JP2009046358A - POROUS ZnO PARTICLE BOUND SELF-SUPPORTED FILM AND METHOD FOR PRODUCING THE SAME - Google Patents

POROUS ZnO PARTICLE BOUND SELF-SUPPORTED FILM AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2009046358A
JP2009046358A JP2007215015A JP2007215015A JP2009046358A JP 2009046358 A JP2009046358 A JP 2009046358A JP 2007215015 A JP2007215015 A JP 2007215015A JP 2007215015 A JP2007215015 A JP 2007215015A JP 2009046358 A JP2009046358 A JP 2009046358A
Authority
JP
Japan
Prior art keywords
zno
film
particle
substrate
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007215015A
Other languages
Japanese (ja)
Other versions
JP5099324B2 (en
Inventor
Yoshitake Masuda
佳丈 増田
Kazumi Kato
一実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007215015A priority Critical patent/JP5099324B2/en
Publication of JP2009046358A publication Critical patent/JP2009046358A/en
Application granted granted Critical
Publication of JP5099324B2 publication Critical patent/JP5099324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous ZnO crystal self-supported film, a method for producing the same, and a ZnO film member. <P>SOLUTION: A ZnO crystal particle deposited film formed by depositing ZnO crystal particles on a substrate is provided, which is characterized in that open pores have a continuous profile in the particle deposited film, the particle deposited film have such particle morphology that a surface thereof is covered with multi-stylus particles, the particle deposited film have a needle crystal grown from each particle center, the longitudinal direction of the needle crystal is the c-axis direction, and the particle deposited film shows an XRD pattern of drawing 3. A ZnO particle bound film obtained by binding contact points between particles of the ZnO crystal particle deposited film while forming a neck is provided, which is characterized in that the ZnO particle bound film has a structure in which ZnO particles are bound to each other to form a continuous film and the ZnO particle bound film is a white porous film. There are also provided a ZnO particle bound self-supported film obtained by self-supporting the ZnO particle bound film, methods for producing those and a ZnO member. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多孔質ZnO結晶自立膜、その作製方法及びZnO膜部材に関するものであり、更に詳しくは、本発明は、水溶液中において合成したZnO結晶粒子を用いて、SnO被覆ガラス基板(FTO基板)上に作製したZnO粒子堆積膜、及びその加熱処理により合成した、ZnO自立膜に関するものである。本自立膜は、基板を必要とせずに、単独膜として得ることができるとともに、他の基板上に貼付(ペースト)することもできることで特徴付けられる。 The present invention relates to a porous ZnO crystal free-standing film, a method for producing the same, and a ZnO film member. More specifically, the present invention relates to a SnO 2 coated glass substrate (FTO) using ZnO crystal particles synthesized in an aqueous solution. The present invention relates to a ZnO particle deposition film produced on a substrate and a ZnO free-standing film synthesized by heat treatment thereof. This self-supporting film is characterized in that it can be obtained as a single film without requiring a substrate, and can also be pasted on another substrate.

本発明は、ZnO粒子から構成されており、粒子間の接触点が加熱によってネックを形成して結合しており、そのため、ZnO膜内に空隙が多く、多孔体となっており、また、連続した空隙が多く、ガスや溶液を透過させることができるZnO結晶自立膜であって、ZnO結晶自立膜として、あるいは任意の基板上にペーストして使用することができ、蛍光体、分子センサー、ガスセンサー、色素増感型太陽電池、フィルター、触媒等として好適に適用できる多孔質ZnO結晶自立膜を提供するものである。   The present invention is composed of ZnO particles, and contact points between the particles are combined by forming a neck by heating, so that there are many voids in the ZnO film, and it is a porous body. ZnO crystal free-standing film that has a large number of voids and allows gas or solution to pass therethrough, and can be used as a ZnO crystal free-standing film or pasted on an arbitrary substrate. The present invention provides a porous ZnO crystal free-standing film that can be suitably applied as a sensor, a dye-sensitized solar cell, a filter, a catalyst, and the like.

多孔質ZnO膜は、例えば、ダイオキシンやビスフェノールA検知用の分子センサー電極や色素増感型太陽電池電極、各種ガスセンサー等への応用が期待されている。また、ガスや溶液を透過させることのできるZnO透過膜は、例えば、高効率フィルター、高効率触媒として求められている。これらのアプリケーションにおいて、感度などの特性は、ZnOの形態と比表面積に大きく依存する。そのため、ZnO粒子やZnO粒子膜の形態制御への要求は大きい。   The porous ZnO film is expected to be applied to, for example, a molecular sensor electrode for detecting dioxin or bisphenol A, a dye-sensitized solar cell electrode, various gas sensors, and the like. In addition, a ZnO permeable membrane that can permeate a gas or a solution is required as, for example, a high efficiency filter or a high efficiency catalyst. In these applications, characteristics such as sensitivity greatly depend on the form and specific surface area of ZnO. Therefore, there is a great demand for shape control of ZnO particles and ZnO particle films.

また、ZnO自立膜は、次世代デバイス開発の観点から注目を集めている。ZnO膜は、通常、基板の上に形成されているが、その基板によって、ZnOの応用範囲が制約を受けている。例えば、基板により、ZnO膜内に応力が発生し、この応力により特性が低下する。   ZnO free-standing films are attracting attention from the viewpoint of developing next-generation devices. A ZnO film is usually formed on a substrate, but the application range of ZnO is restricted by the substrate. For example, a stress is generated in the ZnO film by the substrate, and the characteristics are degraded by the stress.

高価な基板の使用により、ZnO膜の製造コストが増加する。堅い基板を用いることにより、曲げ性(フレキシビリティー)を有するZnO膜を作製することができない。自立膜が合成されれば、それは、ポリマーフィルムや金属、紙などの任意の基板の上にペーストすることが可能となる。   The use of an expensive substrate increases the manufacturing cost of the ZnO film. By using a rigid substrate, a ZnO film having bendability (flexibility) cannot be produced. Once the free-standing film is synthesized, it can be pasted onto any substrate such as a polymer film, metal, paper, and the like.

これにより、ZnOデバイスの応用範囲を拡大することが可能となる。例えば、高温焼成を必要とするZnO膜からなる分子センサーを、低耐熱性ポリマーフィルムの上に形成することも可能となる。このポリマーフィルム上へのZnO膜形成により、曲げ性を有する分子センサーが可能となるとともに、軽量化、低コスト化が実現できる。   Thereby, the application range of the ZnO device can be expanded. For example, it is possible to form a molecular sensor made of a ZnO film that requires high-temperature firing on a low heat-resistant polymer film. By forming a ZnO film on the polymer film, a molecular sensor having bendability can be achieved, and weight reduction and cost reduction can be realized.

本発明者らは、先行特許において、ZnO結晶自立膜の合成を提案している(特許文献1)。本特許において合成されるZnO膜は、薄いナノシートZnOの集積膜であり、気相面が緻密で、一方の液相面がナノシートで囲まれた多孔質となっている。このシートは、ナノシートで構成されているため、機械的強度が弱く、また、ガスや溶液を通過することができないため、フィルターや触媒として使用が比較的困難であり、更に、気液界面を用いているため、大面積化には、克服すべき技術課題を残している。   In the prior patent, the present inventors have proposed the synthesis of a ZnO crystal free-standing film (Patent Document 1). The ZnO film synthesized in this patent is an integrated film of thin nanosheets ZnO, which has a dense vapor phase surface and a porous surface surrounded by nanosheets on one liquid phase surface. Since this sheet is composed of nanosheets, its mechanical strength is weak, and since it cannot pass through gases and solutions, it is relatively difficult to use as a filter or catalyst. As a result, there is still a technical problem to be overcome in increasing the area.

酸化物などの膜は、気相法、液相法などにより作製されているが、いずれも、シリコン基板や単結晶基板上などに成膜するものであり、基板から独立した膜を得る手法としては、単結晶基板の切り出し法等に限られる。しかし、窓材や透明フィルムとして使用する際には、自立膜としての作製が必要である。また、低耐熱性基板などの任意の基板上に成膜するためには、自立膜を合成し、ペーストすることが求められている。更に、高価格な単結晶基板を使用せずに、直接、自立膜あるいはそのペーストによる成膜を実現することで、低コスト化、及び工程の短縮が求められている。また、従来材は、高いコストのため、応用範囲が限られる。   Films such as oxides are produced by vapor phase methods, liquid phase methods, etc., all of which are formed on a silicon substrate or a single crystal substrate, and as a method for obtaining a film independent of the substrate. Is limited to the method of cutting a single crystal substrate. However, when used as a window material or a transparent film, it is necessary to produce a self-supporting film. Further, in order to form a film on an arbitrary substrate such as a low heat resistant substrate, it is required to synthesize and paste a self-supporting film. Further, there is a demand for cost reduction and process shortening by directly forming a film using a self-supporting film or a paste thereof without using an expensive single crystal substrate. In addition, the range of application of conventional materials is limited due to high cost.

特に、現在、ZnO結晶粒子が粒子接触部分のネッキングにより連続膜となったZnO自立膜の作製例はない。これが作製可能になれば、ZnO膜内に多くの連続した空隙を有しているZnO膜が得られ、そのため、ガスや溶液を透過させることもできるようになる。   In particular, there is currently no example of producing a ZnO free-standing film in which ZnO crystal particles become a continuous film by necking the particle contact portion. If this can be produced, a ZnO film having many continuous voids in the ZnO film can be obtained, so that gas and solution can be transmitted.

また、ZnO自立膜も、従来材は、特定の形態を有するZnO自立膜に限られている。例えば、ZnOは、各種ガスセンサーや、色素増感型太陽電池向けの材料として注目を集めている。これらのデバイスにおける感度は、基材物質の比表面積や導電率に大きく依存するため、高比表面積や高導電率を有するZnO粒子やZnO膜の開発が求められている。しかし、特定の形状のZnO自立膜しか合成例はなく、ZnOの結晶構造の制約を受けて、特定の形態しか合成できない。   Moreover, as for the ZnO free-standing film, the conventional material is limited to the ZnO free-standing film having a specific form. For example, ZnO is attracting attention as a material for various gas sensors and dye-sensitized solar cells. Since the sensitivity in these devices largely depends on the specific surface area and conductivity of the base material, development of ZnO particles and ZnO films having a high specific surface area and high conductivity is required. However, there is only a synthesis example of a ZnO free-standing film having a specific shape, and only a specific form can be synthesized under the restriction of the crystal structure of ZnO.

ZnOは、CO、NH、NO、HS、H、エタノール、SF、C10、及びガソリンなどの各種ガスセンサーや、色素増感型太陽電池向けの材料として注目を集めている。これらのデバイスにおける感度は、基材物質の比表面積に大きく依存するため、高比表面積を有するZnO粒子やZnO膜の開発が求められている。 ZnO attracts attention as a material for various gas sensors such as CO, NH 3 , NO 2 , H 2 S, H 2 , ethanol, SF 6 , C 4 H 10 , and gasoline, and a dye-sensitized solar cell. ing. Since the sensitivity in these devices largely depends on the specific surface area of the base material, development of ZnO particles and ZnO films having a high specific surface area is required.

最近、酸化亜鉛粒子の形態制御により高比表面積酸化亜鉛粒子膜を形成しようとする試みが、例えば、先行技術文献に見られるように、幾つか提案されている(非特許文献1、2)。センサーや太陽電池に関するこれらの研究例において、六角柱状ZnOのロッドやワイヤーが報告されている。これは、ZnOが六方晶の結晶構造を有するため、過飽和度の低い条件において、六角柱状に結晶成長しやすいことに起因している。   Recently, several attempts to form a zinc oxide particle film having a high specific surface area by controlling the form of zinc oxide particles have been proposed (Non-Patent Documents 1 and 2), as seen in, for example, the prior art documents. In these research examples on sensors and solar cells, hexagonal columnar ZnO rods and wires have been reported. This is due to the fact that ZnO has a hexagonal crystal structure, so that it easily grows in a hexagonal column shape under a low supersaturation condition.

また、酸化物膜の特性向上のためには、内部微細構造や表面微細構造の制御が必要であるが、それらの制御技術も十分には開発されていない。更に、酸化物膜を基板からの制約を受けずに使用する際には自立膜として作製する必要があるが、自立膜の作製例は、報告例が少ない。   Further, in order to improve the characteristics of the oxide film, it is necessary to control the internal microstructure and the surface microstructure, but such control techniques have not been sufficiently developed. Furthermore, when the oxide film is used without being restricted by the substrate, it is necessary to manufacture the oxide film as a self-supporting film, but there are few reported examples of manufacturing the self-supporting film.

また、デバイスに合わせて各種基板上の成膜が必要となるため、任意の基板上へ転写可能な膜の形成が望まれているが、これに関する報告例も少ない。水溶液プロセスでの自立膜あるいは転写可能膜の形成を可能にすることにより、低耐熱性ポリマーフィルムへのZnO結晶膜の形成も可能となる。また、基板の制約を受けないため、残留応力の低い膜を形成することができる。   Further, since it is necessary to form a film on various substrates in accordance with the device, it is desired to form a film that can be transferred onto an arbitrary substrate, but there are few reports on this. By making it possible to form a free-standing film or a transferable film in an aqueous solution process, it is possible to form a ZnO crystal film on a low heat-resistant polymer film. In addition, since the substrate is not restricted, a film with low residual stress can be formed.

特願2007−001141号Japanese Patent Application No. 2007-001141 M.Law,L.E.Greene,J.C.Johnson,R.Saykally,P.D.Yang,Nature Materials 2005,4,455M.M. Law, L .; E. Greene, J. et al. C. Johnson, R.D. Saykally, P.M. D. Yang, Nature Materials 2005, 4, 455 Y.Masuda,N.Kinoshita,F.Sato,K.Koumoto,Crystal Growth & Design 2006,6,75Y. Masuda, N .; Kinoshita, F.A. Sato, K .; Koumoto, Crystal Growth & Design 2006, 6, 75

このような状況の中で、本発明者らは、上記従来技術に鑑みて、ZnO自立膜を作製する技術を開発することを目標として鋭意研究を重ねた結果、溶液反応を用いて作製したZnO粒子堆積膜を利用することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。本発明は、上記従来の事情に鑑みてなされたものであり、ZnO自立膜を提供し、かつ、その作製方法を提供することを解決すべき課題としている。すなわち、本発明は、ZnO結晶粒子を基板上に堆積させたZnO粒子堆積膜、粒子間の接触点をネック形成により結合させて連続膜化したZnO粒子結合膜、ZnO粒子結合自立膜、それらの作製方法、及び該ZnO自立膜を用いたZnO膜部材を提供することを目的とするものである。   Under such circumstances, the present inventors have conducted intensive research with the goal of developing a technique for producing a ZnO free-standing film in view of the above-described prior art, and as a result, ZnO produced using solution reaction. It has been found that the intended purpose can be achieved by using the particle deposited film, and the present invention has been completed. This invention is made | formed in view of the said conventional situation, and makes it the problem which should be solved to provide a ZnO self-supporting film | membrane and its manufacturing method. That is, the present invention relates to a ZnO particle deposition film in which ZnO crystal particles are deposited on a substrate, a ZnO particle bonding film in which contact points between particles are bonded by neck formation to form a continuous film, a ZnO particle bonding self-supporting film, It is an object of the present invention to provide a manufacturing method and a ZnO film member using the ZnO free-standing film.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)ZnO結晶粒子が基板上に堆積したZnO結晶粒子堆積膜であって、1)粒子堆積膜中にオープンポアが連続してつながった形状を有している、2)粒子堆積膜表面が多針体粒子で覆われている粒子形態を有する、3)粒子中心から成長した針状結晶を有する、4)針状結晶の長手方向がc軸方向である、5)図3のXRDパターンを示す、ことを特徴とするZnO結晶粒子堆積膜。
(2)前記(1)に記載のZnO結晶粒子堆積膜の粒子間の接触点がネックを形成して結合したZnO粒子結合膜であって、1)ZnO粒子が互いに結合して連続膜を形成した構造を有する、2)白色多孔質膜である、ことを特徴とするZnO粒子結合膜。
(3)前記(2)に記載のZnO粒子結合膜を自立させたZnO粒子結合自立膜であって、1)基板面と反対側の空気面は自立膜全面に渡って平坦な表面を有している、2)この表面は粒子が互いに結合した連続膜である、3)ZnO粒子からなる多孔質膜である、4)図6のXRDパターンを示す、ことを特徴とするZnO粒子結合自立膜。
(4)基板が、ガラス、金属、セラミックス、ポリマー、又は紙の基板である、前記(1)に記載のZnO結晶粒子堆積膜。
(5)基板が、平板状、繊維、粒子、又は複雑形状の形態を有する、前記(1)に記載のZnO結晶粒子堆積膜。
(6)前記(3)に記載のZnO粒子結合自立膜を任意の基板の上にペーストしたZnO膜であって、1)ZnO膜内に多くの連続した空隙を有している、2)基板の曲げ性に対応した曲げ性(フレキシビリティー)を有する、ことを特徴とするZnO膜。
(7)前記(1)に記載のZnO結晶粒子堆積膜を作製する方法であって、酸化亜鉛が析出する亜鉛含有溶液からなる反応系を用いて、基板上にZnO粒子を沈降、堆積させることによりZnO結晶粒子堆積膜を作製することを特徴とするZnO結晶粒子堆積膜の作製方法。
(8)反応系に、エチレンジアミン又はアンモニアを添加するか、あるいは反応系の温度、原料濃度及び/又はpHを変化させてZnO結晶粒子を析出させる、前記(7)に記載のZnO結晶粒子堆積膜の作製方法。
(9)前記(2)に記載のZnO粒子結合膜を作製する方法であって、請求項1に記載のZnO結晶粒子堆積膜を加熱処理して粒子間の接触点を加熱、溶融させてネックを形成させることにより連続膜を作製することを特徴とするZnO粒子結合膜の作製方法。
(10)前記(3)に記載のZnO粒子結合自立膜を作製する方法であって、請求項9に記載の方法によりZnO結晶粒子堆積膜を加熱処理して作製したZnO粒子結合膜を基板より剥離してZnO自立膜とすることを特徴とするZnO粒子結合自立膜の作製方法。
(11)加熱処理を行う際に、ガラス基板の溶融変形及びSnO接合絶縁層を用いてZnO自立膜を作製する、前記(10)に記載のZnO粒子結合自立膜の作製方法。
(12)前記(3)に記載のZnO粒子結合自立膜又は該自立膜を任意の基板の上に貼付(ペースト)したZnO膜を構成要素として含むことを特徴とするZnO膜部材。
(13)部材が、蛍光体、分子センサー、ガスセンサー、色素増感型太陽電池、フィルター、又は触媒である、前記(12)に記載のZnO膜部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A ZnO crystal particle deposition film in which ZnO crystal particles are deposited on a substrate, 1) having a shape in which open pores are continuously connected to the particle deposition film, and 2) a surface of the particle deposition film. 3) having a particle shape covered with multi-needle particles, 3) having a needle crystal grown from the center of the particle, 4) the longitudinal direction of the needle crystal is the c-axis direction, and 5) the XRD pattern of FIG. A ZnO crystal particle deposition film characterized by showing.
(2) A ZnO particle-bonded film in which the contact points between the particles of the ZnO crystal particle deposition film described in (1) are combined by forming a neck, and 1) ZnO particles are bonded together to form a continuous film. 2) A ZnO particle-bonded film, characterized in that it is a white porous film.
(3) A ZnO particle-bonded self-supporting film in which the ZnO particle-bonded film according to (2) is self-supporting. 1) The air surface opposite to the substrate surface has a flat surface over the entire surface of the self-supporting film. 2) This surface is a continuous film in which particles are bonded to each other, 3) is a porous film made of ZnO particles, and 4) exhibits the XRD pattern of FIG. .
(4) The ZnO crystal particle deposition film according to (1), wherein the substrate is a glass, metal, ceramics, polymer, or paper substrate.
(5) The ZnO crystal particle deposition film according to (1), wherein the substrate has a form of a flat plate, a fiber, a particle, or a complicated shape.
(6) A ZnO film obtained by pasting the ZnO particle-bonded free-standing film described in (3) on an arbitrary substrate, 1) having a lot of continuous voids in the ZnO film, and 2) the substrate A ZnO film characterized by having a bendability (flexibility) corresponding to the bendability.
(7) A method for producing a ZnO crystal particle deposition film according to (1), wherein ZnO particles are precipitated and deposited on a substrate using a reaction system comprising a zinc-containing solution in which zinc oxide is deposited. A method for producing a ZnO crystal particle deposited film, comprising producing a ZnO crystal particle deposited film by the method described above.
(8) The ZnO crystal particle deposition film according to (7), wherein ethylenediamine or ammonia is added to the reaction system, or ZnO crystal particles are precipitated by changing the temperature, raw material concentration and / or pH of the reaction system. Manufacturing method.
(9) A method for producing the ZnO particle-bonded film according to (2), wherein the ZnO crystal particle deposited film according to claim 1 is heat-treated to heat and melt contact points between the particles. A method for producing a ZnO particle-bonded film, wherein a continuous film is produced by forming a film.
(10) A method for producing a ZnO particle-bonded free-standing film according to (3) above, wherein a ZnO particle-bonded film produced by heat-treating a ZnO crystal particle deposited film by the method according to claim 9 is formed from a substrate. A method for producing a ZnO particle-bonded free-standing film, characterized by peeling to form a ZnO free-standing film.
(11) The method for producing a ZnO particle-bonded self-supporting film according to (10), wherein a ZnO self-supporting film is prepared using a melt deformation of the glass substrate and a SnO 2 bonding insulating layer when performing the heat treatment.
(12) A ZnO film member comprising the ZnO particle-bonded self-supporting film according to (3) or a ZnO film obtained by pasting (pasting) the self-supporting film on an arbitrary substrate.
(13) The ZnO film member according to (12), wherein the member is a phosphor, a molecular sensor, a gas sensor, a dye-sensitized solar cell, a filter, or a catalyst.

次に、本発明について更に詳細に説明する。
本発明は、ZnO結晶粒子が基板上に堆積したZnO結晶粒子堆積膜であって、粒子堆積膜中にオープンポアが連続してつながった形状を有しており、粒子堆積膜表面が多針体粒子で覆われている粒子形態を有し、粒子中心から成長した針状結晶を有し、針状結晶の長手方向がc軸方向であり、図3のXRDパターンを示す、ことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a ZnO crystal particle deposition film in which ZnO crystal particles are deposited on a substrate, and has a shape in which open pores are continuously connected in the particle deposition film, and the surface of the particle deposition film is a multi-needle body. It has a particle form covered with particles, has a needle-like crystal grown from the center of the particle, the longitudinal direction of the needle-like crystal is the c-axis direction, and shows the XRD pattern of FIG. Is.

また、本発明は、上記ZnO結晶粒子堆積膜の粒子間の接触点がネックを形成して結合したZnO粒子結合膜であって、ZnO粒子が互いに結合して連続膜を形成した構造を有する、白色多孔質膜である、ことを特徴とするものである。また、本発明は、上記ZnO粒子結合膜を自立させたZnO粒子結合自立膜であって、基板面と反対側の空気面は自立膜全面に渡って平坦な表面を有しており、この表面は粒子が互いに結合した連続膜であり、ZnO粒子からなる多孔質膜であり、図6のXRDパターンを示す、ことを特徴とするものである。   Further, the present invention is a ZnO particle-binding film in which the contact points between the particles of the ZnO crystal particle deposition film are combined by forming a neck, and the ZnO particles are bonded together to form a continuous film. It is a white porous membrane. Further, the present invention is a ZnO particle-bonded self-supporting film in which the ZnO particle-bonded film is self-supporting, and the air surface opposite to the substrate surface has a flat surface over the entire surface of the self-supporting film. Is a continuous film in which particles are bonded to each other, is a porous film made of ZnO particles, and exhibits the XRD pattern of FIG.

また、本発明は、上記ZnO粒子結合自立膜を任意の基板の上にペーストしたZnO膜であって、ZnO膜内に多くの連続した空隙を有しており、基板の曲げ性に対応した曲げ性(フレキシビリティー)を有する、ことを特徴とするものである。   Further, the present invention is a ZnO film obtained by pasting the above-mentioned ZnO particle-bonded free-standing film on an arbitrary substrate, and has a large number of continuous voids in the ZnO film, and is bent according to the bendability of the substrate. It has the characteristic (flexibility).

また、本発明は、上記ZnO結晶粒子堆積膜を作製する方法であって、酸化亜鉛が析出する亜鉛含有溶液からなる反応系を用いて、基板上にZnO粒子を沈降、堆積させることによりZnO結晶粒子堆積膜を作製することを特徴とするものである。   The present invention is also a method for producing the ZnO crystal particle deposition film, wherein a ZnO crystal is deposited and deposited on a substrate using a reaction system comprising a zinc-containing solution in which zinc oxide is deposited. A particle deposited film is produced.

また、本発明は、上記ZnO粒子結合膜を作製する方法であって、上記ZnO結晶粒子堆積膜を加熱処理して粒子間の接触点を加熱、溶融させてネックを形成させることにより連続膜を作製することを特徴とするものである。更に、本発明は、上記ZnO粒子結合自立膜を作製する方法であって、上記の方法によりZnO結晶粒子堆積膜を加熱処理して作製したZnO粒子結合膜を基板より剥離してZnO自立膜とすることを特徴とするものである。   The present invention is also a method for producing the ZnO particle-bonded film, wherein the ZnO crystal particle deposition film is heat-treated to heat and melt contact points between the particles to form a neck, thereby forming a continuous film. It is characterized by producing. Furthermore, the present invention is a method for producing the above-described ZnO particle-bonded free-standing film, wherein the ZnO particle-bonded film produced by heat-treating the ZnO crystal particle deposited film by the above-described method is peeled off from the substrate to form a ZnO free-standing film. It is characterized by doing.

本発明は、水溶液中でのZnO結晶粒子堆積膜の形成を行った後、加熱処理を行い、ガラス基板の溶融変形及びSnO接合絶縁層を用いて、ZnO自立膜を合成することを最も主要な特徴とする。水溶液中での結晶粒子堆積膜の形成においては、水溶液中での硝酸亜鉛とエチレンジアミンの化学反応によりZnO結晶粒子を合成すると同時に、沈降させて、基板上にZnO結晶粒子堆積膜を形成する。 In the present invention, the formation of a ZnO crystal particle deposition film in an aqueous solution is followed by heat treatment to synthesize a ZnO free-standing film using a melt deformation of a glass substrate and a SnO 2 bonding insulating layer. Features. In the formation of a crystal particle deposition film in an aqueous solution, ZnO crystal particles are synthesized by a chemical reaction between zinc nitrate and ethylenediamine in an aqueous solution and simultaneously precipitated to form a ZnO crystal particle deposition film on the substrate.

加熱は、例えば、950℃、1時間乃至それと同等の条件、すなわち、720〜1126℃、5分〜24時間で大気中にて行う。この加熱温度では、ZnO及びSnOは溶融しない。一方、ガラスは溶融し、上に凸のドーム形状へと変形する。この変形により、ZnO膜と基板との間に応力が発生する。この応力により、基板上のZnOを剥離しやすくしている。また、ガラスやSnOの変更などにより、この温度範囲、時間範囲以外で行うこともできる。 The heating is performed in the atmosphere at, for example, 950 ° C. for 1 hour or equivalent, that is, 720 to 1126 ° C. for 5 minutes to 24 hours. At this heating temperature, ZnO and SnO 2 do not melt. On the other hand, the glass melts and deforms into a convex dome shape. Due to this deformation, a stress is generated between the ZnO film and the substrate. This stress makes it easy to peel off ZnO on the substrate. Further, due to changes in glass or SnO 2, this temperature range, it can also be performed outside the time range.

また、SnO層は、溶融しないため、ZnOと固着しない。SnO層が存在しない場合、溶融したガラスとZnOが固着してしまう。また、SnOは表面に凹凸構造を有しており、この凹凸構造は、加熱によっても維持される。 Further, since the SnO 2 layer does not melt, it does not adhere to ZnO. When there is no SnO 2 layer, the molten glass and ZnO are fixed. SnO 2 has a concavo-convex structure on the surface, and this concavo-convex structure is maintained even by heating.

この凹凸構造により、ZnO膜とSnO膜との接触点を減少させることができる。接触点を減少させることにより、ZnOとSnO膜との間の結合強度を減少させることで、ZnO膜は剥離しやすくなる。 With this uneven structure, the contact points between the ZnO film and the SnO 2 film can be reduced. By reducing the contact point and reducing the bonding strength between the ZnO and SnO 2 films, the ZnO film becomes easy to peel off.

亜鉛含有溶液には、後記する実施例の硝酸亜鉛の他、酢酸亜鉛水溶液、有機酸亜鉛水溶液等の亜鉛含有水溶液を用いることができる。また、ZnOが析出する反応系であれば、有機溶液等の、非水溶液反応系も用いることができる。また、ZnOが析出する反応系であれば、水熱反応等も用いることができる。   As the zinc-containing solution, a zinc-containing aqueous solution such as a zinc acetate aqueous solution or an organic acid zinc aqueous solution can be used in addition to zinc nitrate in Examples described later. Further, a non-aqueous solution reaction system such as an organic solution can be used as long as it is a reaction system in which ZnO is precipitated. In addition, a hydrothermal reaction or the like can be used as long as it is a reaction system in which ZnO is precipitated.

実施例の様に、硝酸亜鉛を原料として用いた際には、エチレンジアミンに代えて、アンモニア等を用いることができる。また、エチレンジアミン等を添加せず、温度や原料濃度、pHを変化させて、ZnOを析出させることもできる。温度も、原料濃度、添加剤、pH等に合わせて、水溶液の凝固点以上かつ沸点以下(およそ0−99℃)の範囲で調整することができる。   As in the examples, when zinc nitrate is used as a raw material, ammonia or the like can be used instead of ethylenediamine. Moreover, ZnO can be deposited by changing temperature, raw material concentration, and pH without adding ethylenediamine or the like. The temperature can also be adjusted in the range from the freezing point of the aqueous solution to the boiling point (approximately 0-99 ° C.) according to the raw material concentration, additives, pH and the like.

SnO表面コーティング以外に、加熱温度において溶融しない表面コーティングを用いることができる。ガラス以外に、加熱温度において溶融する基板を用いることができる。SnO表面コーティングを用いないこともできる。ガラス以外に、金属、セラミックス、ポリマー、紙等の種々の基板を用いることができる。また、平板上基板以外に、複雑形状基材、繊維基材、粒子基材等も用いることができる。 In addition to SnO 2 surface coating, a surface coating that does not melt at the heating temperature can be used. In addition to glass, a substrate that melts at a heating temperature can be used. It is also possible not to use a SnO 2 surface coating. In addition to glass, various substrates such as metal, ceramics, polymer, and paper can be used. In addition to the flat substrate, a complex shaped substrate, a fiber substrate, a particle substrate, or the like can also be used.

水溶液中において合成したZnO結晶粒子を用いて、SnO被覆ガラス基板上にZnO粒子堆積膜を形成させ、その加熱処理により、ZnO自立膜を合成する。加熱時におけるガラス基板のドーム形状への溶融変形により、ZnOと基板間に応力を生じさせ、ZnO膜を剥離しやすくする。また、SnO層が、950℃では溶融しないため、ZnO膜とガラス基板の固着を防いでいる。また、SnO表面が凹凸形状であることにより、ZnO膜と基板との接触点を減少させ、付着力を弱く抑え、剥離しやすくしている。 A ZnO particle deposition film is formed on a SnO 2 coated glass substrate using ZnO crystal particles synthesized in an aqueous solution, and a ZnO free-standing film is synthesized by the heat treatment. By melting and deforming the glass substrate into a dome shape during heating, stress is generated between the ZnO and the substrate, and the ZnO film is easily peeled off. Further, since the SnO 2 layer does not melt at 950 ° C., the ZnO film and the glass substrate are prevented from sticking. In addition, since the SnO 2 surface has an uneven shape, the number of contact points between the ZnO film and the substrate is reduced, adhesion is weakened, and peeling is easy.

本自立膜は、基板を必要とせずに、単独膜として得ることができるとともに、他の基板上に貼付(ペースト)することもできる。また、本自立膜は、ZnO粒子から構成されており、粒子間の接触点が加熱によってネックを形成して結合している。そのため、ZnO膜内に空隙が多く、多孔体となっている。また、連続した空隙が多く、ガスや溶液を透過させることができる。   The self-supporting film can be obtained as a single film without requiring a substrate, and can also be pasted on another substrate. In addition, the self-supporting film is composed of ZnO particles, and the contact points between the particles are combined by forming a neck by heating. Therefore, there are many voids in the ZnO film and it is a porous body. Moreover, there are many continuous voids and gas and solution can be permeated.

本発明により、次のような効果が奏される。
(1)水溶液中において合成したZnO結晶粒子を用いて、例えば、SnO被覆ガラス基板上にZnO粒子堆積膜を形成させ、その加熱処理により、ZnO自立膜を合成することができる。
(2)本自立膜は、基板を必要とせずに、単独膜として得ることができるとともに、他の基板上に貼付(ペースト)することもできる。
(3)また、本自立膜は、ZnO粒子から構成されており、粒子間の接触点が加熱によってネックを形成して結合しているため、ZnO膜内に空隙が多く形成され、多孔体となっている。
(4)本自立膜は、連続した空隙が多く、ガスや溶液を透過させることができる。
(5)本発明は、ZnO結晶自立膜として、あるいは任意の基板上にペーストして使用することができ、蛍光体、分子センサー、ガスセンサー、色素増感型太陽電池、フィルター、触媒等として利用できる多孔質ZnO結晶自立膜を提供できる。
The present invention has the following effects.
(1) Using ZnO crystal particles synthesized in an aqueous solution, for example, a ZnO particle deposition film can be formed on a SnO 2 coated glass substrate, and a ZnO free-standing film can be synthesized by heat treatment.
(2) The self-supporting film can be obtained as a single film without requiring a substrate, and can also be pasted on another substrate.
(3) In addition, the self-supporting film is composed of ZnO particles, and the contact points between the particles are combined by forming a neck by heating, so that many voids are formed in the ZnO film, It has become.
(4) The self-supporting membrane has many continuous voids and can permeate gas and solution.
(5) The present invention can be used as a ZnO crystal free-standing film or pasted on an arbitrary substrate and used as a phosphor, molecular sensor, gas sensor, dye-sensitized solar cell, filter, catalyst, etc. A porous ZnO crystal free-standing film can be provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

本実施例では、ZnO結晶粒子が粒子接触部分のネッキングにより連続膜となったZnO自立膜を作製した。図1に、ZnO自立膜形成の模式図を示す。   In this example, a ZnO free-standing film in which ZnO crystal particles became a continuous film by necking the particle contact portion was produced. FIG. 1 shows a schematic diagram of ZnO free-standing film formation.

(1)水溶液中におけるZnO結晶粒子の合成
硝酸亜鉛(Zinc nitrate hexahydrate(Zn(NO・6HO,>99.0%,MW297.49,Kanto Chemical Co.,Inc.))、エチレンジアミン(ethylenediamine(HNCHCHNH,>99.0%,MW60.10,Kanto Chemical Co.,Inc.))を、それぞれ、15mMとなるように、60℃の蒸留水に溶解した。
(1) Synthesis of ZnO crystal particles in aqueous solution Zinc nitrate (Zinc nitrate hydrate (Zn (NO 3 ) 2 .6H 2 O,> 99.0%, MW 297.49, Kanto Chemical Co., Inc.)), ethylenediamine (Ethylenediamine (H 2 NCH 2 CH 2 NH 2 ,> 99.0%, MW 60.10, Kanto Chemical Co., Inc.)) was dissolved in distilled water at 60 ° C. so as to be 15 mM, respectively.

その後、水溶液を60℃で6時間、無撹拌で保持した後、water bathの加熱をとめ、更に42時間water bathにて放冷した。この放冷により、数時間後には、水溶液の温度は室温の25℃まで冷却された。基板上の堆積膜を、950℃にて1時間、大気中にて加熱した(図1)。   Thereafter, the aqueous solution was kept at 60 ° C. for 6 hours without stirring, and then the water bath was turned off, and further allowed to cool in the water bath for 42 hours. By this cooling, the temperature of the aqueous solution was cooled to 25 ° C., which was room temperature, after several hours. The deposited film on the substrate was heated in the atmosphere at 950 ° C. for 1 hour (FIG. 1).

ZnOの融点は1975℃である。SnOの融点は1127℃である。ガラスの融点(メーカー保証の、溶融開始温度)は、720−730℃である。ガラスが溶融し、FTO及びZnOが溶融しないように、950℃を選択した。また、ZnOの緻密化が起こらない温度とした。 The melting point of ZnO is 1975 ° C. The melting point of SnO 2 is 1127 ° C. The melting point (melting start temperature guaranteed by the manufacturer) of the glass is 720-730 ° C. 950 ° C. was selected so that the glass melted and FTO and ZnO did not melt. The temperature was such that ZnO was not densified.

基板が溶融により変形する様に、ガラス基板を選択した。ZnO膜と基板との間に応力を発生させ、ZnO膜を剥離しやすくするために、基板をドーム状に変形させた(図1)。また、その際、ガラス基板とZnO膜が固着しないように、溶解しないFTO層を、ZnOとガラスの間に挟むため、FTOコーティングガラスを使用した。また、ZnO膜との接触点を減らすため、凹凸表面を有するFTOを使用した。   A glass substrate was selected so that the substrate was deformed by melting. In order to generate a stress between the ZnO film and the substrate and to easily peel off the ZnO film, the substrate was deformed into a dome shape (FIG. 1). At that time, FTO-coated glass was used in order to sandwich an undissolved FTO layer between ZnO and glass so that the glass substrate and the ZnO film do not adhere. Moreover, in order to reduce a contact point with a ZnO film | membrane, FTO which has an uneven surface was used.

(2)水溶液中での粒子堆積膜形成
エチレンジアミンの添加とともに、ZnO粒子の生成により溶液は白濁した。ZnO粒子は徐々に沈降し、溶液底部の基板上に堆積した(図1)。溶液は反応開始1時間後に薄白色となり、6時間後には透明になった。堆積膜は基板全面に渡り、白色を呈していた。図2に、ZnO結晶粒子堆積膜の写真を示す。
(2) Formation of particle deposition film in aqueous solution With the addition of ethylenediamine, the solution became cloudy due to the formation of ZnO particles. The ZnO particles gradually settled and deposited on the substrate at the bottom of the solution (FIG. 1). The solution turned pale white 1 hour after the start of the reaction and became clear after 6 hours. The deposited film was white over the entire surface of the substrate. FIG. 2 shows a photograph of the ZnO crystal particle deposition film.

次に、この堆積膜についてXRDによる評価を行った。図3に、ZnO結晶粒子堆積膜のXRDパターンを示す。堆積膜のXRDにおいて、2θ=31.7,34.3,36.2,47.5 and 56.5°に回折線が観察され、これらは、ZnO結晶の10−10,0002,10−11,10−12,11−20面からの回折に帰属された(ICSD No.26170,JCPDS No.65−3411)(図3)。   Next, this deposited film was evaluated by XRD. FIG. 3 shows an XRD pattern of the ZnO crystal particle deposition film. In the XRD of the deposited film, diffraction lines are observed at 2θ = 31.7, 34.3, 36.2, 47.5 and 56.5 °, which are 10-10,0002,10-11 of ZnO crystal. , 10-12, and 11-20 (ICSD No. 26170, JCPDS No. 65-3411) (FIG. 3).

図4に、ZnO結晶粒子堆積膜のSEM像、図5に、その拡大SEM像を示す。ZnO粒子の堆積によりZnO厚膜が形成されたため、粒子集積膜中において、数μmの大きなオープンポアから、数十ナノメーターの小さなオープンポアまでが形成されており、これらのポアが連続してつながった形状を有していた(図4)。粒子形態の詳細を更に評価した。粒子堆積膜表面は、多針体粒子で覆われていた(図5)。   FIG. 4 shows an SEM image of the ZnO crystal particle deposition film, and FIG. 5 shows an enlarged SEM image thereof. Since the ZnO thick film was formed by the deposition of ZnO particles, from the large open pores of several μm to the small open pores of several tens of nanometers were formed in the particle integrated film, and these pores were connected continuously. (Fig. 4). The details of the particle morphology were further evaluated. The particle deposition film surface was covered with multi-needle particles (FIG. 5).

多くの針状結晶が粒子中心から成長した形状を有していた。粒子サイズは、1−2μmであった。針状結晶は細い針状結晶の集積体であり、そのため、大きな針の側面は、ひだのアレイで覆われていた。大きな針状結晶の角は六角形を有しており、その先端は多数の凹凸を持つ丸いV型を有していた。   Many acicular crystals had a shape grown from the center of the particle. The particle size was 1-2 μm. The acicular crystals are a collection of thin acicular crystals, so the side surfaces of the large needles were covered with an array of pleats. The corners of the large acicular crystals had a hexagonal shape, and the tip had a round V shape with a large number of irregularities.

これらのことより、ZnO粒子の高い結晶性とc軸方向が示されていることが分かる。ZnO粒子において、大きな針状結晶や細い針状結晶の長手方向がc軸方向であると考えられる。   From these, it can be seen that the high crystallinity and c-axis direction of ZnO particles are shown. In the ZnO particles, it is considered that the longitudinal direction of large needle crystals or thin needle crystals is the c-axis direction.

(3)ZnO自立膜
FTO基板上のZnO粒子堆積膜を、大気中にて、950℃にて1時間加熱した(図1)。粒子は加熱により結合し、連続膜を形成した。ガラス基板はドーム状に溶融変形して、ZnO膜との間に応力を発生させた。この応力により、ZnOを剥離しやすくした。
(3) ZnO free-standing film The ZnO particle deposition film on the FTO substrate was heated in the atmosphere at 950 ° C. for 1 hour (FIG. 1). The particles were combined by heating to form a continuous film. The glass substrate melted and deformed into a dome shape, and stress was generated between the glass substrate and the ZnO film. This stress facilitated the exfoliation of ZnO.

FTOは、加熱処理においても、表面の凹凸構造を維持した。FTO層によって、ZnO膜とガラス基板との固着を防いだ。また、FTO表面の凹凸構造によって、ZnO膜との接触点を減少させて剥離しやすくした。   FTO maintained the uneven structure on the surface even in the heat treatment. The FTO layer prevented adhesion between the ZnO film and the glass substrate. In addition, the uneven structure on the FTO surface reduces the number of contact points with the ZnO film to facilitate peeling.

本プロセスにおいて、FTO層は、結合絶縁層として機能している。これらにより、ZnO厚膜を基板から剥離し、自立膜を形成することに成功した。ZnO自立膜は、ZnO粒子が互いに結合して連続膜を形成している白色多孔質膜である。   In this process, the FTO layer functions as a bonding insulating layer. By these, the ZnO thick film was peeled off from the substrate, and a free-standing film was successfully formed. The ZnO free-standing film is a white porous film in which ZnO particles are bonded to each other to form a continuous film.

ZnO単結晶は大きなバンドギャップにより可視光領域では透明であるが、ZnO自立膜は、ZnO粒子膜の微細構造による可視光の散乱のため、白色を呈していた。注射器の先端をZnO自立膜にあて、水を押し出したところ、ZnO自立膜は、水を透過した。   The ZnO single crystal is transparent in the visible light region due to the large band gap, but the ZnO free-standing film has a white color due to the scattering of visible light due to the fine structure of the ZnO particle film. When the tip of the syringe was applied to the ZnO free-standing film and water was pushed out, the ZnO free-standing film permeated water.

(4)結晶相
作製した自立膜をガラス基板上にペーストし、XRDによる評価を行った。図6に、ZnO結晶自立膜のXRDパターンを示す。ZnO膜は2θ=31.74,34.39,36.22,47.52,56.56,62.9,66.4,67.9,69.1,72.5,77.0,81.3,89.6°に強い回折線を示した(図6)。
(4) Crystal Phase The prepared free-standing film was pasted on a glass substrate and evaluated by XRD. FIG. 6 shows an XRD pattern of the ZnO crystal free-standing film. ZnO films are 2θ = 31.74, 34.39, 36.22, 47.52, 56.56, 62.9, 66.4, 67.9, 69.1, 72.5, 77.0, 81. Strong diffraction lines were exhibited at 3,89.6 ° (FIG. 6).

これらのピークは、それぞれZnOの10−10,0002,10−11,10−12,11−20,10−13,20−20,11−22,20−21,0004,20−22,10−14,20−23面からの回折線に帰属された(ICSD No.26170,JCPDS No.65−3411)。   These peaks are 10-10,0002,10-11,10-12,11-20,10-13,20-20,11-22,20-21,0004,20-22,10- of ZnO, respectively. It was assigned to diffraction lines from the 14 and 20-23 planes (ICSD No. 26170, JCPDS No. 65-3411).

回折線の相対強度は、加熱前のZnOや無配向ZnO粒子の相対強度と同様であった。これは、ZnOが加熱処理においても、その結晶性及び形態を維持していることを示している。平均結晶子サイズを、シェラーの式を用いて、XRDピークの半値幅より見積もった。   The relative intensity of the diffraction line was the same as the relative intensity of ZnO before heating or unoriented ZnO particles. This indicates that ZnO maintains its crystallinity and morphology even in the heat treatment. The average crystallite size was estimated from the half width of the XRD peak using Scherrer's equation.

10−10面、0002面及び10−11面に垂直方向の結晶子サイズは、それぞれ、38,38or29nmと見積もられ、加熱前の値(24,36or26nm)よりごく僅か大きな値であった。これは、高温での僅かな結晶成長によるものと考えられる。また、2θ=22−23°に、ガラス由来のブロードなピークが観察された。   The crystallite size in the direction perpendicular to the 10-10, 0002, and 10-11 planes was estimated to be 38, 38 or 29 nm, respectively, which was slightly larger than the value before heating (24, 36 or 26 nm). This is thought to be due to slight crystal growth at high temperatures. In addition, a broad peak derived from glass was observed at 2θ = 22-23 °.

(5)ZnO自立膜の形態
図7に、ZnO結晶自立膜の空気面のSEM像を示す。b−dは、aの拡大図である。ZnO自立膜は、空気面と、FTO基板と接触していた基板面では、それぞれ異なった形態を有していた。空気面は自立膜全面に渡って平坦な表面を有していた(図7a)。この表面は、粒子が互いに結合した連続膜であった(図7b)。粒子間の接触箇所には加熱処理によりネックが形成されていた(図7c)。
(5) Form of ZnO Free-standing Film FIG. 7 shows an SEM image of the air surface of the ZnO crystal free-standing film. bd is an enlarged view of a. The ZnO free-standing film had different forms on the air surface and the substrate surface that was in contact with the FTO substrate. The air surface had a flat surface over the entire free-standing film (FIG. 7a). This surface was a continuous film in which the particles were bonded together (FIG. 7b). A neck was formed in the contact portion between the particles by heat treatment (FIG. 7c).

ZnO粒子の大きな針状結晶は、平滑な表面を有する六角柱状形態を有していた(図7d)。ナノサイズのステップが大きな針状結晶の側面及び先端面から観察された。ステップのラインは、大きな針状結晶の外形の結晶面と平行であった。加熱前にZnOの大きな針状結晶から観察された小さな針状結晶のひだは、加熱により、ナノサイズのステップ及びテラスを持つ平滑な表面へと結晶成長したものと考えられる。   Large acicular crystals of ZnO particles had a hexagonal column shape with a smooth surface (FIG. 7d). Nano-sized steps were observed from the side and tip surfaces of large needle crystals. The step line was parallel to the crystal plane of the outer shape of the large needle-like crystal. Small acicular crystal folds observed from large acicular crystals of ZnO before heating are considered to have grown to a smooth surface with nano-sized steps and terraces by heating.

図8に、ZnO結晶自立膜の基板面のSEM像を示す。b−dは、aの拡大図である。ZnO膜の基板面もまた、自立膜全面に渡って平滑な表面であった(図8a)。しかし、粒子の密度は、空気面よりも低いものであった(図8b)。これは、粒子膜の形成プロセスと関連しているものと考えられる。ZnO粒子堆積膜の形成初期において、まず、大きな粒子や凝集した粒子が堆積したものと考えられる。   FIG. 8 shows an SEM image of the substrate surface of the ZnO crystal free-standing film. bd is an enlarged view of a. The substrate surface of the ZnO film was also a smooth surface over the entire free-standing film (FIG. 8a). However, the density of the particles was lower than the air surface (FIG. 8b). This is considered to be related to the formation process of the particle film. It is considered that large particles or aggregated particles were first deposited at the initial stage of formation of the ZnO particle deposition film.

その後、小さな粒子が堆積して、ZnO膜表面を覆ったものと考えられる。そのため、ZnO自立膜は、空気面と基板面で異なった形態を有していたものと考えられる。粒子は、加熱によりネックを形成して互いに結合した(図8c)。粒子表面は、加熱に伴う結晶成長により、平坦な表面を有していた。   Thereafter, it is considered that small particles were deposited and covered the surface of the ZnO film. Therefore, it is considered that the ZnO free-standing film had different forms on the air surface and the substrate surface. The particles were bonded together by forming a neck upon heating (FIG. 8c). The particle surface had a flat surface due to crystal growth accompanying heating.

また、ZnO粒子を形成している大きな針状結晶の側面及び先端面からは、ナノサイズのステップ及びテラスから構成される縞模様が観察された(図8d)。ZnO自立膜の下部を固定して54°の角度に傾け、自立膜先端をSEMにより観察した。図9に、ZnO結晶自立膜の破断面のSEM像を示す。bは、aの拡大図である。。ZnO膜は高い強度を有しており、下部の固定のみで自立させることができた。   In addition, a stripe pattern composed of nano-sized steps and terraces was observed from the side and tip surfaces of the large needle-like crystals forming the ZnO particles (FIG. 8d). The lower part of the ZnO free-standing film was fixed and tilted at an angle of 54 °, and the free-standing film tip was observed by SEM. FIG. 9 shows an SEM image of the fracture surface of the ZnO crystal free-standing film. b is an enlarged view of a. . The ZnO film had high strength and could be made independent only by fixing the lower part.

膜厚は、およそ8.5μmと見積もられた(図9a)。自立膜はZnO粒子からなる多孔質膜であった。粒子の結合により自立膜を形成しており、連続したオープンポアが膜を透過している様子が観察された。ZnO自立膜は、多針体ZnO粒子で囲まれた多くの空間と連続オープンポアを有していた。   The film thickness was estimated to be approximately 8.5 μm (FIG. 9a). The self-supporting film was a porous film made of ZnO particles. A self-supporting film was formed by the bonding of the particles, and it was observed that continuous open pores passed through the film. The ZnO free-standing film had many spaces surrounded by multi-needle ZnO particles and continuous open pores.

(6)FTO基板の形態・FTO層の効果
FTO基板は、厚いガラス基板と、表面凹凸構造を有する薄いFTO(FドープSnO)層から形成されている。SnOの融点は、1127℃であり、ガラスの融点は720−730℃である。ガラスは950℃の加熱により溶融し、上に凸のドーム形状へと変形した(図1)。
(6) Form of FTO substrate / effect of FTO layer The FTO substrate is formed of a thick glass substrate and a thin FTO (F-doped SnO 2 ) layer having a surface uneven structure. The melting point of SnO 2 is 1127 ° C., and the melting point of glass is 720-730 ° C. The glass was melted by heating at 950 ° C. and transformed into a convex dome shape (FIG. 1).

ガラス基板の変形によりZnO膜と基板との間に応力が発生する。この応力により、ZnO膜の剥離が促進された。一方、ガラス基板上のFTO層は、高い融点のため、950℃での加熱では溶融しない。図10に、加熱前後の基板表面のSEM像を示す。aは、加熱前、bは加熱後である。通常、膜は溶融した基板と固着してしまうが、このプロセスでは、FTO層がZnO膜とガラス基板との固着を防いでいる。   Due to the deformation of the glass substrate, a stress is generated between the ZnO film and the substrate. This stress promoted peeling of the ZnO film. On the other hand, the FTO layer on the glass substrate does not melt when heated at 950 ° C. because of its high melting point. FIG. 10 shows SEM images of the substrate surface before and after heating. a is before heating and b is after heating. Normally, the film adheres to the molten substrate, but in this process, the FTO layer prevents the ZnO film and glass substrate from sticking.

FTO層は、結合絶縁層(固着防止層)として機能しているのである。また、FTOは加熱処理においても、表面凹凸構造を維持していた。この表面凹凸構造により、ZnO膜と基板との接触点を減少させており、このことが、ZnO膜の基板への結合強度を減少させ、自立膜として剥離しやすくしている。   The FTO layer functions as a bonding insulating layer (adhesion prevention layer). Moreover, FTO maintained the surface uneven structure also in the heat treatment. This surface concavo-convex structure reduces the contact point between the ZnO film and the substrate, which reduces the bonding strength of the ZnO film to the substrate and facilitates peeling as a free-standing film.

以上詳述したように、本発明は、多孔質ZnO粒子結合自立膜及びその作製方法に係るものであり、本発明により、水溶液中において合成したZnO結晶粒子を用いて、例えば、SnO被覆ガラス基板上にZnO粒子堆積膜を形成させ、その加熱処理により、ZnO自立膜を合成することができる。本自立膜は、基板を必要とせずに、単独膜として得ることができるとともに、他の基板上に貼付(ペースト)することもできる。また、本自立膜は、ZnO粒子から構成されており、粒子間の接触点が加熱によってネックを形成して結合しているため、ZnO膜内に空隙が多く形成され、多孔体となっている。本自立膜は、連続した空隙が多く、ガスや溶液を透過させることができる。 As described above in detail, the present invention relates to a porous ZnO particle-bonded self-supporting film and a method for producing the same. By using ZnO crystal particles synthesized in an aqueous solution according to the present invention, for example, SnO 2 coated glass A ZnO particle deposited film is formed on the substrate, and the ZnO free-standing film can be synthesized by the heat treatment. The self-supporting film can be obtained as a single film without requiring a substrate, and can also be pasted on another substrate. In addition, the self-supporting film is composed of ZnO particles, and the contact points between the particles are combined by forming a neck by heating, so that a large number of voids are formed in the ZnO film, thus forming a porous body. . The self-supporting membrane has many continuous voids and can permeate gases and solutions.

本発明は、ZnO結晶自立膜として、あるいは任意の基板上にペーストして使用することができ、蛍光体、分子センサー、ガスセンサー、色素増感型太陽電池、フィルター、触媒等として利用できる多孔質ZnO結晶自立膜を提供するものとして有用である。   The present invention can be used as a ZnO crystal free-standing film or paste on any substrate, and can be used as a phosphor, molecular sensor, gas sensor, dye-sensitized solar cell, filter, catalyst, etc. This is useful for providing a ZnO crystal free-standing film.

ZnO自立膜形成の模式図を示す。The schematic diagram of ZnO free-standing film formation is shown. ZnO結晶粒子堆積膜の写真を示す。The photograph of a ZnO crystal grain deposited film is shown. ZnO結晶粒子堆積膜のXRDパターンを示す。3 shows an XRD pattern of a ZnO crystal particle deposition film. ZnO結晶粒子堆積膜のSEM像を示す。The SEM image of a ZnO crystal grain deposited film is shown. 図4の拡大SEM像を示す。The enlarged SEM image of FIG. 4 is shown. ZnO結晶自立膜のXRDパターンを示す。3 shows an XRD pattern of a ZnO crystal free-standing film. ZnO結晶自立膜の空気面のSEM像(a)を示す。(b−d)は(a)の拡大SEM像である。The SEM image (a) of the air surface of a ZnO crystal self-supporting film | membrane is shown. (Bd) is an enlarged SEM image of (a). ZnO結晶自立膜の基板面のSEM像(a)を示す。(b−d)は(a)の拡大SEM像である。The SEM image (a) of the substrate surface of a ZnO crystal self-supporting film is shown. (Bd) is an enlarged SEM image of (a). ZnO結晶自立膜の破断面のSEM像(a)を示す。(b)は(a)の拡大SEM像である。The SEM image (a) of the fracture surface of a ZnO crystal free-standing film | membrane is shown. (B) is an enlarged SEM image of (a). 加熱前後の基板表面のSEM像を示す。(a)は加熱前、(b)は加熱後である。The SEM image of the board | substrate surface before and behind a heating is shown. (A) is before heating, (b) is after heating.

Claims (13)

ZnO結晶粒子が基板上に堆積したZnO結晶粒子堆積膜であって、1)粒子堆積膜中にオープンポアが連続してつながった形状を有している、2)粒子堆積膜表面が多針体粒子で覆われている粒子形態を有する、3)粒子中心から成長した針状結晶を有する、4)針状結晶の長手方向がc軸方向である、5)図3のXRDパターンを示す、ことを特徴とするZnO結晶粒子堆積膜。   A ZnO crystal particle deposition film in which ZnO crystal particles are deposited on a substrate, 1) having a shape in which open pores are continuously connected to the particle deposition film, and 2) the surface of the particle deposition film is a multi-needle body. 3) having a needle-like crystal grown from the center of the particle, 4) the longitudinal direction of the needle-like crystal being the c-axis direction, and 5) showing the XRD pattern of FIG. ZnO crystal particle deposition film characterized by the above. 請求項1に記載のZnO結晶粒子堆積膜の粒子間の接触点がネックを形成して結合したZnO粒子結合膜であって、1)ZnO粒子が互いに結合して連続膜を形成した構造を有する、2)白色多孔質膜である、ことを特徴とするZnO粒子結合膜。   A ZnO particle-bonded film in which contact points between particles of the ZnO crystal particle deposition film according to claim 1 are combined by forming a neck, and 1) a structure in which ZnO particles are bonded to each other to form a continuous film. 2) A ZnO particle-bonded film, which is a white porous film. 請求項2に記載のZnO粒子結合膜を自立させたZnO粒子結合自立膜であって、1)基板面と反対側の空気面は自立膜全面に渡って平坦な表面を有している、2)この表面は粒子が互いに結合した連続膜である、3)ZnO粒子からなる多孔質膜である、4)図6のXRDパターンを示す、ことを特徴とするZnO粒子結合自立膜。   A ZnO particle-bonded self-supporting film in which the ZnO particle-bonded film according to claim 2 is self-supporting, wherein 1) the air surface opposite to the substrate surface has a flat surface over the entire surface of the self-supporting film. 3) A ZnO particle-bonded self-supporting film characterized in that the surface is a continuous film in which particles are bonded to each other, 3) a porous film made of ZnO particles, and 4) the XRD pattern shown in FIG. 基板が、ガラス、金属、セラミックス、ポリマー、又は紙の基板である、請求項1に記載のZnO結晶粒子堆積膜。   The ZnO crystal particle deposition film according to claim 1, wherein the substrate is a glass, metal, ceramic, polymer, or paper substrate. 基板が、平板状、繊維、粒子、又は複雑形状の形態を有する、請求項1に記載のZnO結晶粒子堆積膜。   The ZnO crystal particle deposition film according to claim 1, wherein the substrate has a form of a flat plate, a fiber, a particle, or a complicated shape. 請求項3に記載のZnO粒子結合自立膜を任意の基板の上にペーストしたZnO膜であって、1)ZnO膜内に多くの連続した空隙を有している、2)基板の曲げ性に対応した曲げ性(フレキシビリティー)を有する、ことを特徴とするZnO膜。   A ZnO film obtained by pasting the ZnO particle-bonded free-standing film according to claim 3 on an arbitrary substrate, 1) having many continuous voids in the ZnO film, and 2) improving the bendability of the substrate. A ZnO film having a corresponding bendability (flexibility). 請求項1に記載のZnO結晶粒子堆積膜を作製する方法であって、酸化亜鉛が析出する亜鉛含有溶液からなる反応系を用いて、基板上にZnO粒子を沈降、堆積させることによりZnO結晶粒子堆積膜を作製することを特徴とするZnO結晶粒子堆積膜の作製方法。   A method for producing a ZnO crystal particle deposition film according to claim 1, wherein the ZnO crystal particles are deposited and deposited on a substrate using a reaction system comprising a zinc-containing solution in which zinc oxide is deposited. A method for producing a deposited film of ZnO crystal particles, comprising producing a deposited film. 反応系に、エチレンジアミン又はアンモニアを添加するか、あるいは反応系の温度、原料濃度及び/又はpHを変化させてZnO結晶粒子を析出させる、請求項7に記載のZnO結晶粒子堆積膜の作製方法。   The method for producing a ZnO crystal particle deposited film according to claim 7, wherein ZnO crystal particles are deposited by adding ethylenediamine or ammonia to the reaction system or changing the temperature, raw material concentration and / or pH of the reaction system. 請求項2に記載のZnO粒子結合膜を作製する方法であって、請求項1に記載のZnO結晶粒子堆積膜を加熱処理して粒子間の接触点を加熱、溶融させてネックを形成させることにより連続膜を作製することを特徴とするZnO粒子結合膜の作製方法。   A method for producing a ZnO particle-bonded film according to claim 2, wherein the ZnO crystal particle deposited film according to claim 1 is heat-treated to heat and melt contact points between the particles to form a neck. A method for producing a ZnO particle-bonded film, comprising producing a continuous film by the method described above. 請求項3に記載のZnO粒子結合自立膜を作製する方法であって、請求項9に記載の方法によりZnO結晶粒子堆積膜を加熱処理して作製したZnO粒子結合膜を基板より剥離してZnO自立膜とすることを特徴とするZnO粒子結合自立膜の作製方法。   A method for producing a ZnO particle-bonded self-supporting film according to claim 3, wherein the ZnO particle-bonded film produced by heat-treating a ZnO crystal particle deposition film by the method according to claim 9 is peeled from the substrate to form a ZnO film. A method for producing a ZnO particle-bonded free-standing film, characterized by being a free-standing film. 加熱処理を行う際に、ガラス基板の溶融変形及びSnO接合絶縁層を用いてZnO自立膜を作製する、請求項10に記載のZnO粒子結合自立膜の作製方法。 The method for producing a ZnO particle-bonded self-supporting film according to claim 10, wherein a ZnO self-supporting film is prepared using a melt deformation of a glass substrate and a SnO 2 bonding insulating layer when performing the heat treatment. 請求項3に記載のZnO粒子結合自立膜又は該自立膜を任意の基板の上に貼付(ペースト)したZnO膜を構成要素として含むことを特徴とするZnO膜部材。   A ZnO film member comprising the ZnO particle-bonded self-supporting film according to claim 3 or a ZnO film obtained by pasting (pasting) the self-supporting film on an arbitrary substrate as a constituent element. 部材が、蛍光体、分子センサー、ガスセンサー、色素増感型太陽電池、フィルター、又は触媒である、請求項12に記載のZnO膜部材。   The ZnO film member according to claim 12, wherein the member is a phosphor, a molecular sensor, a gas sensor, a dye-sensitized solar cell, a filter, or a catalyst.
JP2007215015A 2007-08-21 2007-08-21 Porous ZnO particle-bonded free-standing film and method for producing the same Expired - Fee Related JP5099324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007215015A JP5099324B2 (en) 2007-08-21 2007-08-21 Porous ZnO particle-bonded free-standing film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007215015A JP5099324B2 (en) 2007-08-21 2007-08-21 Porous ZnO particle-bonded free-standing film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009046358A true JP2009046358A (en) 2009-03-05
JP5099324B2 JP5099324B2 (en) 2012-12-19

Family

ID=40498948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007215015A Expired - Fee Related JP5099324B2 (en) 2007-08-21 2007-08-21 Porous ZnO particle-bonded free-standing film and method for producing the same

Country Status (1)

Country Link
JP (1) JP5099324B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160024688A1 (en) * 2014-07-25 2016-01-28 Seoul Semiconductor Co., Ltd. Fabrication and/or application of zinc oxide crystals with internal (intra-crystalline) porosity
CN105565366A (en) * 2016-01-21 2016-05-11 山东科技大学 Method for preparing porous zinc oxide with three-dimensional structure
US10407315B2 (en) 2016-04-14 2019-09-10 Seoul Semiconductor Co., Ltd. Method and/or system for synthesis of zinc oxide (ZnO)
US10727374B2 (en) 2015-09-04 2020-07-28 Seoul Semiconductor Co., Ltd. Transparent conductive structure and formation thereof
US10741724B2 (en) 2015-10-02 2020-08-11 Seoul Viosys Co., Ltd. Light emitting diode devices with zinc oxide layer
US10981800B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Chamber enclosure and/or wafer holder for synthesis of zinc oxide
US10981801B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Fluid handling system for synthesis of zinc oxide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103482682B (en) * 2013-10-14 2015-05-20 武汉工程大学 Preparation method of HEPES (hydroxyethylpiperazine ethane sulfonic acid) molecule guided porous zinc oxide microspheres

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149367A (en) * 2002-10-31 2004-05-27 Japan Science & Technology Agency Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
JP2006283143A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film
JP2007022851A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Porous zinc oxide film, method for manufacturing the same, dye-sensitized solar cell, photocatalyst, chemical sensor or phosphor each provided with porous zinc oxide film, precursor for forming porous zinc oxide film and method for manufacturing the same
JP2008169053A (en) * 2007-01-09 2008-07-24 National Institute Of Advanced Industrial & Technology ZnO SELF-SUPPORTED CRYSTAL FILM HAVING HIGH C-AXIS ORIENTATION AND HIGH SPECIFIC SURFACE AREA AND METHOD OF MANUFACTURING THE SAME

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149367A (en) * 2002-10-31 2004-05-27 Japan Science & Technology Agency Aqueous solution for producing zinc oxide particle or film, and method for producing zinc oxide particle or film
JP2006283143A (en) * 2005-03-31 2006-10-19 Dainippon Printing Co Ltd Method for producing metal oxide film
JP2007022851A (en) * 2005-07-15 2007-02-01 National Institute Of Advanced Industrial & Technology Porous zinc oxide film, method for manufacturing the same, dye-sensitized solar cell, photocatalyst, chemical sensor or phosphor each provided with porous zinc oxide film, precursor for forming porous zinc oxide film and method for manufacturing the same
JP2008169053A (en) * 2007-01-09 2008-07-24 National Institute Of Advanced Industrial & Technology ZnO SELF-SUPPORTED CRYSTAL FILM HAVING HIGH C-AXIS ORIENTATION AND HIGH SPECIFIC SURFACE AREA AND METHOD OF MANUFACTURING THE SAME

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160024688A1 (en) * 2014-07-25 2016-01-28 Seoul Semiconductor Co., Ltd. Fabrication and/or application of zinc oxide crystals with internal (intra-crystalline) porosity
US10727374B2 (en) 2015-09-04 2020-07-28 Seoul Semiconductor Co., Ltd. Transparent conductive structure and formation thereof
US10741724B2 (en) 2015-10-02 2020-08-11 Seoul Viosys Co., Ltd. Light emitting diode devices with zinc oxide layer
CN105565366A (en) * 2016-01-21 2016-05-11 山东科技大学 Method for preparing porous zinc oxide with three-dimensional structure
US10407315B2 (en) 2016-04-14 2019-09-10 Seoul Semiconductor Co., Ltd. Method and/or system for synthesis of zinc oxide (ZnO)
US10981800B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Chamber enclosure and/or wafer holder for synthesis of zinc oxide
US10981801B2 (en) 2016-04-14 2021-04-20 Seoul Semiconductor Co., Ltd. Fluid handling system for synthesis of zinc oxide

Also Published As

Publication number Publication date
JP5099324B2 (en) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5099324B2 (en) Porous ZnO particle-bonded free-standing film and method for producing the same
Kenanakis et al. Growth of c-axis oriented ZnO nanowires from aqueous solution: the decisive role of a seed layer for controlling the wires’ diameter
JP4803443B2 (en) Zinc oxide particles, zinc oxide particle films and methods for producing them
Shibata et al. One‐nanometer‐thick seed layer of unilamellar nanosheets promotes oriented growth of oxide crystal films
JP5403497B2 (en) Crystal growth substrate and crystal growth method using the same
KR101352246B1 (en) Method for fabricating ZnO thin films
US20090098043A1 (en) Method for preparing zinc oxide nanostructures and zinc oxide nanostructures prepared by the same
JP4899229B2 (en) ZnO whisker films and methods for producing them
JP2015212213A (en) INTEGRATED ZnO NANOROD WITH GRAPHENE SHEET, AND METHOD FOR PRODUCING ZnO ONTO GRAPHENE SHEET
JP2008297168A (en) ZnO WHISKER FILM AND ITS PREPARATION METHOD
JP4665175B2 (en) High c-axis oriented high specific surface area ZnO crystal free-standing film and method for producing the same
WO2007071130A1 (en) Vertically-orientated hydrotalcite-like film having composite micro-structure and its preparation method
JP5263750B2 (en) Method for producing nano acicular anatase TiO2 crystal aggregated particles and porous anatase TiO2 crystal film
Segawa et al. Low-temperature crystallization of oriented ZnO film using seed layers prepared by sol–gel method
Pourmand et al. TiO2 nanostructured films on mica using liquid phase deposition
CN104733292B (en) Preparing method for ultrathin self-supporting monocrystal barium titanate thin film
CN113718227B (en) Two-dimensional layered ternary compound and preparation method thereof
WO2007142154A1 (en) Process for producing functional films and products
JP2009096656A (en) ZnO ROD ARRAY AND METHOD FOR MANUFACTURING THE SAME
Orlov et al. Influence of process temperature on ZnO nanostructures formation
Islam et al. Effect of deposition time on nanostructure ZnO thin films synthesized by modified thermal evaporation technique
JP4958086B2 (en) Epitaxial nano TiO2 particle coating and method for producing the same
Gul et al. The influence of thermal processing on microstructure of sol–gel-derived SrSnO 3 thin films
JP2015105202A (en) Titanium oxide film and method for forming the same
JP5176224B2 (en) Zn5 (CO3) 2 (OH) 6 crystal free-standing film and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees