JP2009016495A - Thermoelectric element, and its manufacturing method - Google Patents

Thermoelectric element, and its manufacturing method Download PDF

Info

Publication number
JP2009016495A
JP2009016495A JP2007175355A JP2007175355A JP2009016495A JP 2009016495 A JP2009016495 A JP 2009016495A JP 2007175355 A JP2007175355 A JP 2007175355A JP 2007175355 A JP2007175355 A JP 2007175355A JP 2009016495 A JP2009016495 A JP 2009016495A
Authority
JP
Japan
Prior art keywords
thermoelectric
substrates
electrode
type
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007175355A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Tanaka
三博 田中
Jiyunichi Teraki
潤一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007175355A priority Critical patent/JP2009016495A/en
Publication of JP2009016495A publication Critical patent/JP2009016495A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric element formed by using a thin-film thermoelectric material, and applicable to a generally-used thermoelectric module; and its manufacturing method. <P>SOLUTION: This thermoelectric element is characterized in that electrode materials 3 and 4 are jointed to both end surfaces of a laminated product composed by laminating a plurality of substrates 1 each having a thin-film-like thermoelectric material 2 formed on a surface thereof; all the thermoelectric materials 2 formed on the plurality of substrates 1 are of p-type or n-type; and the electrode materials 3 and 4 are connected to all the thermoelectric materials 2 formed on the plurality of substrates 1. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、薄膜の熱電材料を用いた熱電素子およびその製造方法に関する。   The present invention relates to a thermoelectric element using a thin film thermoelectric material and a method for manufacturing the same.

近年、超格子構造などを利用した高性能の熱電材料が開発されているが、一般には基板上に薄膜(10nm〜10μm)でしか作製できないため、一般的に用いられているような熱電モジュールにすることは困難であった(熱電モジュールを作製するには1mm角程度の材料が必要であるため)。また、薄膜を積層したモジュールも提案されているが、通常の熱電モジュールとして使うことはできていない。
特開平09-107219号公報 特開2006-086510号公報 特開2004-241657号公報 特開2004-281928号公報
In recent years, high-performance thermoelectric materials using a superlattice structure have been developed, but in general, they can only be made as thin films (10 nm to 10 μm) on a substrate, so that they are generally used as thermoelectric modules. It was difficult to do (because a 1mm square material is needed to make a thermoelectric module). Also, a module in which thin films are laminated has been proposed, but it cannot be used as a normal thermoelectric module.
JP 09-107219 A JP 2006-086510 A JP 2004-241657 A JP 2004-281928 A

本発明の目的は、薄膜の熱電材料を用いた熱電素子であって、かつ、一般的に用いられているような熱電モジュールに適用可能な熱電素子およびその製造方法を提供することである。   An object of the present invention is to provide a thermoelectric element using a thin-film thermoelectric material and applicable to a thermoelectric module that is generally used, and a method for manufacturing the thermoelectric element.

第1の発明による熱電素子は、薄膜状の熱電材料(2)が表面に形成された基板(1)が複数枚積層された積層体の両端面に電極材料(3,4)が接合されており、前記複数枚の基板(1)に形成された熱電材料(2)は全てp型または全てn型であり、前記電極材料(3,4)は、前記複数枚の基板(1)に形成された熱電材料(2)の全てに接続されていることを特徴とする。   The thermoelectric device according to the first aspect of the present invention comprises an electrode material (3,4) bonded to both end faces of a laminate in which a plurality of substrates (1) having a thin film-like thermoelectric material (2) formed thereon are laminated. The thermoelectric materials (2) formed on the plurality of substrates (1) are all p-type or all n-type, and the electrode materials (3,4) are formed on the plurality of substrates (1). It is characterized by being connected to all the thermoelectric materials (2) formed.

第1の発明では、基板(1)に薄膜状の熱電材料(2)を形成した後、それを複数枚積層(同じ導電型のもの)して端面を電極材料(3,4)で接合することにより一体化し素子とする。その後、通常の熱電モジュールの作製と同様に、p型、n型の素子と別電極を接合し、熱電モジュールとする。第1の発明によれば、薄膜の熱電材料(2)を用いた熱電素子でありながら、かつ、一般的な熱電モジュールを構成可能なサイズ(1mm角程度)の熱電素子を得ることができる。また、基板(1)にできるだけ薄い絶縁、断熱材料を用いることにより、基板(1)による性能低下を防ぎ、薄膜材料(2)そのものの性能を出すことができる。さらに、薄膜を絶縁基板(1)のまま積層するため作製が簡単である。   In the first invention, after forming a thin-film thermoelectric material (2) on the substrate (1), a plurality of the same are laminated (of the same conductivity type), and the end faces are joined by the electrode material (3,4). As a result, the elements are integrated. Thereafter, similarly to the production of a normal thermoelectric module, p-type and n-type elements and another electrode are joined to form a thermoelectric module. According to the first invention, it is possible to obtain a thermoelectric element having a size (about 1 mm square) that is a thermoelectric element using the thin-film thermoelectric material (2) and can constitute a general thermoelectric module. In addition, by using as thin an insulating and heat insulating material as possible for the substrate (1), it is possible to prevent performance degradation due to the substrate (1) and to obtain the performance of the thin film material (2) itself. Further, since the thin film is laminated as it is with the insulating substrate (1), the production is simple.

第2の発明による熱電素子は、薄膜状のp型熱電材料(2a)とn型熱電材料(2b)とが表面に形成された基板(1)が複数枚積層された積層体の一方の端面に第1の電極材料(3)が接合され、他方の端面に第2の電極材料(4a)と第3の電極材料(4b)とが接合されており、前記第1の電極材料(3)は、前記複数枚の基板(1)に形成されたp型熱電材料(2a)の全てとn型熱電材料(2b)の全てとに接続されており、前記第2の電極材料(4a)は、前記複数枚の基板(1)に形成されたp型熱電材料(2a)の全てに接続されており、前記第3の電極材料(4b)は、前記複数枚の基板(1)に形成されたn型熱電材料(2b)の全てに接続されていることを特徴とする。   The thermoelectric element according to the second invention is one end face of a laminate in which a plurality of substrates (1) having a thin film p-type thermoelectric material (2a) and an n-type thermoelectric material (2b) formed thereon are laminated. The first electrode material (3) is bonded to the other end surface, and the second electrode material (4a) and the third electrode material (4b) are bonded to the other end face, and the first electrode material (3) Is connected to all of the p-type thermoelectric material (2a) and all of the n-type thermoelectric material (2b) formed on the plurality of substrates (1), and the second electrode material (4a) is Are connected to all of the p-type thermoelectric material (2a) formed on the plurality of substrates (1), and the third electrode material (4b) is formed on the plurality of substrates (1). It is connected to all of the n-type thermoelectric material (2b).

第2の発明では、基板(1)に薄膜状のp型熱電材料(2a)とn型熱電材料(2b)とを交互に形成した後、それを複数枚積層して端面を電極材料(3,4a,4b)で接合することにより一体化し素子とする。これにより、pn接合素子を簡単に作ることができる。   In the second invention, a thin film p-type thermoelectric material (2a) and an n-type thermoelectric material (2b) are alternately formed on the substrate (1), and a plurality of them are laminated to form an electrode material (3 , 4a, 4b) to form an integrated element. Thereby, a pn junction element can be easily made.

第3の発明による熱電素子は、上記第1または第2の発明において、前記熱電材料(2)の端部が前記電極材料(3,4)に挿入されていることを特徴とする。   A thermoelectric element according to a third invention is characterized in that, in the first or second invention, an end portion of the thermoelectric material (2) is inserted into the electrode material (3,4).

第3の発明では、熱電材料(2)と電極材料(3,4)との接合部の面積が大きくなるため、熱電材料(2)と電極材料(3,4)との接合部分の抵抗が減少する。   In the third invention, since the area of the junction between the thermoelectric material (2) and the electrode material (3,4) is increased, the resistance of the junction between the thermoelectric material (2) and the electrode material (3,4) is reduced. Decrease.

第4の発明による熱電素子は、上記第1または第2の発明において、前記積層体の端面と前記電極材料(3,4)との接合面が波形に形成されていることを特徴とする。   A thermoelectric element according to a fourth invention is characterized in that, in the first or second invention, the joining surface between the end face of the laminate and the electrode material (3,4) is formed in a corrugated shape.

第4の発明では、熱電材料(2)と電極材料(3,4)との接合部の面積が大きくなるため、熱電材料(2)と電極材料(3,4)との接合部分の抵抗が減少する。   In the fourth invention, since the area of the junction between the thermoelectric material (2) and the electrode material (3,4) is increased, the resistance of the junction between the thermoelectric material (2) and the electrode material (3,4) is reduced. Decrease.

第5の発明による熱電素子の製造方法は、薄膜状の熱電材料(2)をフィルム状絶縁性基板(1)の表面に形成する工程と、前記熱電材料(2)が形成されたフィルム状絶縁性基板(1)を巻き取って筒状の母材(10)を形成する工程と、前記母材(10)の両端面に電極(11)を形成する工程と、前記電極(11)が形成された母材(10)を筒状に沿って切断して素子(100)を形成する工程とを備えることを特徴とする。   According to a fifth aspect of the present invention, there is provided a method of manufacturing a thermoelectric element comprising: a step of forming a thin thermoelectric material (2) on a surface of a film insulating substrate (1); and a film insulating material on which the thermoelectric material (2) is formed. Forming a cylindrical base material (10) by winding the conductive substrate (1), forming an electrode (11) on both end faces of the base material (10), and forming the electrode (11) And cutting the preformed base material (10) along a cylindrical shape to form the element (100).

第1の発明によれば、薄膜の熱電材料(2)を用いた熱電素子でありながら、かつ、一般的な熱電モジュールを構成可能なサイズ(1mm角程度)の熱電素子を得ることができる。また、基板(1)にできるだけ薄い絶縁、断熱材料を用いることにより、基板(1)による性能低下を防ぎ、薄膜材料(2)そのものの性能を出すことができる。さらに、薄膜を絶縁基板(1)のまま積層するため作製が簡単である。   According to the first invention, it is possible to obtain a thermoelectric element having a size (about 1 mm square) that is a thermoelectric element using the thin-film thermoelectric material (2) and can constitute a general thermoelectric module. In addition, by using as thin an insulating and heat insulating material as possible for the substrate (1), it is possible to prevent performance degradation due to the substrate (1) and to obtain the performance of the thin film material (2) itself. Further, since the thin film is laminated as it is with the insulating substrate (1), the production is simple.

第2の発明によればpn接合素子を簡単に作ることができる。   According to the second invention, a pn junction element can be easily made.

第3および第4の発明によれば、熱電材料(2)と電極材料(3,4)との接合部の面積が大きくなるため、熱電材料(2)と電極材料(3,4)との接合部分の抵抗が減少する。   According to the third and fourth inventions, since the area of the junction between the thermoelectric material (2) and the electrode material (3,4) is increased, the thermoelectric material (2) and the electrode material (3,4) Junction resistance is reduced.

以下、本発明の実施形態を図面を参照して説明する。なお、図面において実質的に同一の部分には同じ参照符号を付けてその説明は繰り返さない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, substantially the same parts are denoted by the same reference numerals, and description thereof will not be repeated.

[第1の実施形態]
第1の実施形態による熱電素子の構造を図1に示す。この熱電素子(100)は、薄膜状のp型熱電材料(2)が表面に形成された基板(1)が複数枚積層された積層体の両端面に電極材料(3,4)が接合されている。各電極材料(3,4)は、複数枚の基板(1)に形成された熱電材料(2)の全てに接続されている。
[First Embodiment]
The structure of the thermoelectric element according to the first embodiment is shown in FIG. In this thermoelectric element (100), electrode materials (3, 4) are bonded to both end faces of a laminate in which a plurality of substrates (1) having a thin film p-type thermoelectric material (2) formed thereon are laminated. ing. Each electrode material (3,4) is connected to all of the thermoelectric materials (2) formed on the plurality of substrates (1).

このような構成にすれば、薄膜のp型熱電材料(2)を用いた熱電素子でありながら、かつ、一般的な熱電モジュールを構成可能なサイズ(1mm角程度)のp型熱電素子を得ることができる。なお、上記のp型熱電材料(2)をn型熱電材料(2)に置き換えれば、薄膜のn型熱電材料(2)を用いた熱電素子でありながら、かつ、一般的な熱電モジュールを構成可能なサイズ(1mm角程度)のn型熱電素子を得ることができる。   With such a configuration, a p-type thermoelectric element having a size (about 1 mm square) that is a thermoelectric element using a thin-film p-type thermoelectric material (2) and that can constitute a general thermoelectric module is obtained. be able to. If the above-mentioned p-type thermoelectric material (2) is replaced with an n-type thermoelectric material (2), a general thermoelectric module can be constructed while being a thermoelectric element using a thin-film n-type thermoelectric material (2). An n-type thermoelectric element having a possible size (about 1 mm square) can be obtained.

熱電材料(2)が表面に形成された基板(1)の積層方法としては、単純に積み重ねる方法やフレキシブルな基板(1)を用いてロール状に巻いて切り出す方法などが挙げられる。また、積み重ねた状態で安定させるために熱処理を行い、積層膜を一体化してもよい。   Examples of the method of laminating the substrate (1) on which the thermoelectric material (2) is formed include a method of simply stacking and a method of winding and cutting out using a flexible substrate (1). In addition, heat treatment may be performed to stabilize the stacked state, and the laminated film may be integrated.

上記基板(1)が複数枚積層された積層体の両端面に接合する電極材料(3,4)としては、ニッケル,金,銅,アルミ,亜鉛などが挙げられる。電極材料(3,4)を接合する方法としては、蒸着,溶射などが挙げられる。電極材料(3,4)を接合しやすくするため、積層体の両端面を切りそろえたり、エッチング等により端面の絶縁基板(1)の一部を取り除き、熱電材料(2)の接合面積を広げたりしてもよい。   Examples of the electrode material (3,4) to be bonded to both end faces of the laminate in which a plurality of the substrates (1) are laminated include nickel, gold, copper, aluminum, and zinc. Examples of methods for joining the electrode materials (3,4) include vapor deposition and thermal spraying. To make it easier to bond the electrode material (3,4), both end faces of the laminate are trimmed, part of the insulating substrate (1) on the end face is removed by etching, etc., and the bonding area of the thermoelectric material (2) is increased. May be.

たとえば、図2(a)に示すように、電極材料(3,4)と熱電材料(2)との接合部分の抵抗を減らすために、接合面で基板(1)よりも熱電材料(2)を長くする。これにより電極材料(3,4)と熱電材料(2)との接合部の面積が大きくなるため抵抗が減少する。熱電材料(2)を基板(1)よりも長くする方法としては、同じ長さに形成した後、基板部分を溶剤で溶かす、熱処理で溶かす等の方法が挙げられる。   For example, as shown in FIG. 2 (a), in order to reduce the resistance of the joint portion between the electrode material (3,4) and the thermoelectric material (2), the thermoelectric material (2) is more than the substrate (1) at the joint surface. Lengthen. As a result, the area of the junction between the electrode material (3,4) and the thermoelectric material (2) is increased, so that the resistance is reduced. Examples of the method of making the thermoelectric material (2) longer than the substrate (1) include a method of forming the same length and then dissolving the substrate portion with a solvent or by heat treatment.

電極材料(3,4)と熱電材料(2)との接合部分の抵抗を減らすための別の手法として、図2(b)に示すように、電極材料(3,4)と熱電材料(2)との接合面を波形に形成する(積層方向に垂直方向に凹凸を設ける)。これにより電極材料(3,4)と熱電材料(2)との接合部の面積が大きくなるため抵抗が減少する。接合面を波形に形成する(凹凸を設ける)方法としては、機械的に削る、マスクした後エッチングを行う等の方法が挙げられる。   As another method for reducing the resistance of the joint portion between the electrode material (3,4) and the thermoelectric material (2), as shown in FIG. 2B, the electrode material (3,4) and the thermoelectric material (2 ) Are formed in a wavy shape (unevenness is provided in a direction perpendicular to the stacking direction). As a result, the area of the junction between the electrode material (3,4) and the thermoelectric material (2) is increased, so that the resistance is reduced. Examples of the method of forming the bonding surface in a corrugated shape (providing unevenness) include methods such as mechanical cutting and etching after masking.

次に、図1に示した熱電素子の製造方法の一例について図3を参照して説明する。   Next, an example of a method for manufacturing the thermoelectric element shown in FIG. 1 will be described with reference to FIG.

まず、薄膜状の熱電材料(2)をフィルム状絶縁性基板(1)の表面に形成する。次に図3(a)に示すように、熱電材料(2)が形成されたフィルム状絶縁性基板(1)を円筒状に巻き取って筒状の母材(10)を形成する。次に、図3(b)に示すように、上記母材(10)の両端面に電極(11)を溶射する。次に、図3(c)に示すように、電極(11)が形成された母材(10)を筒状に沿って必要なサイズにカットして熱電素子(100)を得る。   First, a thin-film thermoelectric material (2) is formed on the surface of a film-like insulating substrate (1). Next, as shown in FIG. 3A, the film-like insulating substrate (1) on which the thermoelectric material (2) is formed is wound into a cylindrical shape to form a cylindrical base material (10). Next, as shown in FIG. 3B, electrodes (11) are sprayed on both end faces of the base material (10). Next, as shown in FIG.3 (c), the base material (10) in which the electrode (11) was formed is cut into a required size along a cylinder shape, and the thermoelectric element (100) is obtained.

以上により、p型またはn型の熱電素子が形成されるため、あとは通常のモジュールの作製と同様の方法で熱電モジュールを作製することができる。   As described above, since the p-type or n-type thermoelectric element is formed, the thermoelectric module can be manufactured by the same method as that for manufacturing a normal module.

[第2の実施形態]
第2の実施形態による熱電素子の構造を図4に示す。この熱電素子は、薄膜状のp型熱電材料(2a)とn型熱電材料(2b)とが表面に形成された基板(1)が各熱電材料の位置を揃えて複数枚積層された積層体の一方の端面に電極材料(3)が接合され、他方の端面に電極材料(4a,4b)が接合されている。電極材料(3)は、複数枚の基板(1)に形成されたp型熱電材料(2a)の全てとn型熱電材料(2b)の全てとに接続されている。電極材料(4a)は、複数枚の基板(1)に形成されたp型熱電材料(2a)の全てに接続されている。電極材料(4b)は、複数枚の基板(1)に形成されたn型熱電材料(2b)の全てに接続されている。
[Second Embodiment]
The structure of the thermoelectric element according to the second embodiment is shown in FIG. This thermoelectric element is a laminated body in which a plurality of substrates (1) having thin-film p-type thermoelectric materials (2a) and n-type thermoelectric materials (2b) formed on their surfaces are aligned at the positions of the respective thermoelectric materials. The electrode material (3) is joined to one end face of the electrode, and the electrode material (4a, 4b) is joined to the other end face. The electrode material (3) is connected to all of the p-type thermoelectric material (2a) and all of the n-type thermoelectric material (2b) formed on the plurality of substrates (1). The electrode material (4a) is connected to all the p-type thermoelectric materials (2a) formed on the plurality of substrates (1). The electrode material (4b) is connected to all the n-type thermoelectric materials (2b) formed on the plurality of substrates (1).

このような構成にすれば、薄膜の熱電材料(2a,2b)を用いた熱電素子でありながら、かつ、一般的な熱電モジュールを構成可能なサイズ(1mm角程度)の熱電素子のpnのペアを得ることができる。第1の実施形態ではp型の熱電素子またはn型の熱電素子の単体しか得られないため、熱電モジュールを作製する際にはp型の熱電素子とn型の熱電素子とのペアのモジュールを作製する必要があったが、本実施形態によればその必要がなくなりモジュール作製がさらに容易になる。   With such a configuration, a pn pair of thermoelectric elements of a size (about 1 mm square) that is a thermoelectric element using a thin film thermoelectric material (2a, 2b) and that can constitute a general thermoelectric module. Can be obtained. In the first embodiment, only a p-type thermoelectric element or an n-type thermoelectric element can be obtained. Therefore, when producing a thermoelectric module, a pair of modules of a p-type thermoelectric element and an n-type thermoelectric element is used. However, according to the present embodiment, it is not necessary and the module can be manufactured more easily.

なお、本実施形態における熱電素子の製造方法、電極材料(3,4a,4b)と熱電材料(2a,2b)との接合部分の抵抗を減らすための手法については第1の実施形態と同様の手法を適用可能である。   The method for manufacturing the thermoelectric element and the method for reducing the resistance of the joint portion between the electrode material (3,4a, 4b) and the thermoelectric material (2a, 2b) in this embodiment are the same as those in the first embodiment. The method can be applied.

本発明の熱電素子は、素子に電流を流すことによるペルチェ効果を利用して接合部を冷却あるいは発熱させる冷却装置等に好適である。   The thermoelectric element of the present invention is suitable for a cooling device or the like that cools or generates heat by using a Peltier effect by passing a current through the element.

第1の実施形態による熱電素子の構造を示す図The figure which shows the structure of the thermoelectric element by 1st Embodiment 図1の熱電素子の変形例を示す図The figure which shows the modification of the thermoelectric element of FIG. 図1の熱電素子の製造工程の概略図Schematic of the manufacturing process of the thermoelectric element of FIG. 第2の実施形態による熱電素子の構造を示す図The figure which shows the structure of the thermoelectric element by 2nd Embodiment

符号の説明Explanation of symbols

1 基板
2 熱電材料
2a p型熱電材料
2b n型熱電材料
3,4,4a,4b 電極
10 母材
11 電極
100 熱電素子
DESCRIPTION OF SYMBOLS 1 Substrate 2 Thermoelectric material 2a P-type thermoelectric material 2b N-type thermoelectric material 3, 4, 4a, 4b Electrode 10 Base material 11 Electrode 100 Thermoelectric element

Claims (5)

薄膜状の熱電材料(2)が表面に形成された基板(1)が複数枚積層された積層体の両端面に電極材料(3,4)が接合されており、
前記複数枚の基板(1)に形成された熱電材料(2)は全てp型または全てn型であり、
前記電極材料(3,4)は、前記複数枚の基板(1)に形成された熱電材料(2)の全てに接続されている、
ことを特徴とする熱電素子。
Electrode materials (3, 4) are joined to both end faces of a laminate in which a plurality of substrates (1) on which a thin-film thermoelectric material (2) is formed are laminated,
The thermoelectric materials (2) formed on the plurality of substrates (1) are all p-type or all n-type,
The electrode material (3,4) is connected to all of the thermoelectric materials (2) formed on the plurality of substrates (1).
The thermoelectric element characterized by the above-mentioned.
薄膜状のp型熱電材料(2a)とn型熱電材料(2b)とが表面に形成された基板(1)が複数枚積層された積層体の一方の端面に第1の電極材料(3)が接合され、他方の端面に第2の電極材料(4a)と第3の電極材料(4b)とが接合されており、
前記第1の電極材料(3)は、前記複数枚の基板(1)に形成されたp型熱電材料(2a)の全てとn型熱電材料(2b)の全てとに接続されており、
前記第2の電極材料(4a)は、前記複数枚の基板(1)に形成されたp型熱電材料(2a)の全てに接続されており、
前記第3の電極材料(4b)は、前記複数枚の基板(1)に形成されたn型熱電材料(2b)の全てに接続されている、
ことを特徴とする熱電素子。
A first electrode material (3) is formed on one end face of a laminate in which a plurality of substrates (1) each having a thin film p-type thermoelectric material (2a) and an n-type thermoelectric material (2b) formed thereon are laminated. And the second electrode material (4a) and the third electrode material (4b) are bonded to the other end face,
The first electrode material (3) is connected to all of the p-type thermoelectric material (2a) and all of the n-type thermoelectric material (2b) formed on the plurality of substrates (1),
The second electrode material (4a) is connected to all of the p-type thermoelectric material (2a) formed on the plurality of substrates (1),
The third electrode material (4b) is connected to all of the n-type thermoelectric material (2b) formed on the plurality of substrates (1).
The thermoelectric element characterized by the above-mentioned.
請求項1または2において、
前記熱電材料(2)の端部が前記電極材料(3,4)に挿入されている、
ことを特徴とする熱電素子。
In claim 1 or 2,
The end of the thermoelectric material (2) is inserted into the electrode material (3,4),
The thermoelectric element characterized by the above-mentioned.
請求項1または2において、
前記積層体の端面と前記電極材料(3,4)との接合面が波形に形成されている、
ことを特徴とする熱電素子。
In claim 1 or 2,
The bonding surface between the end face of the laminate and the electrode material (3,4) is formed in a waveform,
The thermoelectric element characterized by the above-mentioned.
薄膜状の熱電材料(2)をフィルム状絶縁性基板(1)の表面に形成する工程と、
前記熱電材料(2)が形成されたフィルム状絶縁性基板(1)を巻き取って筒状の母材(10)を形成する工程と、
前記母材(10)の両端面に電極(11)を形成する工程と、
前記電極(11)が形成された母材(10)を筒状に沿って切断して素子(100)を形成する工程とを備える、
ことを特徴とする熱電素子の製造方法。
Forming a thin-film thermoelectric material (2) on the surface of the film-like insulating substrate (1);
Winding the film-like insulating substrate (1) on which the thermoelectric material (2) is formed to form a tubular base material (10);
Forming electrodes (11) on both end faces of the base material (10);
Cutting the base material (10) on which the electrode (11) is formed along a cylindrical shape to form an element (100),
The manufacturing method of the thermoelectric element characterized by the above-mentioned.
JP2007175355A 2007-07-03 2007-07-03 Thermoelectric element, and its manufacturing method Pending JP2009016495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007175355A JP2009016495A (en) 2007-07-03 2007-07-03 Thermoelectric element, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007175355A JP2009016495A (en) 2007-07-03 2007-07-03 Thermoelectric element, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009016495A true JP2009016495A (en) 2009-01-22

Family

ID=40357065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007175355A Pending JP2009016495A (en) 2007-07-03 2007-07-03 Thermoelectric element, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009016495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
WO2017038324A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165183A (en) * 1987-12-21 1989-06-29 Seiko Instr & Electron Ltd Manufacture of thermoelectric device
JPH09107129A (en) * 1995-10-09 1997-04-22 Sharp Corp Semiconductor device and its manufacturing method
JPH10208978A (en) * 1997-01-22 1998-08-07 Taiyo Yuden Co Ltd Laminated electronic component and manufacture thereof
JPH11330569A (en) * 1998-05-13 1999-11-30 Sharp Corp Thermoelectric transducer and its manufacture
JP2006190916A (en) * 2005-01-07 2006-07-20 Saitama Prefecture Method for forming junction electrode in thermionic element and porous thermionic element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165183A (en) * 1987-12-21 1989-06-29 Seiko Instr & Electron Ltd Manufacture of thermoelectric device
JPH09107129A (en) * 1995-10-09 1997-04-22 Sharp Corp Semiconductor device and its manufacturing method
JPH10208978A (en) * 1997-01-22 1998-08-07 Taiyo Yuden Co Ltd Laminated electronic component and manufacture thereof
JPH11330569A (en) * 1998-05-13 1999-11-30 Sharp Corp Thermoelectric transducer and its manufacture
JP2006190916A (en) * 2005-01-07 2006-07-20 Saitama Prefecture Method for forming junction electrode in thermionic element and porous thermionic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043412A (en) * 2013-07-22 2015-03-05 国立大学法人山梨大学 Thermoelectric element and method of manufacturing the same
WO2017038324A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2017038324A1 (en) * 2015-08-31 2018-06-07 富士フイルム株式会社 Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5298532B2 (en) Thermoelectric element
JP4078392B1 (en) Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device
JP3828924B2 (en) Thermoelectric conversion element, method for manufacturing the same, and thermoelectric conversion apparatus using the element
JP5987444B2 (en) Thermoelectric conversion device and manufacturing method thereof
JP3927784B2 (en) Method for manufacturing thermoelectric conversion member
JP2013522861A (en) Thermoelectric conversion element and manufacturing method thereof
JP2013511142A5 (en)
JP2008205181A (en) Thermoelectric module
JP6035970B2 (en) Thermoelectric conversion device and manufacturing method thereof
KR102414392B1 (en) thermoelectric tape
JP5293748B2 (en) Thermoelectric conversion element, method for manufacturing the same, and electronic device
KR101998697B1 (en) Thermoelectric cooling module and manufacturing method thereof
TW201505138A (en) Electronic device and manufacturing method for same
JP2009016495A (en) Thermoelectric element, and its manufacturing method
JP2006049736A (en) Thermoelectric module
JP2009016442A (en) Thermoelectric device
JP6145664B2 (en) Method for manufacturing thermoelectric conversion module
JP2009194309A (en) Thermoelectric module
JP7294607B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
JP2012532468A (en) Module having a plurality of thermoelectric elements
JP2016058613A (en) Thermoelectric conversion module and manufacturing method of the same
EP3201955B1 (en) Silicon integrated mirror-like thermoelectric generator of out-of-plane heat flux configuration
JP7055113B2 (en) Thermoelectric module and its manufacturing method
US9887340B2 (en) Thermoelectric conversion module
JP6781982B2 (en) Thermoelectric conversion module and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120515