JP2009048824A - Powder for lithium ion battery negative electrode material - Google Patents

Powder for lithium ion battery negative electrode material Download PDF

Info

Publication number
JP2009048824A
JP2009048824A JP2007212565A JP2007212565A JP2009048824A JP 2009048824 A JP2009048824 A JP 2009048824A JP 2007212565 A JP2007212565 A JP 2007212565A JP 2007212565 A JP2007212565 A JP 2007212565A JP 2009048824 A JP2009048824 A JP 2009048824A
Authority
JP
Japan
Prior art keywords
powder
negative electrode
lithium ion
ratio
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007212565A
Other languages
Japanese (ja)
Other versions
JP5518285B2 (en
Inventor
Akihiko Yanagiya
彰彦 柳谷
Yoshikazu Aikawa
芳和 相川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2007212565A priority Critical patent/JP5518285B2/en
Priority to PCT/JP2008/064479 priority patent/WO2009025207A1/en
Publication of JP2009048824A publication Critical patent/JP2009048824A/en
Application granted granted Critical
Publication of JP5518285B2 publication Critical patent/JP5518285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder for lithium ion battery negative electrode material whose main constituent elements are Co, Sn and Fe. <P>SOLUTION: The powder for lithium ion battery negative electrode material comprises Co-Sn-Fe alloy and has an alloy composition where the mass% ratio of the sum of Fe and Co to Sn satisfies the formula: (Co+Fe):Sn=5:5 to 1:9, and the mass% ratio of Fe to Co satisfies the formula: Co:Fe=1:3 to 3:1. Moreover, the powder for lithium ion battery negative electrode material is characterized in that one or more of Ti, In, C, Si and Ag are added at 0.1 to 10%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、CoとSnおよびFeを主構成元素とするリチウムイオン電池負極材用粉末に関するものである。   The present invention relates to a powder for a negative electrode material for lithium ion batteries containing Co, Sn and Fe as main constituent elements.

近年、カメラ一体型VTR(ビデオテープレコーダー)、携帯電話、ノートパソコンなどのポータブル電子機器が多く登場し、その小型化および軽量化が図られている。それに伴い、それらの電子機器のポータブル電源として用いられている電池、特に二次電池についてエネルギー密度の向上が強く要請されている。このような要求に応える二次電池としては、従来より、リチウムイオンの二次電池が実用化されている。   In recent years, many portable electronic devices such as a camera-integrated VTR (video tape recorder), a mobile phone, and a laptop computer have appeared, and their size and weight have been reduced. Accordingly, there is a strong demand for an improvement in energy density of batteries used as portable power sources for such electronic devices, particularly secondary batteries. Conventionally, lithium ion secondary batteries have been put to practical use as secondary batteries that meet such requirements.

しかしながら、近年の携帯用機器の高性能化に伴い、二次電池の容量に対する要求はさらに強いものとなっている。このような要求に応える二次電池として、リチウム金属などの軽金属をそのまま負極活物質として用いることが提案されている。この電池では、充電過程において負極に軽金属がデンドライト状に析出しやすくなり、デンドライトの先端で電流密度が非常に高くなる。このため、非水電解液の分離などによりサイクル寿命が低下したり、また、過度にデンドライトが成長して電池の内部短絡が発生したりするという問題があった。   However, with the recent improvement in performance of portable devices, the demand for the capacity of the secondary battery has become stronger. As a secondary battery that meets such requirements, it has been proposed to use a light metal such as lithium metal as a negative electrode active material as it is. In this battery, light metal tends to precipitate in a dendrite state on the negative electrode during the charging process, and the current density becomes very high at the end of the dendrite. For this reason, there has been a problem that the cycle life is reduced due to separation of the non-aqueous electrolyte, or the dendrite grows excessively and an internal short circuit of the battery occurs.

これに対し、種々の合金材料などを負極活物質として用いることが提案されている。例えば、珪素合金、Sn−Ni合金、Li−Al−Sn合金、Sn−Zn合金、P−Sn合金Sn−Cu合金等が提案されている。しかし、これらの合金材料を用いた場合においても、十分なサイクル特性は得られず、合金材料における高容量負極の特徴を十分に活かしきれていないのが実状である。   On the other hand, using various alloy materials etc. as a negative electrode active material is proposed. For example, silicon alloys, Sn—Ni alloys, Li—Al—Sn alloys, Sn—Zn alloys, P—Sn alloys, Sn—Cu alloys and the like have been proposed. However, even when these alloy materials are used, sufficient cycle characteristics cannot be obtained, and the fact is that the characteristics of the high-capacity negative electrode in the alloy materials are not fully utilized.

これに対して、例えば特開2006−134782号公報(特許文献1)に開示されているように、Sn−Co−Cとを構成元素とし、Cの含有量が16.8〜24.8%、SnとCoとの合計に対するCoの割合が30〜45%であるCoSnC含有材料を含有し、負極活物質層に対する正極活物質層の面密度比が2.77〜3.90の範囲にある電池が提案されている。
特開2006−134782号公報
On the other hand, as disclosed in, for example, Japanese Patent Application Laid-Open No. 2006-134782 (Patent Document 1), Sn—Co—C is used as a constituent element, and the C content is 16.8 to 24.8%. And a CoSnC-containing material in which the ratio of Co to the total of Sn and Co is 30 to 45%, and the surface density ratio of the positive electrode active material layer to the negative electrode active material layer is in the range of 2.77 to 3.90. Batteries have been proposed.
JP 2006-134782 A

上記、特許文献1による電池によれば、負極活物質層に、特にCoの割合30〜45%含有することが必須要件であり、このような高CoであるCoSnC含有材料を用い、正極活物質層と負極活物質層との面密度比を所定の範囲内とするようにしたので、確かに高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができる。しかしながら、Coは高価な原料であるため、生産性に課題がある。また、Coを少なくすると組織中に純Snの相が析出し、これが電池容量の低下を招き、電池の製品寿命を低減させるという問題がある。   According to the battery according to Patent Document 1, it is essential that the negative electrode active material layer contains 30 to 45% of Co in particular, and such a high Co CoSnC-containing material is used. Since the surface density ratio between the layer and the negative electrode active material layer is set within the predetermined range, it is possible to surely obtain a high energy density and to obtain excellent cycle characteristics. However, since Co is an expensive raw material, there is a problem in productivity. Further, when Co is decreased, a pure Sn phase is precipitated in the structure, which causes a problem that the battery capacity is lowered and the product life of the battery is reduced.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、純Snの相を出さずに高い電池容量を達成し、かつ高価なCoを低減する方策として、Coより廉価で、同等の電池容量を有する元素として高価なCo元素に変えて、従来考えられなかった安価なFeを見出したものである。ただ、Fe−Sn系は液相で2相分離反応を起こして純Snが析出し、電池容量に悪影響を及ぼすことから、Co−Fe−Sn系であれば、2相分離が起こらない組成範囲であることを見出したもので、これにより廉価で、かつ同等の電池容量を有するCoとSnおよびFeを主構成元素とするリチウムイオン電池負極材用粉末を提供するものである。   In order to solve the above-described problems, the inventors have intensively developed, and as a measure to achieve high battery capacity without producing a pure Sn phase and reduce expensive Co, it is less expensive than Co. Thus, instead of an expensive Co element as an element having an equivalent battery capacity, an inexpensive Fe that has not been considered in the past has been found. However, since the Fe—Sn system undergoes a two-phase separation reaction in the liquid phase and pure Sn precipitates, adversely affecting the battery capacity, the Co—Fe—Sn system has a composition range in which two-phase separation does not occur. Accordingly, the present invention provides a powder for a negative electrode material for lithium ion batteries having Co, Sn and Fe as main constituent elements, which is inexpensive and has an equivalent battery capacity.

その発明の要旨とするとこは、
(1)Co−Sn−Fe系合金であって、FeとCoの和とSnのmass%比が下記式(1)を満たし、FeとCoのmass%比が式(2)を満たす合金組成であることを特徴とするリチウムイオン電池負極材用粉末。
(Co+Fe):Sn=5:5〜1:9 … (1)
Co:Fe=1:3〜3:1 … (2)
(2)前記(1)に記載のCo−Sn−Fe系合金に、Ti,In,C,Si,Agの1種または2種以上を0.1〜10%添加することを特徴とするリチウムイオン電池負極材用粉末にある。
The gist of the invention is that
(1) Co—Sn—Fe-based alloy in which the sum of Fe and Co and the mass% ratio of Sn satisfy the following formula (1), and the mass% ratio of Fe and Co satisfies the formula (2) The powder for lithium ion battery negative electrode materials characterized by these.
(Co + Fe): Sn = 5: 5 to 1: 9 (1)
Co: Fe = 1: 3 to 3: 1 (2)
(2) Lithium characterized by adding 0.1 to 10% of one or more of Ti, In, C, Si, and Ag to the Co—Sn—Fe based alloy described in (1). It is in the powder for ion battery negative electrode materials.

以上述べたように、本発明により廉価で、かつ同等の電池容量を有する生産性の高いリチウムイオン電池負極材用粉末の作製が可能となった。   As described above, according to the present invention, it is possible to produce a powder for a lithium ion battery negative electrode material that is inexpensive and has an equivalent battery capacity and high productivity.

以下、本発明について詳細に説明する。
上述したように、Fe−Snの2元系では、FeとSnが分離して純Snが析出する。純Snが析出せずに従来よりも高い電池容量を達成し、且つ高価なCoを低減する方策としてCo−Fe−Sn系で、さらに、最適なFeとCoの比率を見出した。すなわち、最適なFeとCoの比率として、(Co+Fe):Sn=5:5〜1:9、かつCo:Fe=1:3〜3:1とするものである。
Hereinafter, the present invention will be described in detail.
As described above, in the Fe—Sn binary system, Fe and Sn are separated and pure Sn is deposited. As a measure for achieving a battery capacity higher than that of the prior art without depositing pure Sn and reducing expensive Co, a Co—Fe—Sn system was further found, and an optimum Fe to Co ratio was found. That is, the optimum ratio of Fe and Co is (Co + Fe): Sn = 5: 5 to 1: 9 and Co: Fe = 1: 3 to 3: 1.

(Co+Fe):Sn=5:5〜1:9とした理由は、(Co+Fe)の比率がSnに比較して高い場合には電池容量が低下する。逆にSnの比率が高い場合も同様に純Snが析出し電池容量が低下する。かつ、Co:Fe=1:3〜3:1とした理由は、Coの比率が高い場合、電池容量が低下すると共に、高価なCo量が増加するのでコストに課題が生じる。逆にFeの比率が高い場合はFeとSnが分離して純Snが析出し、電池容量が低下することから、それぞれの最適な比率範囲に特徴がある。   The reason why (Co + Fe): Sn = 5: 5 to 1: 9 is that when the ratio of (Co + Fe) is higher than Sn, the battery capacity decreases. Conversely, when the Sn ratio is high, pure Sn is similarly deposited and the battery capacity is reduced. The reason why Co: Fe = 1: 3 to 3: 1 is that when the ratio of Co is high, the battery capacity decreases and the amount of expensive Co increases, which causes a problem in cost. On the contrary, when the ratio of Fe is high, Fe and Sn are separated and pure Sn is deposited, and the battery capacity is lowered.

上記Co−Fe−Sn系合金に、さらにTi,In,C,Si,Agの1種または2種以上を0.1〜10%添加することで電池容量の増大を図ることができる。しかし、0.1%未満では、その効果が十分に得られず、10%を超えるとその効果は飽和することから、その添加範囲を0.1〜10%とした。好ましくは1〜5%とする。   The battery capacity can be increased by adding 0.1 to 10% of one or more of Ti, In, C, Si, and Ag to the Co—Fe—Sn alloy. However, if the content is less than 0.1%, the effect cannot be sufficiently obtained, and if the content exceeds 10%, the effect is saturated. Therefore, the addition range is set to 0.1 to 10%. Preferably it is 1 to 5%.

[実施例1]
以下、本発明について実施例によって具体的に説明する。
先ず、Co−Fe−Sn含有材料粉末を次のようにして作製した。原料としてCoとSnとFeとを用意し、これらを表1に示すような、各種割合に調整した原料粉をガスアトマイズ法により作製した。アトマイズ時の条件は、ガス種類:Ar、ノズル径:6mm、ガス圧:5MPaである。この合金粉を−106μmのふるいにて分級し、得られたCo−Fe−Sn含有材料についての組成の分析を行った。
[Example 1]
Hereinafter, the present invention will be specifically described with reference to examples.
First, a Co—Fe—Sn-containing material powder was produced as follows. Co, Sn, and Fe were prepared as raw materials, and raw material powders adjusted to various ratios as shown in Table 1 were prepared by a gas atomization method. The conditions during atomization are gas type: Ar, nozzle diameter: 6 mm, and gas pressure: 5 MPa. This alloy powder was classified with a −106 μm sieve, and the composition of the obtained Co—Fe—Sn-containing material was analyzed.

評価項目としての、純Snの析出については、X線回折を行った結果、X線回折パターンとして20〜80°の間を測定し、この範囲にSn(111)のピークの有無により、純Snの析出の有無を判断した。また、作製した二次電池についての電池容量の評価として、初回放電電力量を測定した。それらの結果を表1に示す。その際の電力量は次のようにして測定した。まず、電流値0.9A、上限電圧4.2Vの定電流定電圧にて充電を3時間行った後、0.5Vの電圧で、電池電圧が2.5Vに達するまで放電を行うという充放電を繰り返した。電力量は、初回放電時の電圧と電流および放電時間の積として求めた。その結果を表1に示す。   About precipitation of pure Sn as an evaluation item, as a result of performing X-ray diffraction, an X-ray diffraction pattern was measured between 20 ° and 80 °, and pure Sn was determined depending on the presence or absence of a Sn (111) peak in this range. The presence or absence of precipitation was judged. In addition, as an evaluation of the battery capacity of the produced secondary battery, the initial discharge electric energy was measured. The results are shown in Table 1. The amount of power at that time was measured as follows. First, after charging for 3 hours at a constant current / constant voltage with a current value of 0.9A and an upper limit voltage of 4.2V, the battery is discharged at a voltage of 0.5V until the battery voltage reaches 2.5V. Was repeated. The amount of electric power was determined as the product of the voltage, current, and discharge time at the first discharge. The results are shown in Table 1.

[実施例2]
実施例1と同様に、Co−Fe−Snに加えて、Ti,In,C,Si,Agの1種または2種以上を含む材料粉末を次のようにして作製した。原料としてCoとSnとFeとを用意し、これらを表1に示すような、各種割合に調整した原料粉をガスアトマイズ法により作製した。アトマイズ時の条件は、ガス種類:Ar、ノズル径:6mm、ガス圧:5MPaである。この合金粉を−106μmのふるいにて分級し、得られたCo−Fe−Snに加えて、Ti,In,C,Si,Agの1種または2種以上を含む材料粉末材料についての組成の分析を行った。
[Example 2]
Similarly to Example 1, in addition to Co—Fe—Sn, a material powder containing one or more of Ti, In, C, Si, and Ag was produced as follows. Co, Sn, and Fe were prepared as raw materials, and raw material powders adjusted to various ratios as shown in Table 1 were prepared by a gas atomization method. The conditions during atomization are gas type: Ar, nozzle diameter: 6 mm, and gas pressure: 5 MPa. This alloy powder is classified by a -106 μm sieve, and in addition to the obtained Co—Fe—Sn, the composition of the material powder material containing one or more of Ti, In, C, Si, Ag is used. Analysis was carried out.

[実施例3]
実施例1と同様に、Co−Fe−Sn含有材料粉末を次のようにして作製した。原料としてCoとSnとFeとを用意し、これらを表1に示すような、割合に調整した原料粉を水アトマイズ法により作製した。この合金粉を−106μmのふるいにて分級し、得られたCo−Fe−Sn含有材料についての組成の分析を行った。
[Example 3]
Similarly to Example 1, a Co—Fe—Sn-containing material powder was produced as follows. Co, Sn, and Fe were prepared as raw materials, and raw material powders adjusted to the ratios shown in Table 1 were prepared by a water atomization method. This alloy powder was classified with a −106 μm sieve, and the composition of the obtained Co—Fe—Sn-containing material was analyzed.

[実施例4]
実施例2と同様に、Co−Fe−Snに加えて、Ti,In,C,Si,Agの1種または2種以上を含む材料粉末を次のようにして作製した。原料としてCoとSnとFeとを用意し、これらを表1に示すような、割合に調整した原料粉を水アトマイズ法により作製した。この合金粉を−106μmのふるいにて分級し、得られたCo−Fe−Snに加えて、Ti,In,C,Si,Agの1種または2種以上を含む材料粉末材料についての組成の分析を行った。
[Example 4]
Similarly to Example 2, in addition to Co—Fe—Sn, a material powder containing one or more of Ti, In, C, Si, and Ag was produced as follows. Co, Sn, and Fe were prepared as raw materials, and raw material powders adjusted to the ratios shown in Table 1 were prepared by a water atomization method. This alloy powder is classified with a -106 μm sieve, and in addition to the obtained Co—Fe—Sn, the composition of the material powder material containing one or more of Ti, In, C, Si, Ag is used. Analysis was carried out.

[実施例5]
Co−Fe−Sn含有材料粉末を次のようにして作製した。原料としてCoとSnとFeとを用意し、これらを表1に示すような、割合に調整した原料粉の合金溶湯を真空溶解し、鋳造したCo−Fe−Sn合金インゴットを作製した。その後、このCo−Fe−Sn合金インゴットを鋳造粉砕法にて粉砕する。この粉砕条件としては、メディア:ステンレス製ボールミル、回転速度:400rpm、粉砕時間:10hrにより作製した。この合金粉を−106μmのふるいにて分級し、得られたCo−Fe−Sn含有材料についての組成の分析を行った。
[Example 5]
A Co—Fe—Sn-containing material powder was produced as follows. Co, Sn, and Fe were prepared as raw materials, and the alloy powder of raw material powder adjusted to a ratio as shown in Table 1 was vacuum-melted to prepare a cast Co—Fe—Sn alloy ingot. Thereafter, the Co—Fe—Sn alloy ingot is pulverized by a casting pulverization method. The pulverization conditions were media: stainless steel ball mill, rotational speed: 400 rpm, and pulverization time: 10 hr. This alloy powder was classified with a −106 μm sieve, and the composition of the obtained Co—Fe—Sn-containing material was analyzed.

Figure 2009048824
表1に示すように、No.1〜16は本発明例であり、No.17〜23は比較例である。比較例No.17はCo:Feの比が1:4とFeの比率が高いためにFeとSnが分離して純Snが析出し、電池容量が低い。比較例No.18はCo:Feの比が4:1とCoの比率が高いために電池容量が低い。しかも、Coが多いためにコスト的に高価となる。
Figure 2009048824
As shown in Table 1, no. 1 to 16 are examples of the present invention. 17-23 are comparative examples. Comparative Example No. In No. 17, since the ratio of Co: Fe is 1: 4 and the ratio of Fe is high, Fe and Sn are separated and pure Sn is precipitated, and the battery capacity is low. Comparative Example No. No. 18 has a low Co battery capacity because the Co: Fe ratio is 4: 1 and the Co ratio is high. Moreover, since there is much Co, it becomes expensive in terms of cost.

比較例No.19は(Co+Fe):Snの比率が6:4と(Co+Fe)の比率がSnに比較して高いために電池容量が低い。比較例No.20は(Co+Fe):Snの比率が0.5:9.5とNo.19とは逆にSnの比率が高いために純Snが析出し電池容量が低い。比較例No.21〜No.23はいずれもFeを含有しない場合であり、いずれも電池容量が低い。   Comparative Example No. No. 19 has a low battery capacity because the ratio of (Co + Fe): Sn is 6: 4 and the ratio of (Co + Fe) is higher than that of Sn. Comparative Example No. No. 20 has a ratio of (Co + Fe): Sn of 0.5: 9.5 and no. Contrary to 19, since the Sn ratio is high, pure Sn is deposited and the battery capacity is low. Comparative Example No. 21-No. No. 23 is a case where no Fe is contained, and any battery capacity is low.

これに対して、本発明例No.1〜16はいずれも本発明の条件を満たしていることから、電池容量が高く、良好な値が得られる。しかも、Coの使用量を少なくすることで安価で生産性の高いリチウム電池負極用粉末を製造可能としたことは工業的に極めて優れた効果を奏するものである。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
On the other hand, the present invention example No. Since 1-16 satisfy | fill the conditions of this invention, battery capacity is high and a favorable value is obtained. In addition, the fact that it is possible to produce an inexpensive and highly productive powder for a lithium battery negative electrode by reducing the amount of Co used has an extremely excellent industrial effect.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (2)

Co−Sn−Fe系合金であって、FeとCoの和とSnのmass%比が下記式(1)を満たし、FeとCoのmass%比が式(2)を満たす合金組成であることを特徴とするリチウムイオン電池負極材用粉末。
(Co+Fe):Sn=5:5〜1:9 … (1)
Co:Fe=1:3〜3:1 … (2)
It is a Co—Sn—Fe-based alloy having an alloy composition in which the mass% ratio of the sum of Fe and Co and Sn satisfies the following formula (1), and the mass% ratio of Fe and Co satisfies the formula (2) A powder for a negative electrode material for a lithium ion battery.
(Co + Fe): Sn = 5: 5 to 1: 9 (1)
Co: Fe = 1: 3 to 3: 1 (2)
請求項1に記載のCo−Sn−Fe系合金に、Ti,In,C,Si,Agの1種または2種以上を0.1〜10%添加することを特徴とするリチウムイオン電池負極材用粉末。 A lithium ion battery negative electrode material, wherein 0.1 to 10% of one or more of Ti, In, C, Si, and Ag is added to the Co-Sn-Fe alloy according to claim 1 Powder.
JP2007212565A 2007-08-17 2007-08-17 Powder for negative electrode of lithium ion battery Active JP5518285B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007212565A JP5518285B2 (en) 2007-08-17 2007-08-17 Powder for negative electrode of lithium ion battery
PCT/JP2008/064479 WO2009025207A1 (en) 2007-08-17 2008-08-12 Powder for negative electrode material for lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212565A JP5518285B2 (en) 2007-08-17 2007-08-17 Powder for negative electrode of lithium ion battery

Publications (2)

Publication Number Publication Date
JP2009048824A true JP2009048824A (en) 2009-03-05
JP5518285B2 JP5518285B2 (en) 2014-06-11

Family

ID=40378113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212565A Active JP5518285B2 (en) 2007-08-17 2007-08-17 Powder for negative electrode of lithium ion battery

Country Status (2)

Country Link
JP (1) JP5518285B2 (en)
WO (1) WO2009025207A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011078344A1 (en) * 2009-12-25 2011-06-30 住友金属工業株式会社 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2011132793A1 (en) 2010-04-23 2011-10-27 住友金属工業株式会社 Anode material of non-aqueous electrolyte secondary battery and method for producing same
CN102403492A (en) * 2010-09-13 2012-04-04 索尼公司 Anode active material, secondary battery, electric power tool, and electric power storage system
WO2012086835A1 (en) * 2010-12-24 2012-06-28 山陽特殊製鋼株式会社 Sn alloy powder for negative electrodes of lithium ion batteries, and method for producing same
CN107887593A (en) * 2017-11-20 2018-04-06 长沙理工大学 A kind of preparation method of graphene CoFeSn composites
CN112331815A (en) * 2020-11-04 2021-02-05 四川大学 Three-dimensional micro-nano composite porous iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and one-step preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2003031211A (en) * 2001-07-10 2003-01-31 Sony Corp Nonaqueous electrolyte secondary battery
JP2004183019A (en) * 2002-11-29 2004-07-02 Toshiba Corp Electrode material for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery
JP2004185881A (en) * 2002-11-29 2004-07-02 Toshiba Corp Electrode material for nonaqueous electrolyte battery, electrode, and nonaqueous electrolyte battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311681A (en) * 1998-09-18 2000-11-07 Canon Inc Negative electrode material for secondary battery, electrode structural body, secondary battery and their manufacture
JP2003031211A (en) * 2001-07-10 2003-01-31 Sony Corp Nonaqueous electrolyte secondary battery
JP2004183019A (en) * 2002-11-29 2004-07-02 Toshiba Corp Electrode material for nonaqueous electrolytic solution battery, and nonaqueous electrolytic solution battery
JP2004185881A (en) * 2002-11-29 2004-07-02 Toshiba Corp Electrode material for nonaqueous electrolyte battery, electrode, and nonaqueous electrolyte battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102782906B (en) * 2009-12-25 2015-02-25 新日铁住金株式会社 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR101366966B1 (en) 2009-12-25 2014-02-24 쥬오 덴끼 고교 가부시키가이샤 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP5408267B2 (en) * 2009-12-25 2014-02-05 新日鐵住金株式会社 Anode material for non-aqueous electrolyte secondary battery and method for producing the same
WO2011078344A1 (en) * 2009-12-25 2011-06-30 住友金属工業株式会社 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
US8591765B2 (en) 2009-12-25 2013-11-26 Nippon Steel & Sumitomo Metal Corporation Negative electrode material for nonaqueous electrolyte secondary batteries and manufacturing method thereof
CN102782906A (en) * 2009-12-25 2012-11-14 住友金属工业株式会社 Negative electrode material for a nonaqueous electrolyte secondary battery, and manufacturing method therefor
WO2011132793A1 (en) 2010-04-23 2011-10-27 住友金属工業株式会社 Anode material of non-aqueous electrolyte secondary battery and method for producing same
US9028711B2 (en) 2010-04-23 2015-05-12 Nippon Steel & Sumitomo Metal Corporation Negative electrode material for a nonaqueous electrolyte secondary battery and a method for its manufacture
CN102403492A (en) * 2010-09-13 2012-04-04 索尼公司 Anode active material, secondary battery, electric power tool, and electric power storage system
JP2012134105A (en) * 2010-12-24 2012-07-12 Sanyo Special Steel Co Ltd Sn ALLOY POWDER FOR NEGATIVE ELECTRODE OF LITHIUM ION BATTERY, AND METHOD FOR MANUFACTURING THE SAME
WO2012086835A1 (en) * 2010-12-24 2012-06-28 山陽特殊製鋼株式会社 Sn alloy powder for negative electrodes of lithium ion batteries, and method for producing same
CN107887593A (en) * 2017-11-20 2018-04-06 长沙理工大学 A kind of preparation method of graphene CoFeSn composites
CN112331815A (en) * 2020-11-04 2021-02-05 四川大学 Three-dimensional micro-nano composite porous iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and one-step preparation method thereof
CN112331815B (en) * 2020-11-04 2021-09-10 四川大学 Iron-tin-iron-tin nitrogen compound integrated lithium ion battery cathode and preparation method thereof

Also Published As

Publication number Publication date
JP5518285B2 (en) 2014-06-11
WO2009025207A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5621753B2 (en) Anode material for lithium ion battery
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
JP6211961B2 (en) Negative electrode materials for electricity storage devices
JP5518285B2 (en) Powder for negative electrode of lithium ion battery
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
KR20030027829A (en) Negative electrode material for non-aqueous electrolyte secondary cell, negative electrode, non-aqueous electrolyte secondary cell, and method of producing the material
KR101482478B1 (en) Si based negative electrode material
KR20140023885A (en) Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP6735060B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2011127185A (en) Hydrogen storage alloy, method for producing the same, negative electrode for nickel hydrogen secondary battery and nickel hydrogen secondary battery
JP2012038708A (en) Silicon alloy negative electrode material excellent in conductivity and method for producing the same
JP6276031B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
JP2014160554A (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE, AND ELECTRODE USING THE SAME
JP4087454B2 (en) Rare earth metal-nickel-based hydrogen storage alloy and manufacturing method thereof, and negative electrode for nickel-metal hydride secondary battery
KR102165659B1 (en) Si-ALLOY POWDER FOR LITHIUM-ION SECONDARY BATTERY NEGATIVE ELECTRODE ACTIVE MATERIAL AND METHOD FOR MANUFACTURING SAME
JP5594731B2 (en) Sn alloy powder for negative electrode of lithium ion battery and method for producing the same
JP5507140B2 (en) Hydrogen storage alloy for nickel-hydrogen secondary battery and nickel-hydrogen secondary battery
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP6045879B2 (en) Sn alloy powder used as a raw material of the negative electrode active material of a lithium ion secondary battery, and its manufacturing method.
JPH0931573A (en) Hydrogen storage alloy and its production
JP2021077526A (en) Active material
JP2009163986A (en) Nickel-hydrogen storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140402

R150 Certificate of patent or registration of utility model

Ref document number: 5518285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250