JP2009051717A - Dielectric porcelain and multilayer ceramic capacitor - Google Patents

Dielectric porcelain and multilayer ceramic capacitor Download PDF

Info

Publication number
JP2009051717A
JP2009051717A JP2007222971A JP2007222971A JP2009051717A JP 2009051717 A JP2009051717 A JP 2009051717A JP 2007222971 A JP2007222971 A JP 2007222971A JP 2007222971 A JP2007222971 A JP 2007222971A JP 2009051717 A JP2009051717 A JP 2009051717A
Authority
JP
Japan
Prior art keywords
mol
terms
dielectric
barium titanate
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007222971A
Other languages
Japanese (ja)
Other versions
JP5094283B2 (en
Inventor
Yoichi Yamazaki
洋一 山崎
Yusuke Azuma
勇介 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007222971A priority Critical patent/JP5094283B2/en
Publication of JP2009051717A publication Critical patent/JP2009051717A/en
Application granted granted Critical
Publication of JP5094283B2 publication Critical patent/JP5094283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain which has high dielectric constant, satisfies X7R characteristics of EIA standard in the temperature change of the specific dielectric constant, and in which a higher insulation resistance can be obtained even when a lower voltage is applied, and to provide a multilayer ceramic capacitor which has such dielectric porcelain as a dielectric layer and has excellent life characteristics under a high-temperature load test. <P>SOLUTION: The dielectric porcelain is one that comprises barium titanate as the main component having a calcium concentration of at least 0.4 atom%, and comprises, against 100 mol of barium which constitutes the dielectric porcelain, 0.05-0.3 mol of vanadium in terms of V<SB>2</SB>O<SB>5</SB>, 0-0.1 mol of magnesium in terms of MgO, 0-0.5 mol of manganese in terms of MnO, and 0.5-1.5 mol of at least one kind of rare earth elements selected from yttrium, dysprosium, holmium and erbium in terms of RE<SB>2</SB>O<SB>3</SB>, and has diffraction intensity of plane (004), which exhibits tetragonal barium titanate, larger than diffraction intensity of plane (400), which exhibits cubic barium titanate, in X-ray diffraction chart of the dielectric porcelain. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、チタン酸バリウムを主成分とする結晶粒子により構成される誘電体磁器と、それを誘電体層として用いる積層セラミックコンデンサに関する。   The present invention relates to a dielectric ceramic composed of crystal particles mainly composed of barium titanate and a multilayer ceramic capacitor using the dielectric ceramic as a dielectric layer.

近年、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型化、大容量化が急速に進んでいる。それに伴い、積層セラミックコンデンサにおける1層あたりの誘電体層の薄層化が進み、薄層化してもコンデンサとしての信頼性を維持できる誘電体磁器が求められている。特に、高い定格電圧で使用される中耐圧用コンデンサの小型化、大容量化には、誘電体磁器に対して非常に高い信頼性が要求される。   In recent years, there has been a high demand for downsizing of electronic components accompanying the increase in the density of electronic circuits, and the downsizing and increase in capacity of multilayer ceramic capacitors are rapidly progressing. Along with this, thinning of dielectric layers per layer in multilayer ceramic capacitors has progressed, and there is a demand for dielectric ceramics that can maintain the reliability as capacitors even when the thickness is reduced. In particular, very high reliability is required for dielectric ceramics in order to reduce the size and increase the capacity of a medium voltage capacitor used at a high rated voltage.

そこで、従来より、誘電体磁器を構成する結晶粒子を一般式ABO(AはBa,Ba+Ca,Ba+Sr,又はBa+Ca+Sr、BはTi、Ti+Zr、Ti+R、又はTi+Zr+R(ただし、Rは希土類元素))を主成分とするものとし、これにMnを結晶粒界から結晶の中心までの全域にほぼ均一に分布させるとともに、結晶粒子の周縁部にのみMgを拡散させ、Mgが拡散していない強誘電体相部分(コア部)と、該強誘電体相部分を囲みMgが拡散した常誘電体相部分からなる結晶粒子されている誘電体磁器が提案されている(特許文献1)。 Therefore, conventionally, the crystal particles constituting the dielectric ceramic are represented by the general formula ABO 3 (A is Ba, Ba + Ca, Ba + Sr, or Ba + Ca + Sr, B is Ti, Ti + Zr, Ti + R, or Ti + Zr + R (where R is a rare earth element)). Ferroelectric material in which Mn is distributed almost uniformly over the entire region from the grain boundary to the center of the crystal, Mg is diffused only in the peripheral part of the crystal grain, and Mg is not diffused. There has been proposed a dielectric ceramic made of crystal grains composed of a phase portion (core portion) and a paraelectric phase portion surrounding the ferroelectric phase portion and diffused with Mg (Patent Document 1).

また、他の従来技術としては、チタン酸バリウム系材料の中からBaTiOよりも信頼性に優れているとされる(Ba,Ca)TiOを選択し、(Ba,Ca)TiOを主成分として、V、Nb、Ta、Cr、Mo、又はWを(Ba,Ca)TiOに固溶させると共に、(Ba,Ca)TiOへの固溶距離を(Ba,Ca)TiOの表面から内部に向かって1/100〜1/3の範囲に制御することにより、誘電体層をより一層薄層化しても誘電特性や静電容量の温度特性を損なうことなく、良好な絶縁性や高温負荷寿命が得られていることが開示されている(例えば、特許文献2参照)。
特開平10−330160号公報 特開2006−36606号公報
As another conventional technique, (Ba, Ca) TiO 3 is selected from barium titanate-based materials, which are considered to be more reliable than BaTiO 3 , and (Ba, Ca) TiO 3 is mainly used. as component, V, Nb, Ta, Cr , Mo, or W (Ba, Ca) causes solid solution in TiO 3, (Ba, Ca) solid solution distance to TiO 3 (Ba, Ca) of the TiO 3 By controlling in the range from 1/100 to 1/3 from the surface to the inside, even if the dielectric layer is made even thinner, good dielectric properties are maintained without impairing the dielectric properties and the temperature characteristics of the capacitance. And high temperature load life is disclosed (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 10-330160 JP 2006-36606 A

しかしながら、上述した特許文献1、2に開示された誘電体磁器では、誘電体層の厚みが3μm程度までであれば、ある程度良好な絶縁性や高温負荷時の耐久性を確保することが可能であるが、誘電体層が3μmよりも薄層化してくると、印加する電圧が低い場合には高い絶縁抵抗が得られるものの、印加する電圧を増加させたときに絶縁抵抗の低下が大きくなり、絶縁性や高温負荷時の耐久性が悪化し、信頼性の低下を招くという問題点があった。   However, in the dielectric ceramic disclosed in Patent Documents 1 and 2 described above, if the thickness of the dielectric layer is up to about 3 μm, it is possible to ensure a certain degree of good insulation and durability at high temperature load. However, when the dielectric layer is made thinner than 3 μm, a high insulation resistance can be obtained when the applied voltage is low, but the insulation resistance decreases greatly when the applied voltage is increased. There was a problem that the insulation and durability at high temperature load deteriorated and the reliability was lowered.

また、上記特許文献1、2に開示された誘電体磁器では、静電容量の温度変化(以下、比誘電率の温度変化とする。)がEIA規格のX7R特性(−55〜125℃、比誘電率の変化率が±15%以内)を満足するものの、比誘電率がいまだ3500未満であり、中耐圧用の積層セラミックコンデンサにおいてもさらなる高誘電率化が求められていた。   Further, in the dielectric ceramics disclosed in Patent Documents 1 and 2, the temperature change of the capacitance (hereinafter referred to as the temperature change of the relative permittivity) is the X7R characteristic (−55 to 125 ° C., ratio) of the EIA standard. Although the dielectric constant change rate is within ± 15%), the relative dielectric constant is still less than 3500, and even higher dielectric constants have been demanded for multilayer ceramic capacitors for medium voltage.

従って、本発明は、高誘電率で比誘電率の温度変化がEIA規格のX7R特性を満足し、印加する電圧が低い場合にも高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下が小さい誘電体磁器と、このような誘電体磁器を誘電体層として備え、高温負荷試験での寿命特性に優れる積層セラミックコンデンサを提供することを目的とする。   Therefore, according to the present invention, the high dielectric constant and the temperature change of the relative dielectric constant satisfy the X7R characteristic of the EIA standard, and a high insulation resistance can be obtained even when the applied voltage is low, and the insulation when the voltage is increased. It is an object of the present invention to provide a dielectric ceramic having a low resistance drop and a multilayer ceramic capacitor having such a dielectric ceramic as a dielectric layer and having excellent life characteristics in a high temperature load test.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、さらにカルシウムを含むとともに、結晶粒子が前記チタン酸バリウムを主体とし、カルシウム濃度が0.4原子%以上の結晶粒子により構成される誘電体磁器であって、該誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいことを特徴とする。 The dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 mol of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mol in terms of V 2 O 5 and magnesium is MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in an amount of 0.5 to 0.5 in terms of RE 2 O 3 A dielectric ceramic comprising 1.5 mol, further containing calcium, wherein the crystal particles are mainly composed of the barium titanate and the calcium concentration is 0.4 atomic% or more, and the dielectric ceramic In the X-ray diffraction chart, the diffraction intensity of the (004) plane showing tetragonal barium titanate shows cubic barium titanate (400 It is larger than the diffraction intensity of the plane.

また、前記誘電体磁器では、前記マグネシウムの含有量がMgO換算で0モルであることが望ましい。   In the dielectric ceramic, the magnesium content is preferably 0 mol in terms of MgO.

また、前記誘電体磁器では、前記マンガンの含有量がMnO換算で0モルであることが望ましい。   In the dielectric ceramic, the manganese content is preferably 0 mol in terms of MnO.

また、前記誘電体磁器では、前記チタン酸バリウムを構成するバリウムおよびカルシウムの合計100モルに対して、さらにテルビウムをTb換算で0.3モル以下の範囲で含有することが望ましい。 The dielectric ceramic preferably further contains terbium in a range of 0.3 mol or less in terms of Tb 4 O 7 with respect to a total of 100 mol of barium and calcium constituting the barium titanate.

また、本発明の積層セラミックコンデンサは、上記誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする。   The multilayer ceramic capacitor of the present invention is characterized by being composed of a laminate of a dielectric layer made of the above dielectric ceramic and an internal electrode layer.

なお、希土類元素をREとしたのは、周期表における希土類元素の英文表記(Rare earth)に基づくものである。   Note that the rare earth element RE is based on the rare earth element English representation (Rare earth) in the periodic table.

本発明の誘電体磁器によれば、チタン酸バリウムに対して、バナジウム、マグネシウム、希土類元素(RE)およびマンガンをそれぞれ所定の割合で含有させるとともに、誘電体磁器の結晶粒子をチタン酸バリウム主体とし、カルシウム濃度が0.4原子%以上の結晶粒子により構成し、かつ誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(400)面の回折強度よりも大きいものとしたことにより、高誘電率かつ比誘電率の温度変化がEIA規格のX7R特性を満足するものにできる。また、印加する電圧が低い場合に高い絶縁抵抗が得られるとともに、電圧を増加させた際の絶縁抵抗の低下が小さい(絶縁抵抗の電圧依存性が小さい)誘電体磁器を得ることができる。   According to the dielectric ceramic of the present invention, vanadium, magnesium, rare earth element (RE) and manganese are contained in a predetermined ratio with respect to barium titanate, and the dielectric ceramic crystal particles are mainly composed of barium titanate. The diffraction intensity of the (004) plane, which is composed of crystal particles having a calcium concentration of 0.4 atomic% or more and shows the tetragonal system of barium titanate in the X-ray diffraction chart of the dielectric ceramic, is that of barium titanate. By making the diffraction intensity higher than the diffraction intensity of the (400) plane showing a cubic system, the temperature change of the high dielectric constant and the relative dielectric constant can satisfy the E7 standard X7R characteristic. In addition, a high dielectric resistance can be obtained when the applied voltage is low, and a dielectric ceramic can be obtained in which the decrease in insulation resistance when the voltage is increased is small (the voltage dependence of the insulation resistance is small).

また、本発明の誘電体磁器によれば、マグネシウムの含有量をMgO換算で0モルとしたときは、高誘電率かつ比誘電率の温度変化がEIA規格のX7R特性を満足するものにできるとともに、印加する電圧が低い場合に高い絶縁抵抗が得られ、電圧を増加させた際に絶縁抵抗が高くなり、さらに絶縁性に優れた誘電体磁器を得ることができる。   Further, according to the dielectric ceramic of the present invention, when the magnesium content is 0 mol in terms of MgO, the temperature change of the high dielectric constant and the relative dielectric constant can satisfy the EIA standard X7R characteristic. When the applied voltage is low, a high insulation resistance can be obtained, and when the voltage is increased, the insulation resistance becomes high, and a dielectric ceramic excellent in insulation can be obtained.

また、本発明の誘電体磁器によれば、マンガンの含有量をMnO換算で0モルとしたときは、絶縁抵抗の電圧依存性の小さい誘電体磁器を得ることができるとともに、誘電損失を低減できる。   Further, according to the dielectric ceramic of the present invention, when the content of manganese is 0 mol in terms of MnO, a dielectric ceramic having a small voltage dependency of insulation resistance can be obtained and dielectric loss can be reduced. .

また、本発明の積層セラミックコンデンサによれば、誘電体層として、上記の誘電体磁器を適用することにより、高誘電率かつ静電容量の温度変化がEIA規格のX7R特性を満足するものにでき、誘電体層を薄層化しても高い絶縁性を確保できることから高温負荷試験における寿命特性に優れる積層セラミックコンデンサを得ることができる。   Also, according to the multilayer ceramic capacitor of the present invention, by applying the above-mentioned dielectric ceramic as the dielectric layer, the temperature change of the high dielectric constant and the capacitance can satisfy the EIA standard X7R characteristic. Since a high insulating property can be secured even if the dielectric layer is thinned, a multilayer ceramic capacitor having excellent life characteristics in a high temperature load test can be obtained.

図1は誘電体磁器の拡大図であり、結晶粒子と粒界相を示す模式図である。本発明の誘電体磁器は、カルシウム(以下、Caという。)濃度が0.4原子%以上であるとともに、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)、バナジウム、マグネシウムおよびマンガンとが固溶したチタン酸バリウムを主体とする結晶粒子1と粒界相2とから構成されている。   FIG. 1 is an enlarged view of a dielectric ceramic, and is a schematic diagram showing crystal grains and grain boundary phases. The dielectric ceramic of the present invention has a calcium (hereinafter referred to as “Ca”) concentration of 0.4 atomic% or more and one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium, vanadium, magnesium. And crystal grains 1 mainly composed of barium titanate in which manganese is dissolved, and a grain boundary phase 2.

本発明の誘電体磁器を構成する結晶粒子1はCaが固溶しているために、Caが固溶していない純粋なチタン酸バリウムにより形成される結晶粒子に比較して高いキュリー温度を示す。このため高温での比誘電率を向上させることができるとともに、比誘電率の温度変化がEIA規格のX7R特性を満足させやすくなる。   Since the crystal particles 1 constituting the dielectric ceramic according to the present invention have a solid solution of Ca, they exhibit a higher Curie temperature than crystal particles formed of pure barium titanate in which Ca does not form a solid solution. . For this reason, it is possible to improve the relative dielectric constant at a high temperature, and it is easy for the temperature change of the relative dielectric constant to satisfy the X7R characteristic of the EIA standard.

また、本発明の誘電体磁器は、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいことにより、比誘電率を3540以上にでき、また、比誘電率の温度変化がEIA規格のX7R特性を満足し、さらに、単位厚み(1μm)当たりに印加する直流電圧の値を3.15Vおよび12.5Vとしたときの絶縁抵抗がいずれも10Ω以上となり、かつ絶縁抵抗の低下のほとんど無い誘電体磁器を得ることができる。 Further, the dielectric ceramic of the present invention has vanadium in an amount of 0.05 to 0.3 mol in terms of V 2 O 5 and magnesium in an amount of 0 to 0.1 in terms of MgO with respect to 100 mol of barium constituting barium titanate. Mn, containing 0 to 0.5 mol of manganese in terms of MnO, 0.5 to 1.5 mol in terms of RE 2 O 3 containing one kind of rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium, In the X-ray diffraction chart of the body porcelain, the diffraction intensity of the (004) plane showing tetragonal barium titanate is larger than the diffraction intensity of the (400) plane showing cubic barium titanate. The dielectric constant can be 3540 or more, the temperature change of the relative dielectric constant satisfies the X7R characteristic of the EIA standard, and the value of the DC voltage applied per unit thickness (1 μm) is Also insulation resistance either when a .15V and 12.5V becomes 10 8 Omega above, it is possible to obtain a little dielectric ceramic decrease in insulation resistance.

また、本発明の誘電体磁器では、結晶粒子1の平均結晶粒径は0.2〜0.45μm、特に、0.29〜0.4μmがより望ましい。これにより誘電体磁器を薄層化して積層セラミックコンデンサの誘電体層に適用しても高い絶縁性を確保することができ、かつ高容量化を図ることが可能となり、比誘電率の温度依存性を小さくでき、さらに、誘電損失を23%以下にすることが可能になる。   In the dielectric ceramic of the present invention, the average crystal grain size of the crystal particles 1 is more preferably 0.2 to 0.45 μm, and particularly preferably 0.29 to 0.4 μm. As a result, even if the dielectric ceramic is thinned and applied to the dielectric layer of a multilayer ceramic capacitor, it is possible to ensure high insulation and increase the capacity, and the temperature dependence of the relative permittivity The dielectric loss can be reduced to 23% or less.

ここで、結晶粒子1の平均結晶粒径は、誘電体磁器の断面を断面研磨した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値より求める。   Here, the average crystal grain size of the crystal particles 1 is obtained by taking an image projected by a transmission electron microscope on a polished surface obtained by polishing the cross section of the dielectric ceramic, and drawing a diagonal line on the screen. The contours of the crystal grains existing on the diagonal line are image-processed, the area of each particle is obtained, the diameter when replaced with a circle having the same area is calculated, and the calculated average value of about 50 crystal grains is obtained.

また、結晶粒子中のCa濃度については、誘電体磁器の断面を研磨した研磨面に存在する約30個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行う。このとき電子線のスポットサイズは5nmとし、分析する箇所は結晶粒子の粒界付近から中央部へ向けて引いた直線上のほぼ等間隔に位置する点とし、分析値は粒界付近と中央部との間で4〜5点ほど分析した値の平均値とし、結晶粒子の各測定点から検出されるBa、Ti、Ca、V、Mg、希土類元素(RE)およびMnの全量を100%として、そのときのCaの濃度を求める。   As for the Ca concentration in the crystal particles, the elemental analysis was performed on about 30 crystal particles existing on the polished surface obtained by polishing the cross section of the dielectric ceramic using a transmission electron microscope provided with an element analysis device. Do. At this time, the spot size of the electron beam is set to 5 nm, the analysis points are points located at almost equal intervals on a straight line drawn from the vicinity of the grain boundary of the crystal grain toward the central part, and the analysis values are near the grain boundary and the central part. The average value of the values analyzed about 4 to 5 points, and the total amount of Ba, Ti, Ca, V, Mg, rare earth element (RE) and Mn detected from each measurement point of the crystal particles is 100% Then, the concentration of Ca at that time is obtained.

選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、求めた結晶粒子の直径が平均結晶粒径の±30%の範囲にある結晶粒子とする。   The crystal grains to be selected are obtained by calculating the area of each particle by image processing from the outline, and calculating the diameter when replaced with a circle having the same area, and the calculated crystal grain diameter is ± 30% of the average crystal grain size. Crystal grains in the range of

なお、結晶粒子の中央部とは、当該結晶粒子の内接円の中心から当該内接円の半径の1/3の長さを半径とする円で囲まれる範囲をいい、また、結晶粒子の粒界付近とは、当該結晶粒子の粒界との境界から5nm内側までの領域のことである。そして、結晶粒子の内接円は、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で結晶粒子に対して内接円を描き、結晶粒子の中央部を決定する。   The center part of the crystal grain means a range surrounded by a circle whose radius is 1/3 of the radius of the inscribed circle from the center of the inscribed circle of the crystal grain. The vicinity of the grain boundary is a region from the boundary with the grain boundary of the crystal grain to the inside of 5 nm. For the inscribed circle of the crystal particle, an image projected by a transmission electron microscope is taken into a computer, and an inscribed circle is drawn on the crystal particle on the screen to determine the central portion of the crystal particle.

本発明の誘電体磁器は、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5〜1.5モル含むことが重要である。 The dielectric ceramic of the present invention is mainly composed of barium titanate, with respect to 100 moles of barium constituting the barium titanate, 0.05 to 0.3 moles of vanadium in terms of V 2 O 5 and MgO as MgO. 0 to 0.1 mol in terms of conversion, 0 to 0.5 mol in terms of manganese in terms of MnO, and 0.5 to 1.5 in terms of RE 2 O 3 in terms of rare earth elements (RE) selected from yttrium, dysprosium, holmium and erbium It is important to include a mole.

即ち、チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.05モルよりも少ないか、または、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)がRE換算で0.5モルよりも少ない場合には、単位厚み(1μm)当たりに印加する直流電圧の値を12.5Vとしたときの絶縁抵抗が2×10Ω以下となり、直流電圧の値を3.15Vとしたときの絶縁抵抗の値に比較して絶縁抵抗の低下が大きくなるからである。 That is, the content of vanadium with respect to 100 mol of barium constituting barium titanate is less than 0.05 mol in terms of V 2 O 5 or one kind of rare earth element selected from yttrium, dysprosium, holmium and erbium ( When RE) is less than 0.5 mol in terms of RE 2 O 3 , the insulation resistance is 2 × 10 8 Ω or less when the value of the DC voltage applied per unit thickness (1 μm) is 12.5 V This is because the decrease in insulation resistance is greater than the value of insulation resistance when the DC voltage value is 3.15V.

また、チタン酸バリウムを構成するバリウム100モルに対するバナジウムの含有量がV換算で0.3モルよりも多くなると、単位厚み(1μm)当たりに印加する直流電圧の値を3.15Vおよび12.5Vとしたときの絶縁抵抗がいずれも10Ωよりも低くなってしまうからである。 When the content of vanadium with respect to 100 mol of barium constituting barium titanate is more than 0.3 mol in terms of V 2 O 5 , the value of the DC voltage applied per unit thickness (1 μm) is 3.15 V and This is because the insulation resistance at 12.5 V is all lower than 10 8 Ω.

また、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)の含有量がRE換算で1.5モルよりも多いか、または、マンガンの含有量がMnO換算で0.5モルよりも多い場合には、いずれも比誘電率が3540よりも低くなってしまうからである。 Further, the content of one kind of rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium is more than 1.5 mol in terms of RE 2 O 3 , or the content of manganese is 0 in terms of MnO. This is because the relative dielectric constant is lower than 3540 in the case of more than .5 mol.

さらに、マグネシウムの含有量がMgO換算で0.1モルよりも多い場合には、比誘電率の温度変化がEIA規格のX7R特性を満足しないものとなり、また、高温負荷試験での寿命特性が低下するからである。   Furthermore, when the magnesium content is more than 0.1 mol in terms of MgO, the temperature change in the relative permittivity does not satisfy the X7R characteristics of the EIA standard, and the life characteristics in the high temperature load test are degraded. Because it does.

これに対し、本発明の誘電体磁器は、その比誘電率を3540以上にでき、また、比誘電率の温度変化がEIA規格のX7R特性を満足し、さらに、単位厚み(1μm)当たりに印加する直流電圧の値を3.15Vおよび12.5Vとしたときの絶縁抵抗がいずれも10Ω以上となり、かつ絶縁抵抗の低下のほとんど無い誘電体磁器を得ることができる。 In contrast, the dielectric ceramic of the present invention can have a relative dielectric constant of 3540 or more, the temperature change of the relative dielectric constant satisfies the X7R characteristic of the EIA standard, and is applied per unit thickness (1 μm). When the direct current voltage value is 3.15 V and 12.5 V, the dielectric resistance is 10 8 Ω or more, and a dielectric ceramic with almost no decrease in insulation resistance can be obtained.

また、好ましい組成としては、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マンガンをMnO換算で0.5モル以下、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含む場合に、マグネシウムの含有量がMgO換算で0モルであることが良い。 Further, as a preferred composition, barium titanate is the main component, and with respect to 100 moles of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mole in terms of V 2 O 5 and manganese is in terms of MnO. And 0.5 mol or less and 0.5 to 1.5 mol of one rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium in terms of RE 2 O 3 , the magnesium content is MgO. It is good that it is 0 mol in conversion.

誘電体磁器をこのような組成にすることにより、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15Vと12.5Vとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができる。   When the dielectric ceramic has such a composition, the applied DC voltage tends to increase the insulation resistance between 3.15 V and 12.5 V per unit thickness (1 μm) of the dielectric layer (positive change). Can be obtained.

また、他の好ましい組成としては、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5〜1.5モル含む場合に、マグネシウムの含有量がMgO換算で0モルであるとともに、マンガンがMnO換算で0モルであることが良い。 Another preferable composition is 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 with respect to 100 mol of barium constituting barium titanate, and a rare earth selected from yttrium, dysprosium, holmium and erbium. When the element (RE) is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , the content of magnesium is preferably 0 mol in terms of MgO, and manganese is preferably 0 mol in terms of MnO.

誘電体磁器をさらに上記組成とすることにより、さらに誘電体磁器の誘電損失を低減することができる。   By further setting the dielectric ceramic to the above composition, the dielectric loss of the dielectric ceramic can be further reduced.

また、マンガンのみを0モルとした場合にも優れた高温負荷寿命を有する誘電体磁器を得ることができる。   In addition, a dielectric ceramic having an excellent high temperature load life can be obtained even when only manganese is 0 mol.

なお、希土類元素(RE)のなかでイットリウム,ジスプロシウム,ホルミウムおよびエルビウムはチタン酸バリウムに固溶したときに異相が生成し難く、高い絶縁性が得られるからであり、誘電体磁器の比誘電率を高められるという理由からイットリウムがより好ましい。   Among rare earth elements (RE), yttrium, dysprosium, holmium, and erbium are unlikely to form a different phase when dissolved in barium titanate, and high insulation is obtained. Yttrium is more preferable because it is possible to increase the resistance.

ここで、チタン酸バリウムを構成するバリウム100モルに対して、マグネシウムの含有量が0モル、マンガンの含有量が0モルとは、誘電体磁器中に実質的にマグネシウムおよびマンガンを含有していないことであって、例えば、ICP発光分光分析の検出限界以下(0.5μg/g以下)の量のことである。   Here, with respect to 100 mol of barium constituting barium titanate, the content of magnesium is 0 mol and the content of manganese is 0 mol means that the dielectric ceramic does not substantially contain magnesium and manganese. That is, for example, the amount is below the detection limit of ICP emission spectroscopic analysis (0.5 μg / g or less).

さらに、チタン酸バリウムを構成するバリウムおよびカルシウムの合計100モルに対して、さらにテルビウムをTb換算で0.3モル以下の範囲で含有させることができる。 Furthermore, terbium can be further contained in a range of 0.3 mol or less in terms of Tb 4 O 7 with respect to 100 mol in total of barium and calcium constituting barium titanate.

本発明の誘電体磁器に対して、テルビウムをさらに所定の割合で含有させると、誘電体磁器の絶縁抵抗を高めることができ、上記の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性をさらに向上させることが可能になる。ただし、テルビウムの含有量がTb換算で0.3モルよりも多くなると誘電体磁器の比誘電率の低下がおこるため上記組成範囲が好ましい。 When the dielectric ceramic of the present invention further contains terbium in a predetermined ratio, the insulation resistance of the dielectric ceramic can be increased, and when the above dielectric ceramic is applied to the dielectric layer of the multilayer ceramic capacitor. In addition, it is possible to further improve the life characteristics in the high temperature load test. However, when the terbium content is more than 0.3 mol in terms of Tb 4 O 7 , the relative permittivity of the dielectric ceramic is lowered, so the above composition range is preferable.

さらに、本発明の誘電体磁器は、X線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいことが重要である。   Furthermore, in the X-ray diffraction chart, the dielectric ceramic of the present invention has a diffraction intensity of (004) plane indicating tetragonal barium titanate and a diffraction intensity of (400) plane indicating cubic barium titanate. It is important to be larger than.

ここで、本発明の誘電体磁器の結晶構造について詳細に説明すると、本発明の誘電体磁器は、結晶粒子中にバナジウムが固溶しても、ほとんど正方晶系を示す単相に近い結晶相により占められている。   Here, the crystal structure of the dielectric ceramic according to the present invention will be described in detail. The dielectric ceramic according to the present invention has a crystal phase close to a single phase exhibiting almost a tetragonal system even when vanadium is dissolved in crystal grains. Is occupied by.

図2(a)は、後述の実施例の表1〜6における本発明の誘電体磁器である試料No.4のX線回折チャートを示すものであり、図2(b)は、同表1〜6における比較例の誘電体磁器である試料No.51のX線回折チャートである。   FIG. 2 (a) shows a sample No. which is a dielectric ceramic of the present invention in Tables 1 to 6 of Examples described later. 4 shows an X-ray diffraction chart of Sample No. 4, which is a sample No. 1 as a dielectric ceramic of Comparative Example in Tables 1-6. 51 is an X-ray diffraction chart of 51.

ここで、図2(b)のX線回折チャートは、結晶粒子の内部にまでMgや希土類元素(RE)が固溶していない強誘電体相部分(コア部)と、この強誘電体相部分の周囲にMgや希土類元素(RE)が固溶した常誘電体相部分を有するコアシェル構造の結晶構造を示すもので、特許文献1、2に記載される従来の誘電体磁器に相当する。   Here, the X-ray diffraction chart of FIG. 2B shows a ferroelectric phase portion (core portion) in which Mg and rare earth elements (RE) are not dissolved in the crystal grains, and this ferroelectric phase. This shows a crystal structure of a core-shell structure having a paraelectric phase portion in which Mg or rare earth element (RE) is dissolved in the periphery of the portion, and corresponds to the conventional dielectric ceramic described in Patent Documents 1 and 2.

即ち、チタン酸バリウムを主成分とし、コアシェル構造を有する結晶粒子により構成される誘電体磁器では、チタン酸バリウムの正方晶系を示す(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(400)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも大きくなっている。   That is, in a dielectric ceramic composed of crystal grains having a barium titanate as a main component and having a core-shell structure, barium titanate appearing between the (004) plane and the (400) plane showing the tetragonal system of barium titanate. The diffraction intensity of the (400) plane (the (040) plane and (400) plane overlap) of the cubic system is greater than the diffraction intensity of the (004) plane representing the tetragonal system of barium titanate. It has become.

このような誘電体磁器は、チタン酸バリウムを主成分とする粉末に、Mgや希土類元素(RE)の酸化物粉末を添加混合したものを成形した後、還元焼成することによって形成されるものであるが、この場合、コアシェル構造を有する結晶粒子は、結晶粒子の周縁部であるシェル部にMgや希土類元素(RE)などの成分が拡散し、一方、コア部にMgや希土類元素(RE)などの成分が固溶していないため、結晶粒子の内部において、酸素空孔などの欠陥を多く含んだ状態となり、このため直流電圧を印加した場合に、結晶粒子の内部において酸素空孔などが電荷を運ぶキャリアになりやすく誘電体磁器の絶縁性を低下させると考えられる。   Such dielectric porcelain is formed by molding a powder containing barium titanate as a main component and adding an oxide powder of Mg or a rare earth element (RE), followed by reduction firing. However, in this case, in the crystal particles having the core-shell structure, components such as Mg and rare earth elements (RE) diffuse in the shell portion which is the peripheral portion of the crystal particles, while Mg and rare earth elements (RE) are diffused in the core portion. The components such as oxygen are not dissolved in a solid state, so that the crystal grains contain a lot of defects such as oxygen vacancies. Therefore, when a DC voltage is applied, oxygen vacancies and the like are formed inside the crystal grains. It is considered that the insulating property of the dielectric ceramic is lowered because it is likely to be a carrier for carrying electric charges.

そのため、このような誘電体磁器を積層セラミックコンデンサの誘電体層に適用して、その誘電体層の厚みを2.5μm以下にしたときには、高温負荷試験での寿命特性が低下する。また、結晶構造がコアシェル構造であることから、比誘電率を3500以上にすることは困難である。   Therefore, when such a dielectric ceramic is applied to a dielectric layer of a multilayer ceramic capacitor and the thickness of the dielectric layer is 2.5 μm or less, the life characteristics in a high temperature load test are deteriorated. In addition, since the crystal structure is a core-shell structure, it is difficult to make the relative dielectric constant 3500 or more.

これに対して、本発明の誘電体磁器は、図2(a)に示すように、誘電体磁器のX線回折チャートにおいて、チタン酸バリウムの正方晶系を示す(004)面の回折強度が、チタン酸バリウムの立方晶系を示す(400)面の回折強度よりも大きい。   On the other hand, as shown in FIG. 2A, the dielectric ceramic of the present invention has a (004) plane diffraction intensity indicating the tetragonal system of barium titanate in the X-ray diffraction chart of the dielectric ceramic. The diffraction intensity of the (400) plane showing the cubic system of barium titanate is larger.

即ち、本発明の誘電体磁器は、図2(a)に見られるように、チタン酸バリウムの正方晶系を示す(004)面(2θ=100°付近)と(400)面(2θ=101°付近)のX線回折ピークが明確に現れるものであり、チタン酸バリウムの正方晶系を示すこれら(004)面および(400)面の間に現れるチタン酸バリウムの立方晶系を示す(400)面((040)面、(400)面が重なっている。)の回折強度が、チタン酸バリウムの正方晶系を示す(004)面の回折強度よりも小さくなっている。   That is, as shown in FIG. 2A, the dielectric ceramic of the present invention has a (004) plane (around 2θ = 100 °) and a (400) plane (2θ = 101) indicating the tetragonal system of barium titanate. An X-ray diffraction peak at around (°) appears clearly and shows a cubic system of barium titanate that appears between the (004) plane and the (400) plane showing the tetragonal system of barium titanate (400 ) Plane (the (040) plane and (400) plane overlap) is smaller than the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate.

本発明の誘電体磁器では、特に、チタン酸バリウムの正方晶系を示す(004)面の回折強度をIxt、チタン酸バリウムの立方晶系を示す(400)面の回折強度をIxcとしたときに、Ixt/Ixc比が1.4〜2あることが望ましい。Ixt/Ixc比が1.4〜2であると、正方晶系の結晶相の割合が多くなり、絶縁抵抗の変化率をより小さくでき、高温負荷試験での寿命特性を高めることが可能になる。   In the dielectric ceramic of the present invention, in particular, when the diffraction intensity of the (004) plane showing the tetragonal system of barium titanate is Ixt and the diffraction intensity of the (400) plane showing the cubic system of barium titanate is Ixc. In addition, the Ixt / Ixc ratio is desirably 1.4 to 2. When the Ixt / Ixc ratio is 1.4 to 2, the proportion of the tetragonal crystal phase increases, the change rate of the insulation resistance can be further reduced, and the life characteristics in the high temperature load test can be improved. .

このような本発明の誘電体磁器は、バナジウムや希土類元素(RE)を含有するとともに、これらバナジウムおよび希土類元素(RE)が結晶粒子の内部にまで固溶し、正方晶系のほぼ均一な結晶相となっている。そのため結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され電荷を運ぶキャリアが少なくなり、このため直流電圧を印加した際の誘電体磁器の絶縁性の低下を抑えることが可能になると考えられる。   Such a dielectric ceramic according to the present invention contains vanadium and rare earth elements (RE), and these vanadium and rare earth elements (RE) are dissolved in the crystal grains to form tetragonal almost uniform crystals. It has become a phase. Therefore, the generation of defects such as oxygen vacancies inside the crystal grains is suppressed, and the number of carriers that carry electric charges is reduced. For this reason, it is considered possible to suppress the deterioration of the insulation of the dielectric ceramic when a DC voltage is applied. It is done.

なお、本発明の誘電体磁器では所望の誘電特性を維持できる範囲であれば焼結性を高めるための助剤としてガラス成分を誘電体磁器中に3質量%以下の割合で含有させても良い。   In the dielectric ceramic according to the present invention, a glass component may be contained in the dielectric ceramic in an amount of 3% by mass or less as an aid for improving the sinterability as long as desired dielectric characteristics can be maintained. .

次に、本発明の誘電体磁器を製造する方法について説明する。まず、原料粉末として、純度が99%以上のチタン酸バリウムにカルシウムが固溶した粉末(以下、BCT粉末という。)と、添加成分として、V粉末とMgO粉末、さらに、Y粉末、Dy粉末、Ho粉末およびEr粉末のうち1種の希土類元素(RE)の酸化物粉末およびMnCO粉末とを準備する。なお、誘電体磁器に希土類元素(RE)としてテルビウムを含有させる場合には、第2の希土類元素(RE)の酸化物としてTb粉末を用いる。 Next, a method for manufacturing the dielectric ceramic according to the present invention will be described. First, as a raw material powder, a powder in which calcium is solid-solved in barium titanate having a purity of 99% or more (hereinafter referred to as BCT powder), V 2 O 5 powder and MgO powder as additive components, and Y 2 O Among the three powders, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder, one kind of rare earth element (RE) oxide powder and MnCO 3 powder are prepared. When the dielectric ceramic contains terbium as the rare earth element (RE), Tb 4 O 7 powder is used as the oxide of the second rare earth element (RE).

BCT粉末はAサイトの一部がCaで置換されたチタン酸バリウムを主成分とする固溶体であり、(Ba1−xCa)TiOで表されるものであり、Aサイト中のCa置換量は、X=0.01〜0.2であることが好ましい。Ca置換量がこの範囲内であれば、ほぼ単一相のペロブスカイト型の結晶構造となる結晶組織を形成することができる。これによりコンデンサとして使用する場合には使用温度範囲において優れた温度特性を得ることができる。なお、結晶粒子1中に含まれるCaは結晶粒子1に分散した状態で固溶している。 The BCT powder is a solid solution mainly composed of barium titanate in which a part of the A site is substituted with Ca, and is represented by (Ba 1-x Ca x ) TiO 3. The amount is preferably X = 0.01-0.2. If the amount of Ca substitution is within this range, a crystal structure having a substantially single-phase perovskite crystal structure can be formed. Thus, when used as a capacitor, excellent temperature characteristics can be obtained in the operating temperature range. Note that Ca contained in the crystal particles 1 is dissolved in a state dispersed in the crystal particles 1.

また、BCT粉末の平均粒径は0.05〜0.15μmが好ましい。BCT粉末の平均粒径が0.05μmより大きいと、結晶粒子1が高結晶性になるために比誘電率の向上を図れるという利点がある。   The average particle size of the BCT powder is preferably 0.05 to 0.15 μm. When the average particle size of the BCT powder is larger than 0.05 μm, the crystal particles 1 have high crystallinity, so that there is an advantage that the relative dielectric constant can be improved.

一方、BCT粉末の平均粒径が0.15μm未満であると、マグネシウム、希土類元素(RE)およびマンガンなどの添加剤を結晶粒子1の内部にまで固溶させることが容易となり、また、後述するように、焼成前後における、BCT粉末から結晶粒子1への粒成長の比率を高められるという利点がある。   On the other hand, when the average particle size of the BCT powder is less than 0.15 μm, it becomes easy to solidify additives such as magnesium, rare earth elements (RE) and manganese into the crystal particles 1 and will be described later. Thus, there exists an advantage that the ratio of the grain growth from the BCT powder to the crystal grain 1 before and behind baking can be raised.

添加剤であるY粉末、Dy粉末、Ho粉末およびEr粉末のうち少なくとも1種の希土類元素(RE)の酸化物粉末、Tb粉末、V粉末、MgO粉末、およびMnCO粉末についても平均粒径はBCT粉末と同等、もしくはそれ以下のものを用いることが分散性を高める上で好ましい。 Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder as additives, oxide powder of at least one rare earth element (RE), Tb 4 O 7 powder, V For the 2 O 5 powder, the MgO powder, and the MnCO 3 powder, it is preferable to use a powder having an average particle diameter equal to or less than that of the BCT powder in order to improve dispersibility.

次いで、これらの原料粉末を、BCT粉末を構成するバリウム100モルに対してV粉末を0.05〜0.3モル、MgO粉末を0〜0.1モル、MnCO粉末を0〜0.5モル、Y粉末、Dy粉末、Ho粉末およびEr粉末から選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モルの割合で配合し、所望の形状に成形した後、この成形体を脱脂し、しかる後、還元雰囲気中にて焼成する。 Next, these raw material powders are 0.05 to 0.3 mol of V 2 O 5 powder, 0 to 0.1 mol of MgO powder, 0 to 0.1 mol of MnCO 3 powder with respect to 100 mol of barium constituting the BCT powder. 0.5 mol, 1 type of rare earth element (RE) selected from Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder and Er 2 O 3 powder is converted to 0.5 to 5 in terms of RE 2 O 3. After blending at a ratio of 1.5 mol and forming into a desired shape, the formed body is degreased and then fired in a reducing atmosphere.

なお、本発明の誘電体磁器を製造するに際しては、所望の誘電特性を維持できる範囲であれば焼結助剤としてガラス粉末を添加しても良く、その添加量は、主な原料粉末であるBCT粉末の合計量を100質量部としたときに0.5〜2質量部が良い。   In the production of the dielectric ceramic of the present invention, glass powder may be added as a sintering aid so long as the desired dielectric properties can be maintained, and the addition amount is the main raw material powder. 0.5-2 mass parts is good when the total amount of BCT powder is 100 mass parts.

焼成温度は、ガラス粉末等の焼結助剤を用いる場合とそうでない場合とで異なるが、BT粉末への添加剤の固溶と結晶粒子の粒成長を制御するという理由から1050〜1200℃が好適である。   Although the firing temperature differs depending on whether or not a sintering aid such as glass powder is used, 1050 to 1200 ° C. is used for controlling the solid solution of the additive in the BT powder and the grain growth of the crystal particles. Is preferred.

本発明では、かかる誘電体磁器を得るために、微粒のBCT粉末を用い、これに上述の添加剤を所定量添加し、上記温度で焼成することで、各種の添加剤を含ませたBCT粉末の平均粒径が焼成前後で2倍以上になるように焼成する。焼成後における結晶粒子の平均粒径がバナジウムや他の添加剤を含ませたBCT粉末の平均粒径の2倍以上になるように焼成することで、結晶粒子1は、少なくともバナジウムおよび希土類元素(RE)、場合によっては、マグネシウムおよびマンガンを含めて、結晶粒子1の全体に固溶したものとすることができる。その結果、結晶粒子の内部において酸素空孔などの欠陥の生成が抑制され、電荷を運ぶキャリアが少ない状態が形成されていると考えられる。   In the present invention, in order to obtain such a dielectric ceramic, a BCT powder containing various additives is obtained by using a fine BCT powder, adding a predetermined amount of the above-mentioned additive thereto, and firing at the above temperature. Is fired so that the average particle size of the glass becomes twice or more before and after firing. By firing so that the average particle size of the crystal particles after firing is at least twice the average particle size of the BCT powder containing vanadium and other additives, the crystal particles 1 have at least vanadium and rare earth elements ( RE), depending on the case, it can be made into solid solution in the whole crystal grain 1 including magnesium and manganese. As a result, it is considered that the generation of defects such as oxygen vacancies in the crystal grains is suppressed, and a state where few carriers carry charges is formed.

また、本発明では、焼成後に、再度、弱還元雰囲気にて熱処理を行う。この熱処理は還元雰囲気中での焼成において還元された誘電体磁器を再酸化し、焼成時に還元されて低下した絶縁抵抗を回復するために行うものであり、その温度は結晶粒子1の更なる粒成長を抑えつつ再酸化量を高めるという理由から900〜1100℃が好ましい。こうして結晶粒子1中において高絶縁性の結晶粒子により形成される誘電体磁器を形成することができる。   Moreover, in this invention, after baking, it heat-processes in a weak reduction atmosphere again. This heat treatment is performed in order to reoxidize the dielectric ceramic reduced in firing in a reducing atmosphere and recover the reduced insulation resistance reduced during firing. 900-1100 degreeC is preferable from the reason of raising the amount of reoxidation, suppressing growth. Thus, a dielectric ceramic formed of highly insulating crystal particles in the crystal particles 1 can be formed.

図3は、本発明の積層セラミックコンデンサの例を示す断面模式図である。本発明の積層セラミックコンデンサは、コンデンサ本体10の両端部に外部電極4が設けられたものであり、また、コンデンサ本体10は誘電体層5と内部電極層7とが交互に積層された積層体10Aから構成されている。そして、誘電体層5は上述した本発明の誘電体磁器によって形成されることが重要である。なお、図3では、誘電体層5と内部電極層7との積層の状態を単純化して示しているが、本発明の積層セラミックコンデンサは、誘電体層5と内部電極層7とが数百層にも及ぶ積層体を形成している。   FIG. 3 is a schematic cross-sectional view showing an example of the multilayer ceramic capacitor of the present invention. The multilayer ceramic capacitor of the present invention is one in which external electrodes 4 are provided at both ends of a capacitor body 10, and the capacitor body 10 is a multilayer body in which dielectric layers 5 and internal electrode layers 7 are alternately stacked. 10A. It is important that the dielectric layer 5 is formed by the above-described dielectric ceramic of the present invention. In FIG. 3, the laminated state of the dielectric layer 5 and the internal electrode layer 7 is shown in a simplified manner, but the multilayer ceramic capacitor of the present invention has several hundreds of dielectric layers 5 and internal electrode layers 7. A laminated body extending to the layers is formed.

このような本発明の積層セラミックコンデンサによれば、誘電体層5として、上記の誘電体磁器を適用することにより、高誘電率で比誘電率の温度変化がEIA規格のX7R特性を満足するものとなり、誘電体層5を薄層化しても高い絶縁性を確保でき、高温負荷試験での寿命特性に優れた積層セラミックコンデンサを得ることができる。   According to the multilayer ceramic capacitor of the present invention, by applying the above-mentioned dielectric ceramic as the dielectric layer 5, the temperature change of the relative dielectric constant satisfies the X7R characteristic of EIA standard. Thus, even if the dielectric layer 5 is thinned, a high insulating property can be ensured, and a multilayer ceramic capacitor having excellent life characteristics in a high temperature load test can be obtained.

ここで、誘電体層5の厚みは3μm以下、特に、2.5μm以下であることが積層セラミックコンデンサを小型高容量化する上で好ましく、さらに本発明では静電容量のばらつきおよび容量温度特性の安定化のために、誘電体層5の厚みは1μm以上であることがより望ましい。   Here, the thickness of the dielectric layer 5 is preferably 3 μm or less, and particularly preferably 2.5 μm or less, in order to reduce the size and capacity of the multilayer ceramic capacitor. For stabilization, the thickness of the dielectric layer 5 is more preferably 1 μm or more.

内部電極層7は高積層化しても製造コストを抑制できるという点で、ニッケル(Ni)や銅(Cu)などの卑金属が望ましく、特に、本発明における誘電体層1との同時焼成が図れるという点でニッケル(Ni)がより望ましい。   The internal electrode layer 7 is preferably a base metal such as nickel (Ni) or copper (Cu) in that the manufacturing cost can be suppressed even if the internal electrode layer 7 is highly laminated, and in particular, simultaneous firing with the dielectric layer 1 in the present invention can be achieved. In this respect, nickel (Ni) is more desirable.

外部電極4は、例えば、CuもしくはCuとNiの合金ペーストを焼き付けて形成される。   The external electrode 4 is formed by baking, for example, Cu or an alloy paste of Cu and Ni.

次に、積層セラミックコンデンサの製造方法について説明する。上記の素原料粉末に専用の有機ビヒクルを加えてセラミックスラリを調製し、次いで、セラミックスラリをドクターブレード法やダイコータ法などのシート成形法を用いてセラミックグリーンシートを形成する。この場合、セラミックグリーンシートの厚みは誘電体層の高容量化のための薄層化、高絶縁性を維持するという点で1〜4μmが好ましい。   Next, a method for manufacturing a multilayer ceramic capacitor will be described. A ceramic slurry is prepared by adding a dedicated organic vehicle to the raw material powder, and then a ceramic green sheet is formed from the ceramic slurry using a sheet forming method such as a doctor blade method or a die coater method. In this case, the thickness of the ceramic green sheet is preferably 1 to 4 μm from the viewpoint of thinning the dielectric layer for increasing the capacity and maintaining high insulation.

次に、得られたセラミックグリーンシートの主面上に矩形状の内部電極パターンを印刷して形成する。内部電極パターンとなる導体ペーストはNi、Cuもしくはこれらの合金粉末が好適である。   Next, a rectangular internal electrode pattern is printed and formed on the main surface of the obtained ceramic green sheet. Ni, Cu, or an alloy powder thereof is suitable for the conductor paste that forms the internal electrode pattern.

次に、内部電極パターンが形成されたセラミックグリーンシートを所望枚数重ねて、その上下に内部電極パターンを形成していないセラミックグリーンシートを複数枚、上下層が同じ枚数になるように重ねてシート積層体を形成する。この場合、シート積層体中における内部電極パターンは、長寸方向に半パターンずつずらしてある。   Next, stack the desired number of ceramic green sheets with internal electrode patterns, and stack multiple ceramic green sheets without internal electrode patterns on the top and bottom so that the upper and lower layers are the same number. Form the body. In this case, the internal electrode pattern in the sheet laminate is shifted by a half pattern in the longitudinal direction.

次に、シート積層体を格子状に切断して、内部電極パターンの端部が露出するようにコンデンサ本体成形体を形成する。このような積層工法により、切断後のコンデンサ本体成形体の端面に内部電極パターンが交互に露出されるように形成できる。   Next, the sheet laminate is cut into a lattice shape to form a capacitor body molded body so that the end of the internal electrode pattern is exposed. By such a laminating method, the internal electrode pattern can be formed so as to be alternately exposed on the end surface of the cut capacitor body molded body.

次に、コンデンサ本体成形体を脱脂したのち、上記した誘電体磁器と同様の焼成条件および弱還元雰囲気での熱処理を行うことによりコンデンサ本体を作製する。   Next, after degreasing the capacitor body molded body, the capacitor body is fabricated by performing heat treatment under the same firing conditions and weak reducing atmosphere as the above dielectric ceramic.

次に、このコンデンサ本体の対向する端部に、外部電極ペーストを塗布して焼付けを行い外部電極4を形成する。また、この外部電極4の表面には実装性を高めるためにメッキ膜を形成しても構わない。   Next, an external electrode paste is applied to the opposite ends of the capacitor body and baked to form the external electrodes 4. Further, a plating film may be formed on the surface of the external electrode 4 in order to improve mountability.

まず、原料粉末として、BCT粉末(組成は(Ba1−xCa)TiO、 X=0.05)、MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末(第2希土類元素として)、MnCO粉末およびV粉末を準備し、これらの各種粉末をBCT粉末100モルに対して表1、2に示す割合で混合した。これらの原料粉末は純度が99.9%のものを用いた。なお、BCT粉末の平均粒径は試料No.1〜49、52および53については0.1μmのものを、試料No.50および51については平均粒径が0.25μmのものを、試料No.54、55については平均粒径が0.12μmのものを用いた。MgO粉末、Y粉末、Dy粉末、Ho粉末、Er粉末、Tb粉末、MnCO粉末およびV粉末は平均粒径が0.1μmのものを用いた。焼結助剤はSiO=55、BaO=20、CaO=15、LiO=10(モル%)組成のガラス粉末を用いた。ガラス粉末の添加量はBT粉末100質量部に対して1質量部とした。試料No.56については、平均粒径が0.1μmのBCT粉末にV粉末を添加し、これを一旦1150℃にて熱処理を行い、次に、この熱処理した粉末に、いずれも上記のMgO粉末、MnCO粉末、希土類元素(RE)の粉末およびガラス粉末を添加し混合粉砕した。混合粉砕は直径5mmのジルコニアボールを用いたボールミルで24時間行った。 First, as the raw material powder, BCT powder (composition (Ba 1-x Ca x) TiO 3, X = 0.05), MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder (as the second rare earth element), MnCO 3 powder and V 2 O 5 powder were prepared, and these various powders are shown in Tables 1 and 2 with respect to 100 mol of BCT powder. Mixed in proportion. These raw material powders having a purity of 99.9% were used. The average particle size of the BCT powder is the sample No. For samples 1-49, 52 and 53, samples having a thickness of 0.1 μm were used. Samples Nos. 50 and 51 having an average particle diameter of 0.25 μm were used. As for 54 and 55, those having an average particle diameter of 0.12 μm were used. MgO powder, Y 2 O 3 powder, Dy 2 O 3 powder, Ho 2 O 3 powder, Er 2 O 3 powder, Tb 4 O 7 powder, MnCO 3 powder and V 2 O 5 powder have an average particle size of 0.1 μm. The thing of was used. As the sintering aid, glass powder having a composition of SiO 2 = 55, BaO = 20, CaO = 15, and Li 2 O = 10 (mol%) was used. The addition amount of the glass powder was 1 part by mass with respect to 100 parts by mass of the BT powder. Sample No. For No. 56, V 2 O 5 powder was added to BCT powder having an average particle size of 0.1 μm, and this was subjected to heat treatment at 1150 ° C., and then all of the above MgO powder was added to the heat-treated powder. Then, MnCO 3 powder, rare earth element (RE) powder and glass powder were added and mixed and pulverized. The mixing and pulverization was performed for 24 hours in a ball mill using zirconia balls having a diameter of 5 mm.

次に、これらの原料粉末を再度、直径5mmのジルコニアボールを用いて、溶媒としてトルエンとアルコールとの混合溶媒を添加し湿式混合した。   Next, these raw material powders were again wet mixed by adding a mixed solvent of toluene and alcohol as a solvent using zirconia balls having a diameter of 5 mm.

次に、湿式混合した粉末にポリビニルブチラール樹脂およびトルエンとアルコールの混合溶媒を添加し、同じく直径5mmのジルコニアボールを用いて湿式混合しセラミックスラリを調製し、ドクターブレード法により厚み2.5μmのセラミックグリーンシートを作製した。   Next, a polyvinyl butyral resin and a mixed solvent of toluene and alcohol are added to the wet-mixed powder, and wet-mixed using a zirconia ball having a diameter of 5 mm to prepare a ceramic slurry, and a ceramic having a thickness of 2.5 μm is obtained by a doctor blade method. A green sheet was produced.

次に、このセラミックグリーンシートの上面にNiを主成分とする矩形状の内部電極パターンを複数形成した。内部電極パターンに用いた導体ペーストは、Ni粉末は平均粒径0.3μmのものを、共材としてグリーンシートに用いたBT粉末をNi粉末100質量部に対して30質量部添加した。   Next, a plurality of rectangular internal electrode patterns mainly composed of Ni were formed on the upper surface of the ceramic green sheet. The conductor paste used for the internal electrode pattern was Ni powder having an average particle size of 0.3 μm, and 30 parts by mass of BT powder used for a green sheet as a co-material with respect to 100 parts by mass of Ni powder.

次に、内部電極パターンを印刷したセラミックグリーンシートを360枚積層し、その上下面に内部電極パターンを印刷していないセラミックグリーンシートをそれぞれ20枚積層し、プレス機を用いて温度60℃、圧力10Pa、時間10分の条件で一括積層し、所定の寸法に切断した。 Next, 360 ceramic green sheets on which internal electrode patterns were printed were laminated, and 20 ceramic green sheets on which the internal electrode patterns were not printed were laminated on the upper and lower surfaces, respectively, using a press machine at a temperature of 60 ° C. and pressure The layers were laminated together under the conditions of 10 7 Pa and time 10 minutes, and cut into predetermined dimensions.

次に、積層成形体を10℃/hの昇温速度で大気中で300℃/hにて脱バインダ処理を行い、500℃からの昇温速度が300℃/hの昇温速度で、水素−窒素中、1050〜1220℃で2時間焼成してコンデンサ本体を作製した。また、試料は、続いて300℃/hの降温速度で1000℃まで冷却し、窒素雰囲気中1000℃で4時間再酸化処理をし、300℃/hの降温速度で冷却し、コンデンサ本体を作製した。このコンデンサ本体の大きさは0.95×0.48×0.48mm、誘電体層の厚みは2μm、内部電極層の1層の面積は0.3mmであった。 Next, the laminated molded body was subjected to binder removal treatment at 300 ° C./h in the atmosphere at a heating rate of 10 ° C./h, and the temperature rising rate from 500 ° C. was 300 ° C./h. -A capacitor body was fabricated by firing at 1050 to 1220 ° C for 2 hours in nitrogen. The sample was then cooled to 1000 ° C. at a rate of 300 ° C./h, reoxidized at 1000 ° C. for 4 hours in a nitrogen atmosphere, and cooled at a rate of 300 ° C./h to produce a capacitor body. did. The size of this capacitor body was 0.95 × 0.48 × 0.48 mm 3 , the thickness of the dielectric layer was 2 μm, and the area of one internal electrode layer was 0.3 mm 2 .

次に、焼成したコンデンサ本体をバレル研磨した後、コンデンサ本体の両端部にCu粉末とガラスを含んだ外部電極ペーストを塗布し、850℃で焼き付けを行い外部電極を形成した。その後、電解バレル機を用いて、この外部電極の表面に、順にNiメッキ及びSnメッキを行い、積層セラミックコンデンサを作製した。   Next, the fired capacitor body was barrel-polished, and then an external electrode paste containing Cu powder and glass was applied to both ends of the capacitor body and baked at 850 ° C. to form external electrodes. Thereafter, using an electrolytic barrel machine, Ni plating and Sn plating were sequentially performed on the surface of the external electrode to produce a multilayer ceramic capacitor.

次に、これらの積層セラミックコンデンサについて以下の評価を行った。評価はいずれも試料数10個とし、平均値を求めた。比誘電率は静電容量を温度25℃、周波数1.0kHz、測定電圧1Vrmsの測定条件で測定し、誘電体層の厚みと内部電極層の全面積から求めた。また、比誘電率の温度特性は静電容量を温度−55〜125℃の範囲で測定した。絶縁抵抗は直流電圧3.15V/μmおよび12.5V/μmの条件にて評価した(表5、6では、仮数部と指数部の間にEを入れる常用対数の指数表記で示した。)。   Next, the following evaluation was performed on these multilayer ceramic capacitors. In all cases, the number of samples was 10 and the average value was obtained. The relative dielectric constant was determined from the thickness of the dielectric layer and the total area of the internal electrode layer by measuring the capacitance under the measurement conditions of a temperature of 25 ° C., a frequency of 1.0 kHz, and a measurement voltage of 1 Vrms. In addition, the temperature characteristic of the relative dielectric constant was measured by measuring the capacitance in the temperature range of −55 to 125 ° C. Insulation resistance was evaluated under the conditions of DC voltages of 3.15 V / μm and 12.5 V / μm (in Tables 5 and 6, shown in exponential notation of common logarithm with E between mantissa and exponent). .

高温負荷試験は温度170℃において、印加電圧30V(15V/μm)の条件で行った。高温負荷試験での試料数は各試料20個とした。   The high temperature load test was performed under the condition of an applied voltage of 30 V (15 V / μm) at a temperature of 170 ° C. The number of samples in the high temperature load test was 20 samples.

結晶粒子の平均結晶粒径は、誘電体磁器の断面を断面研磨した研磨面について、透過電子顕微鏡にて映し出されている画像をコンピュータに取り込んで、その画面上で対角線を引き、その対角線上に存在する結晶粒子の輪郭を画像処理し、各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、算出した結晶粒子約50個の平均値として求めた。また、誘電体粉末からの粒成長の割合を評価した。   The average crystal grain size of the crystal grains is calculated by taking an image projected by a transmission electron microscope on a polished surface obtained by polishing a cross section of a dielectric ceramic, drawing a diagonal line on the screen, and on the diagonal line. The outline of the existing crystal grains was image-processed, the area of each particle was determined, the diameter when replaced with a circle having the same area was calculated, and the average value of about 50 calculated crystal grains was determined. In addition, the rate of grain growth from the dielectric powder was evaluated.

結晶粒子中のCa濃度については、積層セラミックコンデンサの積層方向の断面を研磨した誘電体層の研磨面に存在する約5個の結晶粒子に対して、元素分析機器を付設した透過型電子顕微鏡を用いて元素分析を行った。このとき電子線のスポットサイズは5nmとし、分析する箇所は、結晶粒子の粒界付近から中央部へ向けて引いた直線上のほぼ等間隔に位置する点とした。分析値は粒界付近と中央部との間で4〜5点ほど分析した値の平均値とし、結晶粒子の各測定点から検出されるBa、Ti、Ca、V、Mg、希土類元素(RE)およびMnの全量を100%として、そのときのCaの濃度を求めた。この場合、選択する結晶粒子は、その輪郭から画像処理にて各粒子の面積を求め、同じ面積をもつ円に置き換えたときの直径を算出し、このようにして直径を求めた結晶粒子の直径が平均結晶粒径の±60%の範囲にある結晶粒子とした。この測定で結晶粒子の中央部は当該結晶粒子の内接円の中心から半径の1/3の長さの範囲とし、一方、結晶粒子の粒界付近は当該結晶粒子の粒界から5nm内側の領域とした。なお、結晶粒子の内接円は透過電子顕微鏡にて映し出されている画像をコンピュータの画面上で内接円を描き、その画面上の画像から結晶粒子の中央部を決定した。評価した結果、BCT粉末を用いた試料はすべてCa成分濃度が0.5〜1原子%であった。   Regarding the Ca concentration in the crystal particles, a transmission electron microscope provided with an elemental analysis device was applied to about 5 crystal particles present on the polished surface of the dielectric layer obtained by polishing the cross section in the stacking direction of the multilayer ceramic capacitor. Elemental analysis was performed. At this time, the spot size of the electron beam was 5 nm, and the locations to be analyzed were points located at substantially equal intervals on a straight line drawn from the vicinity of the grain boundary of the crystal grains toward the center. The analysis value is an average value of 4 to 5 points analyzed between the vicinity of the grain boundary and the central portion, and Ba, Ti, Ca, V, Mg, rare earth elements (RE) detected from each measurement point of the crystal grains. ) And Mn as 100%, and the Ca concentration at that time was determined. In this case, the crystal particles to be selected are obtained by calculating the diameter of each particle by image processing from the outline, and calculating the diameter when replaced with a circle having the same area, and the diameter of the crystal particle thus obtained is calculated. Are crystal grains in the range of ± 60% of the average crystal grain size. In this measurement, the central part of the crystal grain is in the range of 1/3 of the radius from the center of the inscribed circle of the crystal grain, while the vicinity of the grain boundary of the crystal grain is 5 nm inside from the grain boundary of the crystal grain. The area. The inscribed circle of the crystal grains was drawn on the screen of a computer from the image projected by the transmission electron microscope, and the center of the crystal grains was determined from the image on the screen. As a result of the evaluation, all samples using BCT powder had a Ca component concentration of 0.5 to 1 atomic%.

また、正方晶系のチタン酸バリウムを示す(004)面の回折強度と立方晶系のチタン酸バリウムを示す(400)面の回折強度との比の測定は、Cukαの管球を備えたX線回折装置を用いて、角度2θ=99〜102°の範囲で測定し、ピーク強度の比を測定して求めた。   Further, the ratio of the diffraction intensity of the (004) plane showing tetragonal barium titanate and the diffraction intensity of the (400) plane showing cubic barium titanate was measured using X with a Cukα tube. Using a line diffractometer, the angle was measured in the range of 2θ = 99 to 102 °, and the ratio of peak intensities was measured and determined.

また、得られた焼結体である試料の組成分析はICP分析もしくは原子吸光分析により行った。この場合、得られた誘電体磁器を硼酸と炭酸ナトリウムと混合し溶融させたものを塩酸に溶解させて、まず、原子吸光分析により誘電体磁器に含まれる元素の定性分析を行い、次いで、特定した各元素について標準液を希釈したものを標準試料として、ICP発光分光分析にかけて定量化した。また、各元素の価数を周期表に示される価数として酸素量を求めた。   In addition, the composition analysis of the obtained sintered body sample was performed by ICP analysis or atomic absorption analysis. In this case, the obtained dielectric porcelain mixed with boric acid and sodium carbonate and dissolved in hydrochloric acid is first subjected to qualitative analysis of the elements contained in the dielectric porcelain by atomic absorption spectrometry, and then specified. The diluted standard solution for each element was used as a standard sample and quantified by ICP emission spectroscopic analysis. Further, the amount of oxygen was determined using the valence of each element as the valence shown in the periodic table.

調合組成と焼成温度を表1,2に、焼結体中の各元素の酸化物換算での組成を表3,4に、特性の結果を表5,6にそれぞれ示した。

Figure 2009051717
The composition and firing temperature are shown in Tables 1 and 2, the compositions of each element in the sintered body in terms of oxides are shown in Tables 3 and 4, and the characteristics results are shown in Tables 5 and 6, respectively.
Figure 2009051717

Figure 2009051717
Figure 2009051717

Figure 2009051717
Figure 2009051717

Figure 2009051717
Figure 2009051717

Figure 2009051717
Figure 2009051717

Figure 2009051717
Figure 2009051717

表1〜6の結果から明らかなように、チタン酸バリウムを主成分とし、チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる希土類元素(RE)をRE換算で0.5〜1.5モル含み、さらにカルシウムを含むとともに、結晶粒子として、チタン酸バリウムを主体とし、カルシウム濃度が0.4原子%以上の結晶粒子を有し、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きい本発明の試料No.2〜10、12〜16、19〜34、36〜40、42〜44、46、47および52〜55では、比誘電率が3540以上、比誘電率の温度変化がEIA規格のX7R特性を満足するものとなり、単位厚み(1μm)当たりに印加する直流電圧の値を3.15Vおよび12.5Vとしたときの絶縁抵抗の低下が無く、絶縁抵抗の電圧依存性のさらに小さい誘電体磁器を得ることができた。また、高温負荷試験での寿命特性が170℃、15V/μmの条件で56時間以上であった。 As is apparent from the results of Tables 1 to 6, 0.05 to 0.3 mol of vanadium in terms of V 2 O 5 with respect to 100 mol of barium containing barium titanate as a main component and constituting barium titanate, Magnesium is 0 to 0.1 mol in terms of MgO, manganese is 0 to 0.5 mol in terms of MnO, and a rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium is 0.5 to 0.5 in terms of RE 2 O 3 In the X-ray diffraction chart of a dielectric ceramic, it contains 1.5 mol, further contains calcium, and has crystal grains mainly composed of barium titanate and having a calcium concentration of 0.4 atomic% or more. The diffraction intensity of the (004) plane showing crystalline barium titanate is larger than the diffraction intensity of the (400) plane showing cubic barium titanate Sample of the invention No. 2-10, 12-16, 19-34, 36-40, 42-44, 46, 47, and 52-55, the relative dielectric constant is 3540 or more, and the temperature change of the relative dielectric constant satisfies the EIA standard X7R characteristics As a result, a dielectric ceramic is obtained in which the insulation resistance does not decrease when the value of the DC voltage applied per unit thickness (1 μm) is 3.15 V and 12.5 V, and the voltage dependence of the insulation resistance is further reduced. I was able to. Moreover, the lifetime characteristic in the high temperature load test was 56 hours or more under the conditions of 170 ° C. and 15 V / μm.

また、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マンガンをMnO換算で0〜0.5モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含ませて、マグネシウムをMgO換算で0モルとした試料では、印加する直流電圧が誘電体層の単位厚み(1μm)当たりに3.15Vと12.5Vとの間で絶縁抵抗が増加する傾向(正の変化)を示す高絶縁性の誘電体磁器を得ることができた。 Further, barium titanate is the main component, and with respect to 100 moles of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mole in terms of V 2 O 5 and manganese is 0 to 0.00 in terms of MnO. 5 mol, a sample containing 0.5 to 1.5 mol of RE 2 O 3 in terms of one kind of rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium, and magnesium being 0 mol in terms of MgO Then, a highly insulating dielectric ceramic in which the applied DC voltage tends to increase (positive change) in the insulation resistance between 3.15 V and 12.5 V per unit thickness (1 μm) of the dielectric layer. I was able to get it.

また、チタン酸バリウムを主成分とし、このチタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、イットリウム、ジスプロシウム、ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含ませて、マグネシウムをMgO換算で0モルおよびマンガンをMnO換算で0モルとした試料No.10、30では、バナジウムおよび希土類元素(RE)を同量含有する試料について対比すると、マグネシウムおよびマンガンを含有する誘電体磁器である試料No.2〜9および試料No.19〜29に比較して誘電損失を低減することができた。 Further, the main component is barium titanate, and the vanadium is selected from 0.05 to 0.3 mol in terms of V 2 O 5 and yttrium, dysprosium, holmium and erbium with respect to 100 mol of barium constituting the barium titanate. One kind of rare earth element (RE) is contained in an amount of 0.5 to 1.5 mol in terms of RE 2 O 3 , sample No. 1 in which magnesium is 0 mol in terms of MgO and manganese is 0 mol in terms of MnO. 10 and 30, in comparison with a sample containing the same amount of vanadium and rare earth element (RE), the sample No. 1 is a dielectric ceramic containing magnesium and manganese. 2-9 and Sample No. Compared with 19-29, the dielectric loss could be reduced.

また、チタン酸バリウムを構成するバリウム100モルに対して、バナジウム、希土類元素(RE)、マグネシウムおよびマンガンを本発明で規定する量だけ含有させてテルビウムをTb換算で0.05〜0.3モル含有させた試料No.19〜34、36〜40では、テルビウムを含有しない試料No.2〜9、12〜16に比較して誘電体磁器の絶縁抵抗を高めることができ、上記の誘電体磁器を積層セラミックコンデンサの誘電体層に適用したときに高温負荷試験における寿命特性がさらに向上した。 Further, vanadium, rare earth element (RE), magnesium and manganese are contained in an amount specified in the present invention with respect to 100 mol of barium constituting barium titanate, and terbium is added in an amount of 0.05 to 0 in terms of Tb 4 O 7. Sample No. 3 mol. In 19-34 and 36-40, Sample No. containing no terbium was used. Compared to 2-9 and 12-16, the insulation resistance of the dielectric ceramic can be increased, and the life characteristics in the high temperature load test are further improved when the dielectric ceramic is applied to the dielectric layer of the multilayer ceramic capacitor. did.

これに対して、本発明の試料とは組成が異なるか、または粒成長の比率が2倍より低く、誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも小さい本発明の範囲外の試料では、比誘電率の温度変化がEIA規格のX7R特性を満足しないか、または、絶縁抵抗が単位厚み(1μm)当たりに印加する直流電圧の値を12.5V/μmとして測定したときに10Ωよりも低いか、高温負荷試験の寿命特性が16時間以下であった。 On the other hand, the composition of the present invention is different from that of the sample of the present invention, or the grain growth ratio is lower than twice, and the (004) plane shows tetragonal barium titanate in the X-ray diffraction chart of the dielectric ceramic. In a sample outside the range of the present invention in which the diffraction intensity is smaller than the diffraction intensity of the (400) plane showing cubic barium titanate, the temperature change of the relative dielectric constant does not satisfy the X7R characteristic of the EIA standard, or When the value of the DC voltage applied per unit thickness (1 μm) was measured as 12.5 V / μm, the insulation resistance was lower than 10 8 Ω, or the life characteristics of the high temperature load test were 16 hours or less.

本発明の誘電体磁器の微構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the microstructure of the dielectric material ceramic of this invention. (a)は、本発明の誘電体磁器である試料No.4のX線回折チャートを示すものであり、(b)は、比較例の誘電体磁器である試料No.51のX線回折チャートである。(A) shows a sample No. which is a dielectric ceramic of the present invention. 4 shows an X-ray diffraction chart of No. 4 and (b) shows a sample No. 4 which is a dielectric ceramic of a comparative example. 51 is an X-ray diffraction chart of 51. 本発明の積層セラミックコンデンサの例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the multilayer ceramic capacitor of this invention.

符号の説明Explanation of symbols

1 結晶粒子
2 粒界相
5 誘電体層
7 内部電極層
10A 積層体
DESCRIPTION OF SYMBOLS 1 Crystal grain 2 Grain boundary phase 5 Dielectric layer 7 Internal electrode layer 10A Laminated body

Claims (5)

チタン酸バリウムを主成分とし、前記チタン酸バリウムを構成するバリウム100モルに対して、バナジウムをV換算で0.05〜0.3モル、マグネシウムをMgO換算で0〜0.1モル、マンガンをMnO換算で0〜0.5モル、イットリウム,ジスプロシウム,ホルミウムおよびエルビウムから選ばれる1種の希土類元素(RE)をRE換算で0.5〜1.5モル含み、さらにカルシウムを含むとともに、結晶粒子が前記チタン酸バリウムを主体とし、カルシウム濃度が0.4原子%以上の結晶粒子により構成される誘電体磁器であって、該誘電体磁器のX線回折チャートにおいて、正方晶系のチタン酸バリウムを示す(004)面の回折強度が、立方晶系のチタン酸バリウムを示す(400)面の回折強度よりも大きいことを特徴とする誘電体磁器。 Based on barium titanate as the main component and 100 mol of barium constituting the barium titanate, vanadium is 0.05 to 0.3 mol in terms of V 2 O 5 and magnesium is 0 to 0.1 mol in terms of MgO. Manganese containing 0 to 0.5 mol in terms of MnO, 0.5 to 1.5 mol in terms of RE 2 O 3 containing one kind of rare earth element (RE) selected from yttrium, dysprosium, holmium and erbium, and calcium A dielectric ceramic comprising crystal particles mainly composed of the barium titanate and having a calcium concentration of 0.4 atomic% or more, wherein the dielectric ceramic is square in the X-ray diffraction chart of the dielectric ceramic. The diffraction intensity of the (004) plane showing crystalline barium titanate is larger than the diffraction intensity of the (400) plane showing cubic barium titanate Dielectric ceramic characterized that no. 前記マグネシウムの含有量がMgO換算で0モルであることを特徴とする請求項1に記載の誘電体磁器。 The dielectric ceramic according to claim 1, wherein the magnesium content is 0 mol in terms of MgO. 前記マンガンの含有量がMnO換算で0モルであることを特徴とする請求項2に記載の誘電体磁器。 The dielectric ceramic according to claim 2, wherein the manganese content is 0 mol in terms of MnO. 前記チタン酸バリウムを構成するバリウムおよびカルシウムの合計100モルに対して、さらにテルビウムをTb換算で0.3モル以下の範囲で含有することを特徴とする請求項1乃至3のうちいずれかに記載の誘電体磁器。 The terbium is further contained in a range of 0.3 mol or less in terms of Tb 4 O 7 with respect to a total of 100 mol of barium and calcium constituting the barium titanate. A dielectric porcelain according to claim 1. 請求項1乃至4のうちいずれかに記載の誘電体磁器からなる誘電体層と内部電極層との積層体から構成されていることを特徴とする積層セラミックコンデンサ。 5. A multilayer ceramic capacitor comprising a laminate of a dielectric layer made of the dielectric ceramic according to claim 1 and an internal electrode layer.
JP2007222971A 2007-08-29 2007-08-29 Dielectric porcelain and multilayer ceramic capacitor Active JP5094283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007222971A JP5094283B2 (en) 2007-08-29 2007-08-29 Dielectric porcelain and multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007222971A JP5094283B2 (en) 2007-08-29 2007-08-29 Dielectric porcelain and multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2009051717A true JP2009051717A (en) 2009-03-12
JP5094283B2 JP5094283B2 (en) 2012-12-12

Family

ID=40503133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007222971A Active JP5094283B2 (en) 2007-08-29 2007-08-29 Dielectric porcelain and multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP5094283B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155118A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and multilayer ceramic capacitor
JP2010232258A (en) * 2009-03-26 2010-10-14 Kyocera Corp Laminated ceramic capacitor
JP2011173747A (en) * 2010-02-24 2011-09-08 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2012076951A (en) * 2010-09-30 2012-04-19 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2013227219A (en) * 2013-06-11 2013-11-07 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2015153916A (en) * 2014-02-15 2015-08-24 京セラ株式会社 capacitor
JP2020023423A (en) * 2018-08-06 2020-02-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric composition and electronic component using the same

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165768A (en) * 2001-11-26 2003-06-10 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic electronic part
JP2005104772A (en) * 2003-09-30 2005-04-21 Tdk Corp Dielectric ceramic composition and electronic component
JP2005194138A (en) * 2004-01-07 2005-07-21 Murata Mfg Co Ltd Dielectric ceramic composition, and laminated ceramic capacitor
WO2006003753A1 (en) * 2004-07-05 2006-01-12 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
JP2006117446A (en) * 2004-10-19 2006-05-11 Tokyo Institute Of Technology Barium titanate powder and its production method
JP2006176388A (en) * 2004-11-26 2006-07-06 Kyocera Corp Dielectric ceramic and method of manufacturing the same
JP2006265067A (en) * 2005-03-25 2006-10-05 Kyocera Corp Barium titanate powder, method for manufacturing the same and barium titanate sintered compact
JP2006306632A (en) * 2005-04-26 2006-11-09 Kyocera Corp Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
JP2006327890A (en) * 2005-05-27 2006-12-07 Kyocera Corp Barium titanate powder, its manufacturing method and its sintered compact
JP2006347799A (en) * 2005-06-15 2006-12-28 Taiyo Yuden Co Ltd Dielectric ceramic, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2007031273A (en) * 2005-07-28 2007-02-08 Samsung Electro Mech Co Ltd Dielectric porcelain composition for low temperature firing and laminated ceramic condenser using the same
JP2007091505A (en) * 2005-09-27 2007-04-12 Kyocera Corp Barium titanate powder and method for producing the same
JP2007145683A (en) * 2004-12-13 2007-06-14 Tdk Corp Electronic device, dielectric ceramic composition and production method of the same
JP2007169122A (en) * 2005-12-22 2007-07-05 Kyocera Corp Barium titanate powder, its production method, and barium titanate sintered compact

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003165768A (en) * 2001-11-26 2003-06-10 Murata Mfg Co Ltd Dielectric ceramic composition and laminated ceramic electronic part
JP2005104772A (en) * 2003-09-30 2005-04-21 Tdk Corp Dielectric ceramic composition and electronic component
JP2005194138A (en) * 2004-01-07 2005-07-21 Murata Mfg Co Ltd Dielectric ceramic composition, and laminated ceramic capacitor
WO2006003753A1 (en) * 2004-07-05 2006-01-12 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
JP2006117446A (en) * 2004-10-19 2006-05-11 Tokyo Institute Of Technology Barium titanate powder and its production method
JP2006176388A (en) * 2004-11-26 2006-07-06 Kyocera Corp Dielectric ceramic and method of manufacturing the same
JP2007145683A (en) * 2004-12-13 2007-06-14 Tdk Corp Electronic device, dielectric ceramic composition and production method of the same
JP2006265067A (en) * 2005-03-25 2006-10-05 Kyocera Corp Barium titanate powder, method for manufacturing the same and barium titanate sintered compact
JP2006306632A (en) * 2005-04-26 2006-11-09 Kyocera Corp Method for producing barium titanate powder, barium titanate powder, and barium titanate sintered compact
JP2006327890A (en) * 2005-05-27 2006-12-07 Kyocera Corp Barium titanate powder, its manufacturing method and its sintered compact
JP2006347799A (en) * 2005-06-15 2006-12-28 Taiyo Yuden Co Ltd Dielectric ceramic, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP2007031273A (en) * 2005-07-28 2007-02-08 Samsung Electro Mech Co Ltd Dielectric porcelain composition for low temperature firing and laminated ceramic condenser using the same
JP2007091505A (en) * 2005-09-27 2007-04-12 Kyocera Corp Barium titanate powder and method for producing the same
JP2007169122A (en) * 2005-12-22 2007-07-05 Kyocera Corp Barium titanate powder, its production method, and barium titanate sintered compact

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155118A (en) * 2007-12-25 2009-07-16 Kyocera Corp Dielectric ceramic and multilayer ceramic capacitor
JP2010232258A (en) * 2009-03-26 2010-10-14 Kyocera Corp Laminated ceramic capacitor
JP2011173747A (en) * 2010-02-24 2011-09-08 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
TWI413630B (en) * 2010-02-24 2013-11-01 Murata Manufacturing Co Dielectric ceramic and laminated ceramic capacitor
US9406440B2 (en) 2010-02-24 2016-08-02 Murata Manufacturing Co., Ltd. Dielectric ceramic and laminated ceramic capacitor
JP2012076951A (en) * 2010-09-30 2012-04-19 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2013227219A (en) * 2013-06-11 2013-11-07 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2015153916A (en) * 2014-02-15 2015-08-24 京セラ株式会社 capacitor
JP2020023423A (en) * 2018-08-06 2020-02-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric composition and electronic component using the same
JP7311256B2 (en) 2018-08-06 2023-07-19 サムソン エレクトロ-メカニックス カンパニーリミテッド. Dielectric composition and electronic component using the same

Also Published As

Publication number Publication date
JP5094283B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6502092B2 (en) Multilayer ceramic capacitor
JP4925958B2 (en) Multilayer ceramic capacitor
JP5483825B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5046700B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
JP5210300B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4920520B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor using the same
JPWO2006104026A1 (en) DIELECTRIC CERAMIC COMPOSITION AND METHOD FOR PRODUCING CAPACITOR USING THE SAME
JP2008297179A (en) Dielectric porcelain and multilayer ceramic capacitor
JP5094283B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5354867B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4999988B2 (en) Multilayer ceramic capacitor
JP5106626B2 (en) Multilayer ceramic capacitor
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5127837B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4949220B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2002265260A (en) Dielectric ceramic and lamination type electronic part
WO2009157232A1 (en) Dielectric ceramic and multilayer ceramic capacitor using the same
JP5100592B2 (en) Multilayer ceramic capacitor
JP5322723B2 (en) Multilayer ceramic capacitor
JP5701013B2 (en) Multilayer ceramic capacitor
JP5241328B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP5197432B2 (en) Multilayer ceramic capacitor
JP5084657B2 (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3