JP2009028571A - Flue gas desulfurizer - Google Patents

Flue gas desulfurizer Download PDF

Info

Publication number
JP2009028571A
JP2009028571A JP2007191858A JP2007191858A JP2009028571A JP 2009028571 A JP2009028571 A JP 2009028571A JP 2007191858 A JP2007191858 A JP 2007191858A JP 2007191858 A JP2007191858 A JP 2007191858A JP 2009028571 A JP2009028571 A JP 2009028571A
Authority
JP
Japan
Prior art keywords
seawater
desulfurization
dilution
exhaust gas
desulfurization tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007191858A
Other languages
Japanese (ja)
Other versions
JP5166791B2 (en
Inventor
Keisuke Sonoda
圭介 園田
Shozo Nagao
章造 永尾
Tomoo Akiyama
知雄 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007191858A priority Critical patent/JP5166791B2/en
Priority to TW097124418A priority patent/TW200918152A/en
Priority to PCT/JP2008/062563 priority patent/WO2009014016A1/en
Priority to MYPI20094298 priority patent/MY150527A/en
Priority to SA8290468A priority patent/SA08290468B1/en
Publication of JP2009028571A publication Critical patent/JP2009028571A/en
Priority to EG2009111635A priority patent/EG25384A/en
Application granted granted Critical
Publication of JP5166791B2 publication Critical patent/JP5166791B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a combustion exhaust gas from leaking by preventing or suppressing the entrainment of a boiler exhaust gas generated when used seawater rushes into the water surface of seawater for dilution, in a flue gas desulfurizer adopting a seawater process. <P>SOLUTION: This flue gas desulfurizer 1A adopts the seawater process for desulfurization by bringing the seawater flowing down from the top of a desulfurization tower 2 into contact with the boiler exhaust gas ascending from the bottom of the desulfurization tower 2 under a gas-liquid contact system. The used seawater after desulfurization drops into the seawater for dilution flowing through a water channel 9 from the desulfurization tower 2, and these different kinds of seawater are mixed and diluted. Further, an impact cushioning device 20 which cushions impact force generated during the rushing of the falling used seawater into the seawater for dilution, is arranged below a combustion exhaust gas inflow position of the desulfurization tower 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭焚き、原油焚き及び重油焚き等の発電プラントに適用される排煙脱硫装置に係り、特に、海水法を用いて脱硫する排煙脱硫装置に関する。   The present invention relates to a flue gas desulfurization apparatus applied to power plants such as coal burning, crude oil burning, and heavy oil burning, and more particularly to a flue gas desulfurization apparatus that performs desulfurization using a seawater method.

従来、石炭や原油等を燃料とする発電プラントにおいて、ボイラから排出される燃焼排気ガス(以下、「ボイラ排ガス」と呼ぶ)は、ボイラ排ガス中に含まれている二酸化硫黄(SO)等の硫黄酸化物(SOx)を除去してから大気に放出される。このような脱硫処理を施す排煙脱硫装置の脱硫方式としては、石灰石石膏法、スプレードライヤー法及び海水法が知られている。 Conventionally, in a power plant using coal, crude oil or the like as fuel, combustion exhaust gas (hereinafter referred to as “boiler exhaust gas”) discharged from the boiler is sulfur dioxide (SO 2 ) or the like contained in the boiler exhaust gas. Sulfur oxide (SOx) is removed before being released to the atmosphere. As a desulfurization method of the flue gas desulfurization apparatus that performs such a desulfurization treatment, a limestone gypsum method, a spray dryer method, and a seawater method are known.

このうち、海水法を採用した排煙脱硫装置(以下、「海水脱硫装置」と呼ぶ)は、吸収剤として海水を使用する脱硫方式である。この方式では、たとえば略円筒のような筒形状を縦置きにした脱硫塔(吸収塔)の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去している。このように、脱硫塔の上部から流下する海水と脱硫塔の下方より上昇する燃焼排気ガスとを気液接触させて脱硫する海水脱硫装置の海水散布方式には、漏れ棚方式、充填方式、スプレー方式及び液柱方式が知られている。
上述した海水脱硫装置においては、通常の場合、脱硫塔内で吸収剤として使用した後の使用済海水が水路(Seawater Oxidation Treatment System;SOTS)を流れて周辺海域に排水される。なお、水路内を流れる使用済海水に対しては、たとえば脱炭酸(爆気)等の処理が施されている。
Among these, the flue gas desulfurization apparatus (hereinafter referred to as “seawater desulfurization apparatus”) employing the seawater method is a desulfurization system that uses seawater as an absorbent. In this system, for example, by supplying seawater and boiler exhaust gas into a desulfurization tower (absorption tower) having a cylindrical shape such as a substantially cylindrical shape, a wet-based gas-liquid contact is generated using seawater as an absorption liquid. To remove sulfur oxides. As described above, the seawater spraying method of the seawater desulfurization device that desulfurizes the seawater flowing from the upper part of the desulfurization tower and the combustion exhaust gas rising from the lower part of the desulfurization tower by gas-liquid contact includes a leak shelf method, a filling method, a spray A method and a liquid column method are known.
In the seawater desulfurization apparatus described above, usually, used seawater after being used as an absorbent in the desulfurization tower flows through a water channel (Seawater Oxidation Treatment System; SOTS) and is discharged into the surrounding sea area. For example, decarbonation (explosion) is performed on the used seawater flowing in the water channel.

ここで、海水脱硫装置の従来例として、漏れ棚方式の構成を図10に示して簡単に説明する。図示の海水脱硫装置1では、一方の海水が脱硫塔2の上部から供給されて自然落下し、脱硫塔2の下部から供給されて上昇するボイラ排ガスとの間で気液接触を生じさせている。海水とボイラ排ガスとの気液接触は、脱硫塔2内の上下方向に所定の間隔で複数段配置されている多孔板棚3を湿式ベースとし、多孔板棚3に穿設されている多数の孔4を海水及びボイラ排ガスが通過することで達成される。なお、図10に示す符号5は海水供給管、5aは海水ノズル、6は脱硫後の海水を流出させる使用済海水出口、7はボイラ排ガス供給口、8は脱硫後のボイラ排ガスを流出させるボイラ排ガス排気口である。(たとえば、特許文献1、2参照)   Here, as a conventional example of a seawater desulfurization apparatus, the configuration of a leak shelf system is shown in FIG. 10 and will be briefly described. In the illustrated seawater desulfurization apparatus 1, one seawater is supplied from the upper part of the desulfurization tower 2 and naturally falls, and gas-liquid contact is generated between the boiler exhaust gas supplied from the lower part of the desulfurization tower 2 and rising. . The gas-liquid contact between the seawater and the boiler exhaust gas is based on the perforated plate shelf 3 arranged in a plurality of stages at predetermined intervals in the vertical direction in the desulfurization tower 2 as a wet base, and a large number of perforated plate shelves 3 are perforated. This is achieved by passing seawater and boiler exhaust gas through the holes 4. 10, 5 is a seawater supply pipe, 5a is a seawater nozzle, 6 is a used seawater outlet through which the desulfurized seawater flows out, 7 is a boiler exhaust gas supply port, and 8 is a boiler through which the boiler exhaust gas after desulfurization flows out. Exhaust gas exhaust port. (For example, see Patent Documents 1 and 2)

このような海水脱硫装置1においては、脱硫塔2を水路(SOTS)9の上方に配置することにより、脱硫後の使用済海水を脱硫塔2の下端に開口する使用済海水出口6から水路9内に直接落下させて排水する場合がある。すなわち、水路9内を流れている希釈用海水と、脱硫塔2から落下して合流する使用済海水とを混合することにより、使用済海水を希釈して排水する構成とされる。また、使用済海水を流す水路9には、脱硫塔2からボイラ排ガスが流入することを防止するため、水中に入り込む位置まで延びたガス封印用の仕切壁10が設けられている。従って、脱硫塔2に供給されたボイラ排ガスは、仕切壁10と水面とにより封印されることになるので、水路9の水面上に形成される空間から漏出することはない。
なお、他の海水散布方式(充填方式等)を採用した海水脱硫装置においても、脱硫塔2の上部から流下する海水と脱硫塔2の下方より上昇する燃焼排気ガスとを気液接触させて脱硫するという基本構成は同様である。
特開平11−290643号公報 特開2001−129352号公報
In such a seawater desulfurization apparatus 1, the desulfurization tower 2 is disposed above the water channel (SOTS) 9, whereby the desulfurized used seawater is opened from the used seawater outlet 6 at the lower end of the desulfurization tower 2 to the water channel 9. There are cases where it is dropped directly into the drain. That is, the seawater for dilution flowing in the water channel 9 and the used seawater that falls from the desulfurization tower 2 and joins are mixed to dilute and drain the used seawater. Moreover, in order to prevent the boiler exhaust gas from flowing from the desulfurization tower 2 in the water channel 9 through which the used seawater flows, a partition wall 10 for gas sealing extending to a position where it enters the water is provided. Therefore, the boiler exhaust gas supplied to the desulfurization tower 2 is sealed by the partition wall 10 and the water surface, and therefore does not leak out from the space formed on the water surface of the water channel 9.
In addition, in seawater desulfurization apparatuses that employ other seawater spraying methods (filling methods, etc.), the seawater flowing from the top of the desulfurization tower 2 and the combustion exhaust gas rising from the bottom of the desulfurization tower 2 are brought into gas-liquid contact for desulfurization. The basic configuration is the same.
Japanese Patent Laid-Open No. 11-290643 JP 2001-129352 A

ところで、上述した海水脱硫装置1においては、脱硫塔2から水路(SOTS)2を流れる希釈用海水の水面に使用済海水を落下させて混合希釈するため、使用済海水が希釈用海水の水面上に突入する際、水面の激しい乱れ等により脱硫塔2内のボイラ排ガスを巻き込みことが懸念される。こうして使用済海水に巻き込まれたボイラ排ガスは、気泡となって希釈用海水の流れに流されるため、仕切壁10を通り抜けて流出することになる。従って、ボイラ排ガスは、その一部が希釈用海水とともに脱硫塔2から周囲の環境へ漏洩することになるため好ましくない。   By the way, in the seawater desulfurization apparatus 1 described above, the used seawater falls on the surface of the dilution seawater flowing through the water channel (SOTS) 2 from the desulfurization tower 2 and is mixed and diluted. When rushing into the boiler, there is a concern that boiler exhaust gas in the desulfurization tower 2 may be involved due to severe disturbance of the water surface. The boiler exhaust gas thus entrained in the used seawater becomes bubbles and flows in the flow of dilution seawater, and thus flows out through the partition wall 10. Therefore, a part of the boiler exhaust gas is not preferable because a part of the exhaust gas leaks from the desulfurization tower 2 to the surrounding environment together with the dilution seawater.

このように、海水法を採用した排煙脱硫装置(海水脱硫装置)においては、使用済海水が希釈用海水の水面に突入する際に巻き込まれたボイラ排ガスが、希釈用海水の流れによって脱硫塔から周囲へ漏洩するという問題の解決が望まれる。
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、海水法を採用した排煙脱硫装置において、使用済海水が希釈用海水の水面に突入する際に生じていた燃焼排気ガス(ボイラ排ガス)の巻き込みを防止または抑制することにより、燃焼排気ガスの漏洩を防止または最小限に抑えることにある。
In this way, in the flue gas desulfurization apparatus (seawater desulfurization apparatus) employing the seawater method, the boiler exhaust gas entrained when the used seawater enters the surface of the dilution seawater is desulfurized by the flow of the dilution seawater. It is desirable to solve the problem of leakage to the surroundings.
The present invention has been made in view of the above circumstances, and the object of the present invention occurs when used seawater enters the surface of dilution seawater in a flue gas desulfurization apparatus employing the seawater method. It is intended to prevent or minimize leakage of combustion exhaust gas by preventing or suppressing entrainment of the combustion exhaust gas (boiler exhaust gas).

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る排煙脱硫装置は、脱硫塔の上部から流下する海水と脱硫塔の下方より上昇する燃焼排気ガスとを気液接触させて脱硫する海水法による排煙脱硫装置において、脱硫後の使用済海水が前記脱硫塔から水路内を流れる希釈用海水に落下して混合希釈されるとともに、前記使用済海水が前記希釈用海水に落下して突入する際の衝撃力を緩和する衝撃力緩和装置を前記脱硫塔の燃焼排気ガス流入位置より下方に設けたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The flue gas desulfurization apparatus according to the present invention is a flue gas desulfurization apparatus using a seawater method in which seawater flowing down from the upper part of the desulfurization tower and combustion exhaust gas rising from below the desulfurization tower are brought into gas-liquid contact for desulfurization. Impact force mitigation reduces the impact force when the used seawater falls into the dilution seawater flowing in the water channel from the desulfurization tower and is mixed and diluted, and the used seawater falls into the dilution seawater and enters the dilution seawater. The apparatus is provided below the inflow position of the combustion exhaust gas in the desulfurization tower.

このような排煙脱硫装置によれば、脱硫後の使用済海水が脱硫塔から水路内を流れる希釈用海水に落下して混合希釈されるとともに、使用済海水が希釈用海水に落下して突入する際の衝撃力を緩和する衝撃力緩和装置を脱硫塔の燃焼排気ガス流入位置より下方に設けたことにより、脱硫塔内から落下する使用済海水は、希釈用海水に突入する前に、あるいは、希釈用海水に突入する際に、衝撃力緩和装置を通過することにより水面への貫通力が低減される。すなわち、衝撃力緩和装置は、脱硫塔内から希釈用海水の水面へ落下する使用済海水の流れ(海水の塊)を細分化したり、あるいは、希釈用海水に突入する方向の流速を低減したりして、使用済海水が水面へ突入する貫通力を低減することができる。   According to such a flue gas desulfurization apparatus, spent seawater after desulfurization falls from the desulfurization tower to dilution seawater flowing in the water channel and is mixed and diluted, and used seawater falls into dilution seawater and enters. By providing an impact force mitigation device that mitigates the impact force when the desulfurization tower is placed below the combustion exhaust gas inflow position of the desulfurization tower, the used seawater falling from the desulfurization tower can enter the dilution seawater or When penetrating into the seawater for dilution, the penetration force to the water surface is reduced by passing through the impact force mitigating device. That is, the impact force mitigation device subdivides the used seawater flow (seawater lump) falling from the desulfurization tower onto the surface of the dilution seawater, or reduces the flow velocity in the direction of entering the dilution seawater. And the penetration force which used seawater rushes into the water surface can be reduced.

この場合の衝撃力緩衝装置としては、希釈用海水の水上(燃焼排気ガス中)または水中(水上から水中へ連続するものも含む)に配設されたグリッド、多孔板、グレーティング等の格子状部材や、受衝板付漏斗がある。
また、上記の発明において、気液接触を行う海水散布方式は、漏れ棚方式、充填方式、スプレー方式あるいは液柱方式のいずれであってもよい。
In this case, as the impact force buffering device, grid-like members such as grids, perforated plates, and gratings disposed on the dilution seawater (in the combustion exhaust gas) or in the water (including those that continue from the water to the water) There is a funnel with an impact plate.
In the above invention, the seawater spraying method for performing gas-liquid contact may be any of a leaking shelf method, a filling method, a spray method, or a liquid column method.

上述した本発明によれば、脱硫後の使用済海水を脱硫塔から水路内の希釈用海水に落下させて混合希釈する際、脱硫塔内から落下する使用済海水が衝撃力緩和装置を通過することにより、希釈用海水に落下して突入する使用済海水の貫通力が緩和される。このため、脱硫塔内の燃焼排気ガスが使用済海水の流れに巻き込まれることを防止または抑制できるようになり、希釈用海水に巻き込まれたボイラ排ガスが希釈用海水の流れとともに流出することで脱硫塔から周囲の環境へ漏洩することのない排煙脱硫装置となる。すなわち、海水法を採用し、脱硫後の使用済海水を希釈海水に落下させて処理する排煙脱硫装置においては、使用済海水の貫通力が緩和されることによって希釈用海水の水面に生じる乱れが低減されるので、使用済海水が希釈用海水の水面に突入する際に生じていた燃焼排気ガスの巻き込みを防止または抑制し、脱硫塔の外部へ燃焼排気ガスが漏洩することを防止または最小限に抑えるという顕著な効果が得られる。   According to the present invention described above, when the used seawater after desulfurization is dropped from the desulfurization tower to the dilution seawater in the water channel and mixed and diluted, the used seawater falling from the desulfurization tower passes through the impact force reducing device. As a result, the penetration force of the used seawater that falls into the dilution seawater and enters the seawater is alleviated. For this reason, it becomes possible to prevent or suppress the combustion exhaust gas in the desulfurization tower from being caught in the flow of spent seawater, and the boiler exhaust gas caught in the dilution seawater flows out together with the flow of the dilution seawater. The flue gas desulfurization device will not leak from the tower to the surrounding environment. In other words, in the flue gas desulfurization apparatus that uses the seawater method to drop the used seawater after desulfurization to the diluted seawater and treat it, the turbulence that occurs on the surface of the seawater for dilution when the penetrating force of the used seawater is relaxed. Therefore, it is possible to prevent or suppress the entrainment of the combustion exhaust gas that has occurred when the used seawater enters the surface of the dilution seawater, and to prevent or minimize the leakage of the combustion exhaust gas to the outside of the desulfurization tower. A remarkable effect of limiting to the limit is obtained.

以下、本発明に係る排煙脱硫装置の一実施形態を図面に基づいて説明する。
図1に示す海水脱硫装置1Aの脱硫塔2は、たとえば石炭や原油等を燃料とする発電プラントのボイラから排出される燃焼排気ガス(以下、「ボイラ排ガス」と呼ぶ)に含まれている二酸化硫黄(SO)等の硫黄酸化物(SOx)を、大気へ放出する前に海水法を採用して除去する装置である。この海水法と呼ばれる脱硫方式を用いた海水脱硫装置1Aは、吸収剤として海水を使用している。
Hereinafter, an embodiment of a flue gas desulfurization apparatus according to the present invention will be described with reference to the drawings.
The desulfurization tower 2 of the seawater desulfurization apparatus 1A shown in FIG. 1 includes, for example, carbon dioxide contained in combustion exhaust gas (hereinafter referred to as “boiler exhaust gas”) discharged from a boiler of a power plant that uses coal, crude oil, or the like as fuel. This is a device that removes sulfur oxides (SOx) such as sulfur (SO 2 ) by using the seawater method before releasing them into the atmosphere. Seawater desulfurization apparatus 1A using a desulfurization method called the seawater method uses seawater as an absorbent.

図示の海水脱硫装置1Aは、略円筒形状を縦置きにした脱硫塔2の内部に海水及びボイラ排ガスを供給することにより、海水を吸収液として湿式ベースの気液接触を生じさせて硫黄酸化物を除去する。脱硫塔2に供給した海水は、脱硫塔内の上部から噴出させることにより内部で自然落下する。これに対し、脱硫塔2に供給したボイラ排ガスは、脱硫塔2の下部から脱硫塔内に導入されて上昇する。
脱硫塔2の内部には、所定の間隔を設けて上下方向に複数段の多孔棚板3が配置されている。この多孔棚板3は、堰及び溢流部のない多孔板のことであり、落下する海水と上昇するボイラ排ガスとが多数の孔4を通過することにより、互いが接触する気液接触を生じさせるものである。このような海水の散布方法は、たとえば「漏れ棚方式」などと呼ばれている。
The seawater desulfurization apparatus 1A shown in the figure is a sulfur oxide by supplying seawater and boiler exhaust gas into a desulfurization tower 2 having a substantially cylindrical shape placed vertically, thereby generating seawater-based gas-liquid contact using seawater as an absorbent. Remove. The seawater supplied to the desulfurization tower 2 naturally falls by being ejected from the upper part of the desulfurization tower. On the other hand, the boiler exhaust gas supplied to the desulfurization tower 2 is introduced into the desulfurization tower from the lower part of the desulfurization tower 2 and rises.
Inside the desulfurization tower 2, a plurality of perforated shelves 3 are arranged in the vertical direction with a predetermined interval. This perforated shelf 3 is a perforated plate without a weir and an overflow part, and when the falling seawater and the rising boiler exhaust gas pass through a large number of holes 4, gas-liquid contact with each other occurs. It is something to be made. Such a seawater spraying method is called, for example, a “leak shelf method”.

すなわち、多孔棚板3は、海水供給管5で導入した海水(吸収剤)と、ボイラ排ガス供給口7から導入したボイラ排ガスとの気液接触を生じさせる湿式ベースとして機能し、この気液接触が生じることで、海水がボイラ排ガス中の硫黄酸化物を吸収して除去する。
吸収剤として機能する海水は、海水供給管5を介して吸収塔2の上部まで導入される。この海水は、吸収塔2内の上部平面に略均等配置された多数の海水ノズル5aから、下方に配置されている多孔棚板3へ向けて流出する。この海水は、多孔棚板3を通過して気液接触した後、換言すれば、ボイラ排ガス中の硫黄酸化物を吸収して除去した脱硫後に使用済海水となり、脱硫塔2の底面部に開口する使用済海水出口6から後述する水路(SOTS)9を流れる希釈用海水の水面に直接落下して混合希釈される。なお、気液接触により脱硫されたボイラ排ガスは、脱硫塔2の上部に開口するボイラ排ガス排気口8から脱硫塔外へ流出する。
That is, the perforated shelf 3 functions as a wet base for causing gas-liquid contact between seawater (absorbent) introduced through the seawater supply pipe 5 and boiler exhaust gas introduced from the boiler exhaust gas supply port 7. As a result, seawater absorbs and removes sulfur oxides in boiler exhaust gas.
Seawater that functions as an absorbent is introduced to the upper part of the absorption tower 2 through the seawater supply pipe 5. The seawater flows out from a large number of seawater nozzles 5a arranged substantially uniformly on the upper plane in the absorption tower 2 toward the perforated shelf 3 arranged below. This seawater passes through the perforated shelf 3 and comes into gas-liquid contact. In other words, the seawater becomes spent seawater after desulfurization by absorbing and removing sulfur oxides in the boiler exhaust gas, and is opened at the bottom of the desulfurization tower 2. From the used seawater outlet 6 to be dropped directly onto the surface of dilution seawater flowing through a water channel (SOTS) 9 to be described later, it is mixed and diluted. The boiler exhaust gas desulfurized by gas-liquid contact flows out of the desulfurization tower through a boiler exhaust gas exhaust port 8 opened at the upper part of the desulfurization tower 2.

上述した海水脱硫装置1Aは、脱硫塔2の内部で吸収剤として使用した後の使用済海水を希釈するため、希釈用海水が流れる水路9の上部に設置されている。すなわち、水路9を跨ぐように設置された脱硫塔2は、下端部を開口させた使用済海水出口6が水路9の真上に位置しているので、脱硫塔2から希釈用海水面に落下した使用済海水が希釈用海水により混合希釈されて使用済希釈海水となる。この使用済希釈海水には、海水脱硫装置1Aの設置位置から下流側の水路9内を流れる間に、たとえば脱炭酸(爆気)等の処理が施されている。
また、使用済海水を流す水路9には、脱硫塔2からボイラ排ガスが流入することを防止するため、希釈用海水の水中に入り込む位置まで延びたガス封印用の仕切壁10が設けられている。従って、脱硫塔2に供給されたボイラ排ガスは、使用済海水出口6の下部が仕切壁10と水面とにより封印された状態となるので、水路9の水面上に形成される空間から漏出することはない。
The seawater desulfurization apparatus 1A described above is installed in the upper part of the water channel 9 through which the seawater for dilution flows in order to dilute the used seawater after being used as an absorbent inside the desulfurization tower 2. That is, the desulfurization tower 2 installed so as to straddle the water channel 9 falls from the desulfurization tower 2 to the dilution seawater surface because the used seawater outlet 6 with the lower end opened is located directly above the water channel 9. Used spent seawater is mixed and diluted with dilution seawater to become used diluted seawater. The used diluted seawater is subjected to, for example, decarboxylation (explosion) while flowing through the downstream water channel 9 from the installation position of the seawater desulfurization apparatus 1A.
Moreover, in order to prevent the boiler exhaust gas from flowing from the desulfurization tower 2 in the water channel 9 through which the used seawater flows, a partition wall 10 for gas sealing that extends to a position where the dilution seawater enters the water is provided. . Accordingly, the boiler exhaust gas supplied to the desulfurization tower 2 leaks from the space formed on the water surface of the water channel 9 because the lower part of the used seawater outlet 6 is sealed by the partition wall 10 and the water surface. There is no.

<第1の実施形態>
以下では、本発明の衝撃力緩和装置(以下、「緩和装置」と呼ぶ)について、第1の実施形態を図1から図6に基づいて説明する。
さて、上述した脱硫塔2の内部には、図1に示すように、ボイラ排ガス供給孔7が連通する開口位置より下方に、使用済海水が希釈用海水の水面に落下して突入する際の衝撃力を緩和する緩和装置20が設けられている。この緩和装置20は、ボイラ排ガスの流入位置より下方となる位置で、しかも、水路9内を流れる希釈用海水の水上となる位置において、脱硫塔2に固定支持されている。また、緩和装置20は、使用済海水出口6を形成する全ての領域をカバーするように設置されている。
緩和装置20は、希釈用海水の水面に向かって流下する使用済海水が接触または通過することにより、使用済海水の流れや流塊を細分化したり、希釈用海水の水面に突入する方向の流速を低減するものであり、使用済海水が水面へ突入する貫通力を低減する。
<First Embodiment>
Hereinafter, a first embodiment of an impact force relaxation device (hereinafter referred to as “relaxation device”) of the present invention will be described with reference to FIGS. 1 to 6.
Now, as shown in FIG. 1, the spent seawater falls into the surface of the dilution seawater and enters the desulfurization tower 2 described above below the opening position where the boiler exhaust gas supply hole 7 communicates. A mitigation device 20 for mitigating impact force is provided. The mitigation device 20 is fixedly supported by the desulfurization tower 2 at a position below the boiler exhaust gas inflow position and at a position above the dilution seawater flowing in the water channel 9. Moreover, the mitigation device 20 is installed so as to cover all areas forming the used seawater outlet 6.
The mitigation device 20 has a flow velocity in a direction in which the used seawater flowing down toward the surface of the dilution seawater comes into contact or passes to subdivide the flow or flow of the used seawater or enter the water surface of the dilution seawater. This reduces the penetrating force of used seawater entering the water surface.

図1に示す緩和装置20は、たとえば使用済海水が通過できるように形成された格子状部材である。この場合の格子状部材としては、たとえば図4または図5に示すように、平板状のグリッド21を採用することができ、図4に示す1層のグリッド21としてもよいし、あるいは、図5に示すように、上下方向に複数のグリッド21を重ねた積層構造のものでもよい。なお、積層構造を採用する場合には、積層するグリッド21の開口21aが位置ずれするように重ねることが好ましい。
また、格子状部材の変形例としては、たとえば図6に示すように、円板に多数の孔22aを穿設した多孔板22を採用してもよい。このような多孔板22を採用する場合も、1枚または複数枚の積層構造を採用可能である。なお、積層構造を採用する場合には、積層する多孔板22の孔21aが位置ずれするように重ねることが好ましい。
The mitigation device 20 shown in FIG. 1 is a lattice-like member formed so that, for example, used seawater can pass therethrough. As the lattice member in this case, for example, as shown in FIG. 4 or FIG. 5, a flat grid 21 can be adopted, or the single-layer grid 21 shown in FIG. 4 may be used, or FIG. As shown in FIG. 4, a laminated structure in which a plurality of grids 21 are stacked in the vertical direction may be used. In addition, when employ | adopting a laminated structure, it is preferable to overlap so that the opening 21a of the grid 21 to laminate | stack may shift.
As a modification of the lattice member, for example, as shown in FIG. 6, a perforated plate 22 in which a large number of holes 22a are formed in a circular plate may be adopted. Even when such a perforated plate 22 is employed, it is possible to employ a laminated structure of one sheet or a plurality of sheets. In addition, when employ | adopting a laminated structure, it is preferable to pile up so that the hole 21a of the porous plate 22 to laminate | stack may shift.

このような緩和装置20を設けると、脱硫塔2内を落下する使用済海水は、グリッド21や多孔板22のような格子状部材を通過する。このとき、使用済海水は、グリッド21の開口21aや多孔板22の孔22aを通過することにより、流れ(流塊)が小さく細分化されるとともに、開口21aや孔22aにより落下流路が狭められて生じる流路抵抗により圧力損失を生じる。このため、脱硫塔2内から希釈用海水の水面へ落下する使用済海水は、希釈用海水に突入する前に、流れの細分化や流速低下等により水面への貫通力が低減される。従って、使用済海水出口6の下方においては、希釈用海水の水面に生じる乱れも緩和されるので、脱硫塔2内のボイラ排ガスが希釈用海水に巻き込まれることを防止または抑制することができる。
なお、緩和装置20を構成する格子状部材としては、グリッド21や多孔板22の他にも、たとえばグレーティング(不図示)等を採用することも可能である。
When such a mitigation device 20 is provided, the used seawater falling in the desulfurization tower 2 passes through a grid-like member such as the grid 21 or the porous plate 22. At this time, the used seawater passes through the openings 21a of the grid 21 and the holes 22a of the porous plate 22, so that the flow (lumps) is subdivided into small pieces, and the falling flow path is narrowed by the openings 21a and the holes 22a. The resulting flow path resistance causes a pressure loss. For this reason, the used seawater falling from the desulfurization tower 2 to the surface of the dilution seawater is reduced in penetrating force to the water surface due to flow fragmentation, flow velocity reduction, and the like before entering the dilution seawater. Therefore, since the disturbance generated on the surface of the dilution seawater is also reduced below the used seawater outlet 6, it is possible to prevent or suppress the boiler exhaust gas in the desulfurization tower 2 from being caught in the dilution seawater.
In addition to the grid 21 and the perforated plate 22, for example, a grating (not shown) or the like can be employed as the lattice member constituting the relaxation device 20.

図2に示す第1変形例の海水脱硫装置1Bでは、上述した緩和装置20と実質的に同様の構成となる緩和装置20Aが流路9内を流れる希釈用海水の水中に設置されている。この場合の緩和装置20Aは、希釈用海水の水中に延びる仕切壁10に固定支持され、仕切壁10に囲まれた全ての領域をカバーするように設置されている。また、図示の緩和装置20Aは、上下方向に厚みを有するとともに、仕切壁10の下端部と略同様の水中深さまで設けられているが、特に限定されるものではない。すなわち、たとえば緩和装置20Aとして1枚のグリッド21を設置する場合など、水面と略一致させて設置したり、あるいは、適当な水深の水中に設置するなど、適宜変更が可能である。   In the seawater desulfurization device 1B of the first modified example shown in FIG. 2, a relaxation device 20A having substantially the same configuration as that of the above-described relaxation device 20 is installed in the dilution seawater flowing in the flow path 9. The mitigation device 20 </ b> A in this case is fixedly supported by the partition wall 10 extending in the seawater for dilution, and is installed so as to cover the entire region surrounded by the partition wall 10. In addition, although the illustrated relaxation device 20A has a thickness in the vertical direction and is provided up to a depth in water that is substantially the same as the lower end of the partition wall 10, it is not particularly limited. That is, for example, when a single grid 21 is installed as the mitigation device 20A, it can be changed as appropriate, for example, by installing it substantially in line with the water surface or installing it in water at an appropriate depth.

このような構成の緩衝装置20Aも、使用済海水が希釈用海水に突入した後、脱硫塔2内から希釈用海水の水面へ落下した使用済海水の流れ(海水の塊)を細分化したり、あるいは、希釈用海水に突入した方向の流速を低減したりして、使用済海水が水面へ突入する貫通力を低減することができる。すなわち、緩和装置20Aは、使用済海水の流れを細分化したり流速低下させたりして水面への貫通力を低減するので、使用済海水出口6の下方においては、仕切壁10に囲まれた領域で希釈用海水の水面に生じる乱れが緩和される。従って、緩衝装置20Aを備えた海水脱硫装置1Bは、脱硫塔2内のボイラ排ガスが希釈用海水に巻き込まれることを防止または抑制できる。   The shock absorber 20A having such a configuration also subdivides the flow of used seawater (a lump of seawater) that falls from the desulfurization tower 2 onto the surface of the dilution seawater after the used seawater enters the dilution seawater, Or the penetration force which used seawater rushes into the water surface can be reduced by reducing the flow velocity in the direction of rushing into the seawater for dilution. That is, since the mitigation device 20A reduces the penetration force to the water surface by subdividing the flow of the used seawater or reducing the flow velocity, the region surrounded by the partition wall 10 below the used seawater outlet 6 This alleviates the turbulence that occurs on the surface of the dilution seawater. Therefore, the seawater desulfurization apparatus 1B provided with the shock absorber 20A can prevent or suppress the boiler exhaust gas in the desulfurization tower 2 from being caught in the dilution seawater.

図3に示す第2変形例の海水脱硫装置1Cでは、上述した緩和装置20Aと実質的に同様の構成となる緩和装置20Bが、流路9内を流れる希釈用海水の水深と略同じ高さとなるようにして水中に設置されている。この場合の緩和装置20Bは、希釈用海水の水中に延びる仕切壁10に固定支持され、仕切壁10に囲まれた全ての領域をカバーするように設置されている。
このような構成の緩和装置20Bとしても、使用済海水が希釈用海水に突入した後、使用済海水の流れを細分化したり流速低下させたりして水面への貫通力を低減するので、使用済海水出口6の下方においては、仕切壁10に囲まれた領域で希釈用海水の水面に生じる乱れが緩和される。従って、緩衝装置20Bを備えた海水脱硫装置1Cは、脱硫塔2内のボイラ排ガスが希釈用海水に巻き込まれることを防止または抑制できる。
In the seawater desulfurization device 1C of the second modification shown in FIG. 3, the relaxation device 20B having substantially the same configuration as the above-described relaxation device 20A has substantially the same height as the depth of the dilution seawater flowing in the flow path 9. It is installed in the water. The mitigation device 20B in this case is fixedly supported by the partition wall 10 extending in the seawater for dilution, and is installed so as to cover the entire region surrounded by the partition wall 10.
Even in the mitigation device 20B having such a configuration, after the used seawater enters the dilution seawater, the flow of the used seawater is subdivided or the flow velocity is reduced to reduce the penetration force to the water surface. Below the seawater outlet 6, the turbulence generated on the surface of the dilution seawater is reduced in the region surrounded by the partition wall 10. Therefore, the seawater desulfurization apparatus 1C provided with the shock absorber 20B can prevent or suppress the boiler exhaust gas in the desulfurization tower 2 from being caught in the dilution seawater.

ところで、上述した緩和装置20,20A,20Bにおいては、水路9を流れる希釈用海水の水上または水中に設置しているが、図示しない変形例として、水上及び水中の両方に連続する緩和装置を設置したり、あるいは、水上及び水中の両方に別体の緩和装置を設置することも可能である。
さらに、緩和装置20,20A,20Bがカバーする領域については、水面の乱れを効率よく抑制する観点から、水上であれば脱硫塔2の使用済海水出口6を全てカバーし、あるいは、水中であれば仕切壁10に囲まれた領域を全てカバーすることが好ましいのであるが、これに限定されることはない。
By the way, in the relaxation devices 20, 20A, 20B described above, the dilution seawater for flowing through the water channel 9 is installed on the water or in the water, but as a modification not shown, a relaxation device that is continuous on both the water and the water is installed. Alternatively, it is possible to install separate relaxation devices both on the water and in the water.
Further, the area covered by the mitigation devices 20, 20A, 20B covers all the used seawater outlet 6 of the desulfurization tower 2 as long as it is on the water from the viewpoint of efficiently suppressing disturbance of the water surface, or underwater. For example, it is preferable to cover the entire area surrounded by the partition wall 10, but the present invention is not limited to this.

<第2の実施形態>
次に、本発明の緩和装置について、第2の実施形態を説明する。なお、海水脱硫装置の構成及び緩和装置について、上述した実施形態と同様の構成部分には同じ符号を付し、その詳細な説明は省略する。
図7に示す海水脱硫装置1Dは、たとえば図8に示すように、受衝板付漏斗の緩和装置30を備えている。受衝板付漏斗の緩和装置30は、漏斗部31と受衝板32とを備えている。
<Second Embodiment>
Next, a second embodiment of the mitigation device of the present invention will be described. In addition, about the structure of a seawater desulfurization apparatus and a mitigation apparatus, the same code | symbol is attached | subjected to the component similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
A seawater desulfurization device 1D shown in FIG. 7 includes a funnel mitigation device 30 with a receiving plate, for example, as shown in FIG. A relaxation device 30 for a funnel with a receiving plate includes a funnel portion 31 and a receiving plate 32.

漏斗部31は、脱硫塔2の使用済海水出口6より下方となる底部を漏斗形状とした部分である。すなわち、この場合の漏斗部31は、使用済海水出口6の下方となる底部を絞るようにして形成され、脱硫塔2の側壁下端部から中心部へ向かって下がるように傾斜させた傾斜面の底面2aと、傾斜面の底面2aが最も低くなる脱硫塔2の軸中心部側に開口させた出口流路33とを備えている。なお、底面2aの傾斜面は、流下する流速を抑制する観点からできるだけ緩やかな傾斜とすることが好ましい。
漏斗部31の出口流路33は、希釈用海水の水中まで連続する円筒状の流路である。出口流路33の上方には、軸中心位置と略一致するようにして、出口流路33の入口開口面積より大きな円板状の受衝板32が設置されている。この受衝板32は、底面2aとの間に使用済海水の流路となる隙間を形成することができ、しかも、ボイラ排ガスを導入するボイラ排ガス供給口7より低い位置に固定支持されるように、たとえば底面2aに複数本のサポート部材(不図示)により取り付けられている。
The funnel portion 31 is a portion having a funnel shape at the bottom below the used seawater outlet 6 of the desulfurization tower 2. That is, the funnel portion 31 in this case is formed so as to squeeze the bottom portion below the used seawater outlet 6 and has an inclined surface that is inclined so as to be lowered from the lower end portion of the side wall of the desulfurization tower 2 toward the center portion. A bottom surface 2a and an outlet channel 33 opened to the axial center portion side of the desulfurization tower 2 where the bottom surface 2a of the inclined surface is the lowest are provided. The inclined surface of the bottom surface 2a is preferably as gentle as possible from the viewpoint of suppressing the flowing velocity.
The outlet channel 33 of the funnel portion 31 is a cylindrical channel that continues to the seawater for dilution seawater. A disc-shaped receiving plate 32 larger than the inlet opening area of the outlet channel 33 is installed above the outlet channel 33 so as to substantially coincide with the axial center position. This impact receiving plate 32 can form a gap as a flow path for used seawater with the bottom surface 2a, and is fixedly supported at a position lower than the boiler exhaust gas supply port 7 for introducing the boiler exhaust gas. For example, it is attached to the bottom surface 2a by a plurality of support members (not shown).

上述した緩和装置30を設けたことにより、脱硫塔2内を落下する使用済海水は、中心部では受衝板32に衝突し、周辺部では底面2aに衝突する。
このため、中心部を落下した使用済海水は、受衝板32により落下速度が消滅して流れ方向を変え、受衝板32の上面に導かれて周辺部方向へ流れて行くことにより、受衝板32の端部から底面2aに向けて落下する。このときの落下速度は、受衝板32までの落下速度と比較してかなり低下したものとなる。
一方、周辺部を落下した使用済海水は、底面2aの傾斜面により落下速度が略消滅して流れ方向を変え、受衝板32から落下してきた使用済海水と合流しながら出口流路33へ流れていく。この場合の流速は、使用済海水が出口流路33の入口部で周方向へ略均等に分散され、しかも、比較的緩やかな傾斜面に沿って流れることから、比較的小さなものとなる。
By providing the mitigation device 30 described above, the used seawater falling in the desulfurization tower 2 collides with the impact receiving plate 32 at the central portion and collides with the bottom surface 2a at the peripheral portion.
For this reason, the used seawater that has fallen in the center part is received by the dropping speed disappearing by the impact plate 32 and changing the flow direction, being guided to the upper surface of the impact plate 32 and flowing toward the peripheral portion. It falls from the end of the impact plate 32 toward the bottom surface 2a. The drop speed at this time is considerably lower than the drop speed to the impact plate 32.
On the other hand, the used seawater that has fallen in the peripheral portion has its falling speed substantially disappeared due to the inclined surface of the bottom surface 2a, changes the flow direction, and merges with the used seawater that has fallen from the impact plate 32 to the outlet channel 33. It will flow. In this case, the flow rate is relatively small because the used seawater is distributed substantially evenly in the circumferential direction at the inlet of the outlet channel 33 and flows along a relatively gentle inclined surface.

こうして出口流路33から流出した使用済海水は、その大部分が出口流路33の壁面に沿って流下するため、希釈用海水の水面に突入する使用済海水の貫通力は緩和される。このため、希釈用海水に混合希釈される使用済海水は、先端が希釈用海水の水中に入り込んだ出口流路33の内部で比較的穏やかに合流するので、使用済海水が合流する希釈用海水の水面に生じる乱れは最小限に抑えられる。従って、緩衝装置30を備えた海水脱硫装置1Dは、脱硫塔2内のボイラ排ガスが希釈用海水に巻き込まれることを防止または抑制できる。   Since most of the used seawater that has flowed out of the outlet channel 33 flows down along the wall surface of the outlet channel 33, the penetration force of the used seawater that enters the surface of the dilution seawater is reduced. For this reason, since the used seawater mixed and diluted with the seawater for dilution merges relatively gently inside the outlet channel 33 whose tip has entered the seawater for dilution, the seawater for dilution into which the used seawater merges Disturbances that occur on the surface of the water are minimized. Therefore, the seawater desulfurization device 1D including the buffer device 30 can prevent or suppress the boiler exhaust gas in the desulfurization tower 2 from being caught in the dilution seawater.

図9に示す変形例の海水脱硫装置1Eは、出口流路33の水中において、使用済海水の出口34aを希釈用海水の上流側へ向けて折曲した水平流路部34を備えている点が異なる緩衝装置30Aを備えている。すなわち、希釈用海水に合流する使用済海水は、水中において希釈用海水の流れに対抗して流出するように構成されている。
このため、希釈用海水の流れには、使用済海水との合流により水中に渦等の乱れが生じることとなる。従って、使用済海水と希釈用海水との混合希釈については、比較的短い水路9の流路長さを流れる間において、全体の混合割合が略均一になる良好な混合状態を効率よく達成可能となる。なお、緩衝装置30Aを備えた海水脱硫装置1Eにおいても、脱硫塔2内のボイラ排ガスが希釈用海水に巻き込まれることを防止または抑制することができる点は同じである。
The seawater desulfurization apparatus 1E of the modification shown in FIG. 9 includes a horizontal flow path portion 34 in which the outlet 34a of the used seawater is bent toward the upstream side of the dilution seawater in the water of the outlet flow path 33. Are provided with different shock absorbers 30A. That is, the used seawater that merges with the dilution seawater is configured to flow out in the water against the flow of the dilution seawater.
For this reason, in the flow of the seawater for dilution, turbulence such as vortices occurs in the water due to merging with the used seawater. Therefore, with respect to the mixed dilution of the used seawater and the seawater for dilution, it is possible to efficiently achieve a good mixed state in which the overall mixing ratio is substantially uniform while flowing through the relatively short channel length of the water channel 9. Become. The seawater desulfurization apparatus 1E provided with the shock absorber 30A is the same in that the boiler exhaust gas in the desulfurization tower 2 can be prevented or suppressed from being involved in the dilution seawater.

このように、上述した本発明によれば、脱硫後の使用済海水を脱硫塔2から水路9内の希釈用海水に落下させて混合希釈する際、脱硫塔2内から落下する使用済海水が緩和装置20等を通過することにより、希釈用海水に落下して突入する使用済海水の貫通力が緩和される。このため、脱硫塔2内の燃焼排気ガスが使用済海水の流れに巻き込まれることを防止または抑制できるようになり、希釈用海水に巻き込まれたボイラ排ガスが希釈用海水の流れとともに水路9を流れて流出することで、脱硫塔2から周囲の環境へ漏洩することのない排煙脱硫装置となる。すなわち、海水法を採用し、脱硫後の使用済海水を希釈海水に落下させて処理する排煙脱硫装置においては、使用済海水の貫通力が緩和されることによって希釈用海水の水面に生じる乱れが低減されるので、使用済海水が希釈用海水の水面に突入する際に生じていた燃焼排気ガスの巻き込みを防止または抑制し、脱硫塔2の外部へボイラ排ガスが漏洩することを防止できる。   Thus, according to the present invention described above, when the used seawater after desulfurization is dropped from the desulfurization tower 2 to the dilution seawater in the water channel 9 and mixed and diluted, the used seawater falling from the desulfurization tower 2 is By passing through the relaxation device 20 and the like, the penetration force of the used seawater that falls into the dilution seawater and enters the seawater is relaxed. For this reason, it becomes possible to prevent or suppress the combustion exhaust gas in the desulfurization tower 2 from being caught in the flow of spent seawater, and the boiler exhaust gas caught in the dilution seawater flows through the water channel 9 together with the flow of dilution seawater. As a result, the flue gas desulfurization apparatus does not leak from the desulfurization tower 2 to the surrounding environment. In other words, in the flue gas desulfurization apparatus that uses the seawater method to drop the used seawater after desulfurization to the diluted seawater and treat it, the turbulence that occurs on the surface of the seawater for dilution when the penetrating force of the used seawater is relaxed. Therefore, it is possible to prevent or suppress the entrainment of the combustion exhaust gas generated when the used seawater enters the surface of the dilution seawater, and to prevent the boiler exhaust gas from leaking outside the desulfurization tower 2.

ところで、上述した海水脱硫装置の各実施形態及び変形例では、脱硫塔2の上部から流下する海水と脱硫塔2の下方より上昇する燃焼排気ガスとを気液接触させて脱硫する海水脱硫装置の海水散布方式として漏れ棚方式を採用しているが、本発明はこれに限定されることはなく、たとえば充填方式、スプレー方式及び液中方式を採用したものにも適用可能である。
また、上述した第1の及び第2実施形態の緩和装置は、上述した単独採用に加えて、両実施形態を適宜組み合わせた構成も可能である。
By the way, in each embodiment and modification of the seawater desulfurization apparatus mentioned above, the seawater desulfurization apparatus desulfurizes the seawater flowing down from the upper part of the desulfurization tower 2 and the combustion exhaust gas rising from the lower part of the desulfurization tower 2 by gas-liquid contact. Although the leak shelf method is adopted as the seawater spraying method, the present invention is not limited to this, and can be applied to, for example, a filling method, a spray method, and a submerged method.
In addition to the single adoption described above, the mitigation devices of the first and second embodiments described above can be configured by appropriately combining both embodiments.

また、上述した第2の実施形態においては、出口流路33が水中に入り込む長さを有しているが、希釈用海水に突入する使用済海水の落下速度は従来よりかなり低下していることから、出口流路33の長さを水上の適所まで短縮したり、あるいは、出口流路33を全く設けない構成とてもよい。なお、出口流路33を短縮したり全く設けない場合には、格子状の緩和装置20を組み合わせてもよい。
なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
Moreover, in 2nd Embodiment mentioned above, although the exit flow path 33 has the length which penetrates into water, the fall speed | rate of the used seawater which rushes into seawater for dilution is falling considerably conventionally. Therefore, the length of the outlet channel 33 can be shortened to a proper position on the water, or the outlet channel 33 is not provided at all. When the outlet channel 33 is shortened or not provided at all, the lattice-like relaxation device 20 may be combined.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary of this invention, it can change suitably.

本発明の海水脱硫装置に係る第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment which concerns on the seawater desulfurization apparatus of this invention. 図1の第1変形例を示す海水脱硫装置の断面図である。It is sectional drawing of the seawater desulfurization apparatus which shows the 1st modification of FIG. 図1の第2変形例を示す海水脱硫装置の断面図である。It is sectional drawing of the seawater desulfurization apparatus which shows the 2nd modification of FIG. 緩衝装置の格子状部材として1層のグリッドを示す斜視図である。It is a perspective view which shows the grid of 1 layer as a grid | lattice-like member of a shock absorber. 緩衝装置の格子状部材として積層構造のグリッドを示す斜視図である。It is a perspective view which shows the grid of a laminated structure as a grid | lattice-like member of a shock absorber. 緩衝装置の格子状部材に係る変形例として多孔板を示す斜視図である。It is a perspective view which shows a perforated panel as a modification concerning the grid | lattice-like member of a shock absorber. 本発明の海水脱硫装置に係る第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment which concerns on the seawater desulfurization apparatus of this invention. 図7に示した受衝板付漏斗の緩和装置を示す要部の斜視図である。It is a perspective view of the principal part which shows the mitigation apparatus of the funnel with a receiving plate shown in FIG. 図7の変形例を示す海水脱硫装置の断面図である。It is sectional drawing of the seawater desulfurization apparatus which shows the modification of FIG. 海水脱硫装置の従来構造を示す断面図である。It is sectional drawing which shows the conventional structure of a seawater desulfurization apparatus.

符号の説明Explanation of symbols

1A,1B,1C,1D,1E 海水脱硫装置
2 脱硫塔
6 使用済海水出口

ボイラ排ガス供給口
9 水路(SOTS)
10 仕切壁
20,20A,20B,30,30A 衝撃力緩和装置(緩和装置)
31 漏斗部
32 受衝板
33 出口流路
34 水平流路部
1A, 1B, 1C, 1D, 1E Seawater desulfurization equipment 2 Desulfurization tower 6 Used seawater outlet 7
Boiler exhaust gas supply port 9 Water channel (SOTS)
10 Partition wall 20, 20A, 20B, 30, 30A Impact force relaxation device (relaxation device)
31 Funnel part 32 Receiving plate 33 Outlet flow path 34 Horizontal flow path part

Claims (3)

脱硫塔の上部から流下する海水と脱硫塔の下方より上昇する燃焼排気ガスとを気液接触させて脱硫する海水法による排煙脱硫装置において、
脱硫後の使用済海水が前記脱硫塔から水路内を流れる希釈用海水に落下して混合希釈されるとともに、前記使用済海水が前記希釈用海水に落下して突入する際の衝撃力を緩和する衝撃力緩和装置を前記脱硫塔の燃焼排気ガス流入位置より下方に設けたことを特徴とする排煙脱硫装置。
In the flue gas desulfurization apparatus by the seawater method in which the seawater flowing down from the upper part of the desulfurization tower and the combustion exhaust gas rising from below the desulfurization tower are brought into gas-liquid contact for desulfurization,
The used seawater after desulfurization falls from the desulfurization tower to dilution seawater flowing in the water channel and is mixed and diluted, and the impact force when the used seawater falls into the dilution seawater and enters is reduced. A flue gas desulfurization device, wherein an impact force relaxation device is provided below a combustion exhaust gas inflow position of the desulfurization tower.
前記衝撃力緩和装置が、前記希釈用海水の水上または水中に設置された格子状部材であることを特徴とする請求項1に記載の排煙脱硫装置。   The flue gas desulfurization device according to claim 1, wherein the impact force relaxation device is a lattice-like member installed on or in the seawater for dilution. 前記衝撃力緩和装置が、受衝板付漏斗であることを特徴とする請求項1に記載の排煙脱硫装置。
The flue gas desulfurization device according to claim 1, wherein the impact force relaxation device is a funnel with an impact plate.
JP2007191858A 2007-07-24 2007-07-24 Flue gas desulfurization equipment Expired - Fee Related JP5166791B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007191858A JP5166791B2 (en) 2007-07-24 2007-07-24 Flue gas desulfurization equipment
TW097124418A TW200918152A (en) 2007-07-24 2008-06-27 Flue gas desulfurizer
PCT/JP2008/062563 WO2009014016A1 (en) 2007-07-24 2008-07-11 Flue gas desulfurizing apparatus
MYPI20094298 MY150527A (en) 2007-07-24 2008-07-11 Exhaust gas desulfurizer
SA8290468A SA08290468B1 (en) 2007-07-24 2008-07-26 Exhaust Gas Desulfurizer
EG2009111635A EG25384A (en) 2007-07-24 2009-11-05 Flue gas desulfurizing apparatus.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007191858A JP5166791B2 (en) 2007-07-24 2007-07-24 Flue gas desulfurization equipment

Publications (2)

Publication Number Publication Date
JP2009028571A true JP2009028571A (en) 2009-02-12
JP5166791B2 JP5166791B2 (en) 2013-03-21

Family

ID=40281273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007191858A Expired - Fee Related JP5166791B2 (en) 2007-07-24 2007-07-24 Flue gas desulfurization equipment

Country Status (6)

Country Link
JP (1) JP5166791B2 (en)
EG (1) EG25384A (en)
MY (1) MY150527A (en)
SA (1) SA08290468B1 (en)
TW (1) TW200918152A (en)
WO (1) WO2009014016A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131327A1 (en) * 2009-05-11 2010-11-18 三菱重工業株式会社 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
CN102120138A (en) * 2011-02-17 2011-07-13 大连海事大学 Magnesium base-seawater method desulfurization system for ship
JP7318345B2 (en) 2019-06-20 2023-08-01 東洋製罐株式会社 Synthetic resin container
JP7482655B2 (en) 2020-03-12 2024-05-14 サントリーホールディングス株式会社 container

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2530740T3 (en) * 2012-03-29 2015-03-05 Doosan Lentjes Gmbh Flue gas purification device
EP2644251A1 (en) * 2012-03-29 2013-10-02 Doosan Lentjes GmbH A flue gas purification device
EP2719442A1 (en) 2012-10-15 2014-04-16 Doosan Lentjes GmbH A flue gas purification device
JP6632452B2 (en) * 2016-03-31 2020-01-22 三菱日立パワーシステムズ株式会社 Packing material for packed tower and seawater desulfurization equipment
CN106076066A (en) * 2016-06-11 2016-11-09 彭斯干 Sea water formula carbon trapping method of seal and device
CN110496506A (en) * 2019-07-30 2019-11-26 上海蓝魂环保科技有限公司 A kind of ship seawater desulfurization device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046573A (en) * 1973-08-07 1975-04-25
JPH03262510A (en) * 1990-03-13 1991-11-22 Chiyoda Corp Method and apparatus for treating exhaust gas
JPH09192446A (en) * 1996-01-22 1997-07-29 Mitsubishi Corp Water scrubber type waste gas treating device
JPH11165025A (en) * 1997-12-04 1999-06-22 Aizono Masaru Method of removing noxious matter such as waste gas in combustion furnace or the like and removing device therefor
JP2000354732A (en) * 1999-06-14 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas desulfurizer using seawater
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
JP2001170444A (en) * 1999-12-16 2001-06-26 Ishikawajima Harima Heavy Ind Co Ltd Wet stack gas desulfurizing device
JP2006263676A (en) * 2005-03-25 2006-10-05 Fujikasui Engineering Co Ltd Combustion waste gas-purification system
JP2008200621A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046573A (en) * 1973-08-07 1975-04-25
JPH03262510A (en) * 1990-03-13 1991-11-22 Chiyoda Corp Method and apparatus for treating exhaust gas
JPH09192446A (en) * 1996-01-22 1997-07-29 Mitsubishi Corp Water scrubber type waste gas treating device
JPH11165025A (en) * 1997-12-04 1999-06-22 Aizono Masaru Method of removing noxious matter such as waste gas in combustion furnace or the like and removing device therefor
JP2000354732A (en) * 1999-06-14 2000-12-26 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas desulfurizer using seawater
WO2001005489A1 (en) * 1999-07-19 2001-01-25 Ebara Corporation Apparatus and method for cleaning acidic gas
JP2001170444A (en) * 1999-12-16 2001-06-26 Ishikawajima Harima Heavy Ind Co Ltd Wet stack gas desulfurizing device
JP2006263676A (en) * 2005-03-25 2006-10-05 Fujikasui Engineering Co Ltd Combustion waste gas-purification system
JP2008200621A (en) * 2007-02-21 2008-09-04 Mitsubishi Heavy Ind Ltd Exhaust gas desulfurizer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131327A1 (en) * 2009-05-11 2010-11-18 三菱重工業株式会社 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desufurization
KR101269707B1 (en) * 2009-05-11 2013-05-30 미츠비시 쥬고교 가부시키가이샤 Equipment for the desulfurization of flue gas with seawater and process for treatment of the seawater used in the desulfurization
CN102120138A (en) * 2011-02-17 2011-07-13 大连海事大学 Magnesium base-seawater method desulfurization system for ship
JP7318345B2 (en) 2019-06-20 2023-08-01 東洋製罐株式会社 Synthetic resin container
JP7482655B2 (en) 2020-03-12 2024-05-14 サントリーホールディングス株式会社 container

Also Published As

Publication number Publication date
EG25384A (en) 2011-12-25
MY150527A (en) 2014-01-30
SA08290468B1 (en) 2011-09-13
WO2009014016A1 (en) 2009-01-29
TWI378820B (en) 2012-12-11
TW200918152A (en) 2009-05-01
JP5166791B2 (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5166791B2 (en) Flue gas desulfurization equipment
JP5199585B2 (en) Flue gas desulfurization equipment
JP5072470B2 (en) Aeration equipment
US9550145B2 (en) Exhaust gas treatment apparatus, ship, and exhaust gas treatment method
JP5330658B2 (en) Aeration equipment
WO2013146143A1 (en) Seawater desulfurization and oxidation treatment device and seawater flue-gas desulfurization system
JP5967306B2 (en) Desulfurization equipment
JP2012115764A (en) Wastewater channel of seawater desulfurization apparatus and seawater flue gas desulfurization system
KR20130001281A (en) Wet flue gas desulfurization device
UA123726C2 (en) Multi-level gas scrubber with multiple flooded scrubber heads
JP2007296447A (en) Two-chamber type wet flue gas desulfurization apparatus
JP2014233702A (en) Seawater desulfurization device and seawater desulfurization system
SG178748A1 (en) Exhaust gas desulfurizer
JP6142432B2 (en) Flue gas desulfurization method and flue gas desulfurization apparatus
JP2011031209A (en) Wet type flue gas desulfurization apparatus
WO2012127689A1 (en) Flue gas desulfurization apparatus
KR101448459B1 (en) Wet scrubber
JP2006122862A (en) Apparatus for treating exhaust gas
JP5535823B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
KR101908561B1 (en) SCR system comprising with multi-reactor and direct straight connector
JP2014042909A5 (en)
JP2016087539A (en) Method for exhaust gas desulfurization and removing soot and dust
JP4088578B2 (en) Exhaust gas treatment tower
JP5582917B2 (en) Aeration apparatus, seawater flue gas desulfurization apparatus equipped with the aeration apparatus, and operation method of aeration apparatus
WO2019163418A1 (en) Water treatment tank and desulfurization device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5166791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees