR20190042602A (en) * 2016-08-08 2019-04-24 쉬르픽스 베붸 Modification method of solid surface
KR102415046B1 (en) 2016-08-08 2022-06-29 쉬르픽스 베붸 How to modify a solid surface
WO2018173945A1 (en) * 2017-03-22 2018-09-27 デンカ株式会社 Resin composition for circuit board, and metal-base circuit board in which same is used
CN110291848A (en) * 2017-03-22 2019-09-27 电化株式会社 Circuit board use resin combination and the metallic substrates circuit substrate for using it
JPWO2018173945A1 (en) * 2017-03-22 2020-01-30 デンカ株式会社 Resin composition for circuit board and metal-based circuit board using the same
CN110291848B (en) * 2017-03-22 2022-09-02 电化株式会社 Resin composition for circuit board and metal-base circuit board using same
US11133445B2 (en) 2017-03-22 2021-09-28 Denka Company Limited Resin composition for circuit board, and metal-base circuit board in which same is used
WO2018216767A1 (en) * 2017-05-26 2018-11-29 株式会社朝日ラバー Airflow generation device and manufacturing method for same
EP3632533A4 (en) * 2017-05-26 2021-03-03 Asahi Rubber Inc. Airflow generation device and manufacturing method for same
US11484859B2 (en) 2017-05-26 2022-11-01 Asahi Rubber Inc. Airflow generation device and manufacturing method for same
KR102234313B1 (en) * 2019-08-02 2021-03-31 프로로지움 테크놀로지 코., 엘티디. Pcb structure with a silicone layer as adhesive
KR20210016257A (en) * 2019-08-02 2021-02-15 프로로지움 테크놀로지 코., 엘티디. Pcb structure with a silicone layer as adhesive
RU2730586C1 (en) * 2019-08-02 2020-08-24 Пролоджиум Текнолоджи Ко., Лтд. Printed-circuit board structure with silicone layer as adhesive

Also Published As

Publication number Publication date
JP5481024B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5481024B2 (en) Laminated board
JP5213351B2 (en) Adhesive base material and silicone rubber adhesive using the same
TWI784048B (en) Silicone elastomer cured body having radical-reactivity and use thereof
US6379806B1 (en) Heat-resistant silicone rubber composite sheet having thermal conductivity and method of producing the same
JP5068674B2 (en) Temporary wafer bonding method for semiconductor processing.
US7537837B2 (en) Heat conductive silicone rubber composite sheet
US9428680B2 (en) Conductive silicone materials and uses
JP5264307B2 (en) Thermoelectric converter
US20090277581A1 (en) Base material for adhesion and silicone rubber-adhered article using thereof
TW201808626A (en) Thermally conductive silicone rubber composite sheet
JP2012526178A (en) Vinyl hydrogen polysiloxane adhesive composition
TW202346510A (en) Thermally conductive silicone rubber sheet having thermally conductive adhesive layer, and method for producing same
JP4344912B2 (en) Silicone adhesive and silicone adhesive film
TW202244301A (en) Surface treatment method, surface treatement agent, method for producing bonded body, method for producing substance having conductor coating, method for producing substance on which coating film is formed, method for producing conductor-coated resin substrate, method for producing waveguid, method for producing circuit board or antenna, and compound
US20050032989A1 (en) Heat-curable organopolysiloxane composition and adhesive
JPH11199690A (en) Reduction of surface tack of low-hardness heat conductive silicone rubber sheet
KR20040049316A (en) Adhesive sheet of cross-linked silicone, method of manufacturing thereof and device comprising the sheet
JP6487829B2 (en) Thermally conductive thermosetting adhesive composition and thermally conductive thermosetting adhesive sheet
US20060035067A1 (en) Film multilayer body and flexible circuity board
JP5047844B2 (en) Fluorine-containing rubber-coated laminate and method for producing the same
JP7321952B2 (en) Transparent low-dielectric glass prepreg, transparent low-dielectric glass film, transparent low-dielectric glass substrate, and manufacturing method thereof
JP2005325283A (en) Adhesive resin film, method for use thereof, and semiconductor device
JP4565487B2 (en) Cross-linked silicone adhesive sheet and method for producing the same
KR101975796B1 (en) Carrier for semiconductor package and preparing method thereof
JP2006021455A (en) Polyimide metal laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5481024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250