JP2010025311A - Rolling bearing and method of manufacturing the same - Google Patents

Rolling bearing and method of manufacturing the same Download PDF

Info

Publication number
JP2010025311A
JP2010025311A JP2008190842A JP2008190842A JP2010025311A JP 2010025311 A JP2010025311 A JP 2010025311A JP 2008190842 A JP2008190842 A JP 2008190842A JP 2008190842 A JP2008190842 A JP 2008190842A JP 2010025311 A JP2010025311 A JP 2010025311A
Authority
JP
Japan
Prior art keywords
hardness
rolling bearing
hardened layer
induction hardening
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190842A
Other languages
Japanese (ja)
Inventor
Hideyuki Tobitaka
秀幸 飛鷹
Daisuke Watanuki
大輔 渡貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008190842A priority Critical patent/JP2010025311A/en
Publication of JP2010025311A publication Critical patent/JP2010025311A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rolling bearing which does not have a tendency to cause internal start rupture and has a long service life, and to provide a method of manufacturing the rolling bearing. <P>SOLUTION: The inner ring 1, the outer ring 2, and the rolling elements 3 of a cylindrical roller bearing are made of bearing steel such as SUJ2. Heat treatment including induction hardening is applied to the inner ring 1 and the outer ring 2, and a hard layer hardened by the heat treatment is formed on each of raceway surfaces 1a, 2a. The hardness of the hardened layer exceeds Hv600, and the hardness of an un-hardened core in the hardened layer is equal to or lower than Hv600. The heat treatment including the induction hardening is performed in such a manner that the hardness gradient of the boundary area between the hardened layer and the core is gentle. Namely, the value of the hardness gradient of the boundary area between the portion of the hardened layer which has a hardness of Hv650 and the portion of the core which has a hardness of Hv300 in the depth direction obtained by a least-square method is equal to or lower than 89. Consequently, the hardness gradient is gentler than the gradient of stress acting thereon. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は転がり軸受及びその製造方法に関する。   The present invention relates to a rolling bearing and a manufacturing method thereof.

転がり軸受には、寿命と靱性が要求される。特に、高荷重や衝撃的荷重が負荷されることが多い産業用の転がり軸受に関しては、両者のバランスが重要視される。
転がり軸受の転動寿命の原因となる剥離は、内部起点型の剥離と表面起点型の剥離とに大別される。前者は、鋼中に含まれる非金属介在物を起点とするため、鋼材の酸素含有量を低減する方法により長寿命化を図ることができる。一方、後者は、潤滑剤中に含まれる金属粉などの異物の噛み込みによって生じる圧痕の縁部への応力集中により生じるため、残留オーステナイト量を制御して応力集中を緩和する方法により長寿命化を図ることができる。
Rolling bearings require life and toughness. In particular, regarding industrial rolling bearings that are often subjected to high loads or impact loads, the balance between them is regarded as important.
Separation that causes the rolling life of the rolling bearing is roughly classified into internal origin type separation and surface origin type separation. Since the former is based on non-metallic inclusions contained in the steel, the life can be extended by a method of reducing the oxygen content of the steel material. On the other hand, the latter is caused by stress concentration at the edge of the indentation caused by the inclusion of foreign matter such as metal powder contained in the lubricant, so the life is extended by controlling the amount of retained austenite and relaxing the stress concentration. Can be achieved.

一般に、表面起点型の剥離は内部起点型の剥離に比べて明らかに短寿命であることから、長寿命な転がり軸受の開発は、表面起点型の剥離を抑制することにより行われることが多い。ところが、残留オーステナイトを多量に析出させるためには、表面に炭素や窒素の富化領域を形成させる必要があり、そのためには浸炭処理や浸炭窒化処理などの特殊なガス雰囲気下での焼入れが必要となる。さらに、多量の残留オーステナイトの析出は、転がり軸受に最も必要な表面硬さの低下をもたらすので、これを硬質の炭窒化物で補う必要があり、そのためにはモリブデンなどの高価な合金元素が添加される場合もある。よって、生産コストの増大という問題が生じるおそれがあった。   In general, since surface-origin type peeling has an apparently short life compared to internal origin-type peeling, development of a long-life rolling bearing is often performed by suppressing surface-origin type peeling. However, in order to deposit a large amount of retained austenite, it is necessary to form a carbon or nitrogen-enriched region on the surface, which requires quenching in a special gas atmosphere such as carburizing or carbonitriding. It becomes. Furthermore, the precipitation of a large amount of retained austenite leads to the reduction of the surface hardness that is most necessary for rolling bearings, so this must be supplemented with hard carbonitrides. To that end, expensive alloy elements such as molybdenum are added. Sometimes it is done. Therefore, there is a possibility that a problem of an increase in production cost occurs.

一方、靱性に関しては、材料の硬さと二律背反の関係にある。したがって、靱性を向上させるためには、基本的には、硬さの低い領域をできるだけ多く確保することが必要となる。このような考え方から、低・中炭素鋼に浸炭処理又は浸炭窒化処理を施して、表面のみを硬化させた浸炭軸受が開発されている。ただし、浸炭鋼は、鉄鋼機械用の転がり軸受などの比較的大型の転がり軸受に使用されることが多い。また、焼入れ性を確保するためにニッケル,モリブデン,クロム等の比較的高価な合金元素の添加が主流であり、浸炭処理などの熱処理の煩雑さと併せて、生産コストの増大を招いている。   On the other hand, regarding toughness, there is a trade-off between the hardness of the material. Therefore, in order to improve toughness, basically, it is necessary to secure as many regions with low hardness as possible. Based on this concept, carburized bearings have been developed in which only the surface is hardened by carburizing or carbonitriding the low / medium carbon steel. However, carburized steel is often used for relatively large rolling bearings such as rolling bearings for steel machines. In addition, in order to ensure hardenability, the addition of relatively expensive alloy elements such as nickel, molybdenum, chromium, etc. is the mainstream, leading to an increase in production cost in combination with the complexity of heat treatment such as carburizing.

これに対して、近年では、硬さが必要な表面部分のみを焼入れし硬化する高周波熱処理が注目されている(特許文献1,2を参照)。この手法は、1つの部品の中に焼入れされる部分と焼入れされない部分とを作ることにより、焼入れされた部分に圧縮の残留応力を付与する手法である。圧縮の残留応力はクラックの発生を抑制することから、転動疲労による疲労クラックの発生を抑制する手段として非常に有効である。また、焼入れされない部分は通常低硬度で靱性に優れるため、表面から疲労により発生したクラックを抑制することができる。   On the other hand, in recent years, high-frequency heat treatment that hardens and hardens only the surface portion that requires hardness (see Patent Documents 1 and 2). This method is a method of imparting compressive residual stress to a quenched part by making a part to be quenched and a part not to be quenched in one part. Since the compressive residual stress suppresses the generation of cracks, it is very effective as a means for suppressing the generation of fatigue cracks due to rolling fatigue. Moreover, since the non-quenched portion is usually low in hardness and excellent in toughness, cracks caused by fatigue from the surface can be suppressed.

さらに、熱処理の有無で硬度を制御できるので、高合金の低炭素鋼ではなく、清浄度の優れた汎用の軸受鋼を使用することができる。さらに、表面損傷に対して残留オーステナイトが有効であることは前述したが、高周波焼入れの特性上、電流密度は表面が高いので、母材の炭素濃度が1質量%程度であれば極表層のみに浸炭鋼並みの残留オーステナイトを確保することもできる。   Furthermore, since the hardness can be controlled by the presence or absence of heat treatment, general-purpose bearing steel having excellent cleanliness can be used instead of high-alloy low-carbon steel. Further, as described above, retained austenite is effective for surface damage. However, because of the high-frequency quenching characteristics, the current density is high on the surface, so if the carbon concentration of the base material is about 1% by mass, only the extreme surface layer is used. Residual austenite comparable to carburized steel can be secured.

残留オーステナイトは寸法変化の要因ともなるが、深さ方向で見ると急激に残留オーステナイト量が低下するので、表面部に多量に存在しつつ全体の量は低く抑えられるという利点もある。すなわち、軸受鋼に高周波焼入れを施すことによって、内部疲労,表面疲労のいずれの破損形態に対しても優れた寿命を有し、耐割れ強度の優れた転がり軸受を得ることができる。
特開平11−37163号公報 特開平14−256336号公報
Residual austenite can cause dimensional changes, but the amount of retained austenite decreases abruptly when viewed in the depth direction. Therefore, there is an advantage that the total amount can be kept low while existing in a large amount on the surface portion. That is, by subjecting the bearing steel to induction hardening, it is possible to obtain a rolling bearing having an excellent life with respect to both internal fatigue and surface fatigue, and having excellent crack resistance.
Japanese Patent Laid-Open No. 11-37163 Japanese Patent Laid-Open No. 14-256336

しかしながら、高周波焼入れは、浸炭処理に比べると、焼入れされた部分と焼入れされない部分との境界領域の硬さ勾配が急激となるので、高い応力が作用する用途では強度の弱い内部に応力が作用して内部起点破壊(いわゆるケースクラッシュ)が発生するという問題点を有している。
つまり、浸炭鋼の硬さの管理は通常は表面硬さとHv550で行われるが、産業用の転がり軸受は自動車用転がり軸受等と比べて高い荷重が負荷される場合が多く、剪断応力は内部にまで作用するので、高周波焼入れを施した場合に浸炭鋼と同様の硬さ管理を行うと、強度の低い内部から割れる、いわゆるケースクラッシュが発生するおそれがある。
However, in the induction hardening, the hardness gradient in the boundary region between the hardened part and the non-hardened part becomes abrupt compared to the carburizing treatment. Therefore, there is a problem that internal origin destruction (so-called case crash) occurs.
In other words, the hardness of carburized steel is usually controlled by the surface hardness and Hv550, but industrial rolling bearings are often subjected to higher loads than automotive rolling bearings, and shear stress is contained internally. Therefore, when the same hardness control as that of the carburized steel is performed when induction hardening is performed, there is a possibility that a so-called case crush that breaks from the low strength inside may occur.

さらに、焼入れされない部分には、表面の圧縮応力に対応する引張応力が作用するので、内部破壊に対して不利に働く。高周波焼入れを深い部位まで施して硬化層深さを深くする方法も考えられるが、硬化層深さをむやみに深くすると、高周波焼入れの利点である表面の残留圧縮応力が低くなり、内部の高靱性部分の量が少なくなるので、靱性の向上が期待できなくなってしまう。
そこで、本発明は上記のような従来技術が有する問題点を解決し、内部起点破壊が生じにくく長寿命な転がり軸受及びその製造方法を提供することを課題とする。
Furthermore, since a tensile stress corresponding to the compressive stress of the surface acts on the unquenched portion, it works against internal fracture. A method of deepening the depth of the hardened layer by applying induction hardening to a deep part is also conceivable, but if the depth of the hardened layer is increased excessively, the residual compressive stress on the surface, which is the advantage of induction hardening, is reduced, and the internal high toughness is increased. Since the amount of the portion is reduced, improvement in toughness cannot be expected.
Accordingly, an object of the present invention is to solve the above-described problems of the prior art, and to provide a long-life rolling bearing and a method for manufacturing the same that are less likely to cause internal origin fracture.

前記課題を解決するため、本発明は次のような構成からなる。すなわち、本発明に係る請求項1の転がり軸受は、軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記両軌道面間に転動自在に配された複数の転動体と、を備える転がり軸受において、下記の3つの条件を満足することを特徴とする。
条件A:前記内輪及び前記外輪の少なくとも一方は鋼で構成されており、その軌道面には、高周波焼入れを含む熱処理により硬化されてなる硬化層が形成されている。
条件B:前記硬化層の硬さはHv600超過であるとともに、前記硬化層の内側の硬化されていない芯部の硬さはHv600以下である。
条件C:前記硬化層のうち硬さがHv650の部分と前記芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が89以下である。
In order to solve the above problems, the present invention has the following configuration. That is, the rolling bearing of claim 1 according to the present invention includes an inner ring having a raceway surface, an outer ring having a raceway surface facing the raceway surface of the inner ring, and a plurality of rolling bearings arranged between the raceway surfaces. A rolling bearing provided with the following rolling element satisfies the following three conditions.
Condition A: At least one of the inner ring and the outer ring is made of steel, and a hardened layer formed by heat treatment including induction hardening is formed on the raceway surface.
Condition B: The hardness of the hardened layer exceeds Hv600, and the hardness of the uncured core inside the hardened layer is Hv600 or less.
Condition C: The hardness gradient in the depth direction between the portion of the hardened layer having a hardness of Hv650 and the portion of the core having a hardness of Hv300 is a value obtained by a least square method of 89 or less. is there.

また、本発明に係る請求項2の転がり軸受の製造方法は、請求項1に記載の転がり軸受を製造するに際して、調質処理を施した後に前記高周波焼入れを施すことを特徴とする。
さらに、本発明に係る請求項3の転がり軸受の製造方法は、請求項1に記載の転がり軸受を製造するに際して、球状化焼鈍を施した後に、A1変態点以下の温度に予熱した状態で前記高周波焼入れを施すことを特徴とする。
A rolling bearing manufacturing method according to a second aspect of the present invention is characterized in that, when the rolling bearing according to the first aspect is manufactured, the induction hardening is performed after tempering treatment.
Furthermore, the manufacturing method of the rolling bearing of Claim 3 which concerns on this invention WHEREIN: In manufacturing the rolling bearing of Claim 1, after performing spheroidizing annealing, it is the said state in the state preheated to the temperature below an A1 transformation point. It is characterized by performing induction hardening.

本発明の転がり軸受は、内部起点破壊が生じにくく長寿命である。また、本発明の転がり軸受の製造方法は、内部起点破壊が生じにくく長寿命な転がり軸受を製造することができる。   The rolling bearing of the present invention has a long service life that hardly causes internal origin fracture. Moreover, the manufacturing method of the rolling bearing of this invention can manufacture a long-life rolling bearing which is hard to produce internal origin destruction.

本発明に係る転がり軸受の実施の形態を、図面を参照しながら詳細に説明する。図1は、本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。
この円筒ころ軸受は、軌道面1aを外周面に有する内輪1と、内輪1の軌道面1aに対向する軌道面2aを内周面に有する外輪2と、両軌道面1a,2a間に転動自在に配された複数の転動体(円筒ころ)3と、内輪1及び外輪2の間に転動体3を保持する保持器4と、を備えていて、両軌道面1a,2aと転動体3の転動面3aとの間の潤滑が、グリース,潤滑油等の潤滑剤(図示せず)により行われている。なお、保持器4は備えていなくてもよい。また、シール,シールド等の密封装置を備えていてもよい。
Embodiments of a rolling bearing according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a partial longitudinal sectional view showing a structure of a cylindrical roller bearing which is an embodiment of a rolling bearing according to the present invention.
This cylindrical roller bearing has an inner ring 1 having a raceway surface 1a on its outer peripheral surface, an outer ring 2 having a raceway surface 2a opposite to the raceway surface 1a of the inner ring 1 on its inner peripheral surface, and rolling between both raceway surfaces 1a and 2a. A plurality of rolling elements (cylindrical rollers) 3 arranged freely, and a cage 4 that holds the rolling elements 3 between the inner ring 1 and the outer ring 2, both raceway surfaces 1 a and 2 a and the rolling elements 3 are provided. Lubricating with the rolling surface 3a is performed by a lubricant (not shown) such as grease or lubricating oil. In addition, the holder | retainer 4 does not need to be provided. Moreover, you may provide sealing devices, such as a seal and a shield.

この円筒ころ軸受においては、内輪1,外輪2,及び転動体3は、SUJ2等の軸受鋼で構成されている。内輪1及び外輪2には高周波焼入れを含む熱処理が施されていて、該熱処理により硬化されてなる硬化層(図示せず)が軌道面1a,2aに形成されている。この硬化層の硬さはHv600超過とされているとともに、この硬化層の内側の硬化されていない芯部(図示せず)の硬さはHv600以下とされている。   In this cylindrical roller bearing, the inner ring 1, outer ring 2, and rolling element 3 are made of bearing steel such as SUJ2. The inner ring 1 and the outer ring 2 are subjected to heat treatment including induction hardening, and hardened layers (not shown) cured by the heat treatment are formed on the raceway surfaces 1a and 2a. The hardness of the hardened layer is over Hv600, and the hardness of the uncured core (not shown) inside the hardened layer is Hv600 or less.

また、硬化層と芯部との境界領域の硬さ勾配が緩やかとなるように、前述の高周波焼入れを含む熱処理が施されている。すなわち、硬化層のうち硬さがHv650の部分と、芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が89以下とされていて、作用する応力の分布(応力の勾配)よりも緩やかとなっている。   In addition, heat treatment including the above-described induction hardening is performed so that the hardness gradient in the boundary region between the hardened layer and the core portion becomes gentle. That is, the value obtained by the least square method of the hardness gradient in the depth direction between the portion of the hardened layer having a hardness of Hv650 and the portion of the core having a hardness of Hv300 is 89 or less. Thus, the distribution of the acting stress (stress gradient) is gentler.

このように、軌道面1a,2aの表面硬さと芯部の高靱性とが確保されているとともに、硬化層と芯部との境界領域の硬さ勾配が緩やかとされているため、高い応力が作用する用途で使用されても、円筒ころ軸受は内部起点破壊が生じにくく長寿命である。よって、この円筒ころ軸受は、産業用の転がり軸受に好適であり、特に外輪の外径が200mm以上の大型の転がり軸受に好適である。   As described above, the surface hardness of the raceway surfaces 1a and 2a and the high toughness of the core are ensured, and the hardness gradient in the boundary region between the hardened layer and the core is made gentle, so that high stress is applied. Even if it is used in applications where it acts, cylindrical roller bearings are resistant to internal origin breakage and have a long life. Therefore, this cylindrical roller bearing is suitable for an industrial rolling bearing, and is particularly suitable for a large-sized rolling bearing having an outer diameter of the outer ring of 200 mm or more.

なお、軌道面1a,2aの残留オーステナイト量は、20体積%以上であることが好ましい。また、亀裂の発生及び進展を抑制するためには、この硬化層の残留応力は−200MPa以下(残留圧縮応力が200MPa以上)とすることが好ましい。さらに、軌道面1a,2aの表面硬さはHv650以上であることが好ましい。
このような円筒ころ軸受を製造するための前記熱処理としては、例えば、高周波焼入れを施す前に調質処理を施すという熱処理があげられる。調質処理により炭化物が微細に分散されるため、比較的低温でも容易にオーステナイトに逆変態可能となる。また、球状化焼鈍を施した後に、A1変態点以下の温度に予熱した状態で高周波焼入れを施すという熱処理も好適である。この予熱によって、熱が芯部にまで十分に拡散される。
The amount of retained austenite on the raceway surfaces 1a and 2a is preferably 20% by volume or more. Further, in order to suppress the occurrence and development of cracks, the residual stress of the hardened layer is preferably −200 MPa or less (residual compressive stress is 200 MPa or more). Furthermore, the surface hardness of the raceway surfaces 1a and 2a is preferably Hv650 or more.
Examples of the heat treatment for manufacturing such a cylindrical roller bearing include a heat treatment in which a tempering treatment is performed before induction hardening is performed. Since the carbide is finely dispersed by the tempering treatment, reverse transformation to austenite can be easily performed even at a relatively low temperature. In addition, a heat treatment in which induction hardening is performed in a state preheated to a temperature not higher than the A1 transformation point after spheroidizing annealing is also suitable. By this preheating, the heat is sufficiently diffused to the core.

転動体3については特に限定されるものではなく、一般的なものを問題なく使用できる。例えば、浸炭窒化処理又は窒化処理を含む熱処理が施されていて、該熱処理により硬化されてなる窒化層が転動面3aに形成されているものがあげられる。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。例えば、本実施形態においては転がり軸受の例として円筒ころ軸受をあげて説明したが、本発明は、他の種類の様々な転がり軸受に対して適用することができる。例えば、深溝玉軸受,アンギュラ玉軸受,自動調心玉軸受,自動調心ころ軸受,円すいころ軸受,針状ころ軸受等のラジアル形の転がり軸受や、スラスト玉軸受,スラストころ軸受等のスラスト形の転がり軸受である。
The rolling elements 3 are not particularly limited, and general ones can be used without problems. For example, a heat treatment including a carbonitriding process or a nitriding process is performed, and a nitride layer formed by the heat treatment is formed on the rolling surface 3a.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. For example, in the present embodiment, a cylindrical roller bearing has been described as an example of a rolling bearing, but the present invention can be applied to various types of rolling bearings. For example, radial type rolling bearings such as deep groove ball bearings, angular contact ball bearings, self-aligning ball bearings, self-aligning roller bearings, tapered roller bearings and needle roller bearings, and thrust types such as thrust ball bearings and thrust roller bearings This is a rolling bearing.

〔実施例〕
本実施形態の円筒ころ軸受とほぼ同様の構成の円筒ころ軸受(呼び番号NU2210ET)を用意して、その寿命を評価した。なお、本発明は産業用の大型軸受に好適であるが、大型軸受で試験を行うことは困難であるため、上記呼び番号の円筒ころ軸受を用いてシミュレート試験を行った。ただし、シミュレートを目的として、内輪の内径は30mm、肉厚(径方向の幅)は15mmに改造して用いた(したがって、内輪の外径は60mmである)。まず、試験に用いた円筒ころ軸受の製造方法について説明する。
〔Example〕
A cylindrical roller bearing (nominal number NU2210ET) having a configuration substantially similar to that of the cylindrical roller bearing of the present embodiment was prepared, and its life was evaluated. Although the present invention is suitable for industrial large-sized bearings, it is difficult to perform tests using large-sized bearings. Therefore, a simulated test was performed using the cylindrical roller bearings with the above-mentioned identification numbers. However, for the purpose of simulation, the inner ring was used with an inner diameter of 30 mm and a wall thickness (radial width) of 15 mm (the outer diameter of the inner ring was 60 mm). First, the manufacturing method of the cylindrical roller bearing used for the test is demonstrated.

内輪は、SUJ2製の球状化焼鈍し材を粗加工によって所定の形状に成形した後、調質処理に続いて高周波焼入れ及び焼戻しを施し、さらに後加工を施すことにより製造した。調質処理の条件は、850℃で0.5〜1時間保持した後に急冷し、続いて500℃で1〜3時間保持した後に放冷する焼戻しを行うというものである。
さらに、高周波焼入れの条件は、周波数100〜200kHz、加熱時間5〜200秒、ワーク回転速度20〜60min-1である。この条件を種々変えることにより、前述の硬さ勾配を変化させているが、最大剪断応力深さにおいて硬さがHv700を超えるようにした。さらに、高周波焼入れの後の焼戻しの条件は、170〜240℃に保持した後に放冷するというものである。このような熱処理により、芯部の硬さHvはいずれも600以下となる。
The inner ring was manufactured by forming a spheroidized annealing material made of SUJ2 into a predetermined shape by roughing, then subjecting it to induction hardening and tempering, followed by post-processing. The condition of the tempering treatment is to perform rapid tempering after holding at 850 ° C. for 0.5 to 1 hour, followed by tempering by holding at 500 ° C. for 1 to 3 hours and then allowing to cool.
Furthermore, the conditions of induction hardening are a frequency of 100 to 200 kHz, a heating time of 5 to 200 seconds, and a workpiece rotation speed of 20 to 60 min −1 . By changing this condition variously, the above-mentioned hardness gradient was changed, but the hardness exceeded Hv700 at the maximum shear stress depth. Furthermore, the conditions for tempering after induction hardening are to cool after holding at 170-240 ° C. By such heat treatment, the hardness Hv of the core part is 600 or less.

このようにして得られた内輪とSUJ2製の一般的な外輪及び転動体とを組み立てて製造した円筒ころ軸受について回転試験を行い、剥離が生じるまでの時間を測定した。そして、1種の軸受につき7個の回転試験を行ってワイブルプロットを作成し、ワイブル分布の結果からL10寿命を求め、これを寿命とした。なお、以降において示す寿命は、計算寿命(33時間)を1とした場合の相対値で示してある。
回転試験の条件は下記の通りである。
ラジアル荷重:50kN
回転速度 :1000min-1
潤滑剤 :ISO粘度グレードがISO VG68である潤滑油
A rotation test was performed on the cylindrical roller bearing manufactured by assembling the inner ring thus obtained, a general outer ring made of SUJ2, and rolling elements, and the time until separation occurred was measured. Then, to create a Weibull plot subjected to seven rotation test per one bearing obtains the L 10 life From the results of Weibull distribution, which was used as a lifetime. In addition, the lifetime shown below is shown by the relative value when the calculation lifetime (33 hours) is 1.
The conditions of the rotation test are as follows.
Radial load: 50kN
Rotational speed: 1000 min -1
Lubricant: Lubricating oil whose ISO viscosity grade is ISO VG68

上記のように調質処理に続いて高周波焼入れを施して製造した内輪(実施例1)について、表面からの種々の深さでの硬さHv(硬さプロファイル)を測定した。結果を表1及び図2のグラフに示す。比較例として、球状化焼鈍し材を粗加工によって所定の形状に成形した後、調質処理を施すことなく高周波焼入れを施して製造した内輪についても、硬さプロファイルを表1及び図2のグラフに示す。また、図2のグラフには、50kN(P/C=0.6)のラジアル荷重を付与した際に生じる剪断応力の分布を、耐久硬さHvに変換して示した。   As described above, the hardness Hv (hardness profile) at various depths from the surface of the inner ring (Example 1) manufactured by induction hardening following the tempering treatment was measured. The results are shown in Table 1 and the graph of FIG. As a comparative example, the hardness profile of the inner ring produced by subjecting the spheroidized annealed material to a predetermined shape by roughing and then subjecting it to induction hardening without subjecting to tempering treatment is shown in the graphs of Table 1 and FIG. Shown in In addition, the graph of FIG. 2 shows the distribution of shear stress generated when a radial load of 50 kN (P / C = 0.6) is applied, converted into durable hardness Hv.

Figure 2010025311
Figure 2010025311

実施例1及び比較例について、硬さHv650の部分と硬さHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法により算出した。その結果、実施例1は84.3で、比較例は178.7であった。なお、芯部の硬さがHv300を超える場合は、硬さHv650の部分と高周波焼入れによる全硬化層深さとの間の深さ方向の硬さ勾配を、最小二乗法により算出する。   About Example 1 and the comparative example, the hardness gradient of the depth direction between the part of hardness Hv650 and the part of hardness Hv300 was computed by the least square method. As a result, Example 1 was 84.3 and Comparative Example was 178.7. In addition, when the hardness of a core part exceeds Hv300, the hardness gradient of the depth direction between the part of hardness Hv650 and the total hardened layer depth by induction hardening is calculated by the least square method.

次に、回転試験の結果について説明する。比較例は、高周波焼入れを施す前の前組織が球状化組織であるため、芯部に内部起点破壊が生じ、寿命は0.18と短寿命であった。これは、図2に示す硬さプロファイルで、約5mmの深さで負荷応力が材料の硬さを上回っていることと一致する。
これに対して実施例1は、調質処理が施された前組織となっているので、芯部に内部起点破壊が生じることはなく、通常の最大剪断応力深さ付近で生じる転動疲労による剥離で寿命に至り、寿命は3.2であった。
Next, the results of the rotation test will be described. In the comparative example, since the previous structure before induction hardening was a spheroidized structure, internal origin fracture occurred in the core, and the life was as short as 0.18. This is consistent with the hardness profile shown in FIG. 2 where the applied stress exceeds the hardness of the material at a depth of about 5 mm.
On the other hand, since Example 1 is a pre-structure subjected to a tempering treatment, internal origin fracture does not occur in the core portion, and rolling fatigue that occurs in the vicinity of the normal maximum shear stress depth. The lifetime was reached by peeling, and the lifetime was 3.2.

次に、前組織を球状化組織とし、A1変態点以下の温度に予熱した状態で高周波焼入れを施して製造した内輪(実施例2,3)について、硬さプロファイルを測定した。実施例2,3は、表2に示すように、予熱温度がそれぞれ異なる。結果を表2及び図3のグラフに示す。図3のグラフから分かるように、予熱温度が高くなるにしたがって、硬さプロファイルは勾配が緩やかになっている。   Next, the hardness profile was measured for inner rings (Examples 2 and 3) manufactured by induction hardening in a state where the previous structure was a spheroidized structure and preheated to a temperature equal to or lower than the A1 transformation point. Examples 2 and 3 have different preheating temperatures as shown in Table 2. The results are shown in Table 2 and the graph of FIG. As can be seen from the graph of FIG. 3, the gradient of the hardness profile becomes gentle as the preheating temperature increases.

比較例として、球状化焼鈍し材を粗加工によって所定の形状に成形した後、予熱することなく高周波焼入れを施して製造した内輪(前述の比較例と同じものである)についても、硬さプロファイルを表2及び図3のグラフに示す。図3のグラフには、50kN(P/C=0.6)のラジアル荷重を付与した際に生じる剪断応力の分布を、耐久硬さHvに変換して示した。   As a comparative example, the hardness profile of an inner ring (same as the above-mentioned comparative example) manufactured by subjecting a spheroidized annealed material to a predetermined shape by roughing and then subjecting it to induction hardening without preheating. Is shown in Table 2 and the graph of FIG. The graph of FIG. 3 shows the distribution of shear stress generated when a radial load of 50 kN (P / C = 0.6) is applied, converted into durable hardness Hv.

Figure 2010025311
Figure 2010025311

実施例2,3及び比較例について、硬さHv650の部分と硬さHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法により算出した。その結果、実施例2は89、実施例3は54で、比較例は178.7であった。なお、芯部の硬さがHv300を超える場合は、硬さHv650の部分と高周波焼入れによる全硬化層深さとの間の深さ方向の硬さ勾配を、最小二乗法により算出する。   For Examples 2 and 3 and the comparative example, the hardness gradient in the depth direction between the portion of hardness Hv650 and the portion of hardness Hv300 was calculated by the least square method. As a result, Example 2 was 89, Example 3 was 54, and Comparative Example was 178.7. In addition, when the hardness of a core part exceeds Hv300, the hardness gradient of the depth direction between the part of hardness Hv650 and the total hardened layer depth by induction hardening is calculated by the least square method.

次に、回転試験の結果について説明する。寿命は、実施例2が3.1,実施例3が3.3と、いずれも計算寿命の3倍以上となっており、芯部に内部起点破壊が生じることはなかった。図4のグラフに、軸受の寿命と硬さ勾配との関係を示す。このグラフから、内部起点破壊が生じなかったものは、いずれも硬さ勾配が89以下のものであることが分かる。
負荷される剪断応力を耐久硬さHvに変換して示したものの勾配が89程度であり、この剪断応力の勾配よりも硬さ勾配を緩やかにすれば、いずれの深さ領域においても負荷応力が材料強度を上回ることがないので、計算寿命以上の寿命が十分に確保できる。また、このようにすることで、高靱性の芯部を十分に確保できる。
Next, the results of the rotation test will be described. The lifetime was 3.1 in Example 2 and 3.3 in Example 3, both of which were more than three times the calculated lifetime, and no internal origin failure occurred in the core. The graph of FIG. 4 shows the relationship between the bearing life and the hardness gradient. From this graph, it can be seen that all of the samples in which the internal origin fracture did not occur have a hardness gradient of 89 or less.
The gradient of the applied shear stress converted into the durable hardness Hv is about 89, and if the hardness gradient is made gentler than the gradient of the shear stress, the load stress is reduced in any depth region. Since it does not exceed the material strength, it is possible to ensure a sufficient life beyond the calculated life. Moreover, by doing in this way, a highly tough core part can fully be ensured.

本発明に係る転がり軸受の一実施形態である円筒ころ軸受の構造を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the structure of the cylindrical roller bearing which is one Embodiment of the rolling bearing which concerns on this invention. 硬さプロファイルの測定結果を示すグラフである。It is a graph which shows the measurement result of a hardness profile. 硬さプロファイルの測定結果を示すグラフである。It is a graph which shows the measurement result of a hardness profile. 円筒ころ軸受の寿命と硬さ勾配との関係を示すグラフである。It is a graph which shows the relationship between the lifetime of a cylindrical roller bearing, and a hardness gradient.

符号の説明Explanation of symbols

1 内輪
1a 軌道面
2 外輪
2a 軌道面
3 転動体
3a 転動面
DESCRIPTION OF SYMBOLS 1 Inner ring 1a Raceway surface 2 Outer ring 2a Raceway surface 3 Rolling element 3a Rolling surface

Claims (3)

軌道面を有する内輪と、前記内輪の軌道面に対向する軌道面を有する外輪と、前記両軌道面間に転動自在に配された複数の転動体と、を備える転がり軸受において、下記の3つの条件を満足することを特徴とする転がり軸受。
条件A:前記内輪及び前記外輪の少なくとも一方は鋼で構成されており、その軌道面には、高周波焼入れを含む熱処理により硬化されてなる硬化層が形成されている。
条件B:前記硬化層の硬さはHv600超過であるとともに、前記硬化層の内側の硬化されていない芯部の硬さはHv600以下である。
条件C:前記硬化層のうち硬さがHv650の部分と前記芯部のうち硬さがHv300の部分との間の深さ方向の硬さ勾配を、最小二乗法で求めた値が89以下である。
In a rolling bearing comprising: an inner ring having a raceway surface; an outer ring having a raceway surface opposite to the raceway surface of the inner ring; and a plurality of rolling elements arranged to be freely rollable between the both raceway surfaces. A rolling bearing characterized by satisfying two conditions.
Condition A: At least one of the inner ring and the outer ring is made of steel, and a hardened layer formed by heat treatment including induction hardening is formed on the raceway surface.
Condition B: The hardness of the hardened layer exceeds Hv600, and the hardness of the uncured core inside the hardened layer is Hv600 or less.
Condition C: The hardness gradient in the depth direction between the portion of the hardened layer having a hardness of Hv650 and the portion of the core having a hardness of Hv300 is a value obtained by a least square method of 89 or less. is there.
請求項1に記載の転がり軸受を製造するに際して、調質処理を施した後に前記高周波焼入れを施すことを特徴とする転がり軸受の製造方法。   2. The method of manufacturing a rolling bearing according to claim 1, wherein the induction hardening is performed after the tempering treatment when the rolling bearing according to claim 1 is manufactured. 請求項1に記載の転がり軸受を製造するに際して、球状化焼鈍を施した後に、A1変態点以下の温度に予熱した状態で前記高周波焼入れを施すことを特徴とする転がり軸受の製造方法。   2. The method of manufacturing a rolling bearing according to claim 1, wherein the induction hardening is performed in a state preheated to a temperature equal to or lower than the A1 transformation point after the spheroidizing annealing is performed.
JP2008190842A 2008-07-24 2008-07-24 Rolling bearing and method of manufacturing the same Pending JP2010025311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190842A JP2010025311A (en) 2008-07-24 2008-07-24 Rolling bearing and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190842A JP2010025311A (en) 2008-07-24 2008-07-24 Rolling bearing and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010025311A true JP2010025311A (en) 2010-02-04

Family

ID=41731335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190842A Pending JP2010025311A (en) 2008-07-24 2008-07-24 Rolling bearing and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010025311A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238274A (en) * 2012-05-15 2013-11-28 Jtekt Corp Inner ring for radial rolling bearing and method for manufacturing the inner ring
JP2014025096A (en) * 2012-07-25 2014-02-06 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
JP2014025097A (en) * 2012-07-25 2014-02-06 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
WO2018123469A1 (en) * 2016-12-28 2018-07-05 Ntn株式会社 Bearing component and method for manufacturing same
JP2019530840A (en) * 2016-07-07 2019-10-24 ボナトランス グループ アー.エス. Railcar axle
CN114729667A (en) * 2019-12-03 2022-07-08 蒂森克虏伯罗特艾德德国有限公司 Method for increasing the carrying capacity of a rolling bearing raceway hardened on the surface layer and rolling device for hard rolling thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174414A (en) * 1981-04-21 1982-10-27 Osaka Bearing Seizo Kk Outer ring of roller and bearing in one
JPH07224627A (en) * 1994-02-07 1995-08-22 Sanshin Ind Co Ltd Two-cycle engine
JP2002004003A (en) * 2000-06-22 2002-01-09 Nsk Ltd Rolling shaft
JP2007277728A (en) * 2007-06-06 2007-10-25 High Frequency Heattreat Co Ltd High frequency-induction hardening method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174414A (en) * 1981-04-21 1982-10-27 Osaka Bearing Seizo Kk Outer ring of roller and bearing in one
JPH07224627A (en) * 1994-02-07 1995-08-22 Sanshin Ind Co Ltd Two-cycle engine
JP2002004003A (en) * 2000-06-22 2002-01-09 Nsk Ltd Rolling shaft
JP2007277728A (en) * 2007-06-06 2007-10-25 High Frequency Heattreat Co Ltd High frequency-induction hardening method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238274A (en) * 2012-05-15 2013-11-28 Jtekt Corp Inner ring for radial rolling bearing and method for manufacturing the inner ring
JP2014025096A (en) * 2012-07-25 2014-02-06 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
JP2014025097A (en) * 2012-07-25 2014-02-06 Ntn Corp Method for manufacturing bearing ring, bearing ring and rolling bearing
JP2019530840A (en) * 2016-07-07 2019-10-24 ボナトランス グループ アー.エス. Railcar axle
WO2018123469A1 (en) * 2016-12-28 2018-07-05 Ntn株式会社 Bearing component and method for manufacturing same
US11781596B2 (en) 2016-12-28 2023-10-10 Ntn Corporation Bearing component and method for manufacturing the same
CN114729667A (en) * 2019-12-03 2022-07-08 蒂森克虏伯罗特艾德德国有限公司 Method for increasing the carrying capacity of a rolling bearing raceway hardened on the surface layer and rolling device for hard rolling thereof
CN114729667B (en) * 2019-12-03 2024-06-07 蒂森克虏伯罗特艾德德国有限公司 Method for increasing the load-bearing capacity of a surface-hardened rolling bearing raceway and rolling device for hard rolling same

Similar Documents

Publication Publication Date Title
KR20050004843A (en) Method of producing bearing raceway member
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP4810157B2 (en) Rolling bearing
JP5045491B2 (en) Large rolling bearing
WO2014069068A1 (en) Rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2014020538A (en) Rolling bearing, method for manufacturing rolling bearing, high frequency thermal treatment equipment
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
JP2009221493A (en) Rolling bearing, method for manufacturing race ring
JP2014088893A (en) Rolling bearing and manufacturing method thereof
JP5130886B2 (en) Rolling screw device and manufacturing method thereof
JP2014122378A (en) Rolling bearing
JP2009203526A (en) Rolling bearing
JP2008151236A (en) Rolling bearing
JP5994377B2 (en) Radial rolling bearing inner ring and manufacturing method thereof
JP2011174506A (en) Method for manufacturing thrust race of needle thrust bearing
JP2013160314A (en) Rolling bearing
JP2010031307A (en) Roller bearing
JP2004116569A (en) Rolling bearing
KR20240012362A (en) raceway and shaft
JP2016151352A (en) Rolling bearing
JP2007239072A (en) Rolling member manufacturing method, and rolling bearing manufacturing method
JP2009174656A (en) Rolling bearing
JP2012241862A (en) Rolling bearing
JP2006138376A (en) Radial needle roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130205