JP2009038248A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
JP2009038248A
JP2009038248A JP2007202092A JP2007202092A JP2009038248A JP 2009038248 A JP2009038248 A JP 2009038248A JP 2007202092 A JP2007202092 A JP 2007202092A JP 2007202092 A JP2007202092 A JP 2007202092A JP 2009038248 A JP2009038248 A JP 2009038248A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
via hole
manufacturing
metal nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007202092A
Other languages
English (en)
Inventor
Masaichi Hamada
政一 浜田
Osamu Haraguchi
理 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007202092A priority Critical patent/JP2009038248A/ja
Publication of JP2009038248A publication Critical patent/JP2009038248A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】ビア抵抗の上昇を抑制できる構造を有する半導体装置を提供する。
【解決手段】半導体装置は、半導体基板100上のビアホール105bを有する絶縁膜105と、ビアホール105bの底部及び壁部に沿うように形成されたIVa族、Va族又はVIa族元素の金属窒化膜106と、金属窒化膜106の上に、ビアホール105bの底部及び壁部に沿うように形成されたTa膜107と、Ta膜107の上に、ビアホール105bを充填するように形成された導電膜よりなるビア109bとを備える。ビアホール105bの底部における金属窒化膜106の膜厚は、4nm以上であって且つ8nm未満である。
【選択図】図1

Description

本発明は、半導体装置及びその製造方法に関し、特に、積層構造のバリア膜を有するビアを備えた半導体装置及びその製造方法に関するものである。
近年、半導体装置の微細化と共に低抵抗化が求められており、低抵抗の半導体装置を実現する目的の一つとして、銅を材料とするダマシン配線の開発が進展している。ダマシン配線に用いられるバリア膜には、銅の拡散を防止する機能と銅に対する高い密着性が要求されるが、これらの要求を満足するバリア膜の構造として、Ta/TaNの積層構造が採用されている。
以下に、従来の半導体装置の製造方法について図面を参照しながら説明する。
図8(a)〜(e)は、従来の半導体装置の製造方法を工程順に示す工程断面図である。
まず、図8(a)に示すように、半導体基板11上にシリコン酸化膜12を成膜する。
次に、図8(b)に示すように、リソグラフィー法及びドライエッチング法により、シリコン酸化膜12に下層配線溝13を形成する。
次に、図8(c)に示すように、イオン金属プラズマチャンバーを用いたスパッタ法により、下層配線溝13の底部及び壁部並びにシリコン酸化膜12の上に、膜厚0.5nm〜3.0nmのTaN膜14を成膜し、続いて、TaN膜14の上に、膜厚5〜30nmのTa膜15を成膜する。次に、スパッタ法により、Ta膜15の上に、銅よりなるシード層16を成膜する。
次に、図8(d)に示すように、電解めっき法を用いて、下層配線溝13を埋め込むように、銅膜17を成膜する。
次に、図8(e)に示すように、CMP法(Chemical Mechanical Polishing : 化学機械研磨法)により、下層配線溝13の外側に存在しているTaN膜14、Ta膜15、及び銅膜17を除去する。
このようにして、Ta/TaNの積層構造のバリア膜を備えた下層配線が形成される(以上、例えば特許文献1参照)。その後は、通常、図示していないが、下層配線に接続する同様のバリア膜を備えたビア及び該ビアに接続する上層配線を形成することになる。
特表2004−527132
しかしながら、近年における半導体装置の微細化の進展により、ビアの断面積が小さくなり、ビア抵抗が大きくなるという問題と共に、バリア膜の膜厚ばらつきやパーティクルに起因する歩留まりの低下という問題が発生している。特に、ビア抵抗の上昇は、ビアを構成する金属の発熱を招いて、半導体装置の信頼性を劣化させている。
前記に鑑み、本発明の目的は、歩留まりの低下を抑制し、ビア抵抗の上昇を抑制できる構造を有する半導体装置及びその製造方法を提供することである。
前記の目的を達成するために、本件発明者らは、ビア抵抗が増大するメカニズムについて鋭意検討を重ねたところ、以下の知見に到達した。
すなわち、例えば、ビアを形成するためのビアホールの開口径が200nmであるときに、該ビアホールの内部にTaN膜、Ta膜、及び銅膜を順に成膜する場合を考える。この場合、ビアホールの底部及び壁部に、膜厚が5nmとなるようにTaN膜を成膜してみると、ビアホールの底部及び壁部には、膜厚が5nmのTaN膜が一様に形成された。
一方で、例えば、ビアホールの開口径が100nmであるときに、同様に、該ビアホールの内部にTaN膜、Ta膜、及び銅膜を順に成膜する場合を考える。この場合についても、同様に、ビアホールの底部及び壁部に、膜厚が5nmとなるようにTaN膜を成膜してみると、ビアホールの底部及び壁部に膜厚が5nmのTaN膜が一様に形成されるのではなく、ビアホールの底部では、TaN膜の膜厚が3nm以下となった。
このように、TaN膜の膜厚は、ビア寸法の微細化により、ビアホールの底部において薄膜化することが分かる。
ここで、ビアホールの底部において薄膜化したTaN膜の上にTa膜を形成すると、該Ta膜は、比抵抗が30μΩcm以下のα−Ta膜によって構成されているものではなく、比抵抗が200μΩcm以上のβ−Ta膜に改質される。このように、TaN膜の膜厚がその上層に形成されるTa膜の抵抗率に大きな影響を及ぼすことになり、また、Ta膜の膜質がその抵抗率に大きな影響を及ぼすことが分かる。
以上説明したように、ビア抵抗の上昇は、ビアホールの開口径が小さくなることでビアの断面積が小さくなるという原因に加えて、バリア膜を構成するTa膜の抵抗率が上昇するという原因により、ビア抵抗が急激に増加してしまうという知見を見出したのである。
本発明は、前記に知見に鑑みてなされたものであり、具体的に、本発明の第1の形態に係る半導体装置は、半導体基板上に形成され、ビアホールを有する絶縁膜と、ビアホールの底部及び壁部に沿うように形成されたIVa族、Va族又はVIa族元素の金属窒化膜と、金属窒化膜の上に、ビアホールの底部及び壁部に沿うように形成されたTa膜と、Ta膜の上に、ビアホールを充填するように形成された導電膜よりなるビアとを備え、ビアホールの底部における金属窒化膜の膜厚は、4nm以上であって且つ8nm未満である。
本発明の第1の形態に係る半導体装置において、半導体基板上に形成され、ビアホールの底部において金属窒化膜と接続する導電膜よりなる下層配線をさらに備えている。
本発明の第2の形態に係る半導体装置は、半導体基板上に形成された導電膜からなる下層配線と、下層配線の上に形成され、下層配線の表面を露出するビアホールを有する絶縁膜と、ビアホールの底部及び壁部に沿うように形成され、ビアホールの底部にて下層配線の表面と接続するIVa族、Va族又はVIa族元素の金属窒化膜と、金属窒化膜の上に、ビアホールの底部及び壁部に沿うように形成されたTa膜と、Ta膜の上に、ビアホールを充填するように形成された導電膜よりなるビアとを備え、金属窒化膜と接続する下層配線の表面は結晶化している。
本発明の第2の形態に係る半導体装置において、金属窒化膜と接続する下層配線の表面は窒化している。
本発明の第2の形態に係る半導体装置において、金属窒化膜と接続する下層配線の表面はシリサイド化している。
本発明の第2の形態に係る半導体装置において、金属窒化膜の表面は結晶化している。
本発明の第1又は第2の形態に係る半導体装置において、ビアは銅膜よりなる。
本発明の第1又は第2の形態に係る半導体装置において、下層配線は銅膜よりなる。
本発明の第1の形態に係る半導体装置の製造方法は、半導体基板上の絶縁膜にビアホールを形成する工程(a)と、ビアホールの底部及び壁部に沿うように、IVa族、Va族又はVIa族元素の金属窒化膜を形成する工程(b)と、金属窒化膜の上に、ビアホールの底部及び壁部に沿うように、Ta膜を形成する工程(c)と、Ta膜の上に、ビアホールを充填するように、導電膜よりなるビアを形成する工程(d)とを備え、金属窒化膜の膜厚は、4nm以上であって且つ8nm未満である。
本発明の第1の形態に係る半導体装置の製造方法において、工程(a)よりも前に、半導体基板上に、導電膜よりなる下層配線を形成する工程(e)をさらに備え、工程(a)は、下層配線の表面を露出するビアホールを形成する工程である。
本発明の第2の形態に係る半導体装置の製造方法は、半導体基板上に、導電膜よりなる下層配線を形成する工程(a)と、下層配線の上に絶縁膜を形成する工程(b)と、絶縁膜に、下層配線の表面を露出するビアホールを形成する工程(c)と、ビアホールの底部及び壁部に沿うように、ビアホールの底部にて下層配線の表面と接続するIVa族、Va族又はVIa族元素の金属窒化膜を形成する工程(d)と、金属窒化膜の上に、ビアホールの底部及び壁部に沿うように、Ta膜を形成する工程(e)と、Ta膜の上に、ビアホールを充填するように、導電膜よりなるビアを形成する工程(f)とを備え、ビアホールの底部にて金属窒化膜と接続する下層配線の表面は、結晶化している。
本発明の第2の形態に係る半導体装置の製造方法において、工程(c)と工程(d)との間に、ビアホールの底部に露出した下層配線の表面を窒化処理する工程(g)をさらに備える。
本発明の第2の形態に係る半導体装置の製造方法において、工程(c)と工程(d)との間に、ビアホールの底部に露出した下層配線の表面をシリサイド化する工程(h)をさらに備える。
本発明の第2の形態に係る半導体装置の製造方法において、工程(c)と工程(d)との間に、ビアホールの底部に露出した下層配線の表面を窒素アニールする工程(i)をさらに備える。
本発明の第2の形態に係る半導体装置の製造方法において、工程(d)と工程(e)の間に、金属窒化膜の表面を窒化処理する工程(j)をさらに備える。
本発明の第1又は第2の形態に係る半導体装置の製造方法において、ビアは銅膜よりなる。
本発明の第1又は第2の形態に係る半導体装置の製造方法において、下層配線は銅膜よりなる。
本発明に係る半導体装置及びその製造方法によると、微細化の際に発生するバリア膜の高抵抗化を抑制し、ビア抵抗のばらつきの低減及び歩留まりの改善ができる。その結果、半導体装置の信頼性の劣化を抑制することができる。
(第1の実施形態)
本発明の第1の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
図1(a)〜図1(e)は、本発明の第1の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。
まず、図1(a)に示すように、リソグラフィー及びドライエッチングにより、半導体基板100上の例えばシリコン酸化膜よりなる絶縁膜101に、下層配線溝101aを形成する。続いて、スパッタ法により、下層配線溝101aの底部及び壁部を含む絶縁膜101の上に、凹部102aを有する例えばTaN(タンタルナイトライド)膜よりなる金属窒化膜102を成膜し、続いて、凹部102aの底部及び壁部を含む金属窒化膜102の上に、凹部103aを有するTa膜103を成膜する。続いて、スパッタ法により、凹部103aの底部及び壁部を含むTa膜103の上に、銅よりなるシード層(図示せず)を成膜した後に、電解めっき法を用いて、下層配線溝101aを銅膜で埋め込む。続いて、CMP法(Chemical Mechanical Polishing : 化学機械研磨法)により、下層配線溝101aの外側に存在している金属窒化膜102、Ta膜103、及び銅膜を除去することにより、金属窒化膜102及びTa膜103の積層構造のバリア膜を有する銅膜よりなる下層配線104を形成する。続いて、絶縁膜101並びに下層配線104、Ta(タンタル)膜103及び金属窒化膜102の上に、成膜温度が350℃の条件下にてCVD法により、膜厚300nmの絶縁膜105を成膜する。ここで、絶縁膜105は、Si(シリコン)と、C(炭素)、O(酸素)又はN(窒素)などとによって構成される材料よりなる。また、本実施形態では、絶縁膜105は、単層の絶縁膜よりなる場合を例に説明しているが、2層以上重ねて成膜された絶縁膜よりなる場合であってもよい。さらに、絶縁膜105の成膜方法としては、溶剤を塗布した後、200℃以上の条件下にてアニール処理することによって成膜することも可能である。
次に、図1(b)に示すように、絶縁膜105に、フォトレジストをマスクに用いたドライエッチング法により、下層配線104の上面を露出するビアホール105bと、該ビアホール105bに連通する上層配線溝105aを順に形成する。
次に、図1(c)に示すように、ビアホール105bの底部及び壁部並びに上層配線溝105aの底部及び壁部を含む絶縁膜105の上に、スパッタ法により、金属窒化膜として、凹部106aを有する例えばTaN膜106を成膜する。ここで、TaN膜106は、ターゲットバイアス30kW、基板バイアス400W、窒素(N)流量が75×10−3ml/min(sccm)以下の条件で成膜する。当該条件下にて成膜することにより、後述するように膜厚4nm以上であって且つ8nm以下のTaN膜106を成膜する。このように、半導体装置の微細化に伴い、ビアホール105bが開口径200nm以下あるいは高さ500nm以上となる場合に、上述したように、ビアホール105bの底部及び壁部に一様に例えば5nm程度成膜しようとしても、該底部では3nm程度しか成膜されないといった事態を回避することができる。
続いて、凹部106aの底部及び壁部を含むTaN膜106の上に、スパッタ法により、凹部107aを有するTa膜107を成膜する。ここで、Ta膜107の最大膜厚は、ビアホール105b及び上層配線溝105a内を後述する銅膜で埋め込む際に埋め込み不良が発生しない程度の膜厚が適当であるため、前述したTaN膜106の膜厚とTa膜107の膜厚との合計が最大40nm程度となるように成膜することが好ましい。また、Ta膜107は、後述するようにα−Ta膜によって構成されている。
続いて、凹部107aの底部及び壁部を含むTa膜107上に、スパッタ法により、凹部108aを有する銅よりなる膜厚40nmのシード層108を成膜する。ここで、シード層108の成膜条件は、ターゲットバイアス40kW、基板バイアス600Wである。ここで、シード層108の成膜はPVD(Physical Vapor Deposition)法を用いたが、CVD(Chemical Vapor Deposition)法を用いて成膜しても構わない。
次に、図1(d)に示すように、電解めっき法により、半導体装置を硫酸銅溶液内に浸漬し、上述のシード膜108に電流を流すことにより、凹部108aの内部を含む該シード層108上に膜厚500nmの銅膜が成膜される。このようにして、シード層108を含む銅膜109が形成される。なお、ここで用いた硫酸銅めっき液は、塩素10ppm〜100ppm、硫酸濃度10〜250g/L、銅濃度5〜100g/Lである。
次に、図1(e)に示すように、CMP法により、ビアホール105b及び上層配線溝105aの外側に存在している銅膜109、Ta膜107、及びTaN膜106を除去することにより、Ta膜107とTaN膜106との積層構造のバリア膜を備えたビア109b及び上層配線109aが形成される。
ここで、TaN膜106の膜厚が、ビアホール105bの底部において4nm以上であって且つ8nm未満である理由について説明する。
図2(a)は、本発明の第1の実施形態におけるTaN膜106の膜厚とTa/TaN積層膜の比抵抗との関係を示している。なお、横軸はTaN膜106の膜厚を表しており、縦軸はバリア膜(Ta/TaN積層膜)の比抵抗を表している。
図2(a)が示すように、TaN膜106が4nm未満になると、バリア膜(Ta/TaN積層膜)の比抵抗が急激に上昇することが分かる。このことから、TaN膜106の膜厚は、4nm以上であることが好ましいことが分かる。
また、図2(b)は、XRD(X線回折)を用いて測定したTa膜107の配向性がTaN膜106の膜厚に依存することを示している。なお、横軸は試料に照射するX線の角度を表しており、縦軸はピークの大きさを表している。
図2(b)が示すように、TaN膜106の膜厚が薄くなると、TaN膜106上のTa膜107がα−Taからβ−Taに変化していることが分かる。ここで、β−Ta(330)のピークは37.392(deg)であり、α−Ta(110)のピークは38.5(deg)であり、β−Ta(331)のピークは41.2(deg)となっている。β−Taは、シリコン酸化膜等のアモルファス表面上にて成膜しやすく、α−TaはTaN膜の結晶化した(アモルファス構造ではない)表面にて成膜されやすい。このように、TaN膜106が薄膜化すると、β−Taを成膜しやすいというメカニズムは、以下の通りである。すなわち、TaN膜106の下地膜となる下層配線104を構成する銅膜の最表面が、ドライエッチング、洗浄時のダメージ又は酸化によりアモルファス化しているため、その上にTaN膜106を成膜しようとすると、成膜初期には、TaN膜106における銅膜との界面部分もまたアモルファス構造になっている。そして、TaN膜106の成膜が膜厚3nm以上になると、結晶化が徐々に進んでアモルファス構造ではない部分が増加してくると考えられる。TaN膜106における結晶化された表面では、その上に成膜されるTa膜107は一定の格子サイトにTa原子がスパッタ後のマイグレーションにより固定されやすくなり、立方晶のTa膜107が成膜されやすくなる。以上のことから、TaN膜106の膜厚は、最表面が結晶化するのに必要な膜厚が必要であって、図2(b)に示す通り、4nm以上である。
図3は、本発明の第1の実施形態におけるビア抵抗と累積度数との関係を示している。なお、横軸はビア抵抗を表しており、縦軸は累積度数を示している。また、同図では、TaN膜106の膜厚が、4.0nmである場合(3a)と、3.2nmである場合(3b)とを示している。
図3に示すように、TaN膜106の膜厚がビアホール105bの底部において3.2nmである場合(3b)には、ビア抵抗の分布が高抵抗側にばらついていることが分かる。また、TaN膜106の膜厚がビアホール105bの底部において4.0nmである場合(3a)には、ビア抵抗のばらつきが抑制されていることが分かる。このように、ビア抵抗のばらつきを抑制するという観点からも、TaN膜106の膜厚は、ビアホール105bの底部において4nm以上にすることが好ましいことが分かる。
一方で、TaN膜106の膜厚がビアホール105bの底部において8nm以上になると、比抵抗の高いTaN膜106そのものの比抵抗分だけ比抵抗が増加することになるため、ビア抵抗を小さくすることができなくなる。また、膜厚8nm以上のTaN膜106を成膜した場合には、ビアホール105b及び上層配線溝105aへの銅膜109の埋め込み特性に大きな影響を与えることになる。
以上説明したように、TaN膜106の膜厚は、ビアホール105bの底部において4nm以上であって且つ8nm未満とすることが必要となる。
次に、TaN膜106を成膜する際の窒素(N)流量が75×10−3ml/min(sccm)以下である理由について説明する。
図4(a)は、TaN膜106の比抵抗と窒素(N)流量との関係を示している。なお、横軸はN流量を表しており、縦軸はTaN膜106の比抵抗を表している。
図4(a)に示すように、N流量が75(sccm)を超えると、TaN膜106の比抵抗が上昇することが分かる。
また、図4(b)は、TaN膜106の膜厚均一性(Rs)と窒素(N)流量との関係を示している。なお、横軸はN流量を表しており、縦軸はTaN膜106の膜厚均一性を表している。
図4(b)に示すように、N流量が75(sccm)を超えると、TaN膜106の膜厚均一性が悪化することが分かる。N流量が多いとTaN膜106の結晶化は促進されが、チェンバー内のターゲットやシールドなどの窒化が進んでパーティクル発生の要因となってしまうため、N流量が多いとTaN膜106の比抵抗が上昇し、膜厚均一性が悪化するという問題が生じる。
以上のことから、TaN膜106を形成する際の窒素流量は75(sccm)以下であることが望ましい。
以上説明したように、本発明の第1の実施形態に係る半導体装置の製造方法によると、開口径200nm以下あるいは高さ500nm以上のビアホール105bに、比抵抗の低いα−Ta膜よりなるTa膜107とTaN膜106との積層構造よりなるバリア膜を成膜することができるため、ビア抵抗の上昇が抑制されたビア構造を備えた半導体装置が実現される。その結果、信頼性の高い半導体装置を得ることができる。
なお、本実施形態において、金属窒化膜としてTaN膜106を成膜した場合について説明したが、TaN膜の代わりに、例えば、Ti(チタン)、W(タングステン)、Zr(ジルコニウム)等、IV族、Va族、又はVIa族元素の金属窒化膜を成膜する場合であっても、本発明は同様に実施可能である。
(第2の実施形態)
本発明の第2の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
図5(a)〜図5(e)は、本発明の第2の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。
図5(a)〜図5(e)に示した本発明の第2の実施形態に係る半導体装置の製造方法では、図5(b)に示す工程においてビアホールの底部に露出する下層配線の表面を窒化することに特徴を有し、その他の工程は上述した第1の実施形態に係る半導体装置の製造方法と同様であるため、以下では、その特徴部分を中心に説明する。なお、図5(a)〜図5(e)に示す構成部分おいて、上述した第1の実施形態に係る半導体装置の製造方法の説明に用いた図1(a)〜図1(e)に示す構成部分に対応する部分は符号は異なるが同様であるため、その説明は繰り返さない。
本発明の第2の実施形態に係る半導体装置の製造方法では、図5(b)に示すように、
ビアホール205bに露出している下層配線204を構成する銅膜の表面を外気に曝した状態で、100℃〜400℃の条件下にて、窒素アニール処理を行うことにより、露出している銅膜の表面を窒化して結晶化した領域210を形成する。ここでは、窒素アニール処理の代わりに、同様の状態で、室温〜400℃の条件下にてアンモニアプラズマ法により、露出している銅膜の表面を窒化して結晶化した領域210を形成してもよい。また、窒素アニール処理又はアンモニアプラズマ方で用いるガスとしては、窒素を含み酸素を含まないガスであればかまわない。また、プラズマ処理により窒化しているが、ガスを分解できる短波長のレーザー照射を用いて窒化してもよい。
このように、ビアホール205bの底部に露出している下層配線204を構成する銅膜の表面を結晶化又は窒化していることにより、ドライエッチング又は洗浄によって該表面がダメージを受けることを防止できる。これにより、ビアホール205bの底部に露出している銅膜の表面が結晶化しにくくなったり、格子欠陥が生じたりすることがなくなる。その結果、次工程の図5(c)に示す工程におけるTaN膜206の成膜の際に、窒化膜の成膜を補助することが可能となる。
すなわち、図5(c)に示す工程において、ビアホール205bの内部及び上層配線溝205aの内部を含む絶縁膜205上にTaN膜206を形成すると、前工程においてビアホール205bの底部に露出する下層配線204を構成する銅膜の表面が結晶化されており、アモルファス構造ではなくなっていることにより、TaN膜206は成膜初期から結晶化されることになる。したがって、成膜初期から結晶化しているTaN膜206の上層に成膜するTa膜207は、α−Ta膜として成膜されやすくなる。また、このように、ビアホール205bの底部に露出する下層配線204を構成する銅膜の表面が結晶化されてアモルファス構造ではなくなっているため、上述した第1の実施形態のように、TaN膜206の膜厚は4nm以上であって且つ8nm未満の範囲で成膜しなくても、Ta膜207はα−Ta膜として成膜されることとなる。ただし、TaN膜206の膜厚を4nm以上であって且つ8nm未満とすれば、Ta膜207はさらにα−Ta膜として成膜されやすくなるので、第1の実施形態と同様の成膜条件でTaN膜206の膜厚を4nm以上であって且つ8nm未満とすることがより好ましい。
以上説明したように、本発明の第2の実施形態に係る半導体装置の製造方法によると、開口径200nm以下あるいは高さ500nm以上のビアホール105bに、比抵抗の低いα−Ta膜よりなるTa膜207とTaN膜206との積層構造よりなるバリア膜を成膜することができるため、ビア抵抗の上昇が抑制されたビア構造を備えた半導体装置が実現される。その結果、信頼性の高い半導体装置を得ることができる。
なお、本実施形態においても、第1の実施携帯と同様に、金属窒化膜としてのTaN膜206の代わりに、例えば、Ti(チタン)、W(タングステン)、Zr(ジルコニウム)等、IV族、Va族、又はVIa族元素の金属窒化膜を同様に用いることができる。
(第3の実施形態)
本発明の第3の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
図6(a)〜図6(e)は、本発明の第3の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。
図6(a)〜図6(e)に示した本発明の第3の実施形態に係る半導体装置の製造方法では、図6(c)に示す工程において成膜するTaN膜の表面を窒化することに特徴を有し、その他の工程は上述した第1の実施形態に係る半導体装置の製造方法と同様であるため、以下では、その特徴部分を中心に説明する。なお、図6(a)〜図6(e)に示す構成部分おいて、上述した第1の実施形態に係る半導体装置の製造方法の説明に用いた図1(a)〜図1(e)に示す構成部分に対応する部分は符号は異なるが同様であるため、その説明は繰り返さない。
図6(c)に示すように、ビアホール305bの底部及び壁部並びに上層配線溝305aの底部及び壁部を含む絶縁膜305の上に、スパッタ法により、金属窒化膜として、凹部306aを有する例えばTaN(タンタルナイドライド)膜306を成膜する。続いて、アンモニアプラズマ処理により、TaN膜306の表面の窒化を促進する。このようにするのは、スパッタ後のTaN膜306の表面はアモルファス化しやすいために、TaN膜306の最表面を窒化して結晶化することにより、最表面が結晶化しているTaN膜306の上にTa膜307をα−Ta膜として成膜しやすくするためである。そして、凹部306aの底部及び壁部を含むTaN膜306の上にTa膜307を成膜すると、下地のTaN膜306の窒素量が増加しており、TaN膜306の最表面の結晶化が促進されていることから、Ta膜307はα−Ta膜として成膜されやすくなる。ここで、TaN膜306の窒化処理の方法として、アンモニアプラズマ法を用いているが、用いるガスは窒素を含み酸素を含まないガスであればよい。また、プラズマ処理により窒化しているが、ガスを分解できる短波長のレーザー照射を用いて窒化することもできる。
なお、このように、TaN膜306の表面は結晶化されてアモルファス構造ではなくなっているため、第2の実施形態と同様に、TaN膜306の膜厚は4nm以上であって且つ8nm未満の範囲で成膜しなくても、Ta膜307はα−Ta膜として成膜されることとなる。ただし、TaN膜306の膜厚を4nm以上であって且つ8nm未満とすれば、Ta膜307はさらにα−Ta膜として成膜されやすくなるので、第1の実施形態と同様の成膜条件下で、TaN膜306の膜厚を4nm以上であって且つ8nm未満とすることがより好ましい。
また、第2の実施形態と同様に、図6(b)に示す工程において、ビアホール305bに露出している下層配線304を構成する銅膜の表面を窒化処理することにより、該銅膜表面をアモルファス構造ではなく結晶化しておいてもよい。このようにすると、Ta膜307はさらにα−Ta膜として成膜されやすくなるからである。
以上説明したように、本発明の第3の実施形態に係る半導体装置の製造方法によると、開口径200nm以下あるいは高さ500nm以上のビアホール305bに、比抵抗の低いα−Ta膜よりなるTa膜307とTaN膜306との積層構造よりなるバリア膜を成膜することができるため、ビア抵抗の上昇が抑制されたビア構造を備えた半導体装置が実現される。その結果、信頼性の高い半導体装置を得ることができる。
なお、本実施形態においても、第1の実施携帯と同様に、金属窒化膜としてのTaN膜306の代わりに、例えば、Ti(チタン)、W(タングステン)、Zr(ジルコニウム)等、IV族、Va族、又はVIa族元素の金属窒化膜を同様に用いることができる。
(第4の実施形態)
本発明の第4の実施形態に係る半導体装置及びその製造方法について、図面を参照しながら説明する。
図7(a)〜図7(e)は、本発明の第4の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。
図7(a)〜図7(e)に示した本発明の第4の実施形態に係る半導体装置の製造方法では、図7(b)に示す工程においてビアホールの底部に露出する下層配線の表面をシリサイド化することに特徴を有し、その他の工程は上述した第1の実施形態に係る半導体装置の製造方法と同様であるため、以下では、その特徴部分を中心に説明する。なお、図7(a)〜図7(e)に示す構成部分おいて、上述した第1の実施形態に係る半導体装置の製造方法の説明に用いた図1(a)〜図1(e)に示す構成部分に対応する部分は符号は異なるが同様であるため、その説明は繰り返さない。
本発明の第4の実施形態に係る半導体装置の製造方法では、図7(b)に示すように、ビアホール405bに露出している下層配線404を構成する銅膜の表面を外気に曝した状態で、100℃〜450℃の条件下にて、SiHガスを流すことにより、露出している銅膜の表面をシリサイド化している領域410を形成する。ここで、この銅膜表面のシリサイド化している領域410の膜厚が増加すると配線抵抗が上昇するため、該領域410の膜厚は5nm以下であることが好ましい。また、SiHガスの代わりに、ポリシラン(Si2n+2)(n≦2)又は有機シラン(例えば、テトラメチルシラン)などよりなるガスを用いてもよい。
このように、ビアホール405bに露出している銅膜の表面をシリサイド化することにより、シリコンと窒素との反応が促進されるため、ビアホール405bの底部における窒素の割合が増加することになる。したがって、ビアホール405bの底部に露出している下層配線404のシリサイド化している領域410上に、スパッタ法により、TaN膜406を成膜すると、ビアホール405aの底部において結晶化したTaN膜406が成膜されやすくなる。その結果、次工程の図7(c)に示す工程において、TaN膜406上に形成されるTa膜407はα−Ta膜として成膜されやすくなる。
すなわち、図7(c)に示す工程において、ビアホール405bの内部及び上層配線溝405aの内部を含む絶縁膜405上にTaN膜406を形成すると、前工程においてビアホール405bの底部に露出する下層配線404を構成する銅膜の表面がシリサイド化されているため、シリコンと窒素との反応が促進され結晶化しやすくなる。よって、該銅膜の表面とTaN膜406との界面はアモルファス構造ではなくなることにより、TaN膜406は成膜初期から結晶化されることになる。したがって、成膜初期から結晶化しているTaN膜406の上層に成膜するTa膜407は、α−Ta膜として成膜されやすくなる。また、このように、ビアホール405bの底部に露出する下層配線404を構成する銅膜の表面が結晶化されてアモルファス構造ではなくなっているため、第2の実施形態と同様に、上述した第1の実施形態のように、TaN膜406の膜厚は4nm以上であって且つ8nm未満の範囲で成膜しなくても、Ta膜407はα−Ta膜として成膜されることとなる。ただし、TaN膜406の膜厚を4nm以上であって且つ8nm未満とすれば、Ta膜407はさらにα−Ta膜として成膜されやすくなるので、第1の実施形態と同様の成膜条件下で、TaN膜406の膜厚を4nm以上であって且つ8nm未満とすることがより好ましい。
以上説明したように、本発明の第4の実施形態に係る半導体装置の製造方法によると、開口径200nm以下あるいは高さ500nm以上のビアホール305bに、比抵抗の低いα−Ta膜よりなるTa膜407とTaN膜406との積層構造よりなるバリア膜を成膜することができるため、ビア抵抗の上昇が抑制されたビア構造を備えた半導体装置が実現される。その結果、信頼性の高い半導体装置を得ることができる。
なお、本実施形態においても、第1の実施形態と同様に、金属窒化膜としてのTaN膜406の代わりに、例えば、Ti(チタン)、W(タングステン)、Zr(ジルコニウム)等、IV族、Va族、又はVIa族元素の金属窒化膜を同様に用いることができる。
なお、以上の各実施形態において、下層配線、ビア、及び上層配線は、低抵抗化の観点から、銅膜を材料とした場合について説明したが、銅膜に限定されるものではなく、他の導電膜であってもよい。
以上説明したように、本発明は、低抵抗なバリア膜を成膜して、ビア抵抗の上昇を抑制するための半導体装置の製造方法にとって有用である。
(a)〜(e)は、本発明の第1の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。 (a)は、本発明の第1の実施形態におけるTaN膜の膜厚とTa/TaN積層膜の比抵抗との関係図であり、(b)は、XRD(X線回折)を用いて測定したTa膜の配向性のTaN膜厚依存性を示す図である。 本発明の第1の実施形態におけるビア抵抗と累積度数との関係図である。 (a)は、TaN膜の比抵抗と窒素(N)流量との関係図であり、(b)は、TaN膜の膜厚均一性(Rs)と窒素(N)流量との関係図である。 (a)〜(e)は、本発明の第2の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。 (a)〜(e)は、本発明の第3の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。 (a)〜(e)は、本発明の第4の実施形態に係る半導体装置の製造方法を工程順に示す要部断面図である。 従来の半導体装置の製造方法を工程順に示す要部断面図である。
符号の説明
100、200、300、400 半導体基板
101、201、301、401 絶縁膜
101a、201a、301a、401a 下層配線溝
102、202、302、402 金属窒化膜
102a、202a、302a、402a 凹部
103、203、303、403 Ta膜
103a、203a、303a、403a 凹部
104、204、304、404 下層配線
105、205、305、405 絶縁膜
105a、205a、305a、405a 上層配線溝
105b、205b、305b、405b ビアホール
106、206、306、406 TaN膜
106a、206a、306a、406a 凹部
107、207、307、407 Ta膜
107a、207a、307a、407a 凹部
108、208、308、408 シード層
108a、208a、308a、408a 凹部
109、209、309、409 銅膜
109a、209a、309a、409a 上層配線
109b、209b、309b、409b ビア
210 結晶化している領域
410 シリサイド化している領域

Claims (17)

  1. 半導体基板上に形成され、ビアホールを有する絶縁膜と、
    前記ビアホールの底部及び壁部に沿うように形成されたIVa族、Va族又はVIa族元素の金属窒化膜と、
    前記金属窒化膜の上に、前記ビアホールの底部及び壁部に沿うように形成されたTa膜と、
    前記Ta膜の上に、前記ビアホールを充填するように形成された導電膜よりなるビアとを備え、
    前記ビアホールの底部における前記金属窒化膜の膜厚は、4nm以上であって且つ8nm未満である、半導体装置。
  2. 請求項1に記載の半導体装置において、
    前記半導体基板上に形成され、前記ビアホールの底部において前記金属窒化膜と接続する導電膜よりなる下層配線をさらに備えている、半導体装置。
  3. 半導体基板上に形成された導電膜からなる下層配線と、
    前記下層配線の上に形成され、前記下層配線の表面を露出するビアホールを有する絶縁膜と、
    前記ビアホールの底部及び壁部に沿うように形成され、前記ビアホールの底部にて前記下層配線の表面と接続するIVa族、Va族又はVIa族元素の金属窒化膜と、
    前記金属窒化膜の上に、前記ビアホールの底部及び壁部に沿うように形成されたTa膜と、
    前記Ta膜の上に、前記ビアホールを充填するように形成された導電膜よりなるビアとを備え、
    前記金属窒化膜と接続する前記下層配線の表面は結晶化している、半導体装置。
  4. 請求項3に記載の半導体装置において、
    前記金属窒化膜と接続する前記下層配線の表面は窒化している、半導体装置。
  5. 請求項3に記載の半導体装置において、
    前記金属窒化膜と接続する前記下層配線の表面はシリサイド化している、半導体装置。
  6. 請求項3〜5のうちのいずれか1項に記載の半導体装置において、
    前記金属窒化膜の表面は結晶化している、半導体装置。
  7. 請求項1〜6のうちのいずれか1項に記載の半導体装置において、
    前記ビアは銅膜よりなる、半導体装置。
  8. 請求項2〜7のうちのいずれか1項に記載の半導体装置において、
    前記下層配線は銅膜よりなる、半導体装置。
  9. 半導体基板上の絶縁膜にビアホールを形成する工程(a)と、
    前記ビアホールの底部及び壁部に沿うように、IVa族、Va族又はVIa族元素の金属窒化膜を形成する工程(b)と、
    前記金属窒化膜の上に、前記ビアホールの底部及び壁部に沿うように、Ta膜を形成する工程(c)と、
    前記Ta膜の上に、前記ビアホールを充填するように、導電膜よりなるビアを形成する工程(d)とを備え、
    前記金属窒化膜の膜厚は、4nm以上であって且つ8nm未満である、半導体装置の製造方法。
  10. 請求項9に記載の半導体装置の製造方法において、
    前記工程(a)よりも前に、
    前記半導体基板上に、導電膜よりなる下層配線を形成する工程(e)をさらに備え、
    前記工程(a)は、前記下層配線の表面を露出する前記ビアホールを形成する工程である、半導体装置の製造方法。
  11. 半導体基板上に、導電膜よりなる下層配線を形成する工程(a)と、
    前記下層配線の上に絶縁膜を形成する工程(b)と、
    前記絶縁膜に、前記下層配線の表面を露出するビアホールを形成する工程(c)と、
    前記ビアホールの底部及び壁部に沿うように、前記ビアホールの底部にて前記下層配線の表面と接続するIVa族、Va族又はVIa族元素の金属窒化膜を形成する工程(d)と、
    前記金属窒化膜の上に、前記ビアホールの底部及び壁部に沿うように、Ta膜を形成する工程(e)と、
    前記Ta膜の上に、前記ビアホールを充填するように、導電膜よりなるビアを形成する工程(f)とを備え、
    前記ビアホールの底部にて前記金属窒化膜と接続する前記下層配線の表面は、結晶化している、半導体装置の製造方法。
  12. 請求項11に記載の半導体装置の製造方法において、
    前記工程(c)と前記工程(d)との間に、
    前記ビアホールの底部に露出した前記下層配線の表面を窒化処理する工程(g)をさらに備える、半導体装置の製造方法。
  13. 請求項11に記載の半導体装置の製造方法において、
    前記工程(c)と前記工程(d)との間に、
    前記ビアホールの底部に露出した前記下層配線の表面をシリサイド化する工程(h)をさらに備える、半導体装置の製造方法。
  14. 請求項11に記載の半導体装置の製造方法において、
    前記工程(c)と前記工程(d)との間に、
    前記ビアホールの底部に露出した前記下層配線の表面を窒素アニールする工程(i)をさらに備える、半導体装置の製造方法。
  15. 請求項11〜14のうちのいずれか1項に記載の半導体装置の製造方法において、
    前記工程(d)と前記工程(e)の間に、
    前記金属窒化膜の表面を窒化処理する工程(j)をさらに備える、半導体装置の製造方法。
  16. 請求項9〜15のうちのいずれか1項に記載の半導体装置の製造方法において、
    前記ビアは銅膜よりなる、半導体装置の製造方法。
  17. 請求項10〜16のうちのいずれか1項に記載の半導体装置の製造方法において、
    前記下層配線は銅膜よりなる、半導体装置の製造方法。
JP2007202092A 2007-08-02 2007-08-02 半導体装置及びその製造方法 Pending JP2009038248A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202092A JP2009038248A (ja) 2007-08-02 2007-08-02 半導体装置及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202092A JP2009038248A (ja) 2007-08-02 2007-08-02 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2009038248A true JP2009038248A (ja) 2009-02-19

Family

ID=40439884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202092A Pending JP2009038248A (ja) 2007-08-02 2007-08-02 半導体装置及びその製造方法

Country Status (1)

Country Link
JP (1) JP2009038248A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057763A (ja) * 2009-09-07 2011-03-24 Nichia Corp 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
CN104821309A (zh) * 2014-01-31 2015-08-05 瑞萨电子株式会社 半导体装置及其制造方法
JP2018107457A (ja) * 2018-01-24 2018-07-05 ルネサスエレクトロニクス株式会社 半導体装置
JP2019083333A (ja) * 2019-01-22 2019-05-30 ルネサスエレクトロニクス株式会社 半導体装置
JP2020065069A (ja) * 2019-12-25 2020-04-23 ルネサスエレクトロニクス株式会社 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011057763A (ja) * 2009-09-07 2011-03-24 Nichia Corp 蛍光体及びそれを用いた発光装置並びに蛍光体の製造方法
CN104821309A (zh) * 2014-01-31 2015-08-05 瑞萨电子株式会社 半导体装置及其制造方法
JP2015144184A (ja) * 2014-01-31 2015-08-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
KR20150091242A (ko) * 2014-01-31 2015-08-10 르네사스 일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
US9972530B2 (en) 2014-01-31 2018-05-15 Renesas Electronics Corporation Method of manufacturing semiconductor device including copper interconnections
US10665502B2 (en) 2014-01-31 2020-05-26 Rensas Electronics Corporation Semiconductor device with an interconnection layer and method of manufacturing the same
KR102316865B1 (ko) 2014-01-31 2021-10-25 르네사스 일렉트로닉스 가부시키가이샤 반도체 장치 및 그 제조 방법
US11450561B2 (en) 2014-01-31 2022-09-20 Renesas Electronics Corporation Semiconductor device with copper interconnections
JP2018107457A (ja) * 2018-01-24 2018-07-05 ルネサスエレクトロニクス株式会社 半導体装置
JP2019083333A (ja) * 2019-01-22 2019-05-30 ルネサスエレクトロニクス株式会社 半導体装置
JP2020065069A (ja) * 2019-12-25 2020-04-23 ルネサスエレクトロニクス株式会社 半導体装置

Similar Documents

Publication Publication Date Title
US9343407B2 (en) Method to fabricate copper wiring structures and structures formed thereby
US7335590B2 (en) Method of fabricating semiconductor device by forming diffusion barrier layer selectively and semiconductor device fabricated thereby
TWI269404B (en) Interconnect structure for semiconductor devices
CN108615703B (zh) 具有全包覆线的互连体
US8058728B2 (en) Diffusion barrier and adhesion layer for an interconnect structure
US7727883B2 (en) Method of forming a diffusion barrier and adhesion layer for an interconnect structure
TWI382513B (zh) 半導體裝置及半導體裝置之製造方法
US20110227224A1 (en) Semiconductor device and method for manufacturing the same
US10964653B2 (en) Method of forming a semiconductor device comprising top conductive pads
WO2011114989A1 (ja) 薄膜の形成方法
JP2020536395A (ja) 相互接続のためのルテニウム金属機能フィリング
JP5141761B2 (ja) 半導体装置及びその製造方法
JPH1116918A (ja) 銅配線構造およびその製造方法
JP2009038248A (ja) 半導体装置及びその製造方法
JP2007165428A (ja) 半導体装置の製造方法
JP2006253290A (ja) SiC系膜の成膜方法及び半導体装置の製造方法
US9659817B1 (en) Structure and process for W contacts
JP2005150280A (ja) 半導体装置の製造方法及び半導体製造装置
US20070128553A1 (en) Method for forming feature definitions
WO2013125449A1 (ja) 半導体装置の製造方法、記憶媒体及び半導体装置
JP2010040771A (ja) 半導体装置の製造方法
JP2009164175A (ja) 半導体装置の製造方法
JP2006024668A (ja) 半導体装置の製造方法
JP2007258390A (ja) 半導体装置、および半導体装置の製造方法
JP2007251135A (ja) 半導体装置およびその製造方法