JP2009009867A - 荷電粒子線装置 - Google Patents

荷電粒子線装置 Download PDF

Info

Publication number
JP2009009867A
JP2009009867A JP2007171413A JP2007171413A JP2009009867A JP 2009009867 A JP2009009867 A JP 2009009867A JP 2007171413 A JP2007171413 A JP 2007171413A JP 2007171413 A JP2007171413 A JP 2007171413A JP 2009009867 A JP2009009867 A JP 2009009867A
Authority
JP
Japan
Prior art keywords
focus
sample
charged particle
particle beam
focus adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171413A
Other languages
English (en)
Other versions
JP5028159B2 (ja
Inventor
Atsushi Obara
篤 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2007171413A priority Critical patent/JP5028159B2/ja
Priority to US12/163,121 priority patent/US7838840B2/en
Publication of JP2009009867A publication Critical patent/JP2009009867A/ja
Application granted granted Critical
Publication of JP5028159B2 publication Critical patent/JP5028159B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/21Focus adjustment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2809Scanning microscopes characterised by the imaging problems involved
    • H01J2237/281Bottom of trenches or holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography
    • H01J2237/2815Depth profile

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】
試料面上の凹凸等の影響により、画像内にて焦点の合う個所と、合わない個所が併存するような試料を測定,検査する際に、画像内の全体、或いは所定の領域内にて鮮明な画像を取得するのに好適な荷電粒子線装置の提供を目的とする。
【解決手段】
半導体製造工程中に形成される試料に対し、荷電粒子線を走査する際の走査領域内の各個所の焦点調整条件を予め求めておき、当該求められた焦点調整条件を、前記焦点調整条件を求めた試料と同じ製造条件にて形成されたパターンに選択的に適用して、前記荷電粒子線走査を行う装置を提案する。
【選択図】図2

Description

本発明は、被観察試料へ荷電粒子線を当ててそこから得られる2次電子発生等の物理現象を利用して試料の形状または材質等を観察または測定する荷電粒子線装置、特に走査型電子顕微鏡に関する。
真空中にて、電子線を試料へ当てると2次電子を発生させることができる。走査型電子顕微鏡では、これが試料の形状に依存して変化する現象を利用して試料形状の観察を行っている。通常、照射される電子線は、試料表面にて焦点位置を持つような電子ビームに電子レンズを用いて絞られている。こうすることで、試料上の凹凸を鮮明な画像として捉えることが可能となる。この電子ビームをどれだけ絞るかによって、得られる画像の鮮明度が決まる。すなわち、より強く絞ることで、像分解能を向上させて、画像の鮮明度を上げることが可能となる。ただし、あまり絞り過ぎると、用いている電子レンズの性能を超えてしまい、逆に回折収差等の収差を大きくすることで、画像鮮明度を落とすことになる。高分解能を求める電子顕微鏡の設計の際には、試料に対向して置く電子レンズを対物レンズと呼んで、この対物レンズの回折収差が像分解能を超えて大きくなりだす手前まで絞った状態に合わせて、その他に複数のレンズを含む光学系全体の設計を決めている。
ところで、この対物レンズによって電子ビームを絞ることで、像分解能を向上させることができるが、それと反比例するように、鮮明に見える試料表面の凹凸の深さは逆に短くなって行く。この深さを焦点深度と呼んでいる。
近年、こうした電子顕微鏡を使って半導体工程にて製造した半導体デバイスを検査することが行われているが、より微細化されて行くプロセスに合わせて、より高分解能な電子顕微鏡が求められている。しかし、先に述べたように、像分解能を向上させる程に、焦点深度は短くなり、浅い凹凸を持った試料しか観察できなくなって来ている。
その一方で、半導体工程では、微細化とともに、試料表面に開ける穴、多くの場合にコンタクトホールと呼ばれている穴の深さをより深くする傾向が出て来ている。こうした互いに矛盾した要求に応えるために、特許文献1の開示によれば、同じ試料上の位置で焦点位置のみを変えながら、複数枚のSEM像をいったん取り込んで、後から画像処理を施しながら、各像の焦点の合っている部分のみを抜き出して、互いに合成していくことで、最終的に試料凹凸の深さに関係無しに画像全体に焦点の合っているSEM像を形成する技術が説明されている。
また、特許文献2には、走査電子顕微鏡にて、凹凸試料を調べる場合に、その凹凸に従って焦点合わせを行うことが説明されている。
特開2001−84944号公報 特開平5−3013号公報
しかしながら、特許文献1に開示の技術では、同じ試料位置で焦点を変えて取り込んだ画像の枚数分の電子線照射を繰り返すことになり、電子線照射による試料ダメージの影響が大きい。それのみならず、電子線照射量が画像枚数に比例して増えているので、試料表面での帯電量を増やすこととなり、一連の画像取り込み中に帯電起因の視野ドリフトを生じ易くなる。また、1枚の画像を得るために複数枚のSEM像を取り込む必要があることから、必要とされる画像取り込み時間がもとより長くなっており、視野ドリフトを生じたときに、その影響を受け易くなっている。
こうした理由により、特許文献1に開示されている技術では、スループットや試料ダメージ等の観点から、半導体デバイスの測定や検査への適用が困難であるという問題がある。換言すれば、試料ダメージの大きいことや、視野ドリフトの影響が大きいことにより、常に正確な測定を行うこと、つまり測長再現性の良い測定を行うことが難しかった。
また、特許文献2には、試料面の凹凸に従って焦点合わせを行う例が説明されているが、半導体デバイスの測定や観察への適用について何も言及されておらず、半導体デバイス測定,観察への適用が困難であった。特に、半導体デバイスは、製造条件の違い等によって、デバイスの出来が変化するため、例えば試料面の凹凸情報を予め求めていたとしても、その情報が適正な焦点調整に用いられるかの保障はない。また、測定,検査の度に焦点調整のためのデータを収集する手法は、先に説明したように、スループットや試料ダメージの観点で問題がある。
以下に、試料面上の凹凸等の影響により、画像内にて焦点の合う個所と、合わない個所が併存するような試料を測定,検査する際に、画像内の全体、或いは所定の領域内にて鮮明な画像を取得するのに好適な荷電粒子線装置を説明する。
半導体製造工程中に形成される試料に対し、荷電粒子線を走査する際の走査領域内の各個所の焦点調整条件を予め求めておき、当該求められた焦点調整条件を、前記焦点調整条件を求めた試料と同じ製造条件にて形成されたパターンに選択的に適用して、前記荷電粒子線走査を行う装置を提案する。また、画像内全体、或いは所定の領域内にて鮮明な画像を取得するのに好適な他の荷電粒子線装置についても併せて提案する。
以上のような構成によれば、半導体製造条件ごとに、画像内の各個所の適正な焦点調整条件に基づいて画像を形成することができるので、試料の種類に因らず、スループットの低下や試料ダメージのない画像を形成することが可能となる。なお、上述した他の荷電粒子線装置の具体的な技術効果については、発明を実施するための最良の形態の欄にて詳細に説明する。
以下に説明する実施例では、試料表面凹凸の深さに関係無しに画像全体で鮮明な像を得るために、電子ビームを走査しながら試料表面凹凸に合わせて焦点位置を変化させる手段を備える。その際に、あらかじめ試料表面凹凸の深さ情報を得る方法として、主として4通りの方法を用意する。
そのうち1つ目の方法は、半導体工程で使われる場合を想定して、走査を開始する前にあらかじめ試料表面の情報を装置へ与えて記憶させておくことで、前記の機能を実現することができる。すなわち、半導体工程で使われる走査型電子顕微鏡では、自動測長により運用することが多く行われており、検査開始前に検査内容をプログラムしたレシピと呼ばれるファイルを作成する。このレシピ作成時には、オペレータが装置(走査型電子顕微鏡)に供試用試料、ここではウェーハを導入して、検査箇所の位置とサンプル画像の登録を行う。
このレシピを一度作成すれば、供試用試料と同じパターン配置を持つウェーハが何枚来ても、後は自動的に検査を行うことが可能となる。レシピは、同じ製造条件にて形成されたパターン毎に形成される。ここで言うところの同じ製造条件とは、試料の種類(パターンの配置やパターンの大きさ等),半導体製造装置の製造条件,製造ライン,製造工場の種類,製造時間、或いはこれらの組み合わせであり、これらの条件にて分類される製造条件ごとに、予め焦点調整条件を求めておき、同じ製造条件を持つパターンの測定,検査の際に、当該焦点調整条件が適用される。
レシピ作成の際に、登録画像を基に目的とするパターン周辺の試料表面平面情報を得る。また、オペレータが画像を登録しようとする際には、必ず供試用試料の目的とするパターンの場所で登録前に焦点合わせを行う。
レシピ作成の際には、この焦点合わせを、自動的に焦点位置をステップ状に変えながら得られる複数枚の画像全てで、全画素毎の焦点評価値を算出して、目的とするパターンでの平面画素毎にどの焦点位置で画像鮮明度がピークとなっているかを知って、その表面凹凸深さを得ることができる。レシピ登録する画像を得るときには、画像全体で適切に鮮明度を得ることのできる焦点位置に合わせれば良い。
2つ目の方法では、1つ目の方法と同じ半導体工程で使われる場合に、サンプル画像を登録する際に、オペレータがSEM画像上に手動によって該当パターン形状を重ね書きして図形入力し、その形状の領域毎に相対的な深さ情報を手入力してやることで、1つ目の方法と同等の効果を得ることができる。
3つ目の方法では、やはり半導体工程にて使われる場合にあらかじめウェーハ上の半導体パターンの回路設計情報を装置へ入力記憶しておくことで、この情報を基に試料表面での凹凸深さ情報を得て、上記2つの方法と同等の効果を得ることができる。近年、この回路設計情報から自動的に前記レシピを作成する技術が急速に発展して来ており、将来に有望な方法である。
4つ目の方法では、半導体以外の一般的な試料観察の場合に、基本的には1つ目の方法と同じであるが、ここでは供試品ではなく、実際にSEM像を得たい試料位置で、全画素にて鮮明度のピークとなる焦点位置を求める。通常、こうした汎用的な使い方をする場合には、実際の試料位置で時間をかけながら、焦点合わせ等の画質調整を行った後に、実際の画像収得を手動で行う。そこで、こうした前準備の一環として、焦点位置をステップ状に振る自動焦点動作を少なくとも1回行って、全画素での表面凹凸深さを求めることで、上記3つの方法と同様の効果を得ることができる。
[実施例1]
図1に本発明の1実施例を示す。以下に、電子線源1と、当該電子線源1より放出された1次電子線2を収束する第一収束レンズ3および第二収束レンズ4と、前記1次電子線2を試料7上で走査するために偏向をかける偏向器5と、前記1次電子線2を試料7上で焦点を結ばせる対物レンズ6と、前記1次電子線2が試料7上に衝突した後に発生する2次電子16を検出する2次電子検出器12と、前記第一収束レンズ3および第二収束レンズ4を駆動する第一収束レンズ電源8および第二収束レンズ電源9と、前記1次電子線2を試料7上で所定の方法で走査させるよう偏向信号を生成する偏向信号発生器11と、その偏向信号を受けて前記偏向器5を駆動する偏向器駆動器10と、前記2次電子検出器12にて検出した2次電子信号を増幅する増幅器13と、その増幅された2次電子信号から像を生成する画像構成装置18と、前記1次電子線2を所定の位置で焦点を結ばせるよう前記対物レンズ6を駆動する対物レンズ電源14と、以上の制御を行う制御器15により構成される走査電子顕微鏡について、説明する。なお、以下の説明は、走査電子顕微鏡に関するものであるが、本発明はこれに限られることはなく、イオンビームを細く絞って走査するイオンビーム装置等の他の荷電粒子線装置への適用も可能である。
ここで1次電子線2は、試料7上にあるスキャンライン17b上をスキャンしている。このとき、試料7上に形成されているホールパターン上に1次電子線2が差し掛かると、制御器15は試料表面の凹凸深さを画素毎に値として格納している焦点分布メモリ19を参照しながら、試料表面がホール側壁を伝って底面へ向かって落ちて行くのに沿って、対物レンズ電源14を介して対物レンズ6を制御することで、1次電子線2の焦点位置41を高さ方向に変化させながら走査して行く。
図2では、図1にて対物レンズを制御することで焦点位置を変えていたが、試料電位を変えることで実現しているものである。対物レンズは、その内蔵するコイルに流れる電流にて磁場を発生させているので、その応答は遅い。そのため、試料上を走る1次電子線2の動きに対する追従性でやや難がある。そこで、意図的にグランドとの間で任意の電圧を試料7に印加できる仕組みを持てば、応答性の良い印加電圧による焦点位置の制御を実現することができる。すなわち、制御器15は対物レンズ6を制御する代わりに試料電位制御器20を介して、試料電位電源21を制御することで、試料7表面の凹凸に沿うように、1次電子線2の焦点位置41を高さ方向に変えながら、1次電子線2の走査を行う。
次に図3にて、偏向信号発生器11および画像構成装置18の詳細な動作を説明する。まず偏向信号発生器11において、書込みクロック出力回路22から出力されるクロックに従って、書込みアドレス生成回路23にて試料7上で電子線を照射する位置を示すアドレスを出力する。そのアドレスを基にD/A変換器24から1次電子線2を偏向させたい量に相当するアナログ信号を水平方向および垂直方向各々について発生させる。そのアナログ信号に従って、偏向器駆動器10が偏向器5を駆動させる。
このとき、書込みアドレス生成回路23にて出力されたアドレスは、それとは別に焦点分布メモリ19ヘ出力される。焦点分布メモリ19では、そのアドレス位置に対応した焦点高さ(試料表面の凹凸深さ)値が、アドレスに連動している出力スイッチ36を通して、D/A変換器35へ出力される。D/A変換器35にてアナログ信号に変換された焦点高さ信号は、制御器15からD/A変換器37を介してアナログ信号として出力されている試料表面付近の代表焦点高さ信号と合算されて、対物レンズ6ヘ印加される。これらの仕組みを備えることで、試料上で走査している平面上の位置によって、1次電子線2の焦点位置41の高さを試料表面凹凸に沿いながら変化させることができる。
一方の画像構成装置18は以下のように動作する。すなわち、2次電子検出器12にて検出した2次電子信号は増幅器13にて増幅された後にA/D変換器25にてディジタル信号へ変換される。このディジタル信号は入力スイッチ26にて示されている画像メモリ27内にあるメモリ群へ記憶される。ここで選択されるメモリ群は書込アドレス生成回路23にて生成されているアドレスによって示されるラインと一対一の関係となっている。
ここで、書込みアドレス生成回路23で生成している1次電子線の偏向位置を図5に示している偏向パターンAに従って制御する。従って、画像メモリへ送られて来る1ライン毎の画像データは試料上の観察領域の中で垂直方向(ラインと垂直)に上から下へ順番に並んでいる。入力スイッチ26は、これらの画像データを画像メモリ内で垂直方向に上から下へ順番に並ぶように次々に格納して行く。このような手順を繰り返して試料7上の所定の領域に相当する画像を取り終えると、画像メモリ27に蓄積された画像データを以下の手順にて従って表示する。すなわち、読出しクロック出力回路28から出力されるクロックに従って、読出しアドレス生成回路29にて表示器34上で描画する位置を示すアドレスを出力する。そのアドレスを元にD/A変換器30から表示器34内で発生させる描画用電子線を偏向させたい量に相当するアナログ信号を水平方向および垂直方向各々について発生させる。そのアナログ信号に従って、偏向増幅器31にて表示器34内にある偏向器を駆動させる。
このとき、画像構成装置18は以下のように動作する。すなわち、画像メモリ27内にすでに画像データが蓄積されている状態で、出力スイッチ32にて示されている画像メモリ27内にあるメモリ群から1ライン分の画像データをディジタル信号として読み出す。ここで選択されるメモリ群は読出しアドレス生成回路29にて生成されているアドレスによって示されるラインと一対一の関係となっている。読み出されたディジタル信号をD/A変換器33にてアナログ信号へ変換して、表示器34内へ供給する。表示器34内では、そのアナログ信号に従ってカソードから発生している描画用電子線の輝度を変化させるとともに、その描画用電子線を先に説明した表示器34内にある偏向器にて偏向することによって像を表示させる。
ここで、読出しアドレス生成回路29で生成している表示器34上で描画する位置をやはり図5に示す偏向パターンAに従って制御する。従って、画像メモリから出力されて来る1ライン毎の画像データは試料上の観察領域の中で垂直方向(ラインと垂直)に上から下へ順番に並んでいる。出力スイッチ32は、これらの画像データを同じく偏向パターンAに従って順番に表示器34へ送る。これらの過程を経て試料の走査型電子顕微鏡像を表示する。また、本図とは別に、画像メモリ27に蓄積された画像データは制御器15へ送られて、しかるべき画像処理を経て所定の目的を達成する。
図4では、図3にて対物レンズを制御することで焦点位置を変えていたものが、試料電位を変えることで実現しているものである。すなわち、焦点分布メモリ19からの焦点高さ(試料表面の凹凸深さ)信号と、制御器15からの試料表面付近の代表焦点高さ信号との合算信号は、対物レンズ6ではなく、試料電位電源21を制御することで、図3と同様な効果を得ることができる。
次に図6にて、試料7の表面凹凸を画素毎に測定して、焦点分布メモリへ格納する方法を示す。図6(a)に示されているのはSEM像視野を格子状に区切ったFocus 分布マトリックスである。このマトリックスに含まれるセルの1つ1つは、1つの画素でも、また複数の画素をまとめたものでも良い。これらセルの中でA,B,Cは、マトリックス上に平面的に描かれているホールの穴淵付近に位置している。すなわち、Aはホールの外側にある上面上に位置し、Bはホール側壁上に位置し、Cはホール底面に位置している。その様子は同図(b)実パターン断面にて見て取れる。
ここで、焦点位置を図7(a)に示すように時間tとともに変化させると、各セルでのFocus 評価値、すなわち画像鮮明度が、各々の焦点深さと一次電子線の焦点高さとが一致したときにピークとなる。図7では、まず焦点高さの最も低いホール底に位置するセルCにて最初にFocus 評価値がピークとなり、それを過ぎると、次にホール側壁に位置するセルBにてFocus評価値がピークとなる。最後に試料上面に位置するセルAにてFocus評価値がピークとなる。これら各セルでFocus 評価値がピークとなった時間tを図中一点鎖線にて上へ辿って行き、同図(a)のFocus直線で交差したところのFocus値を各セルでの試料表面凹凸深さとして記憶して行く。このFocus 評価値算出を全セルに対して行うことで、Focus分布マトリックスは完成する。
ただし、Focus 分布マトリックスに含まれる各セルで求まった試料表面凹凸深さの実測値は、バラツキ成分も各々で含んでいる。そこで、図8に示すように隣り合うセル同士の実測Focus値でフィッティングをかけることで、バラツキの少ない補正後Focus値を求めて、これを焦点分布メモリへ格納すれば、より安定した焦点制御を実現することができる。
図9にて、一連の画像取り込みの手順を示す。まず、スタートすると、本発明に特徴的な仕組みを持つ自動焦点Aを実行して、各画素での焦点高さを焦点分布として得る。次に、走査位置(X=0,Y=0)から開始して、各走査位置では、まず一次電子ビームを移動して、焦点分布値F(X,Y)にて焦点制御を行い、その画素での輝度M(X,Y)を収得して画像メモリへ格納する。これらの動作をXおよびY方向で各々X_MAX,Y_MAXに達するまで繰り返す。
次に図10にて、本発明に特徴的な仕組みを持つ自動焦点Aの手順を説明する。まずステップ数N=0からスタートして、Focus を所定の値Step(N)に設定する。その状態で、画像に含まれる全画素でのFocus 評価値を算出して、焦点分布メモリの所定の場所へ格納する。これをステップ数がN_MAXに達するまで行う。最後に全画素にて、Focus 評価値が最大となるFocus位置からFocus分布値F(X,Y)を求める。これら一連の動作によって図11に示すようなFocus分布を得ることが可能となる。
図12では、SEM画像上でオペレータが太実線に描かれている円の大きさと試料深さ値Depth を手動入力する例を示している。また、そのような方法では、図13に示すように、ホール側壁を垂直な断面としてではなく、あらかじめ決められたL1とL2の比を持つ斜面と実際の試料表面凹凸に良く沿った焦点制御が可能となる。
図14には、こうした手動入力する方法で実際のFocus 分布を求める際に、手動入力した円と深さから試料仮想断面をいったん求めて、そこからFocus 分布を求める方法を示している。
図15には、試料である回路設計データから、いったん仮想パターン図形を求めて、そこから焦点分布を求める方法を示している。
ところで、ここまでで説明して来た方法では、焦点分布メモリに入っている焦点高さ値として、実際の試料表面凹凸とほとんど差の無いような値を入力していた。しかし、そうした焦点制御で得られるSEM像では、試料凹凸によって焦点深度内で発生する微小な像ボケによって生じていた遠近感覚を失わせていた。そこで、擬似的な遠近感覚を持ちつつも、焦点深度を十分に確保する方法を図16に示す。ここでは、試料表面凹凸から得られた焦点分布曲線をいったん試料上面Qを基点として、あらかじめ与えるL3とL4の比にて収縮して、ホール底面では実際に走査する時に1次電子線2の焦点位置から焦点深度の範囲内で試料表面から焦点位置が離れる状態を意図的に作り出している。このようにすることで、擬似的な遠近感覚を生むことが可能となる。
[実施例2]
これまで、ホールパターン等の形状に応じた焦点調整を行うことについて説明したが、例えば半導体デバイスの中には、電子線走査によって帯電する材料(絶縁材料等)と、そうでない材料が混在する場合がある。導電性の異なる複数の材料をFOV(Field Of View)内に含むようにして、電子線走査を行う場合、ある個所では電子線走査による帯電が発生し、その他の個所では、帯電が発生しないといったような現象が発生することがある。
試料に帯電が付着すると、帯電した個所の焦点位置が変化することがあり、その結果部分的に像がぼける場合がある。以下の説明では、試料の凹凸形状だけではなく、試料の組成情報も含めたフォーカス分布マトリクスを形成する例について説明する。
図17は、帯電分布に基づいてFOVを格子状に区切ったフォーカス分布マトリクスである。上述した試料表面の凹凸に関するフォーカス分布マトリクスと同様に、マトリクスに含まれるセルの1つ1つは、1つの画素でも、また複数の画素をまとめたものでも良い。例えば、図17に図示するように一部に絶縁層が含まれている場合、他の部分と帯電の状況が違うので、適正なフォーカス条件が、他の部分と異なる場合がある。そこで、図17に図示するように、パターンを構成する材料ごとに適正なフォーカス条件を記憶しておき、その条件に基づいて、対物レンズの励磁電流,試料に印加する負電圧、或いはその両方を制御するように構成する。
より具体的には例えば、図17のパターン部171はCrで構成され、それ以外の部分172はMoSiで構成されている試料の場合、それ以外の部分×は、パターン部171より帯電し易い個所である。即ちそれ以外の部分172に属するセルと、パターン部171が属するセルについて、それぞれ適正なフォーカス条件を予め記憶しておくことによって、帯電量の違いに応じた適正なフォーカス調整を行うことができる。
また、試料に蓄積する帯電は、電子線の試料への到達エネルギーにも依存するため、到達エネルギーごとに、フォーカス分布マトリクスを作成しておき、到達エネルギーの設定に応じて、適正なフォーカス分布マトリクスを適用することが望ましい。
このような帯電に依存したフォーカス分布マトリクスと、試料の設計データとを付き合わせることで、FOV内の各位置のフォーカスを適正に調整することが可能となる。設計データから、パターン上の凹凸に関する物理的な形状情報を得ると共に、当該凹凸を形成する各材料の帯電分布を予め検出し、この両者の情報から、適正なフォーカス条件を求めるようにしても良い。即ち、形状情報と帯電情報の複合条件に基づいて、適正なフォーカス条件を求めるようにしても良い。
但し、設計データ上のパターンと、半導体製造工程を経て形成される実際に形成されるパターンは一致しない場合があるので、設計データに基づくフォーカス条件設定は、粗調整と捉え、粗調整の後、例えば図18に図示するように、設計データから得られたパターンの凹凸情報に対し、所定のフォーカス変化幅分,フォーカス調整を行ったときに得られる画像の鮮鋭度等に基づいて、各マトリクスのフォーカス条件を検出し、この条件に基づく調整を微調整とするフォーカス調整を行うようにしても良い。
このような構成によれば、フォーカス分布マトリクスを形成する際に、各セルについて2Δf分だけフォーカス条件を変更すれば、各セルの適正なフォーカス条件を検出することが可能となる。なお、2ΔfはFOV全体で一定である必要はなく、例えば、凹凸の変動幅が小さいと見込める個所は、測定効率やスループットを優先し、Δfを小さく設定し、ホールパターン側壁のような高さの変動が大きいと見込めるような個所については、Δfを大きく設定することで、漏れのない検出を行うようにしても良い。ホールパターン形状181は、設計データから求められるパターン断面の輪郭形状を示す線である。
[実施例3]
以下に、FOV全体ではなく、必要な個所について選択的にフォーカス分布マトリクスを形成する例について説明する。例えばCD−SEM(Critical Dimension-Scanning Electron Microscope )は、電子線を試料に走査したときに得られる二次電子や後方散乱電子等の電子を検出することによって得られるラインプロファイルに基づいて、パターン幅の寸法を測定する装置である。CD−SEMでは、エッジ間の距離を、ラインプロファイルのピーク検出と、ピーク間の寸法測定によって測長する。このような装置では、ピーク検出に供される領域の情報が重要であるため、図19に図示するようなホールパターン画像に適用されたボックスカーソル191について、選択的にフォーカス分布マトリクスを形成することによって、必要なフォーカス条件を高効率に検出することが可能となる。
ボックスカーソルは、測長に供されるエッジ部分を指定するカーソルであり、このカーソルによって指定される領域について、選択的にフォーカス分布マトリクスを形成することによって、必要な領域のフォーカス条件を容易に検出することが可能となる。
[実施例4]
昨今、ダブルパターニングと呼ばれる光学式露光装置(ステッパ)の露光技術によるパターン形成が行われるようになってきた。当該技術は、2回に分けてパターンの露光を行うことで、ラインパターン間間隔を狭めて形成することを可能とする技術である。このような技術によって形成されるラインパターンは、ライン間間隔が非常に密であり、ラインパターンとラインパターン間のスペースが、同等の寸法となることがある。
CD−SEMでは、このようなライン&スペースパターンの電子顕微鏡画像に基づいて、ラインやスペース幅,ピッチなどが測長されるが、ラインパターンとスペースパターンの輝度の変化が殆どない場合、ライン幅を測定している筈が、実際はスペース幅を測定してしまったり、またはその逆を行ってしまう場合がある。
これはダブルパターニング技術によって、ラインパターンが多数配列されている場合、FOV内にはラインとスペースのみが表示される場合に起こり得る。FOV内にラインかスペースしかなく、更に両者間のコントラストが殆どない場合、ラインのエッジのみが複数配列されるような画像となるため、ラインとスペースを取り違えてしまう場合がある。本例では、このような課題に鑑み、ラインアンドスペースパターン等、電子顕微鏡画像のみからではライン(凸部)、或いはスペース(凹部)の判定が困難なパターンについて、もともと取得しておいたフォーカス分布マトリクスに基づく電子線走査を行い、FOV内のフォーカス評価値に基づいて、ライン、或いはスペースを判定する技術を提案する。
図20に図示するように、ラインパターンとスペースのそれぞれに、フォーカスがあっていれば、フォーカス評価値は高い値を示す。しかしながら、ラインとスペースに対しそれぞれ逆のフォーカス条件にて、電子線走査を行うと、凸部に対しては凹部のフォーカス条件にてフォーカスを行い、凹部に対しては凸部のフォーカス条件にてフォーカスを行うことになるため、画像全体で非常に低いフォーカス評価値を示すことになる。このように、凸部と凹部を取り違えてフォーカス調整を行うと、そうでない場合と比較して、極めてフォーカス評価値が悪くなるため、明確に両者を識別することが可能となる。
例えば、フォーカス評価値に所定のしきい値を設定しておき、その評価値以上のフォーカス評価値が得られた場合には、FOV内の所定の位置にラインパターンとスペースが配列されていることを意味するため、その情報に基づいて、適正な位置に測長位置を設定すれば良い。また、所定のフォーカス評価値を下回っている場合にはFOVの位置を補正したり、測長個所を調整したりして、適正な位置に測長位置を設定すると良い。本例によれば、ライン或いはスペースを取り違えることなく、所望の部分の測長を行うことが可能となる。
対物レンズの励磁電流を調整して、焦点調整を行う走査型電子顕微鏡の概略を説明する図。 試料電位を調整して、焦点調整を行う走査型電子顕微鏡の概略を説明する図。 走査信号発生器の概略を説明する図。 走査信号発生器の概略を説明する図。 走査信号の偏向パターンの一例を説明する図。 試料表面の凹凸情報を画素ごとに測定して、焦点分布メモリに格納する例を説明する図。 試料表面の凹凸にそれぞれ焦点を合わせたときのフォーカス評価値の変化を示す図。 セル同士の実測フォーカス値にフィッティングをかけてフォーカス制御量を調整する例を説明する図。 画像の取り込み手順を説明するフローチャート。 焦点調整の手順を説明するフローチャート。 フォーカス分布マトリクスの一例を説明する図。 パターン形状と深さの値の入力に基づいて、焦点調整条件を求める手法を説明する図。 ホールの側壁に沿って焦点調整を行う例を説明する図。 円の形状と深さ情報から、フォーカス分布を求める例を説明する図。 設計データに基づいて、フォーカス分布を求める例を説明する図。 フォーカス分布カーブ緩和処理を説明する図。 帯電分布に基づいてFOVを格子状に区切ったフォーカス分布マトリクスの一例を説明する図。 設計データに基づいて、適正なフォーカス条件を求める例を説明する図。 画像内の部分的な個所にフォーカス分布マトリクスを形成する例を説明する図。 ライン&スペースパターンの凹凸判定を行う例を説明する図。
符号の説明
1 電子線源
2 1次電子線
3 第一収束レンズ
4 第二収束レンズ
5 偏向器
6 対物レンズ
7 試料
8 第一収束レンズ電源
9 第二収束レンズ電源
10 偏向器駆動器
11 偏向信号発生器
12 2次電子検出器
13 増幅器
14 対物レンズ電源
15 制御器
16 2次電子
17a,17b,17c スキャンライン
18 画像構成装置
19 焦点分布メモリ
20 試料電位制御器
21 試料電位電源
22 書込みクロック出力回路
23 書込みアドレス生成回路
24,30,33,35,37 D/A変換器
25 A/D変換器
26 入力スイッチ
27 画像メモリ
28 読出しクロック出力回路
29 読出しアドレス生成回路
31 偏向増幅器
32,36 出力スイッチ
34 表示器

Claims (9)

  1. 予め定められた焦点調整条件に基づいて、荷電粒子線の焦点調整を行う荷電粒子線装置において、
    半導体製造工程中に形成される試料に対し、荷電粒子線を走査する際の走査領域内の各個所の焦点調整条件を予め求めておき、当該求められた焦点調整条件を、前記焦点調整条件を求めた試料と同じ製造条件にて形成されたパターンに選択的に適用して、前記荷電粒子線走査を行うことを特徴とする荷電粒子線装置。
  2. 請求項1において、
    前記焦点調整の制御量を、前記試料の走査位置を示す座標と関連付けて記憶する記憶媒体を備えたことを特徴とする荷電粒子線装置。
  3. 請求項2において、
    焦点位置を段階的に変化させたときに得られる画像鮮明度、或いは焦点評価値が最も高くなる焦点制御量を、画素単位で前記記憶媒体に記憶することを特徴とする荷電粒子線装置。
  4. 請求項2において、
    前記試料の設計データに基づいて、前記焦点調整の制御量を求めることを特徴とする荷電粒子線装置。
  5. 請求項2において、
    入力された試料の凹凸情報に基づいて、前記焦点調整の制御量を求めることを特徴とする荷電粒子線装置。
  6. 請求項3乃至5のいずれかにおいて、
    前記各個所の焦点調整の制御量に、フィッティングをかけることで、前記各個所の焦点調整の制御量を補正することを特徴とする荷電粒子線装置。
  7. 請求項3乃至5のいずれかにおいて、
    前記焦点調整の制御量の分布カーブの高低差を縮小することを特徴とする荷電粒子線装置。
  8. 請求項1において、
    試料に印加する電圧を調整することで、前記焦点位置を変化させることを特徴とする荷電粒子線装置。
  9. 請求項1において、
    前記荷電粒子線を集束する対物レンズに供給する励磁電流を調整することで、前記焦点位置を変化させることを特徴とする荷電粒子線装置。
JP2007171413A 2007-06-29 2007-06-29 荷電粒子線装置 Expired - Fee Related JP5028159B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007171413A JP5028159B2 (ja) 2007-06-29 2007-06-29 荷電粒子線装置
US12/163,121 US7838840B2 (en) 2007-06-29 2008-06-27 Charged particle beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171413A JP5028159B2 (ja) 2007-06-29 2007-06-29 荷電粒子線装置

Publications (2)

Publication Number Publication Date
JP2009009867A true JP2009009867A (ja) 2009-01-15
JP5028159B2 JP5028159B2 (ja) 2012-09-19

Family

ID=40159234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171413A Expired - Fee Related JP5028159B2 (ja) 2007-06-29 2007-06-29 荷電粒子線装置

Country Status (2)

Country Link
US (1) US7838840B2 (ja)
JP (1) JP5028159B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057230A1 (ja) * 2010-10-28 2012-05-03 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP2012189818A (ja) * 2011-03-10 2012-10-04 Fujifilm Corp 液晶表示装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5932428B2 (ja) * 2012-03-28 2016-06-08 株式会社日立ハイテクノロジーズ 走査電子顕微鏡
JP6867015B2 (ja) * 2017-03-27 2021-04-28 株式会社日立ハイテクサイエンス 自動加工装置
JP2019204618A (ja) 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡
US11355304B2 (en) * 2018-06-14 2022-06-07 Hitachi High-Tech Corporation Electronic microscope device
CN110782418B (zh) * 2019-10-25 2020-12-04 上海精测半导体技术有限公司 一种带电粒子束设备的扫描规划方法、装置及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053013A (ja) * 1991-06-24 1993-01-08 Shimadzu Corp 自動焦点調節装置
JP2001084944A (ja) * 1999-07-09 2001-03-30 Hitachi Ltd 荷電粒子線装置
JP2004031709A (ja) * 2002-06-27 2004-01-29 Seiko Instruments Inc ウエハレス測長レシピ生成装置
JP2006100049A (ja) * 2004-09-29 2006-04-13 Hitachi High-Technologies Corp 電子線式検査装置とその検査方法
JP2006244875A (ja) * 2005-03-03 2006-09-14 Ebara Corp 写像投影型の電子線装置及び該装置を用いた欠陥検査システム
JP2007095576A (ja) * 2005-09-29 2007-04-12 Horon:Kk 荷電粒子線装置および荷電粒子線フォーカス制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538249B1 (en) * 1999-07-09 2003-03-25 Hitachi, Ltd. Image-formation apparatus using charged particle beams under various focus conditions
JP3993094B2 (ja) * 2000-07-27 2007-10-17 株式会社荏原製作所 シートビーム式検査装置
WO2003007330A1 (en) * 2001-07-12 2003-01-23 Hitachi, Ltd. Sample electrification measurement method and charged particle beam apparatus
JP4383950B2 (ja) * 2004-04-23 2009-12-16 株式会社日立ハイテクノロジーズ 荷電粒子線調整方法、及び荷電粒子線装置
JP4933111B2 (ja) * 2006-02-24 2012-05-16 株式会社日立ハイテクノロジーズ 焦点調整方法及び焦点調整装置
TWI443704B (zh) * 2006-09-12 2014-07-01 Ebara Corp 荷電粒子束裝置及使用該裝置之元件製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH053013A (ja) * 1991-06-24 1993-01-08 Shimadzu Corp 自動焦点調節装置
JP2001084944A (ja) * 1999-07-09 2001-03-30 Hitachi Ltd 荷電粒子線装置
JP2004031709A (ja) * 2002-06-27 2004-01-29 Seiko Instruments Inc ウエハレス測長レシピ生成装置
JP2006100049A (ja) * 2004-09-29 2006-04-13 Hitachi High-Technologies Corp 電子線式検査装置とその検査方法
JP2006244875A (ja) * 2005-03-03 2006-09-14 Ebara Corp 写像投影型の電子線装置及び該装置を用いた欠陥検査システム
JP2007095576A (ja) * 2005-09-29 2007-04-12 Horon:Kk 荷電粒子線装置および荷電粒子線フォーカス制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057230A1 (ja) * 2010-10-28 2012-05-03 株式会社日立ハイテクノロジーズ 欠陥検査方法及びその装置
JP2012094430A (ja) * 2010-10-28 2012-05-17 Hitachi High-Technologies Corp 欠陥検査方法及びその装置
US9148631B2 (en) 2010-10-28 2015-09-29 Hitachi High-Technologies Corporation Defect inspection method and device therefor
JP2012189818A (ja) * 2011-03-10 2012-10-04 Fujifilm Corp 液晶表示装置

Also Published As

Publication number Publication date
US7838840B2 (en) 2010-11-23
JP5028159B2 (ja) 2012-09-19
US20090001279A1 (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP4914604B2 (ja) 電子線検査装置を用いたパターン欠陥検査方法及びそのシステム、並びに写像投影型又はマルチビーム型電子線検査装置
US7514681B1 (en) Electrical process monitoring using mirror-mode electron microscopy
JP5202071B2 (ja) 荷電粒子顕微鏡装置及びそれを用いた画像処理方法
US8030614B2 (en) Charged particle beam apparatus and dimension measuring method
JP5028159B2 (ja) 荷電粒子線装置
US7420167B2 (en) Apparatus and method for electron beam inspection with projection electron microscopy
US7521678B2 (en) Charged particle beam apparatus, charged particle beam focusing method, microstructure measuring method, microstructure inspecting method, semiconductor device manufacturing method, and program
JP2006332296A (ja) 電子ビーム応用回路パターン検査における焦点補正方法
JP2007218711A (ja) 電子顕微鏡装置を用いた計測対象パターンの計測方法
JP2010062106A (ja) 走査型荷電粒子顕微鏡装置及び走査型荷電粒子顕微鏡装置で取得した画像の処理方法
CN109298001B (zh) 电子束成像模块、电子束检测设备及其图像采集方法
JP2008218014A (ja) 帯電測定方法、焦点調整方法、及び走査電子顕微鏡
JP2000123768A (ja) 荷電粒子線装置及び荷電粒子線装置の調整方法及び半導体デバイスの製造方法
JP4194526B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
JP5222994B2 (ja) 試料観察方法および走査電子顕微鏡
JP5192791B2 (ja) パターン寸法計測方法及び走査電子顕微鏡
JP4231831B2 (ja) 走査型電子顕微鏡
JP6163063B2 (ja) 走査透過電子顕微鏡及びその収差測定方法
JP4028864B2 (ja) パターン欠陥検査方法および検査装置
JP4231891B2 (ja) 荷電粒子線の調整方法、及び荷電粒子線装置
JP2011179819A (ja) パターン測定方法及びコンピュータプログラム
JP2008282826A (ja) 荷電粒子線調整方法、及び荷電粒子線装置
TW202205339A (zh) 帶電粒子束檢測中基於電荷累積減少之影像增強
JP5500868B2 (ja) 走査電子顕微鏡、および走査電子顕微鏡における像表示方法
JP2010016007A (ja) 荷電粒子線調整方法及び荷電粒子線装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5028159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees