JP2009036330A - Liquefied gas storage device - Google Patents

Liquefied gas storage device Download PDF

Info

Publication number
JP2009036330A
JP2009036330A JP2007202153A JP2007202153A JP2009036330A JP 2009036330 A JP2009036330 A JP 2009036330A JP 2007202153 A JP2007202153 A JP 2007202153A JP 2007202153 A JP2007202153 A JP 2007202153A JP 2009036330 A JP2009036330 A JP 2009036330A
Authority
JP
Japan
Prior art keywords
pressure
gas
pressure side
storage container
liquefied gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007202153A
Other languages
Japanese (ja)
Inventor
Kijo Ueno
紀条 上野
Isamu Inoue
勇 井上
Hiroshi Terai
寛 寺井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007202153A priority Critical patent/JP2009036330A/en
Publication of JP2009036330A publication Critical patent/JP2009036330A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquefied gas storage device capable of stably controlling the liquid amount. <P>SOLUTION: The liquefied gas storage device 15 comprises a storage vessel 2 to store liquefied gas, a low-pressure side pressure conduction pipe 8 in communication with a gas phase portion 3 of the storage vessel 2, a high-pressure side pressure conduction pipe 16 in communication with a liquid phase portion 4, a differential pressure gage 10 for measuring a differential pressure between the low-pressure side pressure conduction pipe 8 and the high-pressure side pressure conduction pipe 16, and an orifice 18 for preventing the liquid phase of the liquefied ozone from flowing into the high-pressure side pressure conduction pipe 16. The orifice 18 is disposed near a communication port 2f for communicating between the high-pressure side pressure conduction pipe 16 and the storage vessel 2. The liquid phase of the liquefied oxygen in the storage vessel 2 flows into the high-pressure side pressure conduction pipe 16 to absorb external heat, and is vaporized, so as to form a gas-liquid interface S. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、液化オゾン、液化酸素などの液化ガスを貯蔵する液化ガス貯蔵装置に関する。   The present invention relates to a liquefied gas storage device that stores liquefied gas such as liquefied ozone and liquefied oxygen.

従来、このような分野の技術として、特開2006−145024号公報がある。この公報に記載された液化ガス貯蔵装置は、液化ガスを貯蔵する容器と、容器内の液化ガスの気相部に連通する低圧側導圧管と、液化ガスの液相部に連通する高圧側導圧管と、低圧側導圧管内の圧力と高圧側導圧管内の圧力との差を測定する差圧計と、差圧と貯蔵液量との相関関係を記憶するメモリーとを備える。そして、差圧計により測定された差圧に基づき、メモリーに記憶された各相関関係を利用し貯蔵液量を求めることにより、液量管理が図られている。
特開2006−145024号公報
Conventionally, there is JP, 2006-145024, A as a technique of such a field. The liquefied gas storage device described in this publication includes a container for storing liquefied gas, a low-pressure side pressure guiding tube that communicates with a gas phase portion of the liquefied gas in the container, and a high-pressure side guide that communicates with the liquid phase portion of the liquefied gas. A pressure pipe, a differential pressure gauge for measuring a difference between the pressure in the low pressure side pressure guiding pipe and the pressure in the high pressure side pressure guiding pipe, and a memory for storing a correlation between the differential pressure and the amount of stored liquid. Then, based on the differential pressure measured by the differential pressure gauge, the liquid volume is managed by obtaining the stored liquid volume using each correlation stored in the memory.
JP 2006-145024 A

しかしながら、前述した従来の液化ガス貯蔵装置では、低圧側導圧管と高圧側導圧管との差圧が安定していないため、差圧測定を正しく行うことができず、安定した液量管理が困難であった。   However, in the conventional liquefied gas storage device described above, since the differential pressure between the low pressure side pressure guiding tube and the high pressure side pressure guiding tube is not stable, the differential pressure measurement cannot be performed correctly, and stable liquid volume management is difficult. Met.

本発明は、安定した液量管理を可能にした液化ガス貯蔵装置を提供することを目的とする。   An object of this invention is to provide the liquefied gas storage apparatus which enabled the stable liquid quantity management.

本発明に係る液化ガス貯蔵装置は、液化ガスを貯蔵する貯蔵容器と、貯蔵容器内の気相部の圧力を貯蔵容器の外部に取り出す低圧側導圧管と、貯蔵容器内の液相部の圧力を貯蔵容器の外部に取り出す高圧側導圧管と、低圧側導圧管内の圧力と高圧側導圧管内の圧力との差を測定する差圧計と、液化ガスの気液界面を高圧側導圧管内に形成させる気液界面形成手段と、高圧側導圧管内に流れ込む液化ガスの液相の流れを阻害する流動抵抗体とを備えることを特徴とする。   The liquefied gas storage device according to the present invention includes a storage container for storing liquefied gas, a low-pressure side pressure guiding pipe for extracting the pressure of the gas phase portion in the storage container to the outside of the storage container, and the pressure of the liquid phase portion in the storage container. A high pressure side pressure guiding tube for taking out the outside of the storage container, a differential pressure gauge for measuring the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube, and the gas-liquid interface of the liquefied gas in the high pressure side pressure guiding tube. And a flow resistor that inhibits the flow of the liquid phase of the liquefied gas flowing into the high pressure side pressure guiding tube.

本発明に係る液化ガス貯蔵装置では、液化ガスの気液界面を高圧側導圧管内に形成させる気液界面形成手段を備えるので、液化ガスの液相が高圧側導圧管に流れ込み気化することで、気液界面が形成される。加えて、液化ガス貯蔵装置は、高圧側導圧管内に流れ込む液化ガスの液相の流れを阻害する流動抵抗体を備えるので、この流動抵抗体は、高圧側導圧管内の液相の流れの運動エネルギを低下させ、液相の流れを緩やかにする効果をもたらす。従って、仮に気液界面の温度勾配が大きい場合でも、高圧側導圧管内への液相の急激な流れ込みを抑制することができ、気液界面を容易に安定させることができる。その結果、低圧側導圧管内の圧力と高圧側導圧管内の圧力との差を正しく測定することが可能となり、安定した液量管理を容易に行うことができる。   In the liquefied gas storage device according to the present invention, since the gas-liquid interface forming means for forming the gas-liquid interface of the liquefied gas in the high-pressure side impulse line is provided, the liquid phase of the liquefied gas flows into the high-pressure side impulse line and is vaporized. A gas-liquid interface is formed. In addition, since the liquefied gas storage device includes a flow resistor that inhibits the flow of the liquid phase of the liquefied gas flowing into the high-pressure side impulse line, the flow resistor is configured to prevent the flow of the liquid phase in the high-pressure side impulse line. It has the effect of reducing kinetic energy and slowing the flow of the liquid phase. Therefore, even if the temperature gradient of the gas-liquid interface is large, it is possible to suppress a rapid flow of the liquid phase into the high-pressure side impulse line and to easily stabilize the gas-liquid interface. As a result, the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube can be measured correctly, and stable liquid amount management can be easily performed.

本発明に係る液化ガス貯蔵装置において、流動抵抗体は、高圧側導圧管内に設けられていることが好適である。
このようにすれば、流動抵抗体の設置作業を容易に行うことができる。
In the liquefied gas storage device according to the present invention, it is preferable that the flow resistor is provided in the high pressure side pressure guiding tube.
If it does in this way, installation work of a flow resistor can be performed easily.

本発明に係る液化ガス貯蔵装置において、流動抵抗体は、貯蔵容器と高圧側導圧管とを連通する連通口の近傍に設けられていることが好適である。
このようにすれば、流動抵抗体の設置場所と貯蔵容器との距離を短くすることで、断熱構造の大きさを小さく維持することができ、貯蔵装置のコンパクト化を図ることが可能となる。
In the liquefied gas storage device according to the present invention, it is preferable that the flow resistor is provided in the vicinity of a communication port that connects the storage container and the high-pressure side impulse line.
In this way, by shortening the distance between the installation location of the flow resistor and the storage container, the size of the heat insulating structure can be kept small, and the storage device can be made compact.

本発明に係る液化ガス貯蔵装置は、液化ガスを貯蔵する貯蔵容器と、貯蔵容器内の気相部の圧力を貯蔵容器の外部に取り出す低圧側導圧管と、貯蔵容器内の液相部の圧力を貯蔵容器の外部に取り出す高圧側導圧管と、低圧側導圧管内の圧力と高圧側導圧管内の圧力との差を測定する差圧計と、液化ガスの気液界面を高圧側導圧管内に形成させる気液界面形成手段とを備え、高圧側導圧管は、斜め上方に延在する傾斜部を有することを特徴とする。   The liquefied gas storage device according to the present invention includes a storage container for storing liquefied gas, a low-pressure side pressure guiding pipe for extracting the pressure of the gas phase portion in the storage container to the outside of the storage container, and the pressure of the liquid phase portion in the storage container. A high pressure side pressure guiding tube for taking out the outside of the storage container, a differential pressure gauge for measuring the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube, and the gas-liquid interface of the liquefied gas in the high pressure side pressure guiding tube. The high pressure side pressure guiding tube has an inclined portion extending obliquely upward.

本発明に係る液化ガス貯蔵装置では、液化ガスの気液界面を高圧側導圧管内に形成させる気液界面形成手段を備えるので、液化ガスの液相が高圧側導圧管に流れ込み気化することで、気液界面が形成される。加えて、高圧側導圧管の傾斜部は、斜め上方に延在するので、高圧側導圧管内の液相の流れの運動エネルギを低下させ、液相の流れを緩やかにする効果をもたらす。従って、仮に気液界面の温度勾配が大きい場合でも、高圧側導圧管内への液相の急激な流れ込みを抑制することができるので、気液界面を容易に安定させることができる。その結果、低圧側導圧管内の圧力と高圧側導圧管内の圧力との差を正しく測定することが可能となり、安定した液量管理を容易に行うことができる。   In the liquefied gas storage device according to the present invention, since the gas-liquid interface forming means for forming the gas-liquid interface of the liquefied gas in the high-pressure side impulse line is provided, the liquid phase of the liquefied gas flows into the high-pressure side impulse line and is vaporized. A gas-liquid interface is formed. In addition, since the inclined portion of the high-pressure side impulse line extends obliquely upward, the kinetic energy of the liquid phase flow in the high-pressure side impulse line is reduced, and the effect of slowing the liquid phase flow is brought about. Therefore, even if the temperature gradient at the gas-liquid interface is large, the rapid inflow of the liquid phase into the high-pressure side impulse line can be suppressed, so that the gas-liquid interface can be easily stabilized. As a result, the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube can be measured correctly, and stable liquid amount management can be easily performed.

本発明に係る液化ガス貯蔵装置において、液化ガスがオゾンを液化させたものであることが好適である。このようにすれば、液化オゾンを安全に貯蔵することが可能となる。   In the liquefied gas storage device according to the present invention, it is preferable that the liquefied gas is obtained by liquefying ozone. If it does in this way, it will become possible to store liquefied ozone safely.

本発明によれば、安定した液量管理を可能にした液化ガス貯蔵装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the liquefied gas storage apparatus which enabled the stable liquid quantity management can be provided.

具体的な実施形態の説明に先たち、本発明の完成に至る検討の過程を説明する。   Prior to the description of the specific embodiment, the process of study leading to the completion of the present invention will be described.

低圧側導圧管と高圧側導圧管との差圧変動の発生メカニズムを究明するため、本発明者は図1に示すような小型の貯蔵容器を用いて実験を行った。図1は実験用液化ガス貯蔵装置を示す概略図である。この実験用液化ガス貯蔵装置1は、少量の液化酸素を貯蔵する小型の貯蔵装置であって、貯蔵容器2を備える。貯蔵容器2は、内径1.6cm、高さ20cmの円筒状中空容器であって、ステンレススチールにより形成されている。   In order to investigate the generation mechanism of the differential pressure fluctuation between the low pressure side pressure guiding tube and the high pressure side pressure guiding tube, the present inventor conducted an experiment using a small storage container as shown in FIG. FIG. 1 is a schematic view showing an experimental liquefied gas storage device. The experimental liquefied gas storage device 1 is a small-sized storage device that stores a small amount of liquefied oxygen, and includes a storage container 2. The storage container 2 is a cylindrical hollow container having an inner diameter of 1.6 cm and a height of 20 cm, and is made of stainless steel.

貯蔵容器2は、断熱壁5により周囲を囲まれ、外界と完全に断熱されている。貯蔵容器2と断熱壁5との間には、−196℃の液体窒素が充填され、貯蔵容器2を冷却している。これによって、断熱壁5を境にして断熱壁5の内側は低温区域と、断熱壁5の外側は高温区域になる。   The storage container 2 is surrounded by a heat insulating wall 5 and is completely insulated from the outside. Between the storage container 2 and the heat insulation wall 5, liquid nitrogen at −196 ° C. is filled to cool the storage container 2. Thus, the inside of the heat insulating wall 5 becomes a low temperature area and the outside of the heat insulating wall 5 becomes a high temperature area with the heat insulating wall 5 as a boundary.

貯蔵容器2の底面2aには、排出口2bが設けられ、貯蔵容器2内の液化酸素はこの排出口2bと排出管7とを経由し、使用元に供給される。一方、貯蔵容器2の天井2cには、貯蔵容器2内のガスを抜き出すための排気口2dが設けられている。   The bottom surface 2 a of the storage container 2 is provided with a discharge port 2 b, and liquefied oxygen in the storage container 2 is supplied to the user through the discharge port 2 b and the discharge pipe 7. On the other hand, the ceiling 2c of the storage container 2 is provided with an exhaust port 2d for extracting the gas in the storage container 2.

断熱壁5の外には、酸素ボンベ12とヘリウムボンベ13とが設置されている。酸素ボンベ12とヘリウムボンベ13とは、貯蔵容器2の内部に連通され、酸素ガスとヘリウムガスとがガス液化管11を経由し、貯蔵容器2の内部に供給される。ガス液化管11は、ステンレススチール製であって、その断熱壁5と貯蔵容器2との間の部分は蛇行状に形成されている。従って、酸素ボンベ12とヘリウムボンベ13とからの混合ガスが、貯蔵容器2と断熱壁5との間に充填された液体窒素により十分冷却された後、貯蔵容器2の内部に注入される。   An oxygen cylinder 12 and a helium cylinder 13 are installed outside the heat insulating wall 5. The oxygen cylinder 12 and the helium cylinder 13 are communicated with the inside of the storage container 2, and oxygen gas and helium gas are supplied into the storage container 2 through the gas liquefying tube 11. The gas liquefying tube 11 is made of stainless steel, and a portion between the heat insulating wall 5 and the storage container 2 is formed in a meandering shape. Therefore, the mixed gas from the oxygen cylinder 12 and the helium cylinder 13 is sufficiently cooled by the liquid nitrogen filled between the storage container 2 and the heat insulation wall 5 and then injected into the storage container 2.

また、ガス液化管11の途中には、ガス供給調節弁14が設置されている。このガス供給調節弁14は、後述する差圧計10により測定された差圧の結果に基づき、制御部(図示せず)に制御される。   A gas supply control valve 14 is installed in the middle of the gas liquefying tube 11. The gas supply control valve 14 is controlled by a control unit (not shown) based on the result of the differential pressure measured by the differential pressure gauge 10 described later.

混合ガスのうち、酸素ガスの沸点が液体窒素よりも高いため、酸素ガスは液体窒素に冷却され液化される。一方、ヘリウムガスは、その沸点が液化窒素よりも低いため、液化されずガス液化管11を通って貯蔵容器2内に流入し、貯蔵容器2の排気口2dと排気管6とを経由し外部に排出される。そして、液化酸素が注入されることにより、貯蔵容器2の内部には、液化酸素の気相部3と、液相部4とが形成される。   Since the boiling point of oxygen gas is higher than that of liquid nitrogen in the mixed gas, the oxygen gas is cooled to liquid nitrogen and liquefied. On the other hand, since the boiling point of helium gas is lower than that of liquefied nitrogen, it is not liquefied and flows into the storage container 2 through the gas liquefying pipe 11 and passes through the exhaust port 2d of the storage container 2 and the exhaust pipe 6 to the outside. To be discharged. By injecting liquefied oxygen, a gas phase portion 3 and a liquid phase portion 4 of liquefied oxygen are formed inside the storage container 2.

実験用液化ガス貯蔵装置1は、貯蔵容器2の気相部3に連通し、気相部3の圧力を貯蔵容器2の外部に取り出すための低圧側導圧管8と、液相部4に連通し、液相部4の圧力を貯蔵容器2の外部に取り出すための高圧側導圧管9とを更に備える。低圧側導圧管8は、一本のステンレススチール管を折り曲げることにより成形され、低圧側導圧管8の一端は貯蔵容器2の気相部3の外周壁に設けられた連通口2eを介して貯蔵容器2の内部に連通され、他端は差圧計10に接続されている。   The experimental liquefied gas storage device 1 communicates with the gas phase section 3 of the storage container 2, and communicates with the liquid phase section 4 and the low pressure side pressure guiding pipe 8 for taking out the pressure of the gas phase section 3 to the outside of the storage container 2. And a high-pressure side pressure guiding tube 9 for taking out the pressure of the liquid phase part 4 to the outside of the storage container 2. The low-pressure side pressure guiding tube 8 is formed by bending a single stainless steel tube, and one end of the low-pressure side pressure guiding tube 8 is stored through a communication port 2 e provided on the outer peripheral wall of the gas phase portion 3 of the storage container 2. The other end of the container 2 is connected to the differential pressure gauge 10.

高圧側導圧管9は、一本のステンレススチール管を直角に折り曲げることにより成形され、高圧側導圧管9の一端は、貯蔵容器2の液相部4の外周壁に設けられた連通口2fを介して貯蔵容器2の内部に連通され、他端は、差圧計10に接続されている。   The high pressure side pressure guiding tube 9 is formed by bending a single stainless steel tube at a right angle, and one end of the high pressure side pressure guiding tube 9 has a communication port 2 f provided on the outer peripheral wall of the liquid phase portion 4 of the storage container 2. The other end of the storage container 2 is connected to the differential pressure gauge 10.

低圧側導圧管8と高圧側導圧管9とは、細く形成されている。このようにすれば、外部からの熱の流入を最小限に抑えることができる。一方、差圧計10は、断熱壁5の外部に設置され、低圧側導圧管内8の圧力と高圧側導圧管9内の圧力との差を測定する。   The low pressure side pressure guiding tube 8 and the high pressure side pressure guiding tube 9 are formed thin. In this way, the inflow of heat from the outside can be minimized. On the other hand, the differential pressure gauge 10 is installed outside the heat insulating wall 5 and measures the difference between the pressure in the low pressure side pressure guiding tube 8 and the pressure in the high pressure side pressure guiding tube 9.

図1に示すように、高圧側導圧管9は、その内部に流れ込む液化酸素を気化させるために、一定の長さを有するように形成されている。高圧側導圧管9は、断熱壁5を貫通し、貯蔵容器2の液相部4に連通されている。図2は高圧側導圧管の部分拡大図である。図2に示すように、貯蔵容器2内の液化酸素の液相が高圧側導圧管9内に流れ込み、断熱壁5の付近で外部の熱を吸収し、沸点温度に達し気化する。そして、液化酸素の液相と気相とで気液界面Sが形成される。この時、気液界面Sでは、液相の圧力と気相の圧力とが等しくなっている。ここで、気液界面Sの位置を基準レベルとする。   As shown in FIG. 1, the high pressure side pressure guiding tube 9 is formed to have a certain length in order to vaporize liquefied oxygen flowing into the inside thereof. The high pressure side pressure guiding tube 9 penetrates the heat insulating wall 5 and communicates with the liquid phase portion 4 of the storage container 2. FIG. 2 is a partially enlarged view of the high pressure side pressure guiding tube. As shown in FIG. 2, the liquid phase of liquefied oxygen in the storage container 2 flows into the high-pressure side impulse line 9, absorbs external heat near the heat insulating wall 5, reaches the boiling point temperature, and vaporizes. A gas-liquid interface S is formed between the liquid phase and the gas phase of liquefied oxygen. At this time, at the gas-liquid interface S, the pressure of the liquid phase is equal to the pressure of the gas phase. Here, the position of the gas-liquid interface S is set as a reference level.

このように構成された実験用液化ガス貯蔵装置1を用いて、発明者は液化酸素の液量と差圧との関係について調査を行った。具体的には、液体酸素の密度をほぼ1×10kg/mと考えた場合、貯蔵容器2の液面高さ1cm当たり差圧はおよそ0.1kPaとなるので、液面高さを1cm上げると差圧が0.1kPa高くなる。このような関係を利用し、液面高さを1cmずつ高くし、その都度高圧側導圧管9内の気液界面Sの変化について確認を行った。 Using the experimental liquefied gas storage device 1 configured as described above, the inventors investigated the relationship between the amount of liquefied oxygen and the differential pressure. Specifically, when the density of liquid oxygen is considered to be approximately 1 × 10 3 kg / m 3 , the differential pressure per cm of the liquid surface height of the storage container 2 is about 0.1 kPa. When the pressure is increased by 1 cm, the differential pressure increases by 0.1 kPa. Utilizing such a relationship, the liquid level height was increased by 1 cm, and the change of the gas-liquid interface S in the high pressure side pressure guiding tube 9 was confirmed each time.

その結果、差圧が1.2kPa(すなわち液面高さが12cm)になるまでは、差圧計10の表示が安定したことが確認された。ところで、差圧が1.2kPaとなった時に、突然差圧が0.2kPa〜0.4kPa程度の変動幅をもって不規則に振れ始めた。その後、差圧は安定しなかった。   As a result, it was confirmed that the display of the differential pressure gauge 10 was stable until the differential pressure reached 1.2 kPa (that is, the liquid level was 12 cm). By the way, when the differential pressure reached 1.2 kPa, the differential pressure suddenly started to swing irregularly with a fluctuation range of about 0.2 kPa to 0.4 kPa. Thereafter, the differential pressure was not stable.

このような現象について、発明者は鋭意検討を重ねた結果、以下のように差圧の変動発生のメカニズムを推測した。すなわち、液化酸素の液相と気相とで形成された気液界面Sでは、液相から気相への気化と、気相から液相への液化とが常に進行し、両者の速度が等しくなった時、気液平衡状態に達する。この平衡が崩れた時に差圧変動が発生するものと推測した。   As a result of intensive studies on such a phenomenon, the inventors have presumed the mechanism of differential pressure fluctuation generation as follows. That is, at the gas-liquid interface S formed by the liquid phase of the liquefied oxygen and the gas phase, vaporization from the liquid phase to the gas phase and liquefaction from the gas phase to the liquid phase always proceed, and the speeds of both are equal. When this happens, a vapor-liquid equilibrium state is reached. It was estimated that differential pressure fluctuations occurred when this equilibrium was lost.

気液界面Sの温度勾配が小さい場合において、例えば気液界面Sの位置が僅か高温区域側へ移動し平衡状態が崩れると、液化速度より気化速度が速くなる。これによって、高圧側導圧管9内に封じ込まれた気相が増え、気相の圧力が液相の圧力より高くなるので、気液界面Sを低温区域側に押し付ける。この結果、気液界面Sでは、気化速度が抑制される一方、液化速度が促進される。そして、気化速度がいくらか抑制され液化速度がいくらか促進されるので、最終的に両者の速度が等しくなり、気液平衡状態に戻る。その結果、気液界面Sが安定する。   In the case where the temperature gradient of the gas-liquid interface S is small, for example, if the position of the gas-liquid interface S moves slightly toward the high temperature region and the equilibrium state is lost, the vaporization rate becomes faster than the liquefaction rate. As a result, the gas phase sealed in the high pressure side pressure guiding tube 9 increases, and the pressure of the gas phase becomes higher than the pressure of the liquid phase, so that the gas-liquid interface S is pressed against the low temperature region side. As a result, at the gas-liquid interface S, the vaporization rate is suppressed, while the liquefaction rate is promoted. Then, the vaporization rate is somewhat suppressed and the liquefaction rate is somewhat accelerated, so that both speeds finally become equal and the vapor-liquid equilibrium state is restored. As a result, the gas-liquid interface S is stabilized.

一方、気液界面Sの温度勾配が大きい場合、液相が高圧側導圧管9内に流れ込み易い等の原因で、気化速度を加速させ、気液平衡状態が大きく崩れる。このため、高圧側導圧管9内に封じ込まれた気相が急速に増え、気相の圧力が急激に強まるので、気液界面Sを低温区域側に強く押し付ける。これによって、気液界面Sは低温区域側に大きく押し付けられる。この結果、気化速度よりも液化速度が大きく強まり、高圧側導圧管9の気体の量が急速に減少し、高圧側導圧管9内の液相の圧力が急激に気相の圧力よりも強くなるため、気液界面Sを高温区域側に押し返す。従って、気液界面Sは高温区域側に大きく押し付けられる。そして、このような繰り返しで、気液界面Sは安定せず高圧側導圧管9内で振動する。このメカニズムを見出し、本発明を完成するに至った。   On the other hand, when the temperature gradient of the gas-liquid interface S is large, the vaporization rate is accelerated due to the liquid phase easily flowing into the high-pressure side pressure guiding tube 9, and the gas-liquid equilibrium state is greatly collapsed. For this reason, since the gas phase sealed in the high pressure side pressure guiding tube 9 rapidly increases and the pressure of the gas phase rapidly increases, the gas-liquid interface S is strongly pressed against the low temperature region side. Thereby, the gas-liquid interface S is largely pressed to the low temperature zone side. As a result, the liquefaction rate becomes stronger than the vaporization rate, the amount of gas in the high-pressure side impulse line 9 decreases rapidly, and the liquid phase pressure in the high-pressure side impulse line 9 suddenly becomes stronger than the gas phase pressure. Therefore, the gas-liquid interface S is pushed back to the high temperature area side. Therefore, the gas-liquid interface S is largely pressed to the high temperature area side. And by repeating such, the gas-liquid interface S is not stabilized and vibrates in the high pressure side pressure guiding tube 9. This mechanism has been found and the present invention has been completed.

以下、図面を参照しつつ本発明に係る液化ガス貯蔵装置の第1実施形態について詳細に説明する。   Hereinafter, a liquefied gas storage device according to a first embodiment of the present invention will be described in detail with reference to the drawings.

図3は液化ガス貯蔵装置の第1実施形態を示す概略図である。この液化ガス貯蔵装置15は、少量の液化オゾンを酸素ガスと分離して貯蔵する小型の貯蔵装置である。液化オゾンの貯蔵液量は装置の安全性の点から、10ml以下であることが好適であり、より好適には3〜5mlである。   FIG. 3 is a schematic view showing a first embodiment of the liquefied gas storage device. The liquefied gas storage device 15 is a small storage device that stores a small amount of liquefied ozone separately from oxygen gas. The amount of liquefied ozone stored liquid is preferably 10 ml or less, more preferably 3 to 5 ml from the viewpoint of the safety of the apparatus.

液化ガス貯蔵装置15は、ガス液化管11によってオゾナイザ17に連通されている。オゾナイザ17から生成するガスは、酸素に3〜20%のオゾンを含む。酸素よりオゾンの方が沸点が高いことを利用してオゾンのみ液化して液相部4に貯留し、液化しない酸素は排気管6から排出する。高圧側導圧管16は、高圧側導圧管9と同じ構造を有する。貯蔵容器2と高圧側導圧管16とを連通する連通口2fの近傍には、オリフィス(流動抵抗体)18が設けられている。オリフィス18は、金属製で円環状に形成され、高圧側導圧管16の中心軸に対し同軸に高圧側導圧管16に取り付けられている。その他の構成は、上述した実験用液化ガス貯蔵装置1の構成と同等であるため、同一符号を付して重複説明を省略する。   The liquefied gas storage device 15 is communicated with the ozonizer 17 by the gas liquefying tube 11. The gas generated from the ozonizer 17 contains 3 to 20% ozone in oxygen. Utilizing the fact that ozone has a higher boiling point than oxygen, only ozone is liquefied and stored in the liquid phase portion 4, and oxygen that is not liquefied is discharged from the exhaust pipe 6. The high pressure side pressure guiding tube 16 has the same structure as the high pressure side pressure guiding tube 9. An orifice (flow resistor) 18 is provided in the vicinity of the communication port 2 f that communicates the storage container 2 and the high-pressure side impulse line 16. The orifice 18 is made of metal and has an annular shape, and is attached to the high-pressure side impulse line 16 coaxially with the central axis of the high-pressure side impulse line 16. The other configuration is the same as the configuration of the experimental liquefied gas storage device 1 described above.

このように構成された液化ガス貯蔵装置15にあっては、貯蔵容器2が断熱壁5により断熱され、断熱壁5を境にして低温区域と高温区域とが形成され、高圧側導圧管9が、断熱壁5を貫通し貯蔵容器2の液相部4に連通されているので、これらは気液界面形成手段を構成する。従って、液化オゾンの液相が高圧側導圧管16に流れ込み、断熱壁5の付近で外部の熱を吸収し気化することで、気液界面Sが形成される。加えて、高圧側導圧管16内には、液化オゾンの液相の流れを阻害するオリフィス18が設けられているため、このオリフィス18は、高圧側導圧管16内における液相の流れの運動エネルギを低下させ、液相の流れを緩やかにする効果をもたらす。   In the liquefied gas storage device 15 configured as described above, the storage container 2 is insulated by the heat insulating wall 5, a low temperature region and a high temperature region are formed with the heat insulating wall 5 as a boundary, and the high pressure side pressure guiding tube 9 is formed. Since they penetrate through the heat insulating wall 5 and communicate with the liquid phase part 4 of the storage container 2, they constitute gas-liquid interface forming means. Accordingly, the liquid phase of liquefied ozone flows into the high-pressure side pressure guiding tube 16 and absorbs and heats external heat in the vicinity of the heat insulating wall 5 to form the gas-liquid interface S. In addition, an orifice 18 is provided in the high-pressure side impulse line 16 to inhibit the flow of the liquid phase of liquefied ozone. Therefore, the orifice 18 has a kinetic energy of the liquid phase flow in the high-pressure side impulse line 16. And lowering the flow of the liquid phase.

従って、仮に気液界面Sの温度勾配が大きい場合でも、高圧側導圧管16への液相の急激な流れ込みを抑制することができるので、気液界面Sを容易に安定させることができる。その結果、低圧側導圧管8内の圧力と高圧側導圧管16内の圧力との差を正しく測定することが可能となり、安定した液量管理を容易に行うことができる。   Therefore, even if the temperature gradient of the gas-liquid interface S is large, the rapid inflow of the liquid phase into the high-pressure side impulse line 16 can be suppressed, so that the gas-liquid interface S can be easily stabilized. As a result, the difference between the pressure in the low pressure side pressure guiding tube 8 and the pressure in the high pressure side pressure guiding tube 16 can be measured correctly, and stable liquid volume management can be easily performed.

また、オリフィス18は貯蔵容器2と高圧側導圧管16とを連通する連通口2fの近傍に設置されているので、オリフィス18の設置場所と貯蔵容器2との距離を最小限に短くすることができ、液化ガス貯蔵装置15のコンパクト化を図ることが可能となる。   Further, since the orifice 18 is installed in the vicinity of the communication port 2f that allows the storage container 2 and the high-pressure side pressure guiding pipe 16 to communicate with each other, the distance between the installation place of the orifice 18 and the storage container 2 can be minimized. Thus, the liquefied gas storage device 15 can be made compact.

以下、図4を参照しつつ本発明に係る液化ガス貯蔵装置の第2実施形態について詳細に説明する。   Hereinafter, the second embodiment of the liquefied gas storage device according to the present invention will be described in detail with reference to FIG.

図4は液化ガス貯蔵装置の第2実施形態を示す概略図である。この液化ガス貯蔵装置20は、少量の液化オゾンを貯蔵する小型の貯蔵装置であって、上述した第1実施形態との相違点は、オリフィス18を設けず、そして、高圧側導圧管19が斜め上方に延在する傾斜部19aを有することである。傾斜部19aは、貯蔵容器2の径方向(すなわち水平方向)に対して僅かな傾斜角度αを有し、断熱壁5を貫通し、貯蔵容器2の液相部4に連通されている。その他の構成は、第1実施形態に係る液化ガス貯蔵装置15の構成と同等であるため、同一符号を付して重複説明を省略する。   FIG. 4 is a schematic view showing a second embodiment of the liquefied gas storage device. The liquefied gas storage device 20 is a small-sized storage device that stores a small amount of liquefied ozone. The difference from the first embodiment described above is that the orifice 18 is not provided and the high-pressure side pressure guiding tube 19 is oblique. It has an inclined portion 19a extending upward. The inclined part 19 a has a slight inclination angle α with respect to the radial direction (that is, the horizontal direction) of the storage container 2, penetrates the heat insulating wall 5, and communicates with the liquid phase part 4 of the storage container 2. Since the other configuration is the same as the configuration of the liquefied gas storage device 15 according to the first embodiment, the same reference numerals are given and redundant description is omitted.

以上のように構成された液化ガス貯蔵装置20にあっては、貯蔵容器2が断熱壁5により断熱され、断熱壁5を境にして低温区域と高温区域とが形成され、高圧側導圧管19が、断熱壁5を貫通し貯蔵容器2の液相部4に連通されているので、これらは気液界面形成手段を構成する。従って、液化オゾンの液相が傾斜部19aに流れ込み、断熱壁5の付近で外部の熱を吸収し気化することで、気液界面Sが形成される。加えて、傾斜部19aは、斜め上方に延在するので、傾斜部19a管内の液相が低温区域側より高温区域側へ流れ下ることがない。従って、仮に気液界面Sの温度勾配が大きい場合でも、傾斜部19aへの液相の急激な流れ込みを抑制することができるので、気液界面Sを容易に安定させることができる。その結果、低圧側導圧管8内の圧力と高圧側導圧管19内の圧力との差を正しく測定することが可能となり、安定した液量管理を容易に行うことができる。   In the liquefied gas storage device 20 configured as described above, the storage container 2 is insulated by the heat insulation wall 5, and a low temperature zone and a high temperature zone are formed with the heat insulation wall 5 as a boundary. However, since it penetrates the heat insulating wall 5 and communicates with the liquid phase part 4 of the storage container 2, these constitute gas-liquid interface forming means. Accordingly, the liquid phase of liquefied ozone flows into the inclined portion 19a and absorbs external heat in the vicinity of the heat insulating wall 5 to vaporize, thereby forming the gas-liquid interface S. In addition, since the inclined portion 19a extends obliquely upward, the liquid phase in the inclined portion 19a pipe does not flow down from the low temperature zone side to the high temperature zone side. Therefore, even when the temperature gradient of the gas-liquid interface S is large, the rapid inflow of the liquid phase into the inclined portion 19a can be suppressed, so that the gas-liquid interface S can be easily stabilized. As a result, the difference between the pressure in the low pressure side pressure guiding tube 8 and the pressure in the high pressure side pressure guiding tube 19 can be measured correctly, and stable liquid amount management can be easily performed.

本発明は、上記の実施形態に限定されるものではない。例えば、気液界面形成手段は、断熱壁を貫通させる手法の他に、電熱線などにより加熱する手法もある。加熱手法を用いると、熱の影響を受けるため、断熱壁を貫通させる手法が好適である。また、本発明は、全ての液化ガスに用いることができる。特に、オゾンのように少量で貯蔵する液化ガスは、気液界面の影響が大きいため、好適である。また、オリフィス18の設置箇所は高圧側導圧管16内に限らない。連通口2fの近傍であって貯蔵容器2の外周壁の内側に設置されてもよい。また、流動抵抗体はオリフィス18に限らず、例えば複数の穴を有する円板を用いてもよく、高圧側導圧管16の一部にファイバやビーズのようなものを充填してもよい。   The present invention is not limited to the above embodiment. For example, the gas-liquid interface forming means includes a method of heating with a heating wire in addition to a method of penetrating a heat insulating wall. When a heating method is used, it is affected by heat, so a method of penetrating the heat insulating wall is preferable. The present invention can be used for all liquefied gases. In particular, a liquefied gas that is stored in a small amount like ozone is suitable because the influence of the gas-liquid interface is large. Further, the installation location of the orifice 18 is not limited to the inside of the high pressure side pressure guiding tube 16. It may be installed near the communication port 2 f and inside the outer peripheral wall of the storage container 2. In addition, the flow resistor is not limited to the orifice 18, for example, a disk having a plurality of holes may be used, and a part of the high-pressure side impulse line 16 may be filled with a fiber or a bead.

実験用液化ガス貯蔵装置を示す概略図である。It is the schematic which shows the liquefied gas storage apparatus for experiment. 図2は高圧側導圧管の部分拡大図である。FIG. 2 is a partially enlarged view of the high pressure side pressure guiding tube. 液化ガス貯蔵装置の第1実施形態を示す概略図である。It is the schematic which shows 1st Embodiment of a liquefied gas storage apparatus. 液化ガス貯蔵装置の第2実施形態を示す概略図である。It is the schematic which shows 2nd Embodiment of a liquefied gas storage apparatus.

符号の説明Explanation of symbols

2…貯蔵容器、2f…連通口、3…気相部、4…液相部、8…低圧側導圧管、9,16,19…高圧側導圧管、10…差圧計、11…ガス液化管、15,20…液化ガス貯蔵装置、17…オゾナイザ、19a…傾斜部、18…オリフィス(流動抵抗体)、S…気液界面。 DESCRIPTION OF SYMBOLS 2 ... Storage container, 2f ... Communication port, 3 ... Gas phase part, 4 ... Liquid phase part, 8 ... Low pressure side pressure guiding pipe, 9, 16, 19 ... High pressure side pressure guiding pipe, 10 ... Differential pressure gauge, 11 ... Gas liquefaction pipe 15, 20 ... liquefied gas storage device, 17 ... ozonizer, 19a ... inclined portion, 18 ... orifice (flow resistance), S ... gas-liquid interface.

Claims (5)

液化ガスを貯蔵する貯蔵容器と、
前記貯蔵容器内の気相部の圧力を前記貯蔵容器の外部に取り出す低圧側導圧管と、
前記貯蔵容器内の液相部の圧力を前記貯蔵容器の外部に取り出す高圧側導圧管と、
前記低圧側導圧管内の圧力と前記高圧側導圧管内の圧力との差を測定する差圧計と、
液化ガスの気液界面を前記高圧側導圧管内に形成させる気液界面形成手段と、
前記高圧側導圧管内に流れ込む液化ガスの液相の流れを阻害する流動抵抗体とを備えることを特徴とする液化ガス貯蔵装置。
A storage container for storing liquefied gas;
A low-pressure side pressure guiding pipe for extracting the pressure of the gas phase portion in the storage container to the outside of the storage container;
A high-pressure side pressure guiding pipe for taking out the pressure of the liquid phase part in the storage container to the outside of the storage container;
A differential pressure gauge for measuring the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube;
A gas-liquid interface forming means for forming a gas-liquid interface of the liquefied gas in the high-pressure side impulse line;
A liquefied gas storage device comprising: a flow resistor that obstructs a liquid phase flow of the liquefied gas flowing into the high pressure side pressure guiding tube.
前記流動抵抗体は、前記高圧側導圧管内に設けられていることを特徴とする請求項1に記載の液化ガス貯蔵装置。   The liquefied gas storage device according to claim 1, wherein the flow resistor is provided in the high-pressure side impulse line. 前記流動抵抗体は、前記貯蔵容器と前記高圧側導圧管とを連通する連通口の近傍に設けられていることを特徴とする請求項1又は2に記載の液化ガス貯蔵装置。   3. The liquefied gas storage device according to claim 1, wherein the flow resistor is provided in the vicinity of a communication port that communicates the storage container and the high-pressure side impulse line. 4. 液化ガスを貯蔵する貯蔵容器と、
前記貯蔵容器内の気相部の圧力を前記貯蔵容器の外部に取り出す低圧側導圧管と、
前記貯蔵容器内の液相部の圧力を前記貯蔵容器の外部に取り出す高圧側導圧管と、
前記低圧側導圧管内の圧力と前記高圧側導圧管内の圧力との差を測定する差圧計と、
液化ガスの気液界面を前記高圧側導圧管内に形成させる気液界面形成手段とを備え、
前記高圧側導圧管は、斜め上方に延在する傾斜部を有することを特徴とする液化ガス貯蔵装置。
A storage container for storing liquefied gas;
A low-pressure side pressure guiding pipe for extracting the pressure of the gas phase portion in the storage container to the outside of the storage container;
A high-pressure side pressure guiding pipe for taking out the pressure of the liquid phase part in the storage container to the outside of the storage container;
A differential pressure gauge for measuring the difference between the pressure in the low pressure side pressure guiding tube and the pressure in the high pressure side pressure guiding tube;
Gas-liquid interface forming means for forming a gas-liquid interface of the liquefied gas in the high-pressure side pressure guiding tube, and
The liquefied gas storage device, wherein the high-pressure side pressure guiding tube has an inclined portion extending obliquely upward.
前記液化ガスがオゾンを液化させたものであることを特徴とする請求項1乃至4の何れか1項記載の液化ガス貯蔵装置。   The liquefied gas storage device according to any one of claims 1 to 4, wherein the liquefied gas is obtained by liquefying ozone.
JP2007202153A 2007-08-02 2007-08-02 Liquefied gas storage device Pending JP2009036330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202153A JP2009036330A (en) 2007-08-02 2007-08-02 Liquefied gas storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202153A JP2009036330A (en) 2007-08-02 2007-08-02 Liquefied gas storage device

Publications (1)

Publication Number Publication Date
JP2009036330A true JP2009036330A (en) 2009-02-19

Family

ID=40438417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202153A Pending JP2009036330A (en) 2007-08-02 2007-08-02 Liquefied gas storage device

Country Status (1)

Country Link
JP (1) JP2009036330A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243210A (en) * 2009-04-01 2010-10-28 Kawasaki Heavy Ind Ltd Tank for liquefied gas
JP2012229970A (en) * 2011-04-26 2012-11-22 Yazaki Corp Differential pressure type liquid level detector
JP2013257313A (en) * 2012-05-16 2013-12-26 Ic Sokki Kk Fluid transport vehicle of vacuum car or the like and fluid collection amount measurement method using the same
CN104390125A (en) * 2014-10-27 2015-03-04 中国海洋石油总公司 Method and device applied to constant-pressure recovery of liquefied natural gas flash steam
CN105065901A (en) * 2015-08-14 2015-11-18 中国石油化工股份有限公司 Light hydrocarbon recovering technology for liquefied natural gas receiving station
CN105065900A (en) * 2015-08-14 2015-11-18 中国石油化工股份有限公司 Light hydrocarbon recovery technology for LNG receiving terminal
KR20190004160A (en) * 2017-07-03 2019-01-11 삼성엔지니어링 주식회사 Device for measuring liquid level of low temperature liquefied gas and pressurized vessel for low temperature liquefied gas equipped with the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260689A (en) * 1993-03-09 1994-09-16 Toshiba Toransupooto Eng Kk Liquid level measuring instrument for low-temperature vessel
JPH07239262A (en) * 1994-02-25 1995-09-12 Toshiba Corp Water gauge
JPH09133566A (en) * 1995-11-13 1997-05-20 Hitachi Ltd Liquid level measuring apparatus
JPH11182792A (en) * 1997-12-16 1999-07-06 Yazaki Corp Lpg feeder
JP2000310396A (en) * 1999-04-23 2000-11-07 Ihi Plantec:Kk Level gage of low temperature tank
JP2001139308A (en) * 1999-11-09 2001-05-22 Natl Inst Of Advanced Industrial Science & Technology Meti Ozone generating device
JP2006145024A (en) * 2004-10-19 2006-06-08 Taiyo Nippon Sanso Corp Heat insulating container and heat insulating container liquid level meter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06260689A (en) * 1993-03-09 1994-09-16 Toshiba Toransupooto Eng Kk Liquid level measuring instrument for low-temperature vessel
JPH07239262A (en) * 1994-02-25 1995-09-12 Toshiba Corp Water gauge
JPH09133566A (en) * 1995-11-13 1997-05-20 Hitachi Ltd Liquid level measuring apparatus
JPH11182792A (en) * 1997-12-16 1999-07-06 Yazaki Corp Lpg feeder
JP2000310396A (en) * 1999-04-23 2000-11-07 Ihi Plantec:Kk Level gage of low temperature tank
JP2001139308A (en) * 1999-11-09 2001-05-22 Natl Inst Of Advanced Industrial Science & Technology Meti Ozone generating device
JP2006145024A (en) * 2004-10-19 2006-06-08 Taiyo Nippon Sanso Corp Heat insulating container and heat insulating container liquid level meter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010243210A (en) * 2009-04-01 2010-10-28 Kawasaki Heavy Ind Ltd Tank for liquefied gas
JP2012229970A (en) * 2011-04-26 2012-11-22 Yazaki Corp Differential pressure type liquid level detector
JP2013257313A (en) * 2012-05-16 2013-12-26 Ic Sokki Kk Fluid transport vehicle of vacuum car or the like and fluid collection amount measurement method using the same
CN104390125A (en) * 2014-10-27 2015-03-04 中国海洋石油总公司 Method and device applied to constant-pressure recovery of liquefied natural gas flash steam
CN105065901A (en) * 2015-08-14 2015-11-18 中国石油化工股份有限公司 Light hydrocarbon recovering technology for liquefied natural gas receiving station
CN105065900A (en) * 2015-08-14 2015-11-18 中国石油化工股份有限公司 Light hydrocarbon recovery technology for LNG receiving terminal
KR20190004160A (en) * 2017-07-03 2019-01-11 삼성엔지니어링 주식회사 Device for measuring liquid level of low temperature liquefied gas and pressurized vessel for low temperature liquefied gas equipped with the same
KR101950347B1 (en) * 2017-07-03 2019-02-20 삼성엔지니어링 주식회사 Device for measuring liquid level of low temperature liquefied gas and pressurized vessel for low temperature liquefied gas equipped with the same

Similar Documents

Publication Publication Date Title
JP2009036330A (en) Liquefied gas storage device
US7921657B2 (en) Methods and systems for cryogenic cooling
JP3513225B2 (en) Cryogenic liquid storage tank
US7131277B2 (en) Cryogenic vessel with an ullage space venturi assembly
US10006697B2 (en) Station and method for supplying a flammable fluid fuel
JP2008267496A (en) Hydrogen gas cooling device
KR101950347B1 (en) Device for measuring liquid level of low temperature liquefied gas and pressurized vessel for low temperature liquefied gas equipped with the same
Kim et al. Experimental investigation on no-vent fill process using tetrafluoromethane (CF4)
JP2003214598A (en) Cryogenic liquid tank
JP4046294B2 (en) Apparatus for generating bubbles or droplets in liquid and method for generating bubbles or droplets in liquid
US20220221110A1 (en) Device for storing cryogenic fluid
JP2008007336A (en) Ozone concentrating apparatus and method for driving ozone concentrating apparatus
JP2011179582A (en) Stratification elimination device
KR102063526B1 (en) Apparatus and Method for producing supercooling cryogenic liquid.
JP6624492B2 (en) Method and apparatus for vaporizing liquefied carbon dioxide
JP7126023B2 (en) Fluid tank with internal pressurizer
JP2018091423A (en) Carburetor
JP2011068560A (en) Ozone concentrating apparatus and method for operating the same
Aleksic et al. Experimental study of thermal effects in a hydrogen cryo-adsorption storage system
JP5860945B2 (en) Method and apparatus for vaporizing liquefied carbon dioxide
JP2758977B2 (en) Low temperature liquefied gas flow measurement method and flow meter using the method
AU2011202862B2 (en) Methods and systems for cryogenic cooling

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091013

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20111219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Effective date: 20120515

Free format text: JAPANESE INTERMEDIATE CODE: A02