JP2009019713A - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
JP2009019713A
JP2009019713A JP2007183441A JP2007183441A JP2009019713A JP 2009019713 A JP2009019713 A JP 2009019713A JP 2007183441 A JP2007183441 A JP 2007183441A JP 2007183441 A JP2007183441 A JP 2007183441A JP 2009019713 A JP2009019713 A JP 2009019713A
Authority
JP
Japan
Prior art keywords
rolling
bearing
raceway
mass
hardened layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007183441A
Other languages
Japanese (ja)
Inventor
Hideyuki Uyama
英幸 宇山
Koki Yamada
紘樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007183441A priority Critical patent/JP2009019713A/en
Publication of JP2009019713A publication Critical patent/JP2009019713A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing that achieves a longer service lifetime without causing an increase in costs or the like. <P>SOLUTION: The rolling bearing has raceway rings 2, 3 made of steel including ≥0.45 mass% and ≤0.60 mass% of C and the raceway rings 2, 3 respectively having a hardening layer 7 on the surface layer part of each rolling-element raceway groove 4, 5. The hardening layer 7 is formed by induction hardening so as to achieve ≤0.35 of a ratio between a thickness d of the hardening layer and a wall thickness D of each raceway ring in a depth direction of each rolling-element raceway groove while achieving ≥100 MPa of a compressive residual stress in a depth direction of the hardening layer at a depth in which a dynamic maximum shear stress when a dynamic load rating is applied becomes maximum. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、転がり軸受に関し、特に、潤滑剤から水素が発生しやすい環境下や潤滑剤中に水が混入しやすい環境下で使用される転がり軸受に関する。   The present invention relates to a rolling bearing, and more particularly to a rolling bearing that is used in an environment where hydrogen is likely to be generated from a lubricant or in an environment where water is easily mixed into the lubricant.

一般に、転がり軸受は潤滑剤中に混入した異物(例えば金属粉など)の噛み込みによって軌道輪表面に圧痕が発生すると、軌道輪表面に発生した圧痕が疲労き裂発生の起点となる。また、潤滑剤不足による金属接触が軌道輪と転動体との間で発生し、金属接触による軌道輪表面の疲労損傷が進行すると、転がり軸受を短寿命化する疲労き裂が軌道輪表面に発生することがある。   In general, when a rolling bearing has an indentation on the surface of the bearing ring due to the inclusion of foreign matter (for example, metal powder) mixed in the lubricant, the indentation generated on the surface of the bearing ring becomes a starting point for fatigue crack generation. In addition, metal contact due to lack of lubricant occurs between the bearing ring and the rolling element, and when fatigue damage of the bearing ring surface due to metal contact progresses, fatigue cracks that shorten the life of the rolling bearing occur on the bearing ring surface. There are things to do.

転がり軸受の軌道輪に疲労き裂が発生することを抑制する技術としては、軌道輪素材に浸炭焼入れあるいは浸炭窒化焼入れを施すことによって軌道輪の表層部に硬化層を形成する技術(例えば、非特許文献1参照)や、転がり軸受の軌道輪表面にショットピーニングを施して所要の圧縮残留応力を軌道輪に付与する技術(例えば、特許文献1参照)などが知られている。
特許第2949794号公報 「軸受用鋼」 瀬戸浩蔵著 日本鉄鋼協会発行(1999)
As a technique for suppressing the occurrence of fatigue cracks in the bearing ring of a rolling bearing, a technique for forming a hardened layer on the surface layer of the bearing ring by subjecting the bearing ring material to carburizing quenching or carbonitriding quenching (for example, non- Patent Document 1), a technique for applying shot peening to the surface of a bearing ring of a rolling bearing and applying a required compressive residual stress to the bearing ring (for example, see Patent Document 1) are known.
Japanese Patent No. 2949794 "Steel for Bearings" by Kozo Seto Published by the Japan Iron and Steel Association (1999)

しかしながら、浸炭焼入れあるいは浸炭窒化焼入れによる硬化層を軌道輪の表層部に形成するためには、軌道輪素材として肌焼鋼を用いる必要がある。このため、前者の方法では、浸炭あるいは浸炭窒化に要する熱処理時間が長くなり、転がり軸受のコストアップを招くという問題がある。これに対して、後者の方法は軌道輪素材として通常の軸受鋼を用いることができるが、軸受鋼からなる軌道輪にショットピーニングを施すと、ショットピーニングによる塑性変形が生じ難いため、ショットピーニング工程の時間が長くなるという問題がある。   However, in order to form a hardened layer by carburizing quenching or carbonitriding quenching on the surface layer portion of the bearing ring, it is necessary to use case hardening steel as the bearing ring material. For this reason, in the former method, there is a problem that the heat treatment time required for carburizing or carbonitriding becomes long and the cost of the rolling bearing is increased. In contrast, the latter method can use ordinary bearing steel as the bearing ring material, but if shot peening is applied to the bearing ring made of bearing steel, plastic deformation due to shot peening is unlikely to occur. There is a problem that the time is long.

また、軌道輪表面で発生した疲労き裂が軌道輪の深さ方向に進展すると、深さ方向に進展した疲労き裂は動的最大せん断応力が最大となる深さ付近で方向を変え、転がり方向とほぼ平行な方向に進展した後、剥離に至る。したがって、疲労き裂が軌道輪の表面から発生し、深さ方向に進展する段階では、転がり方向の圧縮残留応力は疲労き裂の進展方向に対して垂直な方向に働くため、疲労き裂の進展を抑えることができるが、その後の転がり方向と平行な方向に進展する段階では、疲労き裂の進展を抑制する効果はない。   In addition, when a fatigue crack generated on the surface of the bearing ring propagates in the depth direction of the bearing ring, the fatigue crack that propagates in the depth direction changes direction near the depth where the dynamic maximum shear stress becomes maximum, and rolls. After progressing in a direction substantially parallel to the direction, peeling occurs. Therefore, at the stage where a fatigue crack is generated from the surface of the bearing ring and propagates in the depth direction, the compressive residual stress in the rolling direction works in a direction perpendicular to the direction of fatigue crack propagation. Although progress can be suppressed, there is no effect of suppressing the progress of fatigue cracks at a stage where the process progresses in a direction parallel to the subsequent rolling direction.

さらに、転がり軸受の破損形態は軌道輪表面からのき裂進展によるものだけでなく、内部の介在物も疲労破壊の起点となる。この場合、疲労き裂は介在物から発生し、転がり方向とほぼ平行に進展した後、剥離に至るため、転がり方向の圧縮残留応力だけでは、転がり方向と平行に発生したり進展したりする疲労き裂を抑制することができない。
また、潤滑剤から水素が発生したり、あるいは潤滑剤中に水が混入したりする環境下では、水素が軌道輪内部に侵入し、転がり軸受の寿命を短くする場合があった。この現象は高強度鋼で知られている水素脆性と似た現象であり、水素脆性に対する対策としては、硬さを低下させることが有効であることが報告されている。しかしながら、転がり軸受の場合、転動体と軌道輪との接触点には高い面圧が発生するため、硬さを低下させると、転がり軸受の寿命が短くなってしまうという問題があった。
Furthermore, the failure mode of the rolling bearing is not only due to the crack growth from the raceway surface, but also the inclusions inside become the starting point of fatigue failure. In this case, fatigue cracks are generated from the inclusions and propagate after extending almost in parallel with the rolling direction, and then delamination. Therefore, fatigue that occurs or develops in parallel with the rolling direction only by compressive residual stress in the rolling direction. The crack cannot be suppressed.
Further, in an environment where hydrogen is generated from the lubricant or water is mixed into the lubricant, hydrogen may enter the raceway and shorten the life of the rolling bearing. This phenomenon is similar to the hydrogen embrittlement known for high-strength steel, and it has been reported that reducing the hardness is effective as a countermeasure against hydrogen embrittlement. However, in the case of a rolling bearing, since a high surface pressure is generated at the contact point between the rolling element and the race, there is a problem that if the hardness is lowered, the life of the rolling bearing is shortened.

本発明者らは、浸炭やショットピーニングなどの長時間を要する工程を用いずに、高周波焼入れ法を用いて、軌道輪の肉厚に対する硬化層の厚さを制限することによって、転がり軸受の寿命に有効な残留応力を発生させ、転がり軸受の長寿命化が図れることを見出した。
そこで、請求項1記載の発明に係る転がり軸受は、互いに対向する二つの軌道輪と、これら軌道輪の間に配置された複数個の転動体とを具備し、前記二つの軌道輪のうち一方または両方の軌道輪が0.45質量%以上0.60質量%以下のCを含有する鋼からなり、前記鋼からなる軌道輪が転動体軌道溝の表層部に硬化層を有する転がり軸受であって、前記硬化層の厚さと前記転動体軌道溝の深さ方向における前記軌道輪の肉厚との比が0.35以下で且つ動定格荷重を負荷したときの動的最大せん断応力が最大となる深さでの前記硬化層の深さ方向の圧縮残留応力が100MPa以上になるように、前記硬化層が高周波焼入れによって形成されていることを特徴とする。
The present inventors use a induction hardening method to limit the life of a rolling bearing by limiting the thickness of the hardened layer with respect to the wall thickness of the raceway ring without using a time-consuming process such as carburizing or shot peening. It has been found that effective residual stress can be generated and the life of the rolling bearing can be extended.
Accordingly, a rolling bearing according to the invention described in claim 1 includes two bearing rings facing each other and a plurality of rolling elements arranged between the bearing rings, and one of the two bearing rings. Alternatively, both the bearing rings are made of steel containing 0.45 mass% or more and 0.60 mass% or less of C, and the bearing rings made of the steel are rolling bearings having a hardened layer in the surface layer portion of the rolling element raceway groove. The ratio of the thickness of the hardened layer to the thickness of the raceway ring in the depth direction of the rolling element raceway groove is 0.35 or less and the maximum dynamic maximum shear stress when a dynamic load rating is applied is maximum. The hardened layer is formed by induction hardening so that the compressive residual stress in the depth direction of the hardened layer at a depth of 100 MPa or more.

請求項2記載の発明に係る転がり軸受は、請求項1記載の転がり軸受において、前記硬化層の表面硬度がHv600以上Hv720以下であることを特徴とする。
本発明において、軌道輪素材のC含有量の下限値を0.45質量%以上とした理由は、Cが0.45質量%未満であると、軌道輪と転動体との接触点に発生する高面圧に耐え得る硬さを得ることができないためである。
A rolling bearing according to a second aspect of the present invention is the rolling bearing according to the first aspect, wherein the surface hardness of the hardened layer is Hv600 or higher and Hv720 or lower.
In the present invention, the reason why the lower limit value of the C content of the raceway material is 0.45% by mass or more occurs when C is less than 0.45% by mass at the contact point between the raceway and the rolling element. This is because the hardness that can withstand high surface pressure cannot be obtained.

また、軌道輪素材のC含有量の上限値を0.60質量%とした理由は、Cが0.60質量%を超えると、フェライト・パーライト組織の加工性が低下するためである。
なお、C以外の合金元素や不純物元素に関しては、下記の範囲とすることが好ましい。
Crは、焼入れ時の焼入れ性を向上させるために、0.2質量%以上添加することが好ましい。ただし、2.0質量%を超えると加工性が低下するため、2.0質量%以下とすることが好ましい。
The reason why the upper limit of the C content of the raceway material is 0.60% by mass is that when C exceeds 0.60% by mass, the workability of the ferrite / pearlite structure decreases.
In addition, regarding alloy elements and impurity elements other than C, the following ranges are preferable.
Cr is preferably added in an amount of 0.2% by mass or more in order to improve the hardenability during quenching. However, since workability will fall when it exceeds 2.0 mass%, it is preferable to set it as 2.0 mass% or less.

Siは、製鋼時の脱酸のために必要な元素であり、さらに焼戻し軟化抵抗を高め、転がり疲労寿命を向上させるため、0.15質量%以上添加することが好ましい。ただし、2.00質量%を超えて添加すると、加工性が低下するため、2.00質量%以下とすることが好ましい。
Mnは、焼入れ性を高めるため、軌道輪の硬さを安定的に得るために必要な元素であり、0.2質量%以上添加することが好ましい。ただし、1.0質量%を超えて添加しても、その効果は飽和する。
Si is an element necessary for deoxidation at the time of steelmaking, and is further preferably added in an amount of 0.15% by mass or more in order to increase the temper softening resistance and improve the rolling fatigue life. However, if added in excess of 2.00% by mass, the workability deteriorates, so the content is preferably 2.00% by mass or less.
Mn is an element necessary for stably obtaining the hardness of the raceway in order to improve hardenability, and it is preferably added in an amount of 0.2% by mass or more. However, the effect is saturated even if it adds exceeding 1.0 mass%.

Oは、鋼中で非金属介在物を形成し、転動疲労寿命に非常に有害な元素であるため、0.0015質量%以下にすることが好ましい。より好ましくは、転動疲労寿命の安定性のために、0.0010質量%以下にすることが望ましい。
Pは、結晶粒界などに偏析し、鋼の靭性などを低下させる元素であるため、0.02質量%以下にすることが好ましい。
O forms non-metallic inclusions in steel and is an element that is very harmful to the rolling fatigue life, so it is preferably 0.0015% by mass or less. More preferably, it is desirable to make it 0.0010 mass% or less for stability of rolling fatigue life.
P is an element that segregates at the grain boundaries and lowers the toughness of steel and so is preferably 0.02 mass% or less.

Sは、結晶粒界などに偏析し、鋼の靭性などを低下させる元素であるため、0.02質量%以下にすることが好ましい。ただし、0.01質量%未満になると切削性が低下する。
また、本発明の鋼は、上記の合金成分や不純物の他に、残部Feと不可避不純物とを含有してなる。
S is an element that segregates at the grain boundaries and lowers the toughness of the steel and so is preferably 0.02 mass% or less. However, if it is less than 0.01% by mass, the machinability decreases.
Moreover, the steel of this invention contains remainder Fe and an unavoidable impurity other than said alloy component and an impurity.

本発明において、硬化層の厚さdと転動体軌道溝の深さ方向における軌道輪の肉厚Dとの比をd/D≦0.35とした理由は、下記の通りである。
高周波焼入れによって軌道輪表面に硬化層を形成すると、転がり方向の残留応力を軌道輪に付与することができ、軌道輪表面からのき裂発生とき裂進展を抑制し、転がり軸受の長寿命化を図ることができる。しかし、転がり方向とほぼ平行にき裂が進展するのを抑制し、転がり軸受のさらなる長寿命化を図るためには、深さ方向の残留応力を軌道輪に付与することが必要である。本発明者らは、軌道輪に形成された転動体軌道溝の溝底における硬化層の厚さdと、軌道輪の肉厚Dとの比(d/D)を本発明が規定する範囲内にすることによって、深さ方向の残留応力を付与できることを見出した。ここで、硬化層とは、硬さがHv500以上の部位を指すものとする。
In the present invention, the reason why the ratio of the thickness d of the hardened layer and the thickness D of the raceway ring in the depth direction of the rolling element raceway groove is d / D ≦ 0.35 is as follows.
When a hardened layer is formed on the surface of the bearing ring by induction hardening, residual stress in the rolling direction can be applied to the bearing ring, and crack growth from crack generation from the surface of the bearing ring is suppressed, thereby extending the life of the rolling bearing. Can be planned. However, it is necessary to apply a residual stress in the depth direction to the bearing ring in order to prevent the crack from extending substantially parallel to the rolling direction and to further extend the life of the rolling bearing. The inventors of the present invention set the ratio (d / D) between the thickness d of the hardened layer at the groove bottom of the rolling element raceway groove formed on the raceway ring and the thickness D of the raceway ring within the range specified by the present invention. It has been found that the residual stress in the depth direction can be imparted by adjusting the depth. Here, the hardened layer refers to a portion having a hardness of Hv500 or more.

硬化層の厚さdと軌道輪の肉厚Dとの比がd/D>0.35になると、深さ方向の残留応力が小さくなったり、引張方向の残留応力が発生しやすくなったりする。ただし、硬化層の厚さが小さすぎると、転動体の転がり運動によって軌道輪内部に生じるせん断応力に耐えられなくなる。したがって、本発明では、d/D≦0.35(好ましくは、0.35≧d/D≧0.20)とした。   If the ratio of the thickness d of the hardened layer to the thickness D of the raceway is d / D> 0.35, the residual stress in the depth direction is reduced or the residual stress in the tensile direction is likely to be generated. . However, if the thickness of the hardened layer is too small, the hardened layer cannot withstand the shear stress generated inside the raceway due to the rolling motion of the rolling elements. Therefore, in the present invention, d / D ≦ 0.35 (preferably 0.35 ≧ d / D ≧ 0.20).

本発明において、動定格荷重Cを負荷したときの動的最大せん断応力が最大となる深さdでの硬化層の深さ方向の圧縮残留応力を100MPa以上とした理由は、下記の通りである。
深さ方向の圧縮残留応力は、転がり方向と平行にき裂が進展するのを抑制し、転がり疲労寿命を向上させる。また、内部の介在物からのき裂の発生を抑制する。動定格荷重Cを負荷した場合の動的最大せん断応力が最大になる深さをdとするとき、深さdの位置における深さ方向の圧縮残留応力が100MPa未満であると、前記効果が小さい。好ましくは、深さ方向の圧縮残留応力を200MPa以上にすることによって、転がり寿命を安定して向上させることができる。
In the present invention, reason why the depth of the compressive residual stress of the cured layer at a depth d 0 of the dynamic maximum shearing stress is maximized when the load of the dynamic load rating C R and above 100MPa, as follows It is.
The compressive residual stress in the depth direction suppresses crack growth in parallel with the rolling direction and improves the rolling fatigue life. Moreover, the generation | occurrence | production of the crack from an internal inclusion is suppressed. When the dynamic maximum shearing stress when loaded with dynamic load rating C R is a d 0 the depth of maximum, the compressive residual stress in the depth direction at the position of depth d 0 is less than 100 MPa, the Small effect. Preferably, the rolling life can be stably improved by setting the compressive residual stress in the depth direction to 200 MPa or more.

本発明において、硬化層の表面硬度をHv600以上Hv720以下とした理由は、下記の通りである。
転がり軸受の転がり疲労寿命は、通常、硬さが高いほうが有利である。しかしながら、転がり軸受の使用条件によっては、潤滑剤が分解して水素が発生する場合や、潤滑剤中に混入した水が分解して水素が発生する場合があり、発生した水素が軌道輪内部に侵入すると、転がり軸受の寿命が低下する。軌道輪表面の硬さを高くすると、水素に対して軌道輪素材が敏感になり、寿命の低下度が大きくなる。したがって、水素が発生する場合には、硬さを低くしたほうが好ましい。通常は、硬さを低くすると、転がり運動によって軌道輪内部に生じるせん断応力に耐えられず寿命が短くなるが、本発明の転がり軸受は、軌道輪の硬さをある程度低くしても深さ方向の圧縮残留応力があるため、軸受の短寿命化が抑制される。さらに、硬さをある程度低くしているため、水素に対して軌道輪素材が鈍感になり、軸受の短寿命化が抑制される。
In the present invention, the reason why the surface hardness of the cured layer is Hv600 or more and Hv720 or less is as follows.
In general, it is advantageous that the rolling fatigue life of a rolling bearing is higher in hardness. However, depending on the usage conditions of the rolling bearing, the lubricant may be decomposed to generate hydrogen, or the water mixed in the lubricant may be decomposed to generate hydrogen. Intrusion will reduce the life of the rolling bearing. Increasing the hardness of the raceway surface makes the raceway material more sensitive to hydrogen and increases the degree of life reduction. Therefore, when hydrogen is generated, it is preferable to reduce the hardness. Normally, if the hardness is lowered, the life of the rolling bearing of the present invention is shortened even if the hardness of the bearing ring is reduced to some extent, although it cannot withstand the shear stress generated inside the bearing ring due to the rolling motion, and the life is shortened. Therefore, the shortening of the bearing life is suppressed. Furthermore, since the hardness is lowered to some extent, the bearing ring material becomes insensitive to hydrogen, and the shortening of the bearing life is suppressed.

軌道輪表面の硬さをHv720以下にすることによって、上記の効果が大きくなり、水素が発生する使用条件下でも転がり軸受の寿命が短くなることを抑制できる。ただし、軌道輪表面の硬さがHv600未満になると、転がり軸受の寿命が著しく短くなる。
上述した硬化層の厚さdと軌道輪の肉厚Dとの比(d/D)および深さ方向の圧縮残留応力を本発明で規定する範囲にするためには、高周波焼入れによる熱処理を用いることが好ましい。軌道輪に使用する鋼の合金成分および金属組織に応じて、高周波焼入れ時の周波数、出力および加熱時間を最適に調整することによって、本発明で規定するd/Dと深さ方向の圧縮残留応力を得ることができる。
When the hardness of the raceway surface is set to Hv 720 or less, the above effect is increased, and it is possible to suppress the life of the rolling bearing from being shortened even under use conditions where hydrogen is generated. However, when the hardness of the raceway surface is less than Hv600, the life of the rolling bearing is remarkably shortened.
In order to make the ratio (d / D) between the thickness d of the hardened layer and the thickness D of the bearing ring and the compressive residual stress in the depth direction within the range specified in the present invention, heat treatment by induction hardening is used. It is preferable. By adjusting the frequency, power and heating time during induction hardening according to the alloy composition and metal structure of the steel used for the bearing ring, the d / D and the compressive residual stress in the depth direction defined in the present invention are defined. Can be obtained.

高周波焼入れによって軌道輪表面に硬化層を形成すると、軌道輪の硬さが深さ方向に向かって次第に低下していく。深さ方向の圧縮残留応力を大きくするためには、硬さ勾配を急にするほうが好ましい。急な硬さ勾配を得るためには、高周波焼入れをする際の周波数は高いほうが好適であり、具体的には50kHz以上が好ましく、100kHz以上がより好ましい。   When a hardened layer is formed on the surface of the raceway by induction hardening, the hardness of the raceway gradually decreases in the depth direction. In order to increase the compressive residual stress in the depth direction, it is preferable to make the hardness gradient steep. In order to obtain a steep hardness gradient, it is preferable that the frequency at the time of induction hardening is high, specifically, 50 kHz or more is preferable, and 100 kHz or more is more preferable.

また、潤滑剤に水が混入する環境下や潤滑剤が分解しやすい使用条件で使用する場合には、前述したように軌道輪の硬さを通常より低くする制限することが好ましい。硬さは、高周波焼入れ後の焼戻し温度を変えることによって、所定の硬さにすることが可能である。焼戻しは、加熱炉で行ってもよいし、電磁誘導加熱による方法で行ってもよい。   Further, when used in an environment where water is mixed into the lubricant or under use conditions where the lubricant is easily decomposed, it is preferable to limit the hardness of the raceway to be lower than usual as described above. The hardness can be set to a predetermined hardness by changing the tempering temperature after induction hardening. Tempering may be performed in a heating furnace or by a method using electromagnetic induction heating.

本発明によれば、軌道輪に疲労き裂が発生したり、軌道輪に発生した疲労き裂が転がり方向に進展したりすることが抑制されるので、転がり疲労寿命の長い転がり軸受を得ることができる。また、疲労き裂の発生を抑えるために、浸炭処理または浸炭窒化処理を軌道輪素材に施したり、あるいはショットピーニングによる硬化層を軌道輪の表面に形成したりする必要がないので、コストの上昇等を招くことなく軌道輪に疲労き裂が発生することを抑制することができる。   According to the present invention, since a fatigue crack is generated in the bearing ring and the fatigue crack generated in the bearing ring is suppressed from extending in the rolling direction, a rolling bearing having a long rolling fatigue life is obtained. Can do. In addition, in order to suppress the occurrence of fatigue cracks, it is not necessary to perform carburizing or carbonitriding on the raceway ring material or to form a hardened layer by shot peening on the raceway surface, which increases costs. It is possible to suppress the occurrence of fatigue cracks in the races without incurring the above.

以下、本発明の実施の形態を図面に基づいて説明する。図1は本発明の第1の実施形態に係る転がり軸受の一部を示す断面図であり、同図に示される転がり軸受1は内側軌道輪2および外側軌道輪3を備えている。これらの軌道輪2,3は0.45質量%以上0.60質量%以下のCと、0.2質量%以上2.0質量%以下のCrと、0.15質量%以上2.00質量%以下のSiと、0.2質量%以上1.0質量%以下のMnと、0.0015質量%以下(好ましくは、0.0010質量%以下)のOと、0.02質量%以下のPと、0.01質量%以上0.02質量%以下のSとを含有し、残りは残部Feと不可避不純物とからなる鋼からなることが好ましく、内側軌道輪2の外周面に形成された転動体軌道溝4と外側軌道輪3の内周面に形成された転動体軌道溝5との間には、複数個の球状転動体6が設けられている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a part of a rolling bearing according to a first embodiment of the present invention, and the rolling bearing 1 shown in the figure includes an inner race ring 2 and an outer race ring 3. These bearing rings 2 and 3 are 0.45 mass% or more and 0.60 mass% or less C, 0.2 mass% or more and 2.0 mass% or less Cr, 0.15 mass% or more and 2.00 mass%. % Si, 0.2% to 1.0% by weight Mn, 0.0015% by weight or less (preferably 0.0010% by weight or less) O, and 0.02% by weight or less. It contains P and 0.01 mass% or more and 0.02 mass% or less of S, and it is preferable that the remainder consists of steel which consists of remainder Fe and an inevitable impurity, and was formed in the outer peripheral surface of the inner race 2 A plurality of spherical rolling elements 6 are provided between the rolling element raceway grooves 4 and the rolling element raceway grooves 5 formed on the inner peripheral surface of the outer raceway ring 3.

転動体軌道溝4,5は軌道輪2,3の全周に亘って内側軌道輪2の外周面と外側軌道輪3の内周面に形成されており、これら転動体軌道溝4,5の表層部には、動定格荷重Cを負荷したときの動的最大せん断応力が最大となる深さdでの圧縮残留応力が100MPa以上(好ましくは、200MPa以上)になると共に転動体軌道溝4,5の表面硬さがHv600〜Hv720になるように、硬化層7が高周波焼入れによって形成されている。この硬化層7は転動体軌道溝4,5の深さ方向における軌道輪2,3の肉厚をDとすると、0.35D以下の深さdで転動体軌道溝4,5の表層部に形成されている。 The rolling element raceway grooves 4 and 5 are formed on the outer peripheral surface of the inner raceway ring 2 and the inner peripheral surface of the outer raceway ring 3 over the entire circumference of the raceway rings 2 and 3. the surface layer portion, the compressive residual stress is more than 100MPa at a depth d 0 of the dynamic maximum shearing stress is maximized when the load of the dynamic load rating C R (preferably, more than 200 MPa) rolling element raceway groove together becomes The hardened layer 7 is formed by induction hardening so that the surface hardness of 4 and 5 is Hv600 to Hv720. The hardened layer 7 is formed on the surface layer of the rolling element raceway grooves 4 and 5 at a depth d of 0.35 D or less, where D is the thickness of the raceways 2 and 3 in the depth direction of the rolling element raceway grooves 4 and 5. Is formed.

(実施例)

Figure 2009019713
(Example)
Figure 2009019713

本発明らは、表1に示す三種類の鋼種A,B,C,Dからスラスト玉軸受(呼び番号51305)の軌道輪をそれぞれ作製した。具体的には、軌道輪素材である鋼種A,B,C,Dを旋削によって粗加工した後、各軌道輪の表層部に硬化層を高周波焼入れによって同じ焼入れ条件で形成した。その後、加熱炉あるいは電磁誘導加熱炉を用いて焼戻しを行い、最後に研削加工を行なってスラスト玉軸受の完成寸法((内径:25mm、外径:52mm、幅:18mm)に仕上げた。そして、上記の工程で作製された各軌道輪の硬化層表面硬さ、硬化層深さdと軌道輪肉厚Dとの割合(d/D)、硬化層の深さdにおける深さ方向の圧縮残留応力を測定した。その測定結果を高周波焼入れ時の焼入れ周波数および焼入れ時間と共に表2に示す。 The inventors of the present invention produced a ring of a thrust ball bearing (nominal number 51305) from three types of steel types A, B, C, and D shown in Table 1, respectively. Specifically, steel types A, B, C, and D, which are raceway ring materials, were roughly processed by turning, and then a hardened layer was formed on the surface layer portion of each raceway ring by induction quenching under the same quenching conditions. Thereafter, tempering was performed using a heating furnace or an electromagnetic induction heating furnace, and finally grinding was performed to finish the finished ball ball bearings (inner diameter: 25 mm, outer diameter: 52 mm, width: 18 mm). hardened layer surface hardness of each bearing ring which is produced by the above process, the ratio of the hardened layer depth d and the raceway WanikuAtsu D (d / D), the compression of the depth direction of the depth d 0 of the hardened layer The residual stress was measured and the measurement results are shown in Table 2 together with the quenching frequency and quenching time during induction quenching.

Figure 2009019713
Figure 2009019713

また、本発明者らは上記の工程で作製された各軌道輪とSUJに浸炭窒化処理を施した3/8inch鋼球3個とを組み合せたものを試験軸受とし、下記の水混入潤滑下寿命試験を行った。
(1)水混入潤滑下軸受寿命試験
潤滑油中に水を30ml/dayの割合で滴下し、水混入潤滑下での寿命を下記の試験条件で調べた。
荷重:8.82kN
回転数:1000min−1
潤滑油:ISO−VG32
具体的には、上記の水混入潤滑下寿命試験に各試験軸受をそれぞれ5個ずつ供し、累積破損確率10%の寿命(以下「L10寿命」という)を求めた。
In addition, the present inventors used, as a test bearing, a combination of each bearing ring produced in the above process and three 3/8 inch steel balls obtained by carbonitriding SUJ, and the following life under water-mixed lubrication. A test was conducted.
(1) Bearing life test under water-mixed lubrication Water was dropped into the lubricant at a rate of 30 ml / day, and the life under water-mixed lubrication was examined under the following test conditions.
Load: 8.82kN
Rotational speed: 1000min -1
Lubricating oil: ISO-VG32
Specifically, each of the five test bearings was subjected to the life test under water-mixed lubrication, and the life with a cumulative failure probability of 10% (hereinafter referred to as “L 10 life”) was determined.

水混入潤滑下寿命試験における各試験軸受のL10寿命を表2に併記する。なお、表2に示す寿命値は、比較例6の寿命値を1.0とした場合の寿命比で表している。
実施例1〜5と比較例9とを比較すると、実施例1〜5のほうが転がり軸受の転がり疲労寿命が長いことがわかる。これは、比較例9は硬化層の表面硬さがHv600未満であるのに対し、実施例1〜5は硬化層の表面硬さがHv600以上であるためであり、実施例1〜5の硬化層の表面硬さが比較例9より高い値となる理由は、転がり軸受の軌道輪素材として0.45質量%以上0.60質量%以下のCを含有する鋼種を用いているためと考察される。
Table 2 shows the L 10 life of each test bearing in the life test under water-mixed lubrication. The life values shown in Table 2 are expressed as life ratios when the life value of Comparative Example 6 is 1.0.
When Examples 1-5 are compared with Comparative Example 9, it can be seen that Examples 1-5 have a longer rolling fatigue life of the rolling bearing. This is because Comparative Example 9 has a cured layer with a surface hardness of less than Hv600, whereas Examples 1 to 5 have a cured layer with a surface hardness of Hv600 or more. The reason why the surface hardness of the layer is higher than that of Comparative Example 9 is considered to be because a steel type containing 0.45 mass% or more and 0.60 mass% or less of C is used as the bearing ring material of the rolling bearing. The

次に、実施例1〜5と比較例8とを比較すると、実施例1〜5のほうが転がり軸受の転がり疲労寿命が長いことがわかる。これは、比較例8は深さd0での圧縮残留応力が100MPa未満となるように硬化層が高周波焼入れによって形成されているのに対し、実施例1〜5は深さd0での圧縮残留応力が100MPa以上となる硬化層が高周波焼入れによって形成されているためと考察される。   Next, when Examples 1-5 are compared with Comparative Example 8, it can be seen that Examples 1-5 have a longer rolling fatigue life of the rolling bearing. This is because in Comparative Example 8 the hardened layer is formed by induction hardening so that the compressive residual stress at the depth d0 is less than 100 MPa, while in Examples 1-5, the compressive residual stress at the depth d0. It is considered that a hardened layer having a thickness of 100 MPa or more is formed by induction hardening.

次に、実施例1〜5と比較例7とを比較すると、実施例1〜5のほうが転がり軸受の転がり疲労寿命が長いことがわかる。これは、比較例7はd/Dが0.35より大きく且つ深さd0での圧縮残留応力が100MPa未満となるように硬化層が高周波焼入れによって形成されているのに対し、実施例1〜5はd/Dが0.35以下で且つ深さd0での圧縮残留応力が100MPa以上となるように硬化層が高周波焼入れによって形成されているためと考察される。   Next, when Examples 1-5 are compared with Comparative Example 7, it can be seen that Examples 1-5 have a longer rolling fatigue life of the rolling bearing. In Comparative Example 7, the hardened layer is formed by induction quenching so that the d / D is greater than 0.35 and the compressive residual stress at the depth d0 is less than 100 MPa, whereas Examples 1 to 5 is considered that the hardened layer is formed by induction hardening so that the d / D is 0.35 or less and the compressive residual stress at the depth d0 is 100 MPa or more.

次に、実施例1〜5と比較例6とを比較すると、実施例1〜5のほうが転がり軸受の転がり疲労寿命が長いことがわかる。これは、比較例6は高周波焼入れ時の周波数が50kHz未満であるのに対し、実施例1〜5は高周波焼入れ時の周波数が50kHz以上であるためと考察される。
次に、実施例1〜3と実施例4,5とを比較すると、実施例4,5のほうが転がり軸受の転がり疲労寿命が長いことがわかる。これは、実施例1〜3は高周波焼入れ時の周波数が50〜100kHzであるのに対し、実施例4,5は高周波焼入れ時の周波数が200kHzであるためと考察される。
Next, when Examples 1-5 are compared with Comparative Example 6, it can be seen that Examples 1-5 have a longer rolling fatigue life of the rolling bearing. This is considered because Comparative Example 6 has a frequency during induction hardening of less than 50 kHz, whereas Examples 1 to 5 have a frequency during induction hardening of 50 kHz or more.
Next, comparing Examples 1 to 3 with Examples 4 and 5, it can be seen that Examples 4 and 5 have a longer rolling fatigue life of the rolling bearing. This is considered because the frequency at the time of induction hardening in Examples 1 to 3 is 50 to 100 kHz, whereas the frequency at the time of induction hardening in Examples 4 and 5 is 200 kHz.

表2に示した深さ方向の圧縮残留応力と寿命比との関係を図2に示す。図2から明らかなように、深さ方向の圧縮残留応力が100MPa以上になると、軸受の寿命値が高い値となることがわかる。
以上のことから、転がり軸受の軌道輪素材として0.45質量%以上0.60質量%以下のCを含有する鋼種を用い、軌道輪表面の硬化層厚さdと軌道輪肉厚Dとの比が0.35以下で且つ動定格荷重Cを負荷したときの動的最大せん断応力が最大となる深さdでの硬化層の深さ方向の圧縮残留応力が100MPa以上(好ましくは、200MPa以上)になるように、軌道輪表層部に硬化層を高周波焼入れによって形成することにより、軌道輪の表面硬さがHv600〜Hv720の範囲内となるので、水混入潤滑下でも転がり疲労寿命の長い転がり軸受を得ることができる。
The relationship between the compressive residual stress in the depth direction shown in Table 2 and the life ratio is shown in FIG. As can be seen from FIG. 2, when the compressive residual stress in the depth direction is 100 MPa or more, the life value of the bearing becomes high.
From the above, using a steel type containing 0.45 mass% or more and 0.60 mass% or less of C as the bearing ring material of the rolling bearing, the hardened layer thickness d of the bearing ring surface and the bearing ring thickness D ratio 0.35 and dynamic load C R depth direction of the compressive residual stress of the cured layer at a depth d 0 of the dynamic maximum shearing stress is maximized when the load is more than 100MPa or less (preferably, By forming the hardened layer on the surface layer portion of the raceway ring by induction hardening so that the surface hardness of the raceway ring is in the range of Hv600 to Hv720, the rolling fatigue life can be reduced even under water-mixed lubrication. A long rolling bearing can be obtained.

上述した第1の実施形態では本発明を深溝玉軸受に適用した場合を例示したが、これに限定されるものではない。たとえば、図3に示すように、アンギュラ玉軸受に本発明を適用しても同様の効果を得ることができる。また、玉軸受以外の転がり軸受(例えば、スラスト軸受、フランジを有する車輪支持用軸受、円筒ころ軸受、円錐ころ軸受、ニードル軸受など)についても本発明を適用することができる。さらに、転がり軸受以外の転動装置(例えばボールねじ、リニアガイド等)についても本発明と同様の効果が得られる。   In the first embodiment described above, the case where the present invention is applied to a deep groove ball bearing is illustrated, but the present invention is not limited to this. For example, as shown in FIG. 3, the same effect can be obtained even when the present invention is applied to an angular ball bearing. The present invention can also be applied to rolling bearings other than ball bearings (for example, thrust bearings, wheel support bearings having flanges, cylindrical roller bearings, tapered roller bearings, needle bearings, etc.). Furthermore, the same effects as those of the present invention can be obtained for rolling devices other than rolling bearings (eg, ball screws, linear guides, etc.)

本発明の第1の実施形態に係る転がり軸受の一部を示す断面図である。It is sectional drawing which shows a part of rolling bearing which concerns on the 1st Embodiment of this invention. 転動体軌道溝表層部に形成された硬化層の深さ方向の圧縮残留応力と転がり軸受の寿命比との関係を示す図である。It is a figure which shows the relationship between the compression residual stress of the depth direction of the hardened layer formed in the rolling element raceway surface layer part, and the life ratio of a rolling bearing. 本発明の第2の実施形態に係る転がり軸受の一部を示す断面図である。It is sectional drawing which shows a part of rolling bearing which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 転がり軸受
2,3 軌道輪
4,5 転動体軌道溝
6 球状転動体
7 硬化層
DESCRIPTION OF SYMBOLS 1 Rolling bearing 2,3 Race ring 4,5 Rolling element raceway groove 6 Spherical rolling element 7 Hardening layer

Claims (2)

互いに対向する二つの軌道輪と、これら軌道輪の間に配置された複数個の転動体とを具備し、前記二つの軌道輪のうち一方または両方の軌道輪が0.45質量%以上0.60質量%以下のCを含有する鋼からなり、前記鋼からなる軌道輪が転動体軌道溝の表層部に硬化層を有する転がり軸受であって、前記硬化層の厚さと前記転動体軌道溝の深さ方向における前記軌道輪の肉厚との比が0.35以下で且つ動定格荷重を負荷したときの動的最大せん断応力が最大となる深さでの前記硬化層の深さ方向の圧縮残留応力が100MPa以上になるように、前記硬化層が高周波焼入れによって形成されていることを特徴とする転がり軸受。   Two bearing rings facing each other and a plurality of rolling elements disposed between the bearing rings, and one or both of the two race rings are 0.45% by mass or more. The rolling ring is made of a steel containing 60% by mass or less of C, and the raceway ring made of the steel has a hardened layer on the surface layer portion of the rolling element raceway groove. Compression in the depth direction of the hardened layer at a depth at which the ratio to the wall thickness of the race in the depth direction is 0.35 or less and the dynamic maximum shear stress is maximum when a dynamic load rating is applied. A rolling bearing, wherein the hardened layer is formed by induction hardening so that the residual stress is 100 MPa or more. 請求項1記載の転がり軸受において、前記硬化層の表面硬度がHv600以上Hv720以下であることを特徴とする転がり軸受。   The rolling bearing according to claim 1, wherein the hardened layer has a surface hardness of Hv600 or more and Hv720 or less.
JP2007183441A 2007-07-12 2007-07-12 Rolling bearing Pending JP2009019713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183441A JP2009019713A (en) 2007-07-12 2007-07-12 Rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183441A JP2009019713A (en) 2007-07-12 2007-07-12 Rolling bearing

Publications (1)

Publication Number Publication Date
JP2009019713A true JP2009019713A (en) 2009-01-29

Family

ID=40359535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183441A Pending JP2009019713A (en) 2007-07-12 2007-07-12 Rolling bearing

Country Status (1)

Country Link
JP (1) JP2009019713A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238274A (en) * 2012-05-15 2013-11-28 Jtekt Corp Inner ring for radial rolling bearing and method for manufacturing the inner ring
WO2017073327A1 (en) * 2015-10-29 2017-05-04 Ntn株式会社 Multi-row tapered roller bearing, and method for manufacturing bearing ring and multi-row tapered roller bearing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238274A (en) * 2012-05-15 2013-11-28 Jtekt Corp Inner ring for radial rolling bearing and method for manufacturing the inner ring
WO2017073327A1 (en) * 2015-10-29 2017-05-04 Ntn株式会社 Multi-row tapered roller bearing, and method for manufacturing bearing ring and multi-row tapered roller bearing
JP2017082945A (en) * 2015-10-29 2017-05-18 Ntn株式会社 Double row tapered roller bearing, race ring and method of manufacturing double row tapered roller bearing
US10378076B2 (en) 2015-10-29 2019-08-13 Ntn Corporation Double row tapered roller bearing, bearing ring, and method for producing double row tapered roller bearing

Similar Documents

Publication Publication Date Title
JP5958652B2 (en) Soft nitrided induction hardened steel parts with excellent surface fatigue strength
US9394583B2 (en) Rolling bearing
JP2010248568A (en) Rolling bearing for use in hydrogen atmosphere
JP2010196107A (en) Roller bearing
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP5728844B2 (en) Rolling bearing
JP2009221493A (en) Rolling bearing, method for manufacturing race ring
US20170081738A1 (en) Method &amp; metal component
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2014122378A (en) Rolling bearing
JP2007182926A (en) Manufacturing method for needle-like roll bearing raceway member, needle-like roll bearing raceway member, and needle-like roll bearing
JP2015230080A (en) Rolling bearing for hydrogen gas atmosphere
JP2009019713A (en) Rolling bearing
JP2013238274A (en) Inner ring for radial rolling bearing and method for manufacturing the inner ring
JP2016151352A (en) Rolling bearing
JP2010031307A (en) Roller bearing
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2006299313A (en) Rolling supporter
JP6155829B2 (en) ROLLING MEMBER, MANUFACTURING METHOD THEREOF, AND ROLLING BEARING
JP4900098B2 (en) Rolling bearing
JP2007182603A (en) Method for manufacturing rolling member, rolling member and rolling bearing
JP2006138376A (en) Radial needle roller bearing
JP2019090475A (en) Rolling bearing
JP2005290496A (en) Rolling parts and rolling bearing