JP2009043838A - Chemical application device - Google Patents

Chemical application device Download PDF

Info

Publication number
JP2009043838A
JP2009043838A JP2007205625A JP2007205625A JP2009043838A JP 2009043838 A JP2009043838 A JP 2009043838A JP 2007205625 A JP2007205625 A JP 2007205625A JP 2007205625 A JP2007205625 A JP 2007205625A JP 2009043838 A JP2009043838 A JP 2009043838A
Authority
JP
Japan
Prior art keywords
substrate
square substrate
square
chemical
hood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007205625A
Other languages
Japanese (ja)
Inventor
Hiroyuki Saito
博之 斎藤
Katsutomo Iwamura
勝友 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Setek Co Ltd
Original Assignee
M Setek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by M Setek Co Ltd filed Critical M Setek Co Ltd
Priority to JP2007205625A priority Critical patent/JP2009043838A/en
Publication of JP2009043838A publication Critical patent/JP2009043838A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a chemical application device capable of forming a chemical layer approximately uniform to a vertex of a corner on a rectangular substrate. <P>SOLUTION: The chemical application device (A) includes: (1) a rotary chuck (10) having a rectangular recess (16) to which a rectangular substrate (1) is fitted formed, a flat rim (10b) formed to be leveled out of a circumcircle (G) of the recess (16) and the rectangular substrate (1) rotating while fitted to the recess (16) on the same plane; (2) a chemical supply part (11) for supplying a chemical (2) onto the substrate (1); and (3) a truncated-cone-shaped hood (13) for covering the rectangular substrate (1) mounted on the rotary chuck (10) and having a gas inflow hole (12) opened immediately above the rotary chuck (10) to make an air flow (4) flowing from the center (P) of the substrate (1) to a peripheral rim (S) of a gas introduced from the hole (12) toward the substrate (1). The device is characterized by that: (a) the gas inflow hole (12) of the hood (13) is equal to an incircle (N) of the rectangular substrate (1); and (b) a flange (14a) of the hood (13) is formed to be equal to an outer peripheral rim (10c) of the rotary chuck (10). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フォトレジスト或いはエッチング液など半導体素子製造プロセスで使用される薬液を最近の高微細化した特殊用途の超厚膜角形基板に対応可能にて均一に塗布することが出来るようにした薬液塗布装置に関する。   The present invention provides a chemical solution such as a photoresist or an etching solution that can be uniformly applied to a special ultra-thick film square substrate for special applications that has recently been miniaturized. The present invention relates to a coating apparatus.

半導体製造プロセスでは、フォトレジスト塗布工程或いはエッチング工程などの工程が組み込まれているが、この工程では処理基板が円形であり、回転中心から基板周縁までの距離は等距離で均一であるため、処理基板の表面全面に均一な薬液層を形成する事が出来る。この手法を角形基板(1)を使用する超厚膜半導体素子製造プロセスに適用しようとすると、以下のような問題が生じた。   In the semiconductor manufacturing process, a process such as a photoresist coating process or an etching process is incorporated. In this process, the processing substrate is circular, and the distance from the center of rotation to the peripheral edge of the substrate is uniform and uniform. A uniform chemical layer can be formed on the entire surface of the substrate. When this technique was applied to the ultra-thick film semiconductor device manufacturing process using the square substrate (1), the following problems occurred.

角形基板(1)より小径の回転チャック(120)に角形基板(1)を吸着セットして回転させ、その中心(P)にフォトレジスト液或いはエッチング液などの薬液(2)を必要量だけ供給し、遠心力を利用して薬液を回転している処理ガラス基板(1)の中心(P)から周縁(S)まで極く短時間で広がらせ、回転処理ガラス基板(1)の表面全面に薬液層(2a)を形成しようとした(先行技術文献1)。   The square substrate (1) is sucked and set on the rotary chuck (120) with a smaller diameter than the square substrate (1) and rotated, and a chemical solution (2) such as a photoresist solution or an etching solution is supplied to the center (P). The chemical solution is rotated from the center (P) to the periphery (S) of the processing glass substrate (1) rotating by centrifugal force in a very short time, and is applied to the entire surface of the rotating glass substrate (1). An attempt was made to form the chemical layer (2a) (prior art document 1).

角形基板(1)は正方形で、辺(52)までの最短距離(=内接円(N))と角部分(5)の先端部(最長距離で、外接円(G))とでは中心からの距離(Dn)(Dg)が異なるため(図5参照)、角形基板(1)より小径の回転チャック(120)に角形基板(1)を吸着セットして回転させた場合、中心(P)から広がっていった薬液(2)は辺(52)の中央(52a)に最初に到達し、次第に角部分(5)の方向に広がっていくことになる。角部分(5)では両側の辺(52)上の点(52X)(52Y)を両端とし、角方向に曲った円弧状の薬液流(55)の先端部分(此処では便宜上、円弧状の太い二点鎖線で示しているが刻々角部分(5)の先端に向けて移動している。)が角部分(5)の先端方向に回転の遠心力の作用で流れていき、最終的に角部分(5)の先端に達する。   The square substrate (1) is square, and the shortest distance to the side (52) (= inscribed circle (N)) and the tip of the corner (5) (longest distance, circumscribed circle (G)) from the center The distance (Dn) (Dg) is different (see Fig. 5), so when the square substrate (1) is sucked and set on the rotary chuck (120) with a smaller diameter than the square substrate (1), the center (P) The chemical solution (2) that has spread from the point first reaches the center (52a) of the side (52) and gradually spreads in the direction of the corner portion (5). In the corner part (5), the point (52X) (52Y) on the sides (52) on both sides is both ends, and the tip part of the arc-shaped chemical liquid flow (55) bent in the angular direction (here, for the sake of convenience, the arc-shaped thick Although it is indicated by a two-dot chain line, it is constantly moving toward the tip of the corner portion (5).) Flows toward the tip of the corner portion (5) by the action of the centrifugal force of rotation, and finally the corner portion (5). Reach the tip of part (5).

処が角形基板(1)より小径の回転チャック(120)に角形基板(1)を吸着セットした場合、前記角部分(5)は角形基板(1)の内接円(N)から突き出した状態となっており、回転する角形基板(1)が風を切る状態となって乱流が生じ、これが角部分(35)の薬液層(2a)の表面を波立たせ、比較的優れた内接円(N)内の平面度に比べて内接円(N)外では大きく平面度が損なわれ、内接円(N)の内外で大きく表面状態が変化するという問題があった。   When the square substrate (1) is sucked and set on the rotary chuck (120) having a smaller diameter than the square substrate (1), the corner portion (5) protrudes from the inscribed circle (N) of the square substrate (1). The rotating square substrate (1) cuts the wind and turbulent flow occurs, which undulates the surface of the chemical layer (2a) in the corner portion (35), and has a relatively excellent inscribed circle. There is a problem that the flatness is greatly impaired outside the inscribed circle (N) compared to the flatness inside (N), and the surface state greatly changes inside and outside the inscribed circle (N).

そこで、先行技術文献1(図6,7)では、回転可能な円形の載置台本体(100)(本発明の回転チャック(10)に相当する。)に角形基板(1)を載置し、回転時、その遠心力を利用した「錘(105)を利用したてこ(104)」を用いて前記角形基板(1)の辺(52)…に当接する半月状の成形部材(103)…[停止時に離間可能]を配置したものである。加えて薬液塗布時における成形部材(103)と角形基板(1)との間に隙間が発生しないようにして薬液(2)が角形基板(1)から成形部材(103)へスムーズに流れるように配慮している。なお、角形基板(1)と成形部材(103)とは面一に形成されている。   Therefore, in Prior Art Document 1 (FIGS. 6 and 7), the square substrate (1) is placed on a rotatable circular placing table body (100) (corresponding to the rotating chuck (10) of the present invention), A half-moon shaped molded member (103) that abuts the side (52) of the rectangular substrate (1) using a "lever (104) utilizing a weight (105)" utilizing the centrifugal force during rotation. [Can be separated when stopped]]. In addition, the chemical solution (2) flows smoothly from the square substrate (1) to the molded member (103) so that there is no gap between the molded member (103) and the square substrate (1) when applying the chemical solution. Consideration. The square substrate (1) and the molded member (103) are formed flush with each other.

従って、先行技術文献1に記載の発明では、基本的に角形基板(1)の内接円(N)外の角部分(5)と成形部材(103)では基本的に同心円状に薬液(2)が拡大・塗布されていくことになり、或る程度フラットな薬液表面が全面に形成されることになり、先行技術文献2が出願された時代(昭和62年当時)の半導体製造レベルではこれで十分であった。   Accordingly, in the invention described in the prior art document 1, basically, the corner portion (5) outside the inscribed circle (N) of the rectangular substrate (1) and the molded member (103) are basically concentrically shaped in the chemical solution (2 ) Will be expanded and applied, and a certain level of chemical solution surface will be formed on the entire surface. At the semiconductor manufacturing level at the time when the prior art document 2 was filed (at the time of 1987), Was enough.

しかしながら、現代では当時と比べて半導体素子の集積量は飛躍的に増大し、且つ半導体素子そのものも超微細化しているので、当時のフラット精度では到底対応する事ができない。何故ならば、前述のように角形基板(1)と面一な成形部材(103)を用いて角形基板(1)上に形成される薬液層(2a)の表面平面度を高いものにしようとしても、
・ ガラスである角形基板(1)と、金属である成形部材(103)との材質の相違や、
・ 成形部材(103)を角形基板(1)の辺(52)に押圧するようにしたとしてもこの部分(両者の接触ライン(LN))で抵抗が発生して乱れが生じ、内接円(N)外の角部分(5)の薬液(2)の流れに乱れが生じ、現状のような超微細な半導体素子を構成しなければならないような状況では、内接円(N)外での薬液層(2a)の平面性の精度が必要とされるレベルに達しなかった。
However, since the integration amount of semiconductor elements has increased dramatically compared to those days, and the semiconductor elements themselves have become extremely finer, the flat accuracy at that time cannot be used at all. This is because the surface flatness of the chemical layer (2a) formed on the rectangular substrate (1) is made high by using the molding member (103) flush with the rectangular substrate (1) as described above. Also,
The difference in material between the square substrate (1) made of glass and the molded member (103) made of metal,
・ Even if the molded member (103) is pressed against the side (52) of the square substrate (1), resistance is generated in this portion (both contact lines (LN)), resulting in turbulence. N) In the situation where the flow of the chemical solution (2) in the outer corner part (5) is disturbed and it is necessary to construct an ultrafine semiconductor element as in the present situation, the outside of the inscribed circle (N) The flatness accuracy of the chemical layer (2a) did not reach the required level.

加えて、図7からわかるように角形基板(1)の外接円(G)が成形部材(103)の角に一致するため、薬液(2)の表面張力によって成形部材(103)の外縁部分(角形基板(1)の外接円(G)に一致する。)に発生する薬液(2)の盛り上がり部分(M)が角形基板(1)に角部分(5)の先端に連なって発生し、角形基板(1)全体の平面度における均一性を損なうという欠点もあった。   In addition, as can be seen from FIG. 7, since the circumscribed circle (G) of the square substrate (1) coincides with the corner of the molded member (103), the outer edge portion of the molded member (103) (by the surface tension of the chemical solution (2)) The raised part (M) of the chemical solution (2) generated on the circumscribed circle (G) of the square substrate (1) is connected to the tip of the square part (5) on the square substrate (1). There is also a drawback that the uniformity in flatness of the entire substrate (1) is impaired.

次に、先行技術文献2(図8、9)であるが、このものには角形基板(1)より小径のターンテーブル(110)(本発明の回転チャック(10)に相当する。)の上に飛散防止カバー(130)(本発明のフード(13)に相当する。)が設けられており、飛散防止カバー(130)の中央に設けられた孔(131)から飛散防止カバー(130)内に外気エアーが角形基板(1)に向かって流れ込み、次いで方向を変えて基板周縁(S)に向かって流れるようにしてある。従って、飛散防止カバー(130)内を流れる外気エアーの気流(4)によって、回転中にターンテーブル(110)の基板(1)上に発生する乱流はある程度抑制される事になるが、飛散防止カバー(130)の孔(131)に対応する範囲内(H1)では基板(1)の表面に向かうダウン方向の気流(4)によって基板(1)の表面の薬液層(2a)が押さえられ、遠心力との相乗効果により薬液層(2a)の平面度は高いが、該範囲外(H2)では前記範囲内(H1)の平面度より悪くなり、やはり現状のような超微細な半導体素子を構成しなければならないような状況では対応できなかった。   Next, according to Prior Art Document 2 (FIGS. 8 and 9), this is on a turntable (110) (corresponding to the rotary chuck (10) of the present invention) having a smaller diameter than the square substrate (1). The anti-scattering cover (130) (corresponding to the hood (13) of the present invention) is provided in the anti-scattering cover (130) from the hole (131) provided in the center of the anti-scattering cover (130). The outside air flows into the square substrate (1) and then changes direction to flow toward the substrate periphery (S). Therefore, the turbulent flow generated on the substrate (1) of the turntable (110) during rotation is suppressed to some extent by the airflow (4) of the outside air flowing through the scattering prevention cover (130). Within the range (H1) corresponding to the hole (131) of the prevention cover (130), the chemical layer (2a) on the surface of the substrate (1) is suppressed by the downward air flow (4) toward the surface of the substrate (1). The flatness of the chemical layer (2a) is high due to the synergistic effect with the centrifugal force, but the flatness outside the range (H2) is worse than the flatness within the range (H1). It was not possible to cope with the situation that had to be configured.

なお、先行技術文献1を先行技術文献2に適応しても前述のように飛散防止カバー(130)の孔(131)に対応する範囲内(H1)では基板(1)表面の薬液層(2a)の平面度は高いが、該範囲外(H2)では前記範囲内(H1)の平面度より悪くなり、現状で要求されるような基板(1)の全面における平面度の超高均一性を担保する事は出来ない。   Even if the prior art document 1 is adapted to the prior art document 2, the chemical solution layer (2a) on the surface of the substrate (1) is within the range (H1) corresponding to the hole (131) of the scattering prevention cover (130) as described above. ) Is high, but outside the range (H2), it becomes worse than the flatness within the range (H1), and the flatness of the entire surface of the substrate (1) as required at present is extremely high. It cannot be secured.

実開昭63−193572号公報Japanese Utility Model Publication No. 63-193572 特開平07−308625号公報Japanese Patent Application Laid-Open No. 07-308625

本発明の解決課題は、現状のような超微細な画素を角形基板全面において構成しなければならないような状況において、角形基板でもその角部分の先端まで超均一平面薬液層を形成する事の出来る薬液塗布装置を開発する事にある。   The problem to be solved by the present invention is that, in a situation where ultra-fine pixels have to be formed on the entire surface of the square substrate, a super-uniform planar chemical solution layer can be formed even on the square substrate up to the tip of the corner portion. We are developing a chemical application device.

本発明に係る薬液塗布装置(A)は、
(1) ガラス又はセラミックス製の角形基板(1)が嵌め込まれる角形凹所(16)が形成され、該角形凹所(16)の外接円(G)外に平坦縁部(10b)が形成され、角形基板(1)が前記角形凹所(16)に面一に嵌め込まれた状態で回転する回転チャック(10)と、
(2) 角形基板(1)上に薬液(2)を供給するための薬液供給部(11)と、
(3) 回転チャック(10)に載置された角形基板(1)を覆うためのものであって、回転チャック(10)の直上に気体流入孔(12)が穿設されており、気体流入孔(12)から角形基板(1)側に導入された気体にて角形基板(1)の中心(P)側から周縁(S)方向に流れる気流(4)を作り出す円錐台状のフード(13)とを有する薬液塗布装置(A)であって、
(a) フード(13)の気体流入孔(12)が角形基板(1)の内接円(N)に等しく、且つ、
(b) フード(13)の裾縁(14a)が回転チャック(10)の外周縁(10c)に等しく形成されている事を特徴とする。ここで、気体流入孔(12)の直径を(X1)、裾縁(14a)の直径を(X2)とすると、直径(X1)は角形基板(1)の内接円(N)に等しく、直径(X2)が回転チャック(10)の外周縁(10c)に等しくなる。
The chemical solution coating apparatus (A) according to the present invention is:
(1) A square recess (16) into which a square substrate (1) made of glass or ceramics is fitted is formed, and a flat edge (10b) is formed outside the circumscribed circle (G) of the square recess (16). A rotating chuck (10) that rotates in a state in which the rectangular substrate (1) is flush with the rectangular recess (16),
(2) a chemical solution supply unit (11) for supplying the chemical solution (2) onto the rectangular substrate (1);
(3) Covers the rectangular substrate (1) placed on the rotating chuck (10), and has a gas inflow hole (12) formed directly above the rotating chuck (10). A frustoconical hood (13) that creates an air flow (4) flowing from the center (P) side to the peripheral (S) direction of the square substrate (1) with the gas introduced from the hole (12) to the square substrate (1) side. A chemical application device (A) having
(a) the gas inlet hole (12) of the hood (13) is equal to the inscribed circle (N) of the square substrate (1), and
(b) The skirt edge (14a) of the hood (13) is formed to be equal to the outer peripheral edge (10c) of the rotary chuck (10). Here, when the diameter of the gas inflow hole (12) is (X1) and the diameter of the skirt edge (14a) is (X2), the diameter (X1) is equal to the inscribed circle (N) of the square substrate (1), The diameter (X2) is equal to the outer peripheral edge (10c) of the rotary chuck (10).

請求項2の薬液塗布装置(A)は、請求項1の更なる限定で「角形基板(1)から回転チャック(10)の端縁までの平坦縁部(10b)の最短幅(L1)が回転チャック(10)の周端縁表面に形成される薬液盛り上がり部分(M)の幅(L2)より大きい」ことを特徴とする。   The chemical liquid coating apparatus (A) according to claim 2 is a further limitation of claim 1, wherein the shortest width (L1) of the flat edge (10b) from the square substrate (1) to the edge of the rotary chuck (10) is reduced. It is characterized in that it is larger than the width (L2) of the chemical liquid rising portion (M) formed on the peripheral edge surface of the rotary chuck (10).

前述のように角形基板(1)が嵌め込まれた回転チャック(10)を回転させるとその遠心力で薬液(2)はその表面を角形基板(1)の周縁(S)部分に向かい、且つ内接円(N)を超えた部分では角部分(5)以外の部分では回転チャック(10)の平坦縁部(10b)まで流れていく。ここで角形基板(1)は回転チャック(10)に形成された角形凹所(16)内で平坦縁部(10b)と面一に嵌め込まれているので、角形基板(1)は従来の円形基板とある程度同じ状態となり、薬液(2)が角形基板(1)から回転チャック(10)の平坦縁部(10b)までスムーズに広がって行く。   When the rotary chuck (10) with the square substrate (1) fitted therein is rotated as described above, the centrifugal force causes the chemical (2) to face the peripheral (S) portion of the square substrate (1) and In the portion beyond the contact circle (N), the portion other than the corner portion (5) flows to the flat edge (10b) of the rotary chuck (10). Here, since the square substrate (1) is fitted flush with the flat edge (10b) in the square recess (16) formed in the rotary chuck (10), the square substrate (1) is a conventional circular shape. It becomes the same state as the substrate, and the chemical (2) spreads smoothly from the square substrate (1) to the flat edge (10b) of the rotary chuck (10).

しかしながら、角形基板(1)の角部分(5)の表面と、角形基板(1)を取り囲む回転チャック(10)の平坦縁部(10b)とは、面一であるとしても前述のようにガラス又はセラミックス製と金属製という材質上の相違や、角形基板(1)とこれが嵌め込まれた角形凹所(16)の内壁との間の極く細い溝(16a)の存在などで、「フード(13)なし」の状態では、角形凹所(16)の内接円(N)の内外でやはり薬液(2)の流れに前述のような若干の相違があり、内接円(N)の内外で表面状態が極く僅かではあるが相違する。換言すれば、内接円(N)外の角部分(5)の方が若干悪くなる。   However, even if the surface of the corner portion (5) of the square substrate (1) and the flat edge (10b) of the rotating chuck (10) surrounding the square substrate (1) are flush with each other, the glass as described above. Or the difference in material between ceramic and metal, the presence of a very thin groove (16a) between the square substrate (1) and the inner wall of the square recess (16) in which it is fitted, etc. In the state of `` 13) None '', there is still a slight difference in the flow of the chemical solution (2) inside and outside the inscribed circle (N) of the square recess (16), and the inside and outside of the inscribed circle (N) However, the surface state is very slight but different. In other words, the corner portion (5) outside the inscribed circle (N) is slightly worse.

そこで、(a)フード(13)の気体流入孔(12)が角形基板(1)の内接円(N)に等しく、且つ、(b)フード(13)の裾縁(14a)が回転チャック(10)の外周縁(10c)に等しく形成され、(c)フード(13)の裾縁(14a)と回転チャック(10)との間に排気用間隙(K)が形成されている円錐台状のフード(13)を使用すると、フード(13)の気体流入孔(12)から流入した空気のかなりの部分がダウンフローとなって角形基板(1)の内接円(N)内に相当する部分を均等に押圧し、回転チャック(10)の回転による遠心力と相俟って、この部分、即ち、内接円(N)内において極めてフラットな薬液層(2b)を形成する。   Therefore, (a) the gas inlet hole (12) of the hood (13) is equal to the inscribed circle (N) of the rectangular substrate (1), and (b) the hem edge (14a) of the hood (13) is the rotary chuck. (10) A truncated cone that is formed equal to the outer peripheral edge (10c) of the hood (13), and is formed with an exhaust gap (K) between the bottom edge (14a) of the hood (13) and the rotary chuck (10). When the hood (13) is used, a considerable part of the air flowing in from the gas inlet hole (12) of the hood (13) is downflowed and corresponds to the inscribed circle (N) of the square substrate (1) The part to be pressed is evenly pressed, and combined with the centrifugal force generated by the rotation of the rotary chuck (10), an extremely flat chemical liquid layer (2b) is formed in this part, that is, the inscribed circle (N).

一方、内接円(N)外にあっては前記流入空気が回転チャック(10)の外周縁(10c)向かって層流となって流れ、該外周縁(10c)近傍に発生しやすい乱流を抑制する。このとき角形基板(1)の内接円(N)外の角部分(5)では、角形基板(1)の内接円(N)内に比べて前述の理由(材質の相違や角部分(5)の辺(52)での薬液(2)のフローに対する抵抗)により、その平面度が若干落ちるが、この部分を流れる気流(4)が薬液(2)を上から押さえ込むと同時に押し流し、前記角形基板(1)の角部分(5)の平面度を角形基板(1)の内接円(N)内に相当する部分と同等の状態までにする。   On the other hand, outside the inscribed circle (N), the inflowing air flows as a laminar flow toward the outer peripheral edge (10c) of the rotating chuck (10), and is likely to be generated near the outer peripheral edge (10c). Suppress. At this time, in the corner portion (5) outside the inscribed circle (N) of the square substrate (1), compared to the inscribed circle (N) of the square substrate (1), the reason (the difference in material and the corner portion ( (5) Resistance to the flow of the chemical solution (2) at the side (52)), the flatness is slightly reduced, but the airflow (4) flowing through this part pushes the chemical solution (2) from the top and pushes it away, The flatness of the corner portion (5) of the square substrate (1) is set to a state equivalent to the portion corresponding to the inscribed circle (N) of the square substrate (1).

特に、ここで使用される角形基板(1)は前述のようにガラス或はセラミックスで、その厚みは1mm以上(最大は15mm〜20mm)と半導体基板に比べて厚く、それ故、回転チャック(10)の角形凹所(16)の底部に浅い真空路を形成するための切欠部を有する、角形基板(1)の裏面に接してこれを支持する、凸状で一部に真空引きのための切欠(ただし、最外周にはなし。)が設けられているリング状支持部(17)が形成されることになるため、角形凹所(16)の底部の底部に厚みとして5mmは必要となるため、回転チャック(10)もそれだけ厚くなる[5mm以上(最大は20mm〜25mm)]。それ故、ぶ厚い回転チャック(10)が高速回転するとその側面に接触している空気もそれに引っ張られて回転チャック(10)の周囲を回転し、それが原因となって回転チャック(10)の外周縁(10c)部分に乱流を発生させやすい。本発明では角形基板(1)の角部から更に面一にて外側に延びる平坦縁部(10b)の存在により回転チャック(10)の周縁部分にたとえ小さな乱流が発生したとしても外周縁(10c)近傍で収まり、角形基板(1)の角部分(5)まで影響を及ぼさない。   In particular, the square substrate (1) used here is glass or ceramics as described above, and its thickness is 1 mm or more (maximum 15 mm to 20 mm), which is thicker than the semiconductor substrate. (2) has a notch for forming a shallow vacuum path at the bottom of the square recess (16), and is in contact with the back surface of the square substrate (1) to support it, and is convex and partially evacuated Since a ring-shaped support portion (17) provided with a notch (but not on the outermost periphery) is formed, a thickness of 5 mm is required at the bottom of the square recess (16). The rotating chuck (10) is also thicker [5 mm or more (maximum 20 mm to 25 mm)]. Therefore, when the thick rotating chuck (10) rotates at a high speed, the air in contact with its side surface is also pulled by it and rotates around the rotating chuck (10), which causes the outer surface of the rotating chuck (10) to be removed. It is easy to generate turbulent flow at the peripheral edge (10c). In the present invention, even if a small turbulent flow is generated in the peripheral portion of the rotary chuck (10) due to the presence of the flat edge portion (10b) extending outward from the corner portion of the square substrate (1), the outer peripheral edge ( 10c) It fits in the vicinity and does not affect the corner part (5) of the square substrate (1).

加えて角形基板(1)から回転チャック(10)の端縁までの平坦縁部(10b)の最短幅(L1)が回転チャック(10)の周端縁表面に形成される薬液盛り上がり部分(M)の幅(L2)より大きいので、気流(4)の存在でその盛り上がりがある程度抑制されるとしても、どうしても遠心力と表面張力の協働作用によって発生する薬液盛り上がり部分(M)が外周縁(10c)近傍表面に限定され、角部分(5)に影響を及ぼさない。この状態で薬液層(2a)が乾燥或いは反応によって固化すると、角部分(5)まで略均一な薬液層(2a)を持つ角形基板(1)が得られる事になる。   In addition, the shortest width (L1) of the flat edge (10b) from the square substrate (1) to the edge of the rotary chuck (10) is the chemical liquid swelled part (M ) Is larger than the width (L2), even if the swell is suppressed to some extent by the presence of the airflow (4), the liquid swelled part (M) inevitably generated by the cooperative action of centrifugal force and surface tension is the outer periphery ( 10c) It is limited to the near surface and does not affect the corner (5). In this state, when the chemical solution layer (2a) is solidified by drying or reaction, a rectangular substrate (1) having a substantially uniform chemical solution layer (2a) up to the corner portion (5) is obtained.

以下、本発明を図示実施例に従って詳述する。本装置(A)の回転チャック(10)は、下部ベース(15)の中央に回転自在に配設されており、その上面に角形基板(1)が嵌まり込む角形凹所(16)が形成されている。角形凹所(16)の底部には角形基板(1)の裏面に接してこれを支持する、凸状で一部に真空引きのための切欠(ただし、最外周にはなし。)が設けられている複数のリング状支持部(17)が同心円にて突設されており、その中心に真空吸着孔(18)が穿設されている。真空吸着孔(18)は、回転チャック(10)の回転軸(10k)を貫通して形成されており、図示しない例えば真空ポンプのような真空吸引源に接続されている。   Hereinafter, the present invention will be described in detail according to illustrated embodiments. The rotating chuck (10) of this device (A) is rotatably arranged at the center of the lower base (15), and a rectangular recess (16) into which the rectangular substrate (1) is fitted is formed on the upper surface. Has been. The bottom of the square recess (16) is in contact with the back surface of the square substrate (1) to support it, and is convex and partly provided with a notch for evacuation (but not on the outermost periphery). A plurality of ring-shaped support portions (17) are formed in concentric circles, and a vacuum suction hole (18) is formed in the center thereof. The vacuum suction hole (18) is formed through the rotation shaft (10k) of the rotary chuck (10), and is connected to a vacuum suction source such as a vacuum pump (not shown).

下部ベース(15)は、後述する液受けプレート(26)からこぼれた薬液(2)の受け皿部分を形成するもので、その周縁部分にはなだらかな傾斜面(19)を有するリング状の凹溝(20)がその周囲に形成されている。また、前記下部ベース(15)の側壁(21)の上端近傍には1乃至複数の排気孔(28)が形成されている。   The lower base (15) forms a tray portion for the chemical liquid (2) spilled from the liquid receiving plate (26), which will be described later, and a ring-shaped concave groove having a gentle inclined surface (19) on the peripheral portion thereof. (20) is formed around it. One or more exhaust holes (28) are formed near the upper end of the side wall (21) of the lower base (15).

下部ベース(15)の側壁(21)の上端内周には、下方に行くに従って外方に拡径するリング状の第1カバー(22)及びその内側にリング状の第2カバー(23)がそれぞれ配設されている。第2カバー(23)には回転チャック(10)とほぼ同じか或いは若干大きめの直径の大径孔(24)が穿設されている。   On the inner periphery of the upper end of the side wall (21) of the lower base (15), there is a ring-shaped first cover (22) that expands outward as it goes downward, and a ring-shaped second cover (23) inside it. Each is arranged. The second cover (23) is provided with a large-diameter hole (24) having a diameter substantially the same as or slightly larger than that of the rotary chuck (10).

また、下部ベース(15)の上にはリング状の液溜り(25)を有する液受けプレート(26)が配設されており、回転チャック(10)の下方をカバーしている。液受けプレート(26)の外周側壁(27)は前記第1、2カバー(22)(23)との間に配設されており、液受けプレート(26)自体は支持脚(29)で下部ベース(15)に取り付けられている。   A liquid receiving plate (26) having a ring-shaped liquid reservoir (25) is disposed on the lower base (15), and covers the lower part of the rotating chuck (10). The outer peripheral side wall (27) of the liquid receiving plate (26) is disposed between the first and second covers (22) and (23), and the liquid receiving plate (26) itself is a lower portion by the support leg (29). Attached to the base (15).

下部ベース(15)の外部には装置ベース(30)上に複数の昇降シリンダ(31)が立設されており、その昇降ロッド(32)にリング状のフード取付プレート(33)が取り付けられている。そしてこのフード取付プレート(33)の大径通孔(34)にフード(13)が装着されている。フード取付プレート(33)とフード(13)とを一体成形する事は勿論可能である。   A plurality of lifting cylinders (31) are erected on the device base (30) outside the lower base (15), and a ring-shaped hood mounting plate (33) is attached to the lifting rod (32). Yes. A hood (13) is attached to the large-diameter through hole (34) of the hood mounting plate (33). Of course, the hood mounting plate (33) and the hood (13) can be integrally formed.

前記フード(13)は、図のように中央の気体流入孔(12)から裾縁(14a)に向かって円錐台状に形成され、その頂部に気体流入孔(12)が形成されており、気体流入孔(12)から内部へ吸引或いは導入されたその大部分の気体にて、角形基板(1)側に角形基板(1)の中心(P)側から周縁(S)方向に流れる気流(4)を作り出す事が出来るようになっている。一部はフード(13)の傘部分に沿って流れる。そして該気流(4)は、フード(13)の裾縁(14a)と回転チャック(10)との間に排気用間隙(K)から排気されるようになっている。フード(13)は排気用間隙(K)に向かって角形基板(1)に次第に近接し、フード(13)と角形基板(1)との間を流れる気流(4)の流速を次第に速めるようになっている。前記フード(13)の気体流入孔(12)は角形基板(1)の内接円(N)に等しく、且つ、フード(13)の裾縁(14a)は回転チャック(10)の外周縁(10c)に等しく形成されている。   The hood (13) is formed in a truncated cone shape from the central gas inlet hole (12) to the skirt edge (14a) as shown in the figure, and the gas inlet hole (12) is formed at the top thereof. Air flow (from the center (P) side of the square substrate (1) to the peripheral (S) direction toward the square substrate (1) side with the majority of the gas sucked or introduced into the inside from the gas inflow hole (12) ( 4) can be created. A part flows along the umbrella part of the hood (13). The air flow (4) is exhausted from the exhaust gap (K) between the bottom edge (14a) of the hood (13) and the rotating chuck (10). The hood (13) gradually approaches the square substrate (1) toward the exhaust gap (K) and gradually increases the flow velocity of the air flow (4) flowing between the hood (13) and the square substrate (1). It has become. The gas inlet hole (12) of the hood (13) is equal to the inscribed circle (N) of the square substrate (1), and the hem edge (14a) of the hood (13) is the outer peripheral edge ( Formed equal to 10c).

前記回転チャック(10)の回転軸(10k)の周囲にて下部ベース(15)には3乃至4本の基板昇降支持棒(35)が配設されており、その先端に支持先端が球状に形成された支持部(35a)が取り付けられている。そして、この基板昇降支持棒(35)は前記回転チャック(10)を突き抜けて昇降するため、回転チャック(10)に穿設された貫通孔(36)は回転チャック(10)の基板昇降支持棒(35)に一致した位置にて停止するようになっている。   Around the rotating shaft (10k) of the rotating chuck (10), three to four substrate lifting / lowering support rods (35) are disposed on the lower base (15), and the tip of the support is spherical. The formed support part (35a) is attached. The substrate lifting / lowering support rod (35) moves up and down through the rotating chuck (10), so the through hole (36) drilled in the rotating chuck (10) is a substrate lifting / lowering supporting rod of the rotating chuck (10). It stops at the position corresponding to (35).

薬液供給部(11)は、薬液供給ノズル(37)、薬液供給ノズル(37)を支持するアーム(38)、アーム(38)を昇降させる昇降駆動部(図示せず。本実施例ではシリンダで構成されている)、アーム(38)を水平面内である角度を以て往復揺動運動させる揺動駆動部(図示せず。)、前記薬液供給ノズル(37)に接続しているチューブ(41)とで構成されている。前記薬液供給部(11)は下部ベース(15)外に配設されており、揺動駆動部と昇降駆動部とを作動させる事で薬液供給ノズル(37)が角形基板(1)の中心(P)側の直上で昇降し且つ角形基板(1)の中心(P)の直上の位置と下部ベース(15)外との間を往復するようになっている。   The chemical liquid supply unit (11) includes a chemical liquid supply nozzle (37), an arm (38) that supports the chemical liquid supply nozzle (37), and an elevating drive unit (not shown) that lifts and lowers the arm (38). A swing drive unit (not shown) for reciprocally swinging the arm (38) at an angle within a horizontal plane, a tube (41) connected to the chemical solution supply nozzle (37), and It consists of The chemical supply unit (11) is disposed outside the lower base (15), and the chemical supply nozzle (37) is moved to the center of the rectangular substrate (1) by operating the swing drive unit and the lift drive unit ( It moves up and down just above the P) side and reciprocates between a position directly above the center (P) of the rectangular substrate (1) and the outside of the lower base (15).

本発明に使用される角形基板(1)は特殊用途のガラス基板或はセラミックス基板で、その厚さは1mm以上、最大は15mmの厚いものである。形は正方形が中心であるが、長方形のものも当然含まれる。辺の長さは100〜200mm(正方形の場合)、長方形の場合は長方形基板(図示せず。)の内接円(図示せず。)に気体流入孔(12)の直径(X1)に等しく、裾縁(14a)の直径(X2)を回転チャック(10)の外周縁(10c)に等しくなるようにする。長方形基板の内接円より外の部分は、角形基板(1)の内接円より外の部分と同様の挙動を示す。   The rectangular substrate (1) used in the present invention is a glass substrate or a ceramic substrate for special use, and has a thickness of 1 mm or more and a maximum of 15 mm. The shape is centered on a square, but of course rectangular shapes are also included. The length of the side is 100 to 200 mm (in the case of a square), and in the case of a rectangle, the inscribed circle (not shown) of a rectangular substrate (not shown) is equal to the diameter (X1) of the gas inlet hole (12). The diameter (X2) of the hem edge (14a) is made equal to the outer peripheral edge (10c) of the rotary chuck (10). The portion outside the inscribed circle of the rectangular substrate exhibits the same behavior as the portion outside the inscribed circle of the rectangular substrate (1).

次に、本発明装置(A)の作用に付いて説明する。図1に示すようにロボットハンド(R)に吸着された角形基板(1)が装置(A)内に搬送されてくる。この時当然、薬液供給ノズル(37)は下部ベース(15)外に逃げており、フード(13)は第1,2カバー(22)(23)から上方に離間した状態となっている。角形基板(1)が回転チャック(10)の直上に来た時にロボットハンド(R)は停止し、その位置で待機する。   Next, the operation of the device (A) of the present invention will be described. As shown in FIG. 1, the square substrate (1) adsorbed by the robot hand (R) is transferred into the apparatus (A). Naturally, at this time, the chemical supply nozzle (37) has escaped to the outside of the lower base (15), and the hood (13) is spaced upward from the first and second covers (22) and (23). When the square substrate (1) comes directly above the rotating chuck (10), the robot hand (R) stops and waits at that position.

すると、図示しないシリンダのような昇降駆動体の作用で、基板昇降支持棒(35)が一斉に上昇し、回転チャック(10)の貫通孔(36)を通ってロボットハンド(R)に保持されている角形基板(1)の直下の位置迄上昇しこの位置で待機する。するとロボットハンド(R)が角形基板(1)と共に降下し、基板昇降支持棒(35)の先端の支持部(35a)に角形基板(1)の下面が当接し、その時点で例えば、真空チャックのような拘束手段の場合、その真空が破れる事でロボットハンド(R)の拘束が解かれ、支持部(35a)上に角形基板(1)が載置される。ロボットハンド(R)は前記載置後、更に降下し、完全に角形基板(1)から外れた位置迄降下した後、後退して下部ベース(15)外に移動する。   Then, the lifting / lowering drive body such as a cylinder (not shown) raises the substrate lifting / lowering support rod (35) all at once and is held by the robot hand (R) through the through hole (36) of the rotating chuck (10). Ascends to a position directly below the square substrate (1) that is on, and waits at this position. Then, the robot hand (R) descends together with the square substrate (1), and the lower surface of the square substrate (1) comes into contact with the support portion (35a) at the tip of the substrate lifting support rod (35). In the case of such a restraining means, the robot hand (R) is unconstrained by breaking the vacuum, and the square substrate (1) is placed on the support portion (35a). After the placement, the robot hand (R) further descends, descends to a position completely disengaged from the square substrate (1), then moves backward and moves out of the lower base (15).

支持部(35a)上への角形基板(1)の移載が完了すると、角形基板(1)を保持した状態で基板昇降支持棒(35)が一斉に降下する。そして、角形基板(1)に合わせて正確に凹設された回転チャック(10)の角形凹所(16)内に角形基板(1)が面一にて嵌まり込む。基板昇降支持棒(35)は角形基板(1)が角形凹所(16)内に嵌まり込んだ後も降下し、貫通孔(36)から完全に離脱した時点で停止・待機する。   When the transfer of the rectangular substrate (1) onto the support portion (35a) is completed, the substrate lifting and lowering support rod (35) descends all at once while holding the rectangular substrate (1). Then, the rectangular substrate (1) is fitted flush with the rectangular recess (16) of the rotary chuck (10) that is accurately recessed according to the rectangular substrate (1). The substrate lifting / lowering support rod (35) descends even after the rectangular substrate (1) is fitted into the rectangular recess (16), and stops and waits when it completely leaves the through hole (36).

角形基板(1)が角形凹所(16)内に嵌まり込んだ時点、或いはその後の基板昇降支持棒(35)の停止時点で真空吸着孔(18)に図示しない真空源が接続され、角形基板(1)を角形凹所(16)内に吸着固定する。前記吸着固定が完了したかどうかは、例えば図示しない圧力センサにて真空吸着孔(18)の減圧状態をチェックする事(即ち、真空状態になれば吸着完了)で判定する事が出来る。   A vacuum source (not shown) is connected to the vacuum suction hole (18) when the square substrate (1) is fitted into the square recess (16), or when the substrate lifting support rod (35) is subsequently stopped, The substrate (1) is sucked and fixed in the rectangular recess (16). Whether or not the suction fixation has been completed can be determined, for example, by checking the reduced pressure state of the vacuum suction hole (18) with a pressure sensor (not shown) (that is, suction completion when the vacuum state is reached).

続いて、薬液供給部(11)の揺動駆動部を作動させて薬液供給ノズル(37)を角形基板(1)の中心(P)の直上迄移動させ、続いて昇降駆動部を作動させて薬液供給ノズル(37)を降下させ、ノズル先端を角形基板(1)の中心(P)に近接させる。ノズル先端が角形基板(1)の中心(P)に近接し、停止した所で、図示しない薬液供給源を作動させ、チューブ(41)を介して所定量の薬液(2)「例えばフォトレジストなど」を薬液供給ノズル(37)から角形基板(1)の中心(P)に向かって滴下させる。薬液(2)の供給後、昇降駆動部を逆作動させて薬液供給ノズル(37)を上昇させ、然る後揺動駆動部を逆作動させて薬液供給ノズル(37)を下部ベース(15)外のホームポジションに戻し、その位置で停止・待機させる。   Subsequently, the swing drive part of the chemical liquid supply part (11) is operated to move the chemical liquid supply nozzle (37) to a position just above the center (P) of the square substrate (1), and then the lift drive part is operated. The chemical solution supply nozzle (37) is lowered and the tip of the nozzle is brought close to the center (P) of the rectangular substrate (1). When the tip of the nozzle approaches the center (P) of the square substrate (1) and stops, a chemical supply source (not shown) is activated, and a predetermined amount of chemical (2) is passed through the tube (41), such as a photoresist. Is dripped from the chemical solution supply nozzle (37) toward the center (P) of the rectangular substrate (1). After supplying the chemical liquid (2), the lift drive unit is reversely operated to raise the chemical liquid supply nozzle (37), and then the swing drive part is reversely operated to set the chemical liquid supply nozzle (37) to the lower base (15). Return to the outside home position and stop / standby at that position.

薬液供給ノズル(37)が下部ベース(15)外のホームポジションに戻った処で、昇降シリンダ(31)を作動させてフード(13)を降下させ、第1,2カバー(22)(23)にフード取付プレート(33)を密着させると共にフード(13)にて大径孔(24)を覆う。装置(A)内には無塵の超クリーンエアが常に上から下に流れており、フード(13)をする事で前記気流(4)は、フード(13)の気体流入孔(12)を通ってフード(13)内に流入する。流入気流(4)の大部分は角形基板(1)の内接円(N)全面に吹き当たり、続いて内接円(N)外方向、即ち、角形基板(1)の周縁(S)方向に流れ、第2カバー(23)の下縁を潜り、液受けプレート(26)の外周側壁(27)の上縁を越え、更に第1カバー(22)の下縁を潜って下部ベース(15)の側壁(21)に沿って上り、側壁(21)の排気孔(28)から外部に流出して行く。   When the chemical supply nozzle (37) returns to the home position outside the lower base (15), the elevating cylinder (31) is operated to lower the hood (13), and the first and second covers (22) (23) The hood mounting plate (33) is brought into close contact with the hood (13) and the large-diameter hole (24) is covered with the hood (13). In the device (A), dust-free ultra-clean air always flows from the top to the bottom, and the hood (13) allows the air flow (4) to flow through the gas inlet hole (12) of the hood (13). And flows into the hood (13). Most of the inflow airflow (4) blows to the entire surface of the inscribed circle (N) of the square substrate (1), and then the outward direction of the inscribed circle (N), that is, the peripheral edge (S) direction of the square substrate (1). To the bottom edge of the second cover (23), over the upper edge of the outer peripheral side wall (27) of the liquid receiving plate (26), and further into the lower base (15) under the lower edge of the first cover (22). ) Along the side wall (21), and flows out from the exhaust hole (28) of the side wall (21).

フード(13)が下がりきって停止すると、回転チャック(10)が回転を始める。すると、角形基板(1)の中心(P)に滴下された薬液(2)は回転を始めた角形基板(1)の遠心力と前記気流(4)によって周縁(S)に向かって同心円状にて均等に広がっていく。フード(13)の気体流入孔(12)が角形基板(1)の内接円(N)に一致しているので、フード(13)内に流入した大部分の気流(4)は角形基板(1)の内接円(N)全面に吹き当たり、回転時の遠心力と相俟って極めてフラットな超高平面度の薬液層(2a)を形成する。   When the hood (13) is lowered and stopped, the rotating chuck (10) starts rotating. Then, the chemical liquid (2) dropped on the center (P) of the square substrate (1) is concentrically formed toward the peripheral edge (S) by the centrifugal force of the square substrate (1) that has started to rotate and the air flow (4). Spread evenly. Since the gas inlet hole (12) of the hood (13) coincides with the inscribed circle (N) of the square substrate (1), most of the airflow (4) flowing into the hood (13) It blows over the entire surface of the inscribed circle (N) of 1) and forms a very flat ultra-high flatness chemical solution layer (2a) in combination with centrifugal force during rotation.

同心円状に拡散していった薬液(2)の一部は、角形基板(1)の側縁(1a)の中央に到達するが、角部分(5)に向かった薬液(2)はまだ角部分(5)の先端に到達していない。薬液(2)は次第に狭くなる角部分(5)の先端に向かって従来例で述べたように円弧を描きながら流れていくが、角形基板(1)の側縁(1a)に沿って存在する細い溝(16a)の存在により角部分(5)から平坦縁部(10b)への薬液(2)の移行が若干抵抗をもって行われる事になる(従って、若干円弧がきつくなる。)が、この場合は更に前記気流(4)の助けにより角部分(5)の先端まで過不足なく薬液(2)が流れ着く。そして過剰な薬液(2)は角形基板(1)を越えて平坦縁部(10b)へ流れ、回転チャック(10)の外周縁(10c)から振り切られて液受けプレート(26)の液溜り(25)に溜まる。そして前記気流(4)は、液溜り(25)側が負圧になっているため液溜り(25)側に引き込まれる事によって該気流(4)は方向を変え、螺旋状の層流になって周縁(S)に向かって流れていく。   Part of the chemical solution (2) that has diffused concentrically reaches the center of the side edge (1a) of the square substrate (1), but the chemical solution (2) toward the corner portion (5) is still angular. The tip of part (5) has not been reached. The chemical solution (2) flows while drawing an arc toward the tip of the corner portion (5) that becomes gradually narrow as described in the conventional example, but exists along the side edge (1a) of the square substrate (1). Due to the presence of the narrow groove (16a), the transition of the chemical solution (2) from the corner portion (5) to the flat edge portion (10b) is performed with a little resistance (thus, the arc becomes slightly tight). In this case, the chemical solution (2) flows to the tip of the corner portion (5) without excess or deficiency with the aid of the air flow (4). Then, the excessive chemical (2) flows over the square substrate (1) to the flat edge (10b) and is shaken off from the outer peripheral edge (10c) of the rotating chuck (10) to collect the liquid in the liquid receiving plate (26) ( It collects in 25). And since the air flow (4) has a negative pressure on the liquid reservoir (25) side, the air flow (4) changes direction by being drawn into the liquid reservoir (25) side, and becomes a spiral laminar flow. It flows toward the periphery (S).

角形基板(1)では内接円(N)内と、外の角部分(5)との間でたとえ角形凹所(16)に面一にて嵌め込まれていたとしても薬液(2)の拡がり状況が異なるため、内接円(N)内外では同一の平面度状態にならないが、角部分(5)上を流れる気流(4)は角部分(5)上の薬液(2)を角部分(5)の先端方向に押しやると共に上から押さえつけて内接円(N)内とほぼ同様の平面度を高める。なお、フード(13)は円錐台状なので、周縁(S)に向かって角形基板(1)(或いは回転チャック(10))との間隙が次第に小さくなっていくため流速を早めていくことになり、回転チャック(10)の外周縁(10c)で発生する盛り上がり部分(M)を大幅に抑制することになる。   In the square substrate (1), the chemical solution (2) spreads even if it is fitted in the square recess (16) between the inscribed circle (N) and the outer corner portion (5). Since the situation is different, the inflated circle (N) does not have the same flatness state inside and outside, but the airflow (4) flowing on the corner part (5) removes the chemical (2) on the corner part (5) ( Push in the direction of the tip of 5) and press from above to increase the flatness almost the same as in the inscribed circle (N). Since the hood (13) has a truncated cone shape, the gap with the square substrate (1) (or the rotating chuck (10)) gradually decreases toward the periphery (S), so the flow velocity is increased. The raised portion (M) generated at the outer peripheral edge (10c) of the rotating chuck (10) is greatly suppressed.

ここで、フード(13)の気体流入孔(12)が角形基板(1)の内接円(N)に等しいので、「フード(13)なし」の場合に高い平面度を実現する内接円(N)内の平面度と同じ平面度を実現する。図8、9に示すようにフード(13)の気体流入口(12)が前記内接円より小さい場合には気体流入口(12)に対応する範囲(H1)内に集中的に気流(4)が吹き当たり、この部分の平面度は遠心力と相俟って高く保たれるが、範囲(H1)外と内接円(N)の間の範囲(H2)では同心円状に拡散しようとする薬液(2)に対して強い気流(4)が吹き当たるため却って平面度が損なわれる。そしてその乱れが角部分(5)にも引き継がれ、この部分の平面度も損なわれることになる。   Here, since the gas inflow hole (12) of the hood (13) is equal to the inscribed circle (N) of the square substrate (1), an inscribed circle that realizes high flatness in the case of `` no hood (13) '' The flatness same as the flatness in (N) is realized. As shown in FIGS. 8 and 9, when the gas inlet (12) of the hood (13) is smaller than the inscribed circle, the air flow (4) is concentrated in the range (H1) corresponding to the gas inlet (12). The flatness of this part is kept high in combination with the centrifugal force, but in the range (H2) between the outside (H1) and the inscribed circle (N), it tries to diffuse concentrically. On the contrary, the flatness is impaired because a strong air flow (4) blows against the chemical liquid (2). Then, the disturbance is carried over to the corner portion (5), and the flatness of this portion is also lost.

薬液(2)は回転チャック(10)の外周縁(10c)で、その表面張力と遠心力との協働作用によって盛り上がろうとするが、この盛り上がり部分(M)の幅(L2)が回転チャック(10)の平坦縁部(10b)の最短幅(L1)より狭いので、角形基板(1)に影響することはない。なお、平坦縁部(10b)の最短幅(L1)は4〜20mm程度(換言すれば、角形基板(1)の対角寸法+4〜20mm程度)である。   The chemical solution (2) is the outer peripheral edge (10c) of the rotating chuck (10) and tries to rise by the cooperative action of its surface tension and centrifugal force, but the width (L2) of this raised part (M) is the rotating chuck ( Since it is narrower than the shortest width (L1) of the flat edge (10b) of 10), it does not affect the square substrate (1). The shortest width (L1) of the flat edge portion (10b) is about 4 to 20 mm (in other words, the diagonal dimension of the square substrate (1) + about 4 to 20 mm).

薬液層(2a)が形成された処で、回転チャック(10)を所定位置で停止させ、真空吸着孔(18)を大気開放させて角形基板(1)の吸着を解除する。同時に或いはその前後において昇降シリンダ(31)を逆作動させてフード(13)を持ち上げ、回転チャック(10)上にスペースを確保する。   When the chemical layer (2a) is formed, the rotary chuck (10) is stopped at a predetermined position, and the vacuum suction hole (18) is opened to the atmosphere to release the suction of the square substrate (1). At the same time or before and after that, the elevating cylinder (31) is reversely operated to lift the hood (13) to secure a space on the rotating chuck (10).

続いて、再度基板昇降支持棒(35)を一斉に上昇させ、角形凹所(16)内の角形基板(1)を持ち上げ、所定の位置で停止し、ロボットハンド(R)を待つ。ロボットハンド(R)が下部ベース(15)の外から角形基板(1)の下方に移動してき、続いて上昇して角形基板(1)の一部を例えば吸着手段のような拘束手段で拘束し、基板昇降支持棒(35)から角形基板(1)を受取り、そのまま後退して角形基板(1)を下部ベース(15)外に取り出す。角形基板(1)が取り出された所で、基板昇降支持棒(35)は再び下降して元の位置に戻る。以上のようにして角形基板(1)の表面の全面に亘って略均一な厚さで、その表面がほぼ全面に亘って平坦な薬液層(2a)を形成する。   Subsequently, the substrate raising / lowering support rod (35) is lifted all at once, the rectangular substrate (1) in the rectangular recess (16) is lifted, stopped at a predetermined position, and waiting for the robot hand (R). The robot hand (R) moves from outside the lower base (15) to the lower side of the square substrate (1), then rises and restrains a part of the square substrate (1) by restraining means such as suction means. Then, the rectangular substrate (1) is received from the substrate elevating support rod (35), and the substrate is retracted to take out the rectangular substrate (1) out of the lower base (15). When the rectangular substrate (1) is taken out, the substrate elevating support rod (35) is lowered again to return to the original position. As described above, the chemical solution layer (2a) having a substantially uniform thickness over the entire surface of the square substrate (1) and a flat surface over the entire surface is formed.

本発明装置に角形基板をロボットハンドで挿入した時の断面図Sectional view when a square substrate is inserted into the device of the present invention with a robot hand 本発明装置の回転チャックに取り付けた角形基板に薬液を供給している時の断面図Sectional drawing when supplying chemical solution to the square substrate attached to the rotating chuck of the apparatus of the present invention 本発明装置の回転チャックを回転させて角形基板上に薬液を拡散させている時の断面図Sectional drawing when rotating the rotating chuck of the apparatus of the present invention and diffusing the chemical on the rectangular substrate 本発明装置で形成された角形基板の一部切欠斜視図Partially cutaway perspective view of a square substrate formed by the apparatus of the present invention 角形基板を小径の回転チャックに吸着させて回転させた場合の平面図Plan view when a square substrate is attracted to a small-diameter rotary chuck and rotated. 先行技術文献1に記載された角形基板を載置した回転チャックの断面図Sectional drawing of the rotary chuck which mounted the square board | substrate described in prior art document 1 図6の平面図Plan view of FIG. 先行技術文献2に記載された角形基板を載置した回転チャックの断面図Sectional drawing of the rotary chuck which mounted the square board | substrate described in prior art document 2 図8の平面図Plan view of FIG.

符号の説明Explanation of symbols

(A) 薬液塗布装置
(1) 角形基板
(2) 薬液
(4) 気流
(10) 回転チャック
(10b) 平坦縁部
(10c) 外周縁
(11) 薬液供給部
(12) 気体流入孔
(13) フード
(14a) 裾縁
(16) 角形凹所
(G) 外接円
(N) 内接円
(P) 中心
(S) 周縁
(X1) 気体流入孔の直径
(X2) 裾縁の直径
(A) Chemical application device
(1) Square substrate
(2) Chemical solution
(4) Airflow
(10) Rotating chuck
(10b) Flat edge
(10c) Outer periphery
(11) Chemical solution supply unit
(12) Gas inlet
(13) Food
(14a) Hem edge
(16) Square recess
(G) circumscribed circle
(N) Inscribed circle
(P) Center
(S) Perimeter
(X1) Diameter of gas inlet
(X2) Hem edge diameter

Claims (2)

(1) ガラス又はセラミックス製の角形基板が嵌め込まれる角形凹所が形成され、該角形凹所の外接円外に平坦縁部が形成され、角形基板が前記角形凹所に平坦縁部と面一に嵌め込まれた状態で回転する回転チャックと、
(2) 角形基板上に薬液を供給するための薬液供給部と、
(3) 回転チャックに載置された角形基板を覆うためのものであって、回転チャックの直上に気体流入孔が穿設されており、気体流入孔から角形基板側に導入された気体にて角形基板の中心側から回転チャックの周縁方向に流れる気流を作り出す円錐台状のフードとを有する薬液塗布装置であって、
(a) フードの気体流入孔が角形基板の内接円に等しく、且つ、
(b) フードの裾縁が回転チャックの外周縁に等しく形成されている事を特徴とする薬液塗布装置。
(1) A rectangular recess into which a square substrate made of glass or ceramics is fitted is formed, a flat edge is formed outside the circumscribed circle of the rectangular recess, and the square substrate is flush with the flat edge in the square recess. A rotating chuck that rotates in a state of being fitted in,
(2) a chemical solution supply unit for supplying the chemical solution onto the square substrate;
(3) Covers the square substrate placed on the rotary chuck, and has a gas inlet hole directly above the rotary chuck, and the gas introduced from the gas inlet hole to the square substrate side A chemical application device having a frustoconical hood that creates an airflow flowing from the center side of the rectangular substrate toward the peripheral edge of the rotary chuck,
(a) The gas inlet hole of the hood is equal to the inscribed circle of the square substrate, and
(b) A chemical solution applicator characterized in that the hem edge of the hood is formed equally to the outer peripheral edge of the rotary chuck.
角形基板から回転チャックの端縁までの平坦縁部の最短幅が回転チャックの周端縁表面に形成される薬液盛り上がり部分の幅より大きいことを特徴とする請求項1に記載の薬液塗布装置。   2. The chemical solution coating apparatus according to claim 1, wherein the shortest width of the flat edge portion from the square substrate to the edge of the rotary chuck is larger than the width of the chemical liquid rising portion formed on the peripheral edge surface of the rotary chuck.
JP2007205625A 2007-08-07 2007-08-07 Chemical application device Pending JP2009043838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205625A JP2009043838A (en) 2007-08-07 2007-08-07 Chemical application device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205625A JP2009043838A (en) 2007-08-07 2007-08-07 Chemical application device

Publications (1)

Publication Number Publication Date
JP2009043838A true JP2009043838A (en) 2009-02-26

Family

ID=40444282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205625A Pending JP2009043838A (en) 2007-08-07 2007-08-07 Chemical application device

Country Status (1)

Country Link
JP (1) JP2009043838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146424A (en) * 2015-02-09 2016-08-12 リソテック ジャパン株式会社 Substrate processing mechanism and small manufacturing device
CN110021535A (en) * 2018-01-10 2019-07-16 弘塑科技股份有限公司 Substrate board treatment and its turntable

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146424A (en) * 2015-02-09 2016-08-12 リソテック ジャパン株式会社 Substrate processing mechanism and small manufacturing device
CN110021535A (en) * 2018-01-10 2019-07-16 弘塑科技股份有限公司 Substrate board treatment and its turntable

Similar Documents

Publication Publication Date Title
TWI789048B (en) Substrate processing method, substrate processing system, and computer-readable storage medium
JP4827569B2 (en) SUBSTRATE SUPPORT STRUCTURE, HEAT TREATMENT DEVICE USING THE SAME, SHEET PRODUCT USED FOR SUBSTRATE SUPPORT STRUCTURE, AND METHOD FOR PRODUCING SUBSTRATE SUPPORT STRUCTURE
JP5359417B2 (en) Thin film forming apparatus and thin film forming method
JP2007123790A (en) Cooling plate, baking apparatus and substrate treatment apparatus
JP5454203B2 (en) Coating method and coating apparatus
KR20020081118A (en) Substrate processing unit
WO2004059709A1 (en) Coating device and coating film forming method
JP2007158077A (en) Substrate heat treatment apparatus
KR100583134B1 (en) Substrate Processing Unit and Processing Method
JP2007158074A (en) Substrate heat treatment apparatus
JP2007220989A (en) Substrate processing method, substrate processing apparatus, its control program, and storage medium processed in reading by computer
KR20010049473A (en) Ball suction head
JP4901323B2 (en) Substrate processing equipment
JP2009043838A (en) Chemical application device
WO2017169019A1 (en) Substrate processing method and substrate processing apparatus
TWI649831B (en) Substrate processing device, substrate processing method, and memory medium
JPH10335437A (en) Wafer processor
JP2010207739A (en) Reduced pressure drier
JP4043163B2 (en) Chemical solution coating method and apparatus
JP5929852B2 (en) Coating film forming apparatus, coating film forming method, and storage medium
JP4024980B2 (en) Heat treatment method and heat treatment apparatus
JP2009061381A (en) Vacuum treating apparatus and vacuum treating method
TWI762874B (en) Coating system and calibration method thereof
JP6955073B2 (en) Heat treatment method and heat treatment equipment
JP2010278094A (en) Development processor