JP2009007215A - Spherical magnesium oxide particles and method for producing the same - Google Patents

Spherical magnesium oxide particles and method for producing the same Download PDF

Info

Publication number
JP2009007215A
JP2009007215A JP2007171664A JP2007171664A JP2009007215A JP 2009007215 A JP2009007215 A JP 2009007215A JP 2007171664 A JP2007171664 A JP 2007171664A JP 2007171664 A JP2007171664 A JP 2007171664A JP 2009007215 A JP2009007215 A JP 2009007215A
Authority
JP
Japan
Prior art keywords
acetate
magnesium
magnesium hydroxide
magnesium oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007171664A
Other languages
Japanese (ja)
Other versions
JP5125258B2 (en
Inventor
Kenichi Nakagawa
健一 中川
Yutaka Ito
伊藤  豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP2007171664A priority Critical patent/JP5125258B2/en
Publication of JP2009007215A publication Critical patent/JP2009007215A/en
Application granted granted Critical
Publication of JP5125258B2 publication Critical patent/JP5125258B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing magnesium oxide particles whose primary particles are spherical. <P>SOLUTION: A magnesium hydroxide composition containing 3-20 parts by mol (expressed in terms of acetic acid group) of an acetate based on 100 parts by mol of magnesium hydroxide is prepared and fired at 1,000-1,800°C. The acetate is at least one selected from alkali metal acetates, alkaline earth metal acetates and ammonium acetate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、一次粒子が球状である酸化マグネシウムとその製造方法に関する。   The present invention relates to magnesium oxide whose primary particles are spherical and a method for producing the same.

酸化マグネシウム粒子は耐熱性、熱伝導性、電気絶縁性にすぐれており、断熱材、耐熱部品、放熱用フィラーとして有用である。なかでも、酸化マグネシウム粒子を樹脂成形物からなる電子部品等における放熱性フィラーとして用いる際には、成形物を形成する樹脂に高充填し得ることが必要であり、従って、一次粒子としての分散性にすぐれるように、一次粒子が球状である酸化マグネシウム粒子が強く求められている。   Magnesium oxide particles have excellent heat resistance, thermal conductivity, and electrical insulation, and are useful as heat insulating materials, heat resistant components, and heat radiation fillers. In particular, when using magnesium oxide particles as a heat-dissipating filler in electronic parts made of resin moldings, it is necessary that the resin forming the moldings can be highly filled, and thus dispersibility as primary particles. Therefore, there is a strong demand for magnesium oxide particles whose primary particles are spherical.

従来、二次粒子が球状である酸化マグネシウム粒子を製造する方法は、既に、幾つか知られている。例えば、水中で塩化マグネシウムのような水溶性マグネシウム塩1当量とアンモニア1.0〜3.5当量を40℃程度の温度で反応させ、その際、水酸化マグネシウムの晶析負荷と晶析した水酸化マグネシウムの濃度を制御しつつ、水酸化マグネシウムの一次粒子の集合体を晶析させ、次いで、得られた水酸化マグネシウムを1200〜2000℃で焼成して、見掛け上、球状の高耐水性酸化マグネシウム粒子を得ることができることが知られている(特許文献1参照)。   Conventionally, several methods for producing magnesium oxide particles whose secondary particles are spherical are already known. For example, 1 equivalent of a water-soluble magnesium salt such as magnesium chloride and 1.0 to 3.5 equivalents of ammonia are reacted in water at a temperature of about 40 ° C. At that time, the crystallization load of magnesium hydroxide and the crystallized water The aggregate of primary particles of magnesium hydroxide is crystallized while controlling the concentration of magnesium oxide, and then the obtained magnesium hydroxide is calcined at 1200 to 2000 ° C. to give an apparently spherical high water resistance oxidation. It is known that magnesium particles can be obtained (see Patent Document 1).

また、水中で塩化マグネシウムのような水溶性マグネシウム塩1当量とアルカリ性物質0.95当量以下を40℃以下で反応させ、得られた反応生成物をその反応母液と共に50〜120℃の温度に更に加熱し、得られた水酸化マグネシウムを噴霧乾燥して、平均二次粒子径約5〜500μmに造粒した後、得られた造粒物を1100〜1600℃で焼成し、次いで、得られた焼成物を上記平均二次粒子径を破壊しないように粉砕して、上記平均二次粒子径を有し、ほぼ球状である高耐水和性高流動性の酸化マグネシウム粒子を得ることができることも知られている(特許文献2参照)。   Also, 1 equivalent of a water-soluble magnesium salt such as magnesium chloride and 0.95 equivalent or less of an alkaline substance are reacted at 40 ° C. or less in water, and the resulting reaction product is further brought to a temperature of 50 to 120 ° C. together with the reaction mother liquor. After heating and spray-drying the obtained magnesium hydroxide to granulate to an average secondary particle size of about 5 to 500 μm, the resulting granulated product was fired at 1100 to 1600 ° C. and then obtained. It is also known that the baked product can be pulverized so as not to destroy the average secondary particle diameter to obtain highly hydration-resistant and high-fluidity magnesium oxide particles having the average secondary particle diameter and substantially spherical. (See Patent Document 2).

同様に、水中で塩化マグネシウムのような水溶性マグネシウム塩1当量とアルカリ性物質0.95当量以下を40℃以下で反応させ、得られた反応生成物をその反応母液と共に更に加熱して、平均二次粒子径2μm以下、BET比表面積1〜20m2/gの水酸化マグネシウム粒子を製造し、次いで、この水酸化マグネシウム粒子を約1100〜1600℃で焼成した後、得られた焼成物を平均二次粒子径20μm以下に粉砕分級することによって、ほぼ球状の高耐水和性高流動性の酸化マグネシウムを得ることができることが知られている(例えば、特許文献3参照)。 Similarly, 1 equivalent of a water-soluble magnesium salt such as magnesium chloride and 0.95 equivalent or less of an alkaline substance are reacted at 40 ° C. or less in water, and the resulting reaction product is further heated together with the reaction mother liquor to obtain an average of 2 Magnesium hydroxide particles having a secondary particle diameter of 2 μm or less and a BET specific surface area of 1 to 20 m 2 / g are produced. The magnesium hydroxide particles are then fired at about 1100 to 1600 ° C. It is known that an approximately spherical high hydration resistance and high fluidity magnesium oxide can be obtained by pulverizing and classifying to the next particle diameter of 20 μm or less (see, for example, Patent Document 3).

しかし、これまで、一次粒子が球状である酸化マグネシウム粒子を製造する方法は知られていない。
特開昭61−36119号公報 特開平02−212314号公報 特開平06−171928号公報
However, a method for producing magnesium oxide particles whose primary particles are spherical has not been known so far.
JP 61-36119 A JP-A-02-212314 Japanese Patent Application Laid-Open No. 06-171928

本発明は、酸化マグネシウム粒子の製造における上述した事情に鑑みてなされたものであって、一次粒子が球状である酸化マグネシウム粒子を容易に製造する方法を提供することを目的とし、更に、そのようにして得られる一次粒子が球状である酸化マグネシウム粒子を提供することを目的とする。   The present invention has been made in view of the above-described circumstances in the production of magnesium oxide particles, and an object thereof is to provide a method for easily producing magnesium oxide particles in which the primary particles are spherical. An object of the present invention is to provide magnesium oxide particles in which the primary particles obtained are spherical.

本発明によれば、水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の酢酸塩を含有する水酸化マグネシウム組成物を調製し、これを1000〜1800℃の範囲の温度で焼成することからなり、上記酢酸塩が酢酸アルカリ金属塩、酢酸アルカリ土類金属及び酢酸アンモニウムから選ばれる少なくとも1種である、一次粒子が球状である酸化マグネシウム粒子の製造方法が提供される。   According to the present invention, a magnesium hydroxide composition containing 3 to 20 parts by mole of acetate in terms of acetate groups with respect to 100 parts by weight of magnesium hydroxide is prepared, and this is at a temperature in the range of 1000 to 1800 ° C. There is provided a method for producing magnesium oxide particles, the primary particles of which are at least one selected from alkali metal acetates, alkaline earth metal acetates, and ammonium acetate.

更に、本発明によれば、上述した方法によって得られる一次粒子が球状である酸化マグネシウム粒子が提供される。   Furthermore, according to this invention, the magnesium oxide particle whose primary particle obtained by the method mentioned above is spherical is provided.

本発明の方法によれば、一次粒子が球状である酸化マグネシウムを容易に得ることができる。このような酸化マグネシウムは、ハンドリング性がよく、例えば、放熱性フィラー、PDP保護膜用原料、PDP蛍光体用原料、PDP酸化マグネシウム層用原料、誘電体用原料等として好適に用いることができる。   According to the method of the present invention, magnesium oxide whose primary particles are spherical can be easily obtained. Such magnesium oxide has good handling properties, and can be suitably used as, for example, a heat-dissipating filler, a PDP protective film material, a PDP phosphor material, a PDP magnesium oxide layer material, and a dielectric material.

本発明による一次粒子が球状である酸化マグネシウム粒子の製造方法は、水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の酢酸塩を含有する水酸化マグネシウム組成物を調製し、これを1000〜1800℃の範囲の温度で焼成することからなる。   The method for producing magnesium oxide particles in which the primary particles are spherical according to the present invention is prepared by preparing a magnesium hydroxide composition containing 3 to 20 mol parts of acetate in terms of acetate groups with respect to 100 mol parts of magnesium hydroxide, This consists of firing at a temperature in the range of 1000-1800 ° C.

本発明において用いる水酸化マグネシウムは、天然鉱物を粉砕して得られる天然品、水中にて水溶性マグネシウム塩をアルカリ性物質で中和することによって得られる合成品等、その由来において何ら限定されるものではないが、好ましくは、後者の合成品が用いられる。合成品を製造する場合において、上記水溶性マグネシウム塩としては、例えば、塩化マグネシウム、硫酸マグネシウム、硝酸マグネシウム、酢酸マグネシウム等が用いられる。また、上記アルカリ性物質としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア等が用いられる。本発明においては、このようなアルカリ性物質は、通常、水溶性マグネシウム塩1当量について、0.8〜1.2当量の範囲で用いられる。   Magnesium hydroxide used in the present invention is a natural product obtained by pulverizing a natural mineral, a synthetic product obtained by neutralizing a water-soluble magnesium salt with an alkaline substance in water, etc. However, the latter synthetic product is preferably used. In the case of producing a synthetic product, examples of the water-soluble magnesium salt include magnesium chloride, magnesium sulfate, magnesium nitrate, and magnesium acetate. Moreover, as said alkaline substance, sodium hydroxide, potassium hydroxide, ammonia etc. are used, for example. In the present invention, such an alkaline substance is usually used in the range of 0.8 to 1.2 equivalents per 1 equivalent of the water-soluble magnesium salt.

本発明においては、水中にて水溶性マグネシウム塩をアルカリ性物質と反応させて、水酸化マグネシウムを製造する場合、好ましくは、水溶性マグネシウム塩1当量をアルカリ性物質0.8〜1.2当量、好ましくは、1.0〜1.2当量と反応させて、水酸化マグネシウムの沈殿を含むスラリーを得、このスラリーを加圧下に温度120〜200℃の範囲で加熱する水熱処理を行い、次いで、得られた反応混合物を、通常、常温まで冷却し、濾過、水洗して、副生塩を除去し、乾燥、粉砕して、通常、平均一次粒子径0.1〜2μm、比表面積1〜30m2/g、好ましくは、平均一次粒子径0.1〜0.2μm、比表面積22〜30m2/gの範囲の六角板状の形状を有する水酸化マグネシウムを得、これに所定の割合で酢酸塩を含有させて、水酸化マグネシウム組成物とし、これを焼成することによって、通常、平均一次粒子径1〜3μmの範囲の球状の酸化マグネシウム粒子を得ることができる。 In the present invention, when water-soluble magnesium salt is reacted with an alkaline substance in water to produce magnesium hydroxide, preferably 1 equivalent of water-soluble magnesium salt is 0.8 to 1.2 equivalent of alkaline substance, preferably Is reacted with 1.0 to 1.2 equivalents to obtain a slurry containing magnesium hydroxide precipitate, which is hydrothermally treated under pressure at a temperature in the range of 120 to 200 ° C., and then obtained. The resulting reaction mixture is usually cooled to room temperature, filtered and washed with water to remove by-product salts, dried and pulverized, and usually has an average primary particle size of 0.1 to 2 μm and a specific surface area of 1 to 30 m 2. / G, preferably, magnesium hydroxide having a hexagonal plate shape with an average primary particle diameter of 0.1 to 0.2 μm and a specific surface area of 22 to 30 m 2 / g is obtained. Contain In this way, spherical magnesium oxide particles having an average primary particle diameter in the range of 1 to 3 μm can be usually obtained by preparing a magnesium hydroxide composition and firing the composition.

特に、本発明によれば、上述したように、水中にて水溶性マグネシウム塩をアルカリ性物質と反応させて、水酸化マグネシウムを製造する場合に、水溶性マグネシウム塩1当量をアルカリ性物質1当量以上と反応させることによって、平均一次粒子径0.2μm以下、比表面積22m2/g以上の水酸化マグネシウム粒子を得ることができる。 In particular, according to the present invention, as described above, when magnesium hydroxide is produced by reacting a water-soluble magnesium salt with an alkaline substance in water, 1 equivalent of the water-soluble magnesium salt is 1 equivalent or more of the alkaline substance. By reacting, magnesium hydroxide particles having an average primary particle diameter of 0.2 μm or less and a specific surface area of 22 m 2 / g or more can be obtained.

本発明の方法によれば、上記酢酸塩は、酢酸アルカリ金属、酢酸アルカリ土類金属及び酢酸アンモニウムから選ばれる少なくとも1種であり、酢酸アルカリ金属として、例えば、酢酸ナトリウム、酢酸カリウム等を挙げることができ、酢酸アルカリ土類金属として、例えば、酢酸カルシウム、酢酸マグネシウム等を挙げることができる。これらの酢酸塩のなかでは、酢酸アルカリ金属又は酢酸アルカリ土類金属が好ましく用いられる。   According to the method of the present invention, the acetate is at least one selected from alkali metal acetate, alkaline earth metal acetate and ammonium acetate, and examples of the alkali metal acetate include sodium acetate and potassium acetate. Examples of the alkaline earth metal acetate include calcium acetate and magnesium acetate. Among these acetates, alkali metal acetate or alkaline earth metal acetate is preferably used.

更に、本発明によれば、上記酢酸塩は、水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の範囲で加えられて、均一な組成物が調製され、この組成物が焼成に供される。ここに、酢酸基とは、CH3COO- で表される有機基である。焼成に供する組成物の含有する酢酸塩の割合が水酸化マグネシウム100モル部に対して酢酸基換算で3モル部よりも少ないときは、そのような組成物を焼成しても、一次粒子が球状である酸化マグネシウムを得ることができない。他方、組成物中の酢酸塩の割合が水酸化マグネシウム100モル部に対して酢酸基換算で20モル部を越えても、そのような組成物の焼成によって得られる酸化マグネシウムの球状性は、酢酸塩の割合が水酸化マグネシウム100モル部に対して酢酸基換算で20モル部までの場合と変わらないので、特に、酢酸塩を水酸化マグネシウム100モル部に対して酢酸基換算で20モル部を越える量にて含有させる必要もなく、また、酢酸塩の種類によっては、例えば、酢酸塩がアルカリ金属塩やアルカリ土類金属塩であれば、得られる酸化マグネシウムにおいて、それらマグネシウム以外の金属成分の含有率が大きくなるので、用途によっては、好ましくない場合もある。 Furthermore, according to the present invention, the above-mentioned acetate is added in a range of 3 to 20 parts by mole in terms of acetate based on 100 parts by weight of magnesium hydroxide to prepare a uniform composition. Used for firing. Here, the acetic acid group is an organic group represented by CH 3 COO 2 . When the proportion of acetate contained in the composition to be fired is less than 3 parts by mole in terms of acetate groups with respect to 100 parts by weight of magnesium hydroxide, the primary particles are spherical even if the composition is fired. It is not possible to obtain magnesium oxide. On the other hand, even when the proportion of acetate in the composition exceeds 20 mol parts in terms of acetate groups with respect to 100 mol parts of magnesium hydroxide, the spherical nature of magnesium oxide obtained by firing such a composition is Since the ratio of the salt is not different from the case of up to 20 mol parts in terms of acetate groups with respect to 100 mol parts of magnesium hydroxide, in particular, 20 mol parts of acetate in terms of acetate groups with respect to 100 mol parts of magnesium hydroxide. It is not necessary to contain in an excess amount, and depending on the type of acetate, for example, if the acetate is an alkali metal salt or an alkaline earth metal salt, the obtained magnesium oxide contains metal components other than those magnesium. Since the content rate is increased, it may not be preferable depending on the application.

本発明によれば、このように、水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の酢酸塩を含有する水酸化マグネシウムと酢酸塩との均一な組成物を調製し、これを1000〜1800℃の範囲の温度で焼成することによって、一次粒子が球状である酸化マグネシウムを得ることができる。具体的には、好ましくは、水酸化マグネシウムと酢酸塩の均一な組成物を調製し、この組成物を1000〜1800℃の範囲の温度で焼成する。   According to the present invention, in this way, a uniform composition of magnesium hydroxide and acetate containing 3 to 20 mole parts of acetate in terms of acetate groups with respect to 100 mole parts of magnesium hydroxide is prepared, By baking this at a temperature in the range of 1000 to 1800 ° C., magnesium oxide whose primary particles are spherical can be obtained. Specifically, preferably, a uniform composition of magnesium hydroxide and acetate is prepared, and the composition is fired at a temperature in the range of 1000 to 1800 ° C.

水酸化マグネシウムを焼成して酸化マグネシウムを得る場合には、先ず、480℃程度の温度にて水酸化マグネシウムが脱水分解すると共に、一次粒子の六角板状の形状が崩壊して、微細で不定形の酸化マグネシウムの核が生成し、次に、1000℃以上の温度でこの核同士が焼結して、酸化マグネシウムが形状性をもつ粒子に成長し、通常は立方体状の粒子に成長する。   In the case of obtaining magnesium oxide by baking magnesium hydroxide, first, magnesium hydroxide is dehydrated and decomposed at a temperature of about 480 ° C., and the hexagonal plate shape of the primary particles collapses, resulting in a fine and irregular shape. Then, the nuclei of magnesium oxide are formed, and then the nuclei are sintered at a temperature of 1000 ° C. or more, so that the magnesium oxide grows into particles having a shape, and usually grows into cubic particles.

ここに、本発明によれば、所定の割合にて酢酸塩を含有する水酸化マグネシウム組成物を焼成する。そこで、本発明によれば、上記酸化マグネシウムが形状性をもつ粒子に成長するに際して、酢酸塩又は酢酸基が酸化マグネシウムの粒子成長を形状的に制御して、粒子の球状化が進むものと推測される。焼成温度が1000℃より低い場合は、水酸化マグネシウムが脱水分解し、粒子成長する移行段階であり、酸化マグネシウム粒子が未だ、成長していない。一方、焼成温度が1800℃より高い場合には、それより低い温度において球状の一次粒子が生成していても、その一次粒子は、1800℃より高い温度において、酸化マグネシウムの本来の結晶系である立方晶の性質を強く有することとなって、その形状が立方体に近づくために、一次粒子の球状性が損なわれる。   Here, according to the present invention, the magnesium hydroxide composition containing acetate at a predetermined ratio is fired. Therefore, according to the present invention, when the magnesium oxide grows into particles having a shape, it is assumed that the acetate or acetate group controls the particle growth of the magnesium oxide in shape, and the spheroidization of the particles proceeds. Is done. When the firing temperature is lower than 1000 ° C., it is a transitional stage in which magnesium hydroxide is dehydrated and decomposed to grow particles, and magnesium oxide particles have not yet grown. On the other hand, when the firing temperature is higher than 1800 ° C., even if spherical primary particles are generated at a lower temperature, the primary particles are the original crystal system of magnesium oxide at a temperature higher than 1800 ° C. Since it has the property of a cubic crystal and its shape approaches that of a cube, the spherical nature of the primary particles is impaired.

酢酸塩として酢酸アンモニウムを用いる場合も、酢酸アンモニウムが分解して生じた酢酸基が上述したように、酸化マグネシウムの粒子成長に際して、粒子成長を形状的に制御して、粒子の球状化が進むものと推測される。   Even when ammonium acetate is used as the acetate salt, the acetate group generated by decomposition of ammonium acetate, as described above, controls the particle growth in the form of magnesium oxide particles, and the particles become more spherical. It is guessed.

前述したように、水中にて水溶性マグネシウム塩をアルカリ性物質と反応させて、水酸化マグネシウムを製造する場合であれば、水中にて水溶性マグネシウム塩をアルカリ性物質で中和して、水酸化マグネシウムのスラリーを得、このスラリーを濾過、水洗、乾燥、粉砕して、水酸化マグネシウムの粉末を得た後、この水酸化マグネシウムを水中に再度、懸濁させて、水酸化マグネシウムの水性スラリーを得、このスラリーに水酸化マグネシウムに対して所定量の酢酸塩を溶解させ、攪拌、混合した後、スラリーを蒸発乾固して、水酸化マグネシウムと酢酸塩との均一な組成物を得、これを焼成に供すればよい。   As described above, in the case of producing magnesium hydroxide by reacting a water-soluble magnesium salt with an alkaline substance in water, the water-soluble magnesium salt is neutralized with an alkaline substance in water, The slurry was filtered, washed with water, dried, and pulverized to obtain a magnesium hydroxide powder. The magnesium hydroxide was suspended again in water to obtain an aqueous magnesium hydroxide slurry. In this slurry, a predetermined amount of acetate is dissolved in magnesium hydroxide, stirred and mixed, and then the slurry is evaporated to dryness to obtain a uniform composition of magnesium hydroxide and acetate. What is necessary is just to use for baking.

また、場合によっては、上述した方法において、水酸化マグネシウムのスラリーを得、このスラリーに過剰量の酢酸塩を溶解させた後、この酢酸塩が水酸化マグネシウムに対して所定の割合で残存するように濾過、水洗し、乾燥して、水酸化マグネシウムと酢酸塩の均一な組成物を調製し、これを焼成に供してもよい。   In some cases, in the above-described method, a magnesium hydroxide slurry is obtained, and after an excessive amount of acetate is dissolved in the slurry, the acetate remains at a predetermined ratio with respect to magnesium hydroxide. The mixture may be filtered, washed with water, and dried to prepare a uniform composition of magnesium hydroxide and acetate, which may be subjected to calcination.

本発明によれば、水溶性マグネシウム塩として、特に酢酸マグネシウムを用いて、これをアルカリ性物質と反応させて、副生酢酸塩と共に水酸化マグネシウムを得、このような副生塩を利用して、水酸化マグネシウムと酢酸塩の均一な組成物を調製し、これを焼成することによっても、一次粒子が球状である酸化マグネシウム粒子を得ることができる。   According to the present invention, magnesium acetate is used as a water-soluble magnesium salt, and this is reacted with an alkaline substance to obtain magnesium hydroxide together with a by-product acetate salt. By using such a by-product salt, Magnesium oxide particles whose primary particles are spherical can also be obtained by preparing a uniform composition of magnesium hydroxide and acetate and firing it.

即ち、水中にて酢酸マグネシウムをアルカリ性物質と反応させて、水酸化マグネシウムと共に、上記アルカリ性物質に対応する酢酸塩を生成させ、例えば、アルカリ性物質として、水酸化ナトリウムを用いた場合には、酢酸ナトリウムを生成させ、かくして、得られた水酸化マグネシウムにおいて、副生した酢酸塩が水酸化マグネシウムに対して前記所定の割合にて残存するように、得られた水酸化マグネシウムを水洗、濾過し、これを乾燥して、水酸化マグネシウムと酢酸塩との均一な組成物を得、これを焼成に供する。酢酸マグネシウムとアルカリ性物質との反応によって得られた水酸化マグネシウムに残存する酢酸塩の量は、例えば、得られた水酸化マグネシウムを水洗したときの水洗水の導電率を調べることによって知ることができる。   That is, magnesium acetate is reacted with an alkaline substance in water to form an acetate corresponding to the alkaline substance together with magnesium hydroxide. For example, when sodium hydroxide is used as the alkaline substance, sodium acetate In this way, the obtained magnesium hydroxide was washed with water and filtered so that the by-produced acetate remained at the predetermined ratio with respect to the magnesium hydroxide. Is dried to obtain a uniform composition of magnesium hydroxide and acetate, which is subjected to calcination. The amount of acetate remaining in magnesium hydroxide obtained by the reaction between magnesium acetate and an alkaline substance can be known, for example, by examining the conductivity of the washing water when the obtained magnesium hydroxide is washed with water. .

更に、本発明によれば、任意の方法で得た水酸化マグネシウムの水性スラリー、例えば、前述したように、水溶性マグネシウム塩とアルカリ性物質を水中で反応させ、水酸化マグネシウムを生成させて、水酸化マグネシウムの水性スラリーを得、これに酢酸を加えて、水酸化マグネシウムと反応させて、酢酸塩を生成させ、これを利用して、酢酸塩と水酸化マグネシウムとの組成物を調製してもよく、また、酢酸と、これと反応して酢酸塩を生成する化合物を加えて、酢酸塩を生成させ、これを利用して、酢酸塩と水酸化マグネシウムとの組成物を調製してもよい。   Furthermore, according to the present invention, an aqueous slurry of magnesium hydroxide obtained by an arbitrary method, for example, as described above, a water-soluble magnesium salt and an alkaline substance are reacted in water to produce magnesium hydroxide, An aqueous slurry of magnesium oxide is obtained, and acetic acid is added thereto to react with magnesium hydroxide to produce an acetate salt. This can be used to prepare a composition of acetate and magnesium hydroxide. Well, acetic acid and a compound that reacts with it to form an acetate salt are added to form an acetate salt, which can be used to prepare a composition of acetate and magnesium hydroxide. .

以下に比較例と共に実施例を挙げて本発明を説明するが、本発明はこれら実施例によって何ら限定されるものではない。以下の実施例及び比較例において、得られた酸化マグネシウム粒子の比表面積はBET法によって測定した。   Hereinafter, the present invention will be described by way of examples together with comparative examples, but the present invention is not limited to these examples. In the following examples and comparative examples, the specific surface area of the obtained magnesium oxide particles was measured by the BET method.

また、得られた酸化マグネシウム粒子の平均一次粒子径と形状性は走査型電子顕微鏡写真から評価した。即ち、適切な倍率の走査型電子顕微鏡写真の短辺と長辺のそれぞれの中間点から写真の中心点を通る2本の直線と2本の対角線を描き、これら4本の直線の少なくともいずれかの線上にある粒子を対象粒子として合計100個の粒子を選択した。この際、複数の写真を合計して評価してもよいとした。平均一次粒子径の測定については、選択した100個の粒子の写真の長辺方向の長さを測定し、その平均を平均一次粒子径とした。   Moreover, the average primary particle diameter and shape of the obtained magnesium oxide particles were evaluated from scanning electron micrographs. That is, draw two straight lines and two diagonals from the middle point of the short side and long side of the scanning electron micrograph of an appropriate magnification through the center point of the photo, and at least one of these four straight lines A total of 100 particles were selected with the particles on the line as the target particles. At this time, a plurality of photographs may be totaled and evaluated. About the measurement of an average primary particle diameter, the length of the long side direction of the photograph of 100 selected particles was measured, and the average was made into the average primary particle diameter.

形状性については、選択した100個の粒子について、その形状性を観察した。本発明では、この形状性における球状粒子とは、粒子の短軸と長軸の比(短軸/長軸比)が0.8以上、1.0以下であると共に、輪郭線が凸である曲線(1つの直線を含んでもよい)から形成されている酸化マグネシウム粒子をいうものとする。一次粒子が球状な酸化マグネシウムとは、形状性を観察した100個の粒子のうち、80%以上が球状粒子であるものとする。   Regarding the shape, the shape of the selected 100 particles was observed. In the present invention, the spherical particles in this formability have a ratio of the minor axis to the major axis (minor axis / major axis ratio) of 0.8 or more and 1.0 or less, and the contour is convex. Magnesium oxide particles formed from a curve (which may include one straight line) shall be used. Magnesium oxide with spherical primary particles means that 80% or more of 100 particles whose shape properties are observed are spherical particles.

実施例1
(酢酸ナトリウムを用いる酸化マグネシウム粒子Aの製造)
純水0.3Lを張った沈殿反応器に4モル/L濃度の塩化マグネシウム水溶液1Lと14.3モル/L濃度の水酸化ナトリウム水溶液0.559Lを同時に注入して、水酸化マグネシウムの沈殿を含むスラリーを得た。水熱処理として、このスラリーを2時間をかけて160℃まで加熱し、その時点で加熱を止めて、室温まで放冷した。このようにして得られた反応混合物を濾過、水洗、乾燥した後、粉砕して、水酸化マグネシウム粉末を得た。この水酸化マグネシウムの平均一次粒子径は0.2μm、比表面積は23m2/gであった。
Example 1
(Production of magnesium oxide particles A using sodium acetate)
1 L of 4 mol / L magnesium chloride aqueous solution and 0.559 L of 14.3 mol / L sodium hydroxide aqueous solution were simultaneously injected into a precipitation reactor filled with 0.3 L of pure water to precipitate magnesium hydroxide. A slurry containing was obtained. As a hydrothermal treatment, this slurry was heated to 160 ° C. over 2 hours, at which point the heating was stopped and the mixture was allowed to cool to room temperature. The reaction mixture thus obtained was filtered, washed with water, dried and then pulverized to obtain a magnesium hydroxide powder. This magnesium hydroxide had an average primary particle size of 0.2 μm and a specific surface area of 23 m 2 / g.

次に、このようにして得られた水酸化マグネシウム213gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、これに酢酸ナトリウム10.5g加え、1時間攪拌した後、この水性スラリーを蒸発乾固して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。これを1100℃で1時間焼成して、本発明による酸化マグネシウム粒子Aを得た。   Next, 213 g of the magnesium hydroxide thus obtained was resuspended in pure water to obtain an aqueous slurry of magnesium hydroxide, 10.5 g of sodium acetate was added thereto, and the mixture was stirred for 1 hour. Was evaporated to dryness to obtain a uniform composition of sodium acetate and magnesium hydroxide. This was fired at 1100 ° C. for 1 hour to obtain magnesium oxide particles A according to the present invention.

用いた酢酸塩の酢酸基換算の量と得られた酸化マグネシウム粒子における球状粒子の割合と平均一次粒子径を表1に示す(以下、同じ)。   The amount of acetate used in terms of acetate group, the ratio of spherical particles in the obtained magnesium oxide particles and the average primary particle size are shown in Table 1 (hereinafter the same).

実施例2
(酢酸ナトリウムを用いる酸化マグネシウム粒子Bの製造)
実施例1と同様にして得られた酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Bを得た。
Example 2
(Production of magnesium oxide particles B using sodium acetate)
A uniform composition of sodium acetate and magnesium hydroxide obtained in the same manner as in Example 1 was calcined at 1200 ° C. for 1 hour to obtain magnesium oxide particles B according to the present invention.

実施例3
(酢酸ナトリウムを用いる酸化マグネシウム粒子Cの製造)
実施例1と同様にして得られた酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を1400℃で1時間焼成して、本発明による酸化マグネシウム粒子Cを得た。
Example 3
(Production of magnesium oxide particles C using sodium acetate)
A uniform composition of sodium acetate and magnesium hydroxide obtained in the same manner as in Example 1 was calcined at 1400 ° C. for 1 hour to obtain magnesium oxide particles C according to the present invention.

実施例4
(酢酸ナトリウムを用いる酸化マグネシウム粒子Dの製造)
実施例1と同様にして得られた水酸化マグネシウム213gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、この水性スラリー中に酢酸ナトリウム21gを加え、1時間攪拌した後、この水性スラリーを蒸発乾固して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。これを1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Dを得た。
Example 4
(Production of magnesium oxide particles D using sodium acetate)
213 g of magnesium hydroxide obtained in the same manner as in Example 1 was resuspended in pure water to form an aqueous slurry of magnesium hydroxide, 21 g of sodium acetate was added to this aqueous slurry, and the mixture was stirred for 1 hour. The aqueous slurry was evaporated to dryness to obtain a uniform composition of sodium acetate and magnesium hydroxide. This was calcined at 1200 ° C. for 1 hour to obtain magnesium oxide particles D according to the present invention.

実施例5
(酢酸ナトリウムを用いる酸化マグネシウム粒子Eの製造)
実施例1と同様にして得られた水酸化マグネシウム213gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、この水性スラリー中に酢酸ナトリウム42g加え、1時間攪拌した後、これを蒸発乾固して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。これを1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Eを得た。
Example 5
(Production of magnesium oxide particles E using sodium acetate)
213 g of magnesium hydroxide obtained in the same manner as in Example 1 was resuspended in pure water to form an aqueous slurry of magnesium hydroxide, 42 g of sodium acetate was added to this aqueous slurry, and the mixture was stirred for 1 hour. Evaporation to dryness gave a homogeneous composition of sodium acetate and magnesium hydroxide. This was calcined at 1200 ° C. for 1 hour to obtain magnesium oxide particles E according to the present invention.

実施例6
(酢酸ナトリウムを用いる酸化マグネシウム粒子Fの製造)
純水0.3Lを張った沈殿反応器に4モル/L濃度の塩化マグネシウム水溶液1Lと14.3モル/L濃度の水酸化ナトリウム水溶液0.503Lを同時に注入して、水酸化マグネシウムの沈殿を含むスラリーを得た。このスラリーを加熱し、170℃で1時間水熱処理した。この後、得られた反応混合物を濾過、水洗、乾燥した後、粉砕して、水酸化マグネシウム粉末を得た。この水酸化マグネシウムの平均一次粒子径は0.8μm、比表面積は7m2/gであった。
Example 6
(Production of magnesium oxide particles F using sodium acetate)
1 L of 4 mol / L magnesium chloride aqueous solution and 0.503 L of 14.3 mol / L sodium hydroxide aqueous solution were simultaneously injected into a precipitation reactor filled with 0.3 L of pure water to precipitate magnesium hydroxide. A slurry containing was obtained. This slurry was heated and hydrothermally treated at 170 ° C. for 1 hour. Thereafter, the obtained reaction mixture was filtered, washed with water, dried and then pulverized to obtain a magnesium hydroxide powder. This magnesium hydroxide had an average primary particle size of 0.8 μm and a specific surface area of 7 m 2 / g.

次に、このようにして得られた水酸化マグネシウム203gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、この水性スラリー中に酢酸ナトリウム10g加え、1時間攪拌した後、これを蒸発乾固して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。この酢酸ナトリウムを含む水酸化マグネシウムを1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Fを得た。   Next, 203 g of the magnesium hydroxide thus obtained was resuspended in pure water to form an aqueous slurry of magnesium hydroxide, 10 g of sodium acetate was added to the aqueous slurry, and the mixture was stirred for 1 hour. Evaporation to dryness gave a homogeneous composition of sodium acetate and magnesium hydroxide. The magnesium hydroxide containing sodium acetate was fired at 1200 ° C. for 1 hour to obtain magnesium oxide particles F according to the present invention.

実施例7
(酢酸アンモニウムを用いる酸化マグネシウム粒子Gの製造)
実施例1と同様にして得られた水酸化マグネシウム213gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、この水性スラリーに酢酸アンモニウム21gを加え、1時間攪拌した後、これを蒸発乾固して、酢酸アンモニウムと水酸化マグネシウムとの均一な混合物を得た。これを1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Fを得た。
Example 7
(Production of magnesium oxide particles G using ammonium acetate)
213 g of magnesium hydroxide obtained in the same manner as in Example 1 was resuspended in pure water to form an aqueous slurry of magnesium hydroxide, 21 g of ammonium acetate was added to the aqueous slurry, and the mixture was stirred for 1 hour. Evaporation to dryness gave a homogeneous mixture of ammonium acetate and magnesium hydroxide. This was fired at 1200 ° C. for 1 hour to obtain magnesium oxide particles F according to the present invention.

実施例8
(酢酸マグネシウムを用いる酸化マグネシウム粒子Hの製造)
純水0.3Lを張った沈殿反応器に2.3モル/L濃度の酢酸マグネシウム水溶液1.2Lと18.1モル/L濃度の水酸化ナトリウム水溶液0.299Lを同時に注入して、水酸化マグネシウムの沈殿を含むスラリーを得た。このスラリーを濾過、水洗、乾燥した後、粉砕して、水酸化マグネシウムの粉末を得た。この水酸化マグネシウムの平均一次粒子径は0.1μm、比表面積は28m2/gであった。
Example 8
(Production of magnesium oxide particles H using magnesium acetate)
To a precipitation reactor filled with 0.3 L of pure water, 1.2 L of a magnesium acetate aqueous solution having a concentration of 2.3 mol / L and 0.299 L of a sodium hydroxide aqueous solution having a concentration of 18.1 mol / L were simultaneously injected. A slurry containing magnesium precipitate was obtained. The slurry was filtered, washed with water, dried and then pulverized to obtain a magnesium hydroxide powder. This magnesium hydroxide had an average primary particle size of 0.1 μm and a specific surface area of 28 m 2 / g.

次に、この水酸化マグネシウム146gを純水中に再懸濁して、水酸化マグネシウムの水性スラリーとし、これに酢酸マグネシウム28.2gを加え、1時間攪拌した後、この水性スラリーを蒸発乾固して、酢酸マグネシウムと水酸化マグネシウムとの均一な組成物を得た。これを1200℃で1時間焼成して、本発明による酸化マグネシウム粒子Hを得た。   Next, 146 g of this magnesium hydroxide is resuspended in pure water to make an aqueous slurry of magnesium hydroxide, to which 28.2 g of magnesium acetate is added and stirred for 1 hour, and then this aqueous slurry is evaporated to dryness. Thus, a uniform composition of magnesium acetate and magnesium hydroxide was obtained. This was calcined at 1200 ° C. for 1 hour to obtain magnesium oxide particles H according to the present invention.

実施例9
(酢酸ナトリウムを用いる酸化マグネシウム粒子Iの製造)
純水0.3Lを張った沈殿反応器に2.3モル/L濃度の酢酸マグネシウム水溶液1.2Lと18.1モル/L濃度の水酸化ナトリウム水溶液0.299Lを同時に注入して、水酸化マグネシウムの沈殿と共に、副生塩である酢酸ナトリウムを溶解含有するスラリーを得、このスラリーを上記酢酸ナトリウムが残存するように洗浄した。即ち、水酸化マグネシウムと酢酸ナトリウムを含むスラリーを濾過、水洗した後、再度、水に懸濁させ、得られたスラリーの導電率を測定する操作を繰り返して、スラリーの導電率が7.5mS/cmまで低下したときに水洗を止めて、スラリーを濾過し、乾燥して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。この組成物中の酢酸ナトリウムの割合は、酢酸基に換算して、水酸化マグネシウム100モル部に対して、7.9モル部であった。
Example 9
(Production of magnesium oxide particles I using sodium acetate)
To a precipitation reactor filled with 0.3 L of pure water, 1.2 L of a magnesium acetate aqueous solution having a concentration of 2.3 mol / L and 0.299 L of a sodium hydroxide aqueous solution having a concentration of 18.1 mol / L were simultaneously injected. A slurry containing dissolved sodium acetate as a by-product salt was obtained together with precipitation of magnesium, and this slurry was washed so that the sodium acetate remained. That is, after the slurry containing magnesium hydroxide and sodium acetate was filtered and washed with water, the operation of measuring the conductivity of the obtained slurry was repeated again by suspending in water, and the conductivity of the slurry was 7.5 mS / When it was reduced to cm, the washing was stopped and the slurry was filtered and dried to obtain a uniform composition of sodium acetate and magnesium hydroxide. The ratio of sodium acetate in this composition was 7.9 mol parts with respect to 100 mol parts of magnesium hydroxide in terms of acetate groups.

この水酸化マグネシウムと酢酸ナトリウムの組成物の平均一次粒子径は0.1μm、比表面積は28m2/gであった。この組成物を1450℃で3時間焼成して、本発明による酸化マグネシウム粒子Iを得た。 The composition of magnesium hydroxide and sodium acetate had an average primary particle size of 0.1 μm and a specific surface area of 28 m 2 / g. This composition was calcined at 1450 ° C. for 3 hours to obtain magnesium oxide particles I according to the present invention.

比較例1
(酸化マグネシウム粒子Jの製造)
実施例1と同様にして得られた水酸化マグネシウムに酢酸ナトリウムを加えることなく、1200℃で1時間焼成して、酸化マグネシウム粒子Jを得た。
Comparative Example 1
(Manufacture of magnesium oxide particles J)
Magnesium oxide particles J were obtained by calcination at 1200 ° C. for 1 hour without adding sodium acetate to the magnesium hydroxide obtained in the same manner as in Example 1.

比較例2
(酸化マグネシウム粒子Kの製造)
実施例6と同様にして得られた水酸化マグネシウムに酢酸ナトリウムを加えることなく、1200℃で1時間焼成して、酸化マグネシウム粒子Kを得た。
Comparative Example 2
(Manufacture of magnesium oxide particles K)
Magnesium oxide particles K were obtained by calcination at 1200 ° C. for 1 hour without adding sodium acetate to magnesium hydroxide obtained in the same manner as in Example 6.

比較例3
(酸化マグネシウム粒子Lの製造)
実施例6と同様にして得られた水酸化マグネシウムに酢酸ナトリウムを加えることなく、1450℃で3時間焼成して、酸化マグネシウム粒子Lを得た。
Comparative Example 3
(Manufacture of magnesium oxide particles L)
Magnesium oxide particles L were obtained by calcination at 1450 ° C. for 3 hours without adding sodium acetate to the magnesium hydroxide obtained in the same manner as in Example 6.

比較例4
(酸化マグネシウム粒子Mの製造)
実施例1と同様にして得られた水酸化マグネシウム213gを水に再懸濁させて、水酸化マグネシウムの水性スラリーを得、この水性スラリーに酢酸ナトリウム6.3gを加え、1時間攪拌した。この水性スラリーを蒸発乾固して、酢酸ナトリウムと水酸化マグネシウムとの均一な組成物を得た。これを1200℃で1時間焼成して、酸化マグネシウム粒子Mを得た。
Comparative Example 4
(Manufacture of magnesium oxide particles M)
213 g of magnesium hydroxide obtained in the same manner as in Example 1 was resuspended in water to obtain an aqueous slurry of magnesium hydroxide. To this aqueous slurry was added 6.3 g of sodium acetate, and the mixture was stirred for 1 hour. This aqueous slurry was evaporated to dryness to obtain a uniform composition of sodium acetate and magnesium hydroxide. This was fired at 1200 ° C. for 1 hour to obtain magnesium oxide particles M.

比較例5
(酸化マグネシウム粒子Nの製造)
実施例1と同様にして得られた酢酸ナトリウムを含む水酸化マグネシウムを900℃で1時間焼成して、本発明による酸化マグネシウム粒子Nを得た。
Comparative Example 5
(Manufacture of magnesium oxide particles N)
Magnesium hydroxide containing sodium acetate obtained in the same manner as in Example 1 was calcined at 900 ° C. for 1 hour to obtain magnesium oxide particles N according to the present invention.

Figure 2009007215
Figure 2009007215

表1に結果を示すように、本発明によれば、一次粒子が球状である酸化マグネシウム粒子を容易に得ることができる。しかし、水酸化マグネシウムに酢酸塩を含有させることなく、これを焼成しても、また、水酸化マグネシウムに酢酸塩を含有させた場合であっても、水酸化マグネシウムに対する酢酸塩の割合が少ないときは、一次粒子が球状である酸化マグネシウムを得ることができなかった。   As shown in Table 1, according to the present invention, magnesium oxide particles whose primary particles are spherical can be easily obtained. However, even if the magnesium hydroxide is baked without containing the acetate or the magnesium hydroxide contains the acetate, the ratio of the acetate to the magnesium hydroxide is small. Could not obtain magnesium oxide having primary spherical particles.

Claims (4)

水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の酢酸塩を含有する水酸化マグネシウム組成物を調製し、これを1000〜1800℃の範囲の温度で焼成することからなり、上記酢酸塩が酢酸アルカリ金属塩、酢酸アルカリ土類金属及び酢酸アンモニウムから選ばれる少なくとも1種である、一次粒子が球状である酸化マグネシウム粒子の製造方法。   Preparing a magnesium hydroxide composition containing 3 to 20 parts by mole of acetate in terms of acetate based on 100 parts by weight of magnesium hydroxide, and firing this at a temperature in the range of 1000 to 1800 ° C. The method for producing magnesium oxide particles in which the primary particles are spherical, wherein the acetate is at least one selected from alkali metal acetate, alkaline earth metal acetate, and ammonium acetate. 水溶性マグネシウム塩1当量をアルカリ性物質0.8〜1.2当量と反応させて、水酸化マグネシウムの沈殿を含むスラリーを得、このスラリーを加圧下に温度120〜200℃の範囲で加熱する水熱処理して、水酸化マグネシウム粒子を得、次いで、この水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の酢酸塩を含有する水酸化マグネシウム組成物を調製することからなる、請求項1に記載の一次粒子が球状である酸化マグネシウム粒子の製造方法。   Water which heats the slurry in the range of the temperature of 120-200 degreeC under pressure by making 1 equivalent of water-soluble magnesium salt react with 0.8-1.2 equivalent of alkaline substances, and obtaining the slurry containing precipitation of magnesium hydroxide. Heat treatment to obtain magnesium hydroxide particles, and then preparing a magnesium hydroxide composition containing 3 to 20 mole parts of acetate in terms of acetate groups with respect to 100 mole parts of this magnesium hydroxide, The manufacturing method of the magnesium oxide particle whose primary particle of Claim 1 is spherical. 酢酸マグネシウム塩1当量をアルカリ性物質0.8〜1.2当量と反応させて、副生酢酸塩と共に、水酸化マグネシウムの沈殿を含むスラリーを得、次いで、得られた水酸化マグネシウム100モル部に対して酢酸基換算で3〜20モル部の副生酢酸塩を含有する水酸化マグネシウム組成物を調製することからなる、請求項1に記載の一次粒子が球状である酸化マグネシウム粒子の製造方法。   1 equivalent of magnesium acetate is reacted with 0.8 to 1.2 equivalents of an alkaline substance to obtain a slurry containing magnesium hydroxide precipitate together with by-product acetate, and then to 100 mol parts of the obtained magnesium hydroxide. On the other hand, the manufacturing method of the magnesium oxide particle which the primary particle of Claim 1 consists of preparing the magnesium hydroxide composition containing 3-20 mol part by-product acetate in conversion of an acetate group. 請求項1から3のいずれか記載の方法によって得られる一次粒子が球状である酸化マグネシウム粒子。
Magnesium oxide particles in which the primary particles obtained by the method according to claim 1 are spherical.
JP2007171664A 2007-06-29 2007-06-29 Spherical magnesium oxide particles and method for producing the same Expired - Fee Related JP5125258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007171664A JP5125258B2 (en) 2007-06-29 2007-06-29 Spherical magnesium oxide particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007171664A JP5125258B2 (en) 2007-06-29 2007-06-29 Spherical magnesium oxide particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009007215A true JP2009007215A (en) 2009-01-15
JP5125258B2 JP5125258B2 (en) 2013-01-23

Family

ID=40322679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007171664A Expired - Fee Related JP5125258B2 (en) 2007-06-29 2007-06-29 Spherical magnesium oxide particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5125258B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007638A1 (en) 2009-07-14 2011-01-20 堺化学工業株式会社 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
KR20110036475A (en) * 2009-10-01 2011-04-07 장학정 Method of manufacturing a magnesium oxide nanoparticle and magnesium oxide nanoparticle using the same
WO2012043564A1 (en) * 2010-09-28 2012-04-05 タテホ化学工業株式会社 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
WO2013024740A1 (en) 2011-08-12 2013-02-21 堺化学工業株式会社 Coated magnesium oxide particles, method for producing same, heat-dissipating filler, and resin composition
WO2014188959A1 (en) 2013-05-24 2014-11-27 堺化学工業株式会社 Magnesium oxide particles, magnesium oxide particle production method, resin composition and molded body using such resin composition, and adhesive or grease
KR20150076193A (en) 2012-10-31 2015-07-06 우베 마테리알즈 가부시키가이샤 Magnesium oxide powder
KR102596020B1 (en) * 2022-09-29 2023-10-31 주식회사 리치룩스 Heat Dissipation Filler with Improved Heat Dissipation Efficiency and Method for Manufacturing the Same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160373A (en) * 1980-04-22 1981-12-10 Gen Refractories Co Improvement of light burned magnesia compressibility and sintered periclase density
JPS6136119A (en) * 1984-07-27 1986-02-20 Asahi Glass Co Ltd Production of highly water-resistant magnesium oxide
JPS61209911A (en) * 1985-03-14 1986-09-18 Chuo Denki Kogyo Kk Production of high purity magnesium oxide
JPH02212314A (en) * 1989-02-10 1990-08-23 Kyowa Chem Ind Co Ltd Production of magnesium oxide having high resistance to hydration and high fluidity
JPH05139704A (en) * 1991-11-19 1993-06-08 Teika Corp Production of fine particle-shaped metal oxide
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JP2007070219A (en) * 2005-08-10 2007-03-22 Ube Material Industries Ltd High-specific-surface-area magnesium oxide powder and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160373A (en) * 1980-04-22 1981-12-10 Gen Refractories Co Improvement of light burned magnesia compressibility and sintered periclase density
JPS6136119A (en) * 1984-07-27 1986-02-20 Asahi Glass Co Ltd Production of highly water-resistant magnesium oxide
JPS61209911A (en) * 1985-03-14 1986-09-18 Chuo Denki Kogyo Kk Production of high purity magnesium oxide
JPH02212314A (en) * 1989-02-10 1990-08-23 Kyowa Chem Ind Co Ltd Production of magnesium oxide having high resistance to hydration and high fluidity
JPH05139704A (en) * 1991-11-19 1993-06-08 Teika Corp Production of fine particle-shaped metal oxide
JPH06171928A (en) * 1992-12-01 1994-06-21 Kyowa Chem Ind Co Ltd Production of magnesium oxide high in hydration resistance and high in fluidity
JP2007070219A (en) * 2005-08-10 2007-03-22 Ube Material Industries Ltd High-specific-surface-area magnesium oxide powder and method for producing the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007638A1 (en) 2009-07-14 2011-01-20 堺化学工業株式会社 Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition
KR20110036475A (en) * 2009-10-01 2011-04-07 장학정 Method of manufacturing a magnesium oxide nanoparticle and magnesium oxide nanoparticle using the same
WO2012043564A1 (en) * 2010-09-28 2012-04-05 タテホ化学工業株式会社 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
JP2012072004A (en) * 2010-09-28 2012-04-12 Tateho Chemical Industries Co Ltd Magnesium hydroxide microparticle, magnesium oxide microparticle, and method for producing each microparticle
CN103140446A (en) * 2010-09-28 2013-06-05 达泰豪化学工业株式会社 Magnesium hydroxide microparticles, magnexium oxide microparticles, and method for producing each
KR101495777B1 (en) * 2010-09-28 2015-02-25 다테호 가가쿠 고교 가부시키가이샤 Magnesium hydroxide microparticles, magnesium oxide microparticles, and method for producing each
US9340661B2 (en) 2011-08-12 2016-05-17 Sakai Chemical Industry Co., Ltd. Coated magnesium oxide particles, method for the production thereof, heat-releasing filler, and resin composition
WO2013024740A1 (en) 2011-08-12 2013-02-21 堺化学工業株式会社 Coated magnesium oxide particles, method for producing same, heat-dissipating filler, and resin composition
KR20150076193A (en) 2012-10-31 2015-07-06 우베 마테리알즈 가부시키가이샤 Magnesium oxide powder
WO2014188959A1 (en) 2013-05-24 2014-11-27 堺化学工業株式会社 Magnesium oxide particles, magnesium oxide particle production method, resin composition and molded body using such resin composition, and adhesive or grease
KR20160014590A (en) 2013-05-24 2016-02-11 사카이 가가쿠 고교 가부시키가이샤 Magnesium oxide particles, magnesium oxide particle production method, resin composition and molded body using such resin composition, and adhesive or grease
US9856146B2 (en) 2013-05-24 2018-01-02 Sakai Chemical Industry Co., Ltd. Magnesium oxide particles, magnesium oxide particle production method, resin composition and molded body using such resin composition, and adhesive or grease
KR102596020B1 (en) * 2022-09-29 2023-10-31 주식회사 리치룩스 Heat Dissipation Filler with Improved Heat Dissipation Efficiency and Method for Manufacturing the Same

Also Published As

Publication number Publication date
JP5125258B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5125258B2 (en) Spherical magnesium oxide particles and method for producing the same
JP6583637B2 (en) Strontium titanate fine particle powder and method for producing the same
JP5686563B2 (en) Magnesium hydroxide fine particles and magnesium oxide fine particles, and methods for producing them
KR20180059784A (en) Preparation method of zirconium tungstate phosphate
KR101845106B1 (en) Spherical aluminum nitride powder
JP5329793B2 (en) Barium carbonate particle powder, method for producing the same, and method for producing perovskite-type barium titanate
JP6951022B2 (en) Magnesium hydroxide particles with slow growth rate and low aspect ratio and their manufacturing method
JP5673539B2 (en) Method for producing spheroidized boron nitride
CN112384471B (en) Negative thermal expansion material, method for producing the same, and composite material
JP5445412B2 (en) Method for producing composite oxide powder
JP2000344520A (en) Production of flaky titanate
WO2017061402A1 (en) Production method for zirconium tungsten phosphate
JP5579029B2 (en) Boron nitride powder, method for producing the same, composition containing the same, and heat dissipation material
JP2007137759A (en) Barium titanate particulate powder and dispersion
JP2007290887A (en) Bismuth titanate-based nanoparticle, piezoelectric ceramic using the same, and methods for producing them
CN108778995A (en) The method for preparing silicon
JP6754288B2 (en) Zinc oxide powder for manufacturing zinc oxide sintered bodies with high strength and low thermal conductivity
JP4702515B2 (en) Tetragonal barium titanate fine particle powder and production method thereof
JPS6136119A (en) Production of highly water-resistant magnesium oxide
TW200844052A (en) Cubic magnesium oxide powder and method for producing the same
JP2014133671A (en) METHOD OF MANUFACTURING POROUS CRYSTALLINE α TYPE TITANIUM HYDROGEN PHOSPHATE MONOHYDRATE SPHERICAL TYPE PARTICLE
JP2003034523A (en) Method for manufacturing coated magnesium oxide powder
JP5848053B2 (en) Method for producing boehmite nanorods, method for producing alumina nanorods, and method for producing CuAlO2 film
JP5552883B2 (en) Low-conductivity zinc oxide particles, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, heat-dissipating coating composition, and method for producing low-conducting zinc oxide particles
JP5681966B2 (en) Organic calcium phosphate precursor, calcium phosphate powder, ceramic structure, and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees