JP2009004148A - Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same - Google Patents

Negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery using the same Download PDF

Info

Publication number
JP2009004148A
JP2009004148A JP2007162242A JP2007162242A JP2009004148A JP 2009004148 A JP2009004148 A JP 2009004148A JP 2007162242 A JP2007162242 A JP 2007162242A JP 2007162242 A JP2007162242 A JP 2007162242A JP 2009004148 A JP2009004148 A JP 2009004148A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
material particles
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007162242A
Other languages
Japanese (ja)
Other versions
JP5260896B2 (en
Inventor
Hideaki Maeda
英明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2007162242A priority Critical patent/JP5260896B2/en
Publication of JP2009004148A publication Critical patent/JP2009004148A/en
Application granted granted Critical
Publication of JP5260896B2 publication Critical patent/JP5260896B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode for a nonaqueous secondary battery capable of preventing degradation of conductivity even with progress of charge and discharge cycles by substantially securing a conductive path of a negative electrode active material with negative electrode-constituting material particles such as a conductive material, as well as a nonaqueous secondary battery with improved charge and discharge characteristics. <P>SOLUTION: For the negative electrode for the nonaqueous secondary battery at least provided with negative electrode active material particles capable of inserting and removing lithium, and the negative electrode-constituting material particles different from the negative electrode active material particles, compounds containing one or more elements out of Li, B, Mg, Bi, F, and P are made to exist on the particle surface of at least either the negative electrode active material particles or the negative electrode-constituting material particles and a particle interface between the negative electrode active material particles and the negative electrode-constituting material particles, as well as the nonaqueous secondary battery using the negative electrode is provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池等の非水二次電池及びその負極材料に関する。 The present invention relates to a nonaqueous secondary battery such as a lithium ion secondary battery and a negative electrode material thereof.

従来の非水二次電池は、例えば特許文献1に開示されている。この非水二次電池は非水系の電解質内にリチウムイオンを吸蔵及び脱離できる正極及び負極が浸漬される。負極材料はリチウムバナジウム酸化物から成っている。このリチウムバナジウム酸化物は水酸化リチウム等のリチウム供給源と三酸化バナジウム等のバナジウム供給源とを固相法により混合し、650℃以上で焼成して形成される。   A conventional non-aqueous secondary battery is disclosed in Patent Document 1, for example. In this non-aqueous secondary battery, a positive electrode and a negative electrode capable of inserting and extracting lithium ions are immersed in a non-aqueous electrolyte. The negative electrode material is made of lithium vanadium oxide. The lithium vanadium oxide is formed by mixing a lithium supply source such as lithium hydroxide and a vanadium supply source such as vanadium trioxide by a solid phase method and firing at 650 ° C. or higher.

非水二次電池の充電時には負極が負に帯電し、正極に吸蔵されたリチウムイオンが脱離して負極に吸蔵される。非水二次電池の放電時には負極に吸蔵されたリチウムイオンが脱離して正極に吸蔵される。   When the non-aqueous secondary battery is charged, the negative electrode is negatively charged, and lithium ions stored in the positive electrode are desorbed and stored in the negative electrode. At the time of discharging the non-aqueous secondary battery, lithium ions stored in the negative electrode are desorbed and stored in the positive electrode.

特開2003−68305号公報(第3頁−第11頁、第10図)Japanese Patent Laid-Open No. 2003-68305 (page 3 to page 11, FIG. 10)

従来の非水二次電池用負極において、負極活物質粒子と導電性材料等の負極構成材料粒子との界面にはバインダーが存在したり予め空隙が形成されるなどして、その界面抵抗が高いため、二次電池の容量の低下の要因となっていた。また、充放電サイクルを繰り返すことにより、負極活物質粒子は膨張/収縮を繰り返すため、界面により大きな空隙が形成され、充放電サイクルが進むほど、非水二次電池の容量がさらに低下するという問題があった。   In conventional negative electrodes for non-aqueous secondary batteries, the interface resistance between the negative electrode active material particles and the negative electrode constituent material particles such as the conductive material is high because of the presence of a binder or the formation of voids in advance. Therefore, the capacity of the secondary battery is reduced. Further, since the negative electrode active material particles repeat expansion / contraction by repeating the charge / discharge cycle, a large gap is formed at the interface, and the capacity of the non-aqueous secondary battery further decreases as the charge / discharge cycle progresses. was there.

本発明は、負極活物質と導電性材料等の負極構成材料粒子との導電性経路を十分に確保することによって充放電サイクルが進行しても導電性が低下することを抑制することができる非水二次電池用負極および高い充放電特性を有する非水二次電池を提供することを目的とする。   The present invention can suppress a decrease in conductivity even when a charge / discharge cycle proceeds by sufficiently securing a conductive path between the negative electrode active material and negative electrode constituent material particles such as a conductive material. An object is to provide a negative electrode for a water secondary battery and a non-aqueous secondary battery having high charge / discharge characteristics.

上記目的を達成するため、本発明の発明者らは鋭意検討の結果、負極活物質粒子と導電性材料等の負極高請求項材料粒子とを単純に混合した場合には、導電性経路が不十分であり充放電の繰り返しにより結晶構造が崩壊し、さらなる導電性経路消滅につながり特性が劣化するものと考え、本発明に至った。   In order to achieve the above object, the inventors of the present invention have conducted intensive studies, and as a result, when the negative electrode active material particles and the negatively charged material particles such as the conductive material are simply mixed, the conductive path is not satisfactory. It was considered sufficient and the crystal structure collapsed due to repeated charge and discharge, leading to further disappearance of the conductive path, leading to the deterioration of the characteristics, leading to the present invention.

本発明は、リチウムの挿入、脱離が可能な負極活物質粒子と、前記負極活物質粒子とは異なる負極構成材料粒子とを少なくとも備える非水二次電池用負極において、前記負極活物質粒子および前記負極構成材料粒子のうち少なくともいずれかの粒子表面、前記負極活物質粒子と前記負極構成材料粒子との粒子界面に、Li、B、Mg、Bi、F、Pの内一つ以上の元素を含む化合物を存在させたことを特徴とする。   The present invention provides a negative electrode for a non-aqueous secondary battery comprising at least negative electrode active material particles capable of inserting and desorbing lithium, and negative electrode constituent material particles different from the negative electrode active material particles. One or more elements of Li, B, Mg, Bi, F, and P are added to the particle surface of at least one of the negative electrode constituent material particles and the particle interface between the negative electrode active material particles and the negative electrode constituent material particles. It is characterized by the presence of a compound containing it.

また本発明は、前記化合物は、前記負極活物質粒子および前記負極構成材料粒子と混合された後に、不活性ガス雰囲気中で焼成されたものであることを特徴とする。   In the invention, it is preferable that the compound is fired in an inert gas atmosphere after being mixed with the negative electrode active material particles and the negative electrode constituent material particles.

また本発明の非水二次電池は、上記各構成の非水二次電池負極材料からなる負極と、正極と、電解質とから成ることを特徴としている。   The non-aqueous secondary battery of the present invention is characterized by comprising a negative electrode made of a non-aqueous secondary battery negative electrode material having the above-described configuration, a positive electrode, and an electrolyte.

本発明によると、負極活物質と、負極活物質とは異なる導電性材料等の負極構成材料とを備える非水二次電池用負極において、負極活物質、負極構成材料のうちいずれかの粒子表面と、負極活物質と負極構成材料との粒子界面にLi、B、Mg、Bi、F、Pの内一つ以上の元素を含む化合物を存在させたことによって、Li、B、Mg、Bi、F、Pの化合物が、負極活物質粒子同士あるいは、負極活物質粒子、負極構成材料粒子が接触する間の粒子間結合力を高めることができる。したがって、各粒子間の結合力が向上し、その結果として結合した粒子間の接触が強固になり導電性経路を確保できる。更に本発明の技術を用いる効果として、本発明材料を用いた電池の充放電を繰り返した際、負極活物質の膨張/収縮が発生したとしても、負極構成材料粒子間をLi、B、Mg、Bi、F、Pの化合物が強固に結合させている為に膨張/収縮を抑制でき、各材質粒子間の導電性低下を抑制できることから、非水二次電池の充放電特性を向上させることが出来る。   According to the present invention, in a negative electrode for a non-aqueous secondary battery comprising a negative electrode active material and a negative electrode constituent material such as a conductive material different from the negative electrode active material, the surface of any one of the negative electrode active material and the negative electrode constituent material And the presence of a compound containing one or more of Li, B, Mg, Bi, F, and P at the particle interface between the negative electrode active material and the negative electrode constituent material, Li, B, Mg, Bi, The compound of F and P can increase the bonding force between particles while the negative electrode active material particles or the negative electrode active material particles and the negative electrode constituent material particles are in contact with each other. Accordingly, the bonding force between the particles is improved, and as a result, the contact between the bonded particles is strengthened and a conductive path can be secured. Furthermore, as an effect of using the technology of the present invention, even when the battery using the material of the present invention is repeatedly charged and discharged, even if the negative electrode active material expands / shrinks, the anode constituent material particles are intercalated between Li, B, Mg, Since the compound of Bi, F, and P is firmly bonded, expansion / contraction can be suppressed, and the decrease in conductivity between the material particles can be suppressed, so that the charge / discharge characteristics of the non-aqueous secondary battery can be improved. I can do it.

以下に本発明の実施形態を図面を参照して説明する。図3は一実施形態の非水二次電池を示す縦断面図である。非水二次電池1はスパイラル式円筒型のリチウム二次電池から成る。非水二次電池1にはセンターピン6が設けられ、正極3と負極4との間にセパレータ5が挟まれて成る積層体10がセンターピン6に多重に巻かれている。これにより、積層体10は円筒状構造を成している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 is a longitudinal sectional view showing a nonaqueous secondary battery according to an embodiment. The non-aqueous secondary battery 1 is composed of a spiral cylindrical lithium secondary battery. The non-aqueous secondary battery 1 is provided with a center pin 6, and a laminate 10 in which a separator 5 is sandwiched between a positive electrode 3 and a negative electrode 4 is wound around the center pin 6 in a multiple manner. Thereby, the laminated body 10 has comprised the cylindrical structure.

正極3は正極活物質を含む正極合材3aにより正極集電体3bの表面及び裏面の2層を挟んで形成される。負極4は負極活物質を含む負極合材4aにより負極集電体4bの表面及び裏面の2層を挟んで形成される。円筒状の積層体10は中空円柱状のケース2内に収納され、電解質(不図示)に浸漬されている。ケース2によって正極3が接続されるとともに下端が突出した正極端子7が形成されている。   The positive electrode 3 is formed by sandwiching two layers of the front surface and the back surface of the positive electrode current collector 3b with a positive electrode mixture 3a containing a positive electrode active material. The negative electrode 4 is formed by sandwiching two layers of the front surface and the back surface of the negative electrode current collector 4b with a negative electrode mixture 4a containing a negative electrode active material. The cylindrical laminate 10 is housed in a hollow cylindrical case 2 and is immersed in an electrolyte (not shown). A positive electrode 3 is connected by the case 2 and a positive electrode terminal 7 having a lower end protruding is formed.

積層体10の上下にはそれぞれ絶縁板9b、9aが設けられる。正極集電体3bは、絶縁板9aを貫通して正極リード11により正極端子7に接続されている。ケース2の開口側の絶縁板9b上には、絶縁板9b方向に凸形状を有する安全弁13が設けられる。安全弁13の上方には、安全弁13とは反対方向に凸形状を有するキャップ状の負極端子8が形成されている。負極集電体4bは絶縁板9bを貫通して負極リード12により負極端子8に接続されている。また、安全弁13及び負極端子8の縁面はガスケット14によりシールされ、正極端子7から離間している。   Insulating plates 9b and 9a are provided above and below the laminate 10, respectively. The positive electrode current collector 3 b passes through the insulating plate 9 a and is connected to the positive electrode terminal 7 by the positive electrode lead 11. On the insulating plate 9b on the opening side of the case 2, a safety valve 13 having a convex shape in the direction of the insulating plate 9b is provided. A cap-like negative electrode terminal 8 having a convex shape in the opposite direction to the safety valve 13 is formed above the safety valve 13. The negative electrode current collector 4 b passes through the insulating plate 9 b and is connected to the negative electrode terminal 8 by the negative electrode lead 12. Further, the edge surfaces of the safety valve 13 and the negative electrode terminal 8 are sealed by the gasket 14 and are separated from the positive electrode terminal 7.

正極活物質及び電解質には非水二次電池の正極活物質及び電解質として公知の材料が用いられる。例えば、正極活物質にはコバルト酸リチウム等のリチウム遷移金属酸化物が用いられる。   As the positive electrode active material and the electrolyte, known materials are used as the positive electrode active material and the electrolyte of the non-aqueous secondary battery. For example, a lithium transition metal oxide such as lithium cobalt oxide is used for the positive electrode active material.

また、電解質には非プロトン性溶媒に、リチウム塩から成る溶質を含有したものが用いられる。
非プロトン性溶媒は、環状カ−ボネ−ト単独あるいは鎖状カ−ボネ−トと混合使用されるのが一般だが、混合する場合、次の組合せ例を挙げることができる。エチレンカ−ボネ−トとジメチルカ−ボネ−ト、エチレンカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとジエチルカ−ボネ−ト、プロピレンカ−ボネ−トとジメチルカ−ボネ−ト、プロピレンカ−ボネ−トとメチルエチルカ−ボネ−ト、プロピレンカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト、エチレンカ−ボネ−トとプロピレンカ−ボネ−トとジメチルカ−ボネ−トとメチルエチルカ−ボネ−トとジエチルカ−ボネ−ト。
As the electrolyte, an aprotic solvent containing a solute composed of a lithium salt is used.
The aprotic solvent is generally used alone or in combination with a cyclic carbonate, but when mixed, the following combination examples can be given. Ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene Carbonate and methyl ethyl carbonate, propylene carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and dimethyl carbonate, ethylene carbonate, Propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate, dimethyl carbonate and methyl ethyl carbonate, Ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate and dimethyl carbonate Methyl ethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, methyl ethyl carbonate Diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.

環状カ−ボネ−トと鎖状カ−ボネ−トとの混合割合(環状カ−ボネ−ト:鎖状カ−ボネ−ト)は、重量比で表して、好ましくは1:99〜99:1、より好ましくは5:95〜70:30、さらに好ましくは10:90〜60:40である。この混合割合はリチウム二次電池の充放電特性を損なわない非水電解質の良好な電気伝導性をもって適宜決定される。   The mixing ratio of the cyclic carbonate and the chain carbonate (cyclic carbonate: chain carbonate) is preferably expressed by weight ratio, preferably 1:99 to 99: 1, More preferably, it is 5: 95-70: 30, More preferably, it is 10: 90-60: 40. This mixing ratio is appropriately determined with good electrical conductivity of the nonaqueous electrolyte that does not impair the charge / discharge characteristics of the lithium secondary battery.

一方、リチウム塩には、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1〜8の整数)、LiPF{C(2k+1)(6−n)(n=1〜5の整数、k=1〜8の整数)、LiBOB(リチウムビス(オキサラート)ボレート)、LiBETI(リチウムビス(パーフルオロエタンスルホニル)イミド)などのリチウム塩が挙げられる。また、次の一般式で示されるリチウム塩も使用することができる。LiC(SO)(SO)(SO)、LiN(SOOR)(SOOR)、LiN(SO10)(SOOR11)、LiN(SO12)(SO13)。ここで、R〜R13は、互いに同一であってもよいし異なっていてもよく、炭素数1〜8のパ−フルオロアルキル基である。これらのリチウム塩は単独で使用してもよいし、また2種類以上を混合して使用してもよい。
また、本発明の負極材料界面に存在するLi、B、Mg、Bi、F、Pの化合物が酸に溶解し、電池特性を劣化させる場合は、上記リチウム塩の使用においてHFの発生を抑制できる塩が好ましい。
また、従来技術で適用される添加剤(ビニレンカーボネート、フルオロエチレンカーボネート等)を添加してもよい。
On the other hand, lithium salt includes LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F (2k + 1) (k = 1 to 8), LiPF n {C k F (2k + 1) ) } (6-n) (n = 1 to 5 integer, k = 1 to 8 integer), LiBOB (lithium bis (oxalate) borate), LiBETI (lithium bis (perfluoroethanesulfonyl) imide) and other lithium Salt. Moreover, the lithium salt shown by the following general formula can also be used. LiC (SO 2 R 5 ) (SO 2 R 6 ) (SO 2 R 7 ), LiN (SO 2 OR 8 ) (SO 2 OR 9 ), LiN (SO 2 R 10 ) (SO 2 OR 11 ), LiN ( SO 2 R 12) (SO 2 R 13). Here, R 5 to R 13 may be the same as or different from each other, and are a C 1-8 perfluoroalkyl group. These lithium salts may be used alone or in combination of two or more.
In addition, when the Li, B, Mg, Bi, F, and P compounds present at the negative electrode material interface of the present invention are dissolved in an acid and deteriorate the battery characteristics, generation of HF can be suppressed in the use of the lithium salt. Salts are preferred.
Moreover, you may add the additives (vinylene carbonate, fluoroethylene carbonate, etc.) applied with a prior art.

負極4は、負極活物質と導電性材料等の負極構成材料とにより構成される。負極活物質としては、リチウムと合金化が可能な金属質物単体やリチウムの吸蔵、放出が可能なLiを含んだV化合物、Mn化合物、Fe化合物、V酸化物、Mn酸化物、Fe酸化物V硫化物、Mn硫化物、Fe硫化物を挙げることができ、含まれる金属としては、例えば、Mg、Ti、Al、Zr等、少なくとも一種類以上含む物質を例示できる。リチウムと合金化が可能な金属としては、Si、Al、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。前記金属質物と複合化する炭素質材料としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等を例示できる。また、導電性材料としてはカーボンブラック、黒鉛粉末、炭素繊維、金属粉末、金属繊維等があげられる。   The negative electrode 4 includes a negative electrode active material and a negative electrode constituent material such as a conductive material. Examples of the negative electrode active material include a metal substance that can be alloyed with lithium and a lithium-containing V compound, Mn compound, Fe compound, V oxide, Mn oxide, and Fe oxide V that can occlude and release lithium. Examples thereof include sulfides, Mn sulfides, and Fe sulfides. Examples of the contained metal include substances containing at least one kind such as Mg, Ti, Al, and Zr. Examples of metals that can be alloyed with lithium include Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. Examples of the carbonaceous material to be compounded with the metallic material include artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Examples of the conductive material include carbon black, graphite powder, carbon fiber, metal powder, and metal fiber.

本発明の負極4においては、負極活物質粒子と、他の負極構成材料粒子との粒子界面といずれかの材料の粒子表面とにLi、B、Mg、Bi、F、Pの内一つ以上を含む化合物が存在するようになっている。そして、該負極活物質96%、アセチレンブラック2%、バインダー2%を混合して銅から成る負極集電体3b上に塗布し、1.8g/cmとなるようにプレス加工して形成されている。 In the negative electrode 4 of the present invention, at least one of Li, B, Mg, Bi, F, and P is present on the particle interface between the negative electrode active material particles and other negative electrode constituent material particles and the particle surface of any material. There are compounds that contain. Then, 96% of the negative electrode active material, 2% of acetylene black, and 2% of the binder are mixed and applied onto the negative electrode current collector 3b made of copper, and pressed to 1.8 g / cm 3. ing.

例えば、主たる負極活物質としてリチウムバナジウム酸化物を用いる場合には、負極4はリチウムバナジウム酸化物および黒鉛等の他の負極活物質と、アセチレンブラック等の導電性材料とを含み構成される。   For example, when lithium vanadium oxide is used as the main negative electrode active material, the negative electrode 4 includes another negative electrode active material such as lithium vanadium oxide and graphite, and a conductive material such as acetylene black.

このリチウムバナジウム酸化物は、Liの一般式により表されるものである。ここで、a,b,c,dは任意の数値であり、Mは遷移金属、アルカリ金属、アルカリ土類金属の中から選ばれる少なくとも一種あるいは複数の元素である。製法としては、例えば、LiOHとVとを原料としてMを添加し所定温度で焼成する方法(乾式法)や、LiCOとVとMと有機酸とを混合して得られる有機酸塩を所定温度で焼成する方法(湿式法)が挙げられる。尚、湿式法は使用される原料が比較的安価であるため、工業化においてより好ましい。なお、炭酸リチウム、五酸化バナジウム及びシュウ酸を用いた場合には、特に安価で容易に上記有機酸塩を得ることができる。リチウム化合物として、水酸化リチウム、蓚酸リチウムなどを用いてもよい。還元剤として、有機酸、カーボン材料、過酸化水素などを用いてもよい。 This lithium vanadium oxide is represented by the general formula of Li a V b M c O d . Here, a, b, c, and d are arbitrary numerical values, and M is at least one element selected from transition metals, alkali metals, and alkaline earth metals. As a manufacturing method, for example, a method in which M is added using LiOH and V 2 O 3 as raw materials and baked at a predetermined temperature (dry method), or Li 2 CO 3 , V 2 O 5 , M, and an organic acid are mixed. And a method (wet method) of firing the organic acid salt obtained at a predetermined temperature. In addition, since the raw material used is comparatively cheap, the wet method is more preferable in industrialization. In addition, when lithium carbonate, vanadium pentoxide, and oxalic acid are used, the organic acid salt can be easily obtained particularly at low cost. As the lithium compound, lithium hydroxide, lithium oxalate, or the like may be used. As the reducing agent, an organic acid, a carbon material, hydrogen peroxide, or the like may be used.

負極を構成する材料中にLi、B、Mg、Bi、F、Pの内一つ以上を含む化合物を存在させる方法としては、例えば、リチウムバナジウム酸化物と、他の負極活物質および/または導電性材料と、Li、B、Mg、Bi、F、Pの内一つ以上を含んだ化合物とを混合し、不活性ガス雰囲気中で焼成する方法がある。また、リチウムバナジウム酸化物、他の負極活物質および/または導電性材料の表面にLi、B、Mg、Bi、F、Pの内一つ以上を含んだ化合物を予め点在させてからリチウムバナジウム酸化物と、他の負極活物質および/または導電性材料を混合し、不活性ガス雰囲気中で焼成するのでもよい。   Examples of a method for causing a compound containing one or more of Li, B, Mg, Bi, F, and P to be present in the material constituting the negative electrode include, for example, lithium vanadium oxide, other negative electrode active materials, and / or conductive materials. There is a method in which a reactive material and a compound containing one or more of Li, B, Mg, Bi, F, and P are mixed and fired in an inert gas atmosphere. In addition, a lithium vanadium oxide, another negative electrode active material and / or a surface of a conductive material is preliminarily dotted with a compound containing one or more of Li, B, Mg, Bi, F, and P, and then lithium vanadium. The oxide may be mixed with another negative electrode active material and / or a conductive material, and fired in an inert gas atmosphere.

また、負極を構成する材料中にLi、B、Mg、Bi、F、Pの内一つ以上を含む化合物を存在させる方法としては、リチウム化合物として炭酸リチウム(LiCO)、バナジウム化合物として五酸化バナジウム(V)、還元剤とシュウ酸を混合して水溶液中において反応させ乾燥させた後に、Li、B、Mg、Bi、F、Pの内一つ以上を含む化合物と黒鉛とを混合し、焼成して得る方法もある。この方法によれば、Li、B、Mg、Bi、F、Pの内一つ以上を含む化合物が均一に分散することが可能である。
なお、上記化合物は、炭酸塩、水酸化物、酸化物などである。
また、不活性ガスとしては、窒素、窒素と水素の混合ガス、またはアルゴンガスなどが挙げられる。
In addition, as a method for causing a compound containing one or more of Li, B, Mg, Bi, F, and P to be present in the material constituting the negative electrode, lithium carbonate (Li 2 CO 3 ) as a lithium compound, vanadium compound as A compound containing one or more of Li, B, Mg, Bi, F, P and graphite after mixing vanadium pentoxide (V 2 O 5 ), a reducing agent and oxalic acid, reacting in an aqueous solution and drying. There is also a method obtained by mixing and baking. According to this method, a compound containing at least one of Li, B, Mg, Bi, F, and P can be uniformly dispersed.
In addition, the said compound is carbonate, a hydroxide, an oxide, etc.
Examples of the inert gas include nitrogen, a mixed gas of nitrogen and hydrogen, or argon gas.

この負極によれば、リチウムバナジウム酸化物はリチウムバナジウム酸化物以外の負極材料または導電性材料との伝導経路を確保できるだけでなく、リチウムバナジウム酸化物粒子間、その他の負極活物質間の導電性経路も確保できる。従って、伝導性の良好なリチウムバナジウム酸化物を含有する負極を得ることができ、非水二次電池の容量向上、サイクル特性の向上に効果が期待できる。   According to this negative electrode, lithium vanadium oxide can not only secure a conduction path with a negative electrode material or conductive material other than lithium vanadium oxide, but also between lithium vanadium oxide particles and other negative electrode active materials. Can also be secured. Therefore, a negative electrode containing a lithium vanadium oxide having good conductivity can be obtained, and an effect can be expected for improving the capacity and cycle characteristics of the nonaqueous secondary battery.

次に、本発明において実施した実施形態及びその比較の製造方法を参照しつつ、本発明の実施の形態についてさらに詳細に説明する。 Next, the embodiment of the present invention will be described in more detail with reference to the embodiment implemented in the present invention and the comparative manufacturing method.

(実施例1)
炭酸リチウム208g、五酸化バナジウム425gとシュウ酸をイオン交換水5Lに所定の割合添加し、60度の条件化で溶解させた。この溶液を前駆体溶液とし、窒素雰囲気中1100度で焼成することでリチウムバナジウム酸化物を得ることができる。得られたリチウムバナジウム酸化物と添加化合物としてB(リチウムバナジウム酸化物に対して0.5wt%)、黒鉛粒子(リチウムバナジウム酸化物/黒鉛粒子=80:20wt%)を混合して窒素雰囲気中で焼成した。このようにしてリチウムバナジウム酸化物、黒鉛の表面および界面にリチウム化合物を含む負極材料を得ることができた。
(Example 1)
A predetermined ratio of 208 g of lithium carbonate, 425 g of vanadium pentoxide and oxalic acid was added to 5 L of ion-exchanged water, and dissolved under conditions of 60 degrees. Lithium vanadium oxide can be obtained by using this solution as a precursor solution and firing at 1100 degrees in a nitrogen atmosphere. The resulting lithium vanadium oxide was mixed with B 2 O 3 (0.5 wt% with respect to the lithium vanadium oxide) and graphite particles (lithium vanadium oxide / graphite particles = 80: 20 wt%) as an additive compound to form nitrogen. Baking in the atmosphere. In this way, a negative electrode material containing a lithium compound on the surface and interface of lithium vanadium oxide and graphite could be obtained.

得られた負極材料とアセチレンブラック、ポリフッ化ビニリデン(pvdf)とを96:2:2の重量割合で混合しN−メチル−2−ピロリドンを添加してスラリーを作製した。作製したスラリーを銅箔に塗布し、乾燥後、電極密度を1.8g/cmとして負極電極とした。正極電極は、コバルト酸リチウムを、電解液には、エチルカーボネート(EC):ジエチルカーボネート(DEC)=3:7の溶媒に1.4MのLiPFを溶解させたものを用いて非水二次電池を作製した。 The obtained negative electrode material, acetylene black, and polyvinylidene fluoride (pvdf) were mixed at a weight ratio of 96: 2: 2, and N-methyl-2-pyrrolidone was added to prepare a slurry. The prepared slurry was applied to a copper foil, and after drying, the electrode density was 1.8 g / cm 3 to obtain a negative electrode. The positive electrode is lithium cobaltate, and the electrolyte is non-aqueous secondary using 1.4M LiPF 6 dissolved in a solvent of ethyl carbonate (EC): diethyl carbonate (DEC) = 3: 7. A battery was produced.

(実施例2)
添加化合物をLiOH・HOとした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 2)
A negative electrode material was synthesized in the same manner as in Example 1 except that the additive compound was LiOH.H 2 O, and a non-aqueous secondary battery was produced.

(実施例3)
添加化合物をBiとした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 3)
A negative electrode material was synthesized in the same manner as in Example 1 except that the additive compound was Bi 2 O 3 to produce a nonaqueous secondary battery.

(実施例4)
添加化合物をLiFとした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
Example 4
A negative electrode material was synthesized in the same manner as in Example 1 except that the additive compound was LiF, to produce a nonaqueous secondary battery.

(実施例5)
添加化合物をPとした以外、実施例1と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 5)
A negative electrode material was synthesized in the same manner as in Example 1 except that the additive compound was P 2 O 5 to produce a non-aqueous secondary battery.

(実施例6)
炭酸リチウム208g、五酸化バナジウム425gとシュウ酸をイオン交換水5Lに所定の割合添加し、60度の条件化で溶解させた。この溶液を乾燥し前駆体とし、黒鉛粒子(リチウムバナジウム酸化物/黒鉛粒子=20:80wt%)とB(リチウムバナジウム酸化物に対して0.5wt%)を添加し、窒素雰囲気中1100度で焼成することでリチウムバナジウム酸化物、黒鉛の表面および界面にホウ素化合物を含む負極材料を得ることができた。電池の構成においては、実施例1と同様にして実施した。
(Example 6)
A predetermined ratio of 208 g of lithium carbonate, 425 g of vanadium pentoxide and oxalic acid was added to 5 L of ion-exchanged water, and dissolved under conditions of 60 degrees. This solution is dried to be a precursor, graphite particles (lithium vanadium oxide / graphite particles = 20: 80 wt%) and B 2 O 3 (0.5 wt% with respect to lithium vanadium oxide) are added, and in a nitrogen atmosphere A negative electrode material containing a boron compound on the surface and interface of lithium vanadium oxide and graphite could be obtained by firing at 1100 degrees. The battery configuration was the same as in Example 1.

(実施例7)
添加化合物をBiとした以外、実施例6と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 7)
A negative electrode material was synthesized in the same manner as in Example 6 except that the additive compound was Bi 2 O 3 to produce a non-aqueous secondary battery.

(実施例8)
添加化合物をPとした以外、実施例6と同様な方法で負極材料の合成を行ない、非水二次電池を作製した。
(Example 8)
A negative electrode material was synthesized in the same manner as in Example 6 except that the additive compound was P 2 O 5 to produce a non-aqueous secondary battery.

続いて、比較例1から2の製造方法について説明する。
(比較例1)
炭酸リチウム208gと五酸化バナジウム425gとシュウ酸1218gを添加した溶液を130℃の定置乾燥機で乾燥させ、その後窒素雰囲気で1100℃で焼成を行った。得られたリチウムバナジウム酸化物と黒鉛粒子を重量割合で80/20となるように混合し負極材料とし、負極材料とアセチレンブラック、pvdfとを96:2:2の重量割合で混合しN−メチル−2−ピロリドンを添加してスラリーを作製した。
また、作製したスラリーを銅箔に塗布し、乾燥後、電極密度を1.8g/cmとして負極電極とした。正極電極は、コバルト酸リチウムを、電解液には、エチルカーボネート(EC):ジエチルカーボネート(DEC)=3:7の溶媒に1.4MのLiPFを溶解させたものを用いて非水二次電池を作製した。
Then, the manufacturing method of Comparative Examples 1 and 2 is demonstrated.
(Comparative Example 1)
A solution added with 208 g of lithium carbonate, 425 g of vanadium pentoxide and 1218 g of oxalic acid was dried with a stationary dryer at 130 ° C., and then fired at 1100 ° C. in a nitrogen atmosphere. The obtained lithium vanadium oxide and graphite particles were mixed to a weight ratio of 80/20 to form a negative electrode material, and the negative electrode material, acetylene black, and pvdf were mixed in a weight ratio of 96: 2: 2 to obtain N-methyl. 2-Pyrrolidone was added to make a slurry.
Moreover, the produced slurry was apply | coated to copper foil, and after drying, the electrode density was set to 1.8 g / cm < 3 > and it was set as the negative electrode. The positive electrode is lithium cobaltate, and the electrolyte is non-aqueous secondary using 1.4M LiPF 6 dissolved in a solvent of ethyl carbonate (EC): diethyl carbonate (DEC) = 3: 7. A battery was produced.

(比較例2)
焼成温度のみ950度とした以外、比較例1と同様に合成を行い、非水二次電池を作製した。
(Comparative Example 2)
A non-aqueous secondary battery was produced in the same manner as in Comparative Example 1 except that only the firing temperature was 950 degrees.

次に、このようにして得られたリチウム二次電池用負極材料を評価した結果について説明する。
表1は、実施例1から8と比較例1から2の実験結果を表す一覧表である。
Next, the result of evaluating the negative electrode material for a lithium secondary battery obtained in this manner will be described.
Table 1 is a list showing the experimental results of Examples 1 to 8 and Comparative Examples 1 and 2.

Figure 2009004148
Figure 2009004148

評価項目として、1サイクル目の容量を100とした場合の、100サイクル後の容量維持率(%)を採用した。ここでは、容量維持率(%)は、80%以上であれば良好といえる。
実施例1において添加元素Liの場合で89%の維持率を示し、実施例2において添加元素Bの場合で83%の維持率を示し、実施例3において添加元素Biの場合で83%の維持率を示し、実施例4において添加元素Fの場合で89%の維持率をしめし、実施例5において添加元素Pの場合で88%の維持率を示す。このように添加元素を変更させた場合でも、100サイクル後の容量維持率が80%以上であることが確認できる。
As an evaluation item, the capacity retention rate (%) after 100 cycles when the capacity at the first cycle was set to 100 was adopted. Here, it can be said that the capacity retention rate (%) is good if it is 80% or more.
In Example 1, the retention rate of 89% was exhibited in the case of the additive element Li, 83% was maintained in the case of the additive element B in Example 2, and 83% was maintained in the case of the additive element Bi in Example 3. In Example 4, the retention rate is 89% in the case of the additive element F, and in Example 5, the retention rate is 88% in the case of the addition element P. Even when the additive element is changed in this way, it can be confirmed that the capacity retention rate after 100 cycles is 80% or more.

比較例は、Li、B、Bi、F、Pの化合物を添加せず、リチウムバナジウム酸化物と黒鉛を混合した。また、焼成温度を変えることで、リチウムバナジウム酸化物の粒子サイズを変更している。100サイクル後の容量維持率は、比較例1で68%、比較例2で62%、であり、単純に混合しただけでは、黒鉛とリチウムバナジウム酸化物とが、単独で存在するに過ぎず、接触抵抗が増加し容量維持率が低下したものと推察される。   In the comparative example, lithium vanadium oxide and graphite were mixed without adding Li, B, Bi, F, and P compounds. Moreover, the particle size of the lithium vanadium oxide is changed by changing the firing temperature. The capacity maintenance ratio after 100 cycles is 68% in Comparative Example 1 and 62% in Comparative Example 2, and simply mixing graphite and lithium vanadium oxide alone exists, It is inferred that the contact resistance increased and the capacity retention rate decreased.

このように、本発明によれば、負極活物質と、負極活物質とは異なる導電性材料等の負極構成材料とを備える非水二次電池用負極において、負極活物質、負極構成材料のうちいずれかの粒子表面と、負極活物質と負極構成材料との粒子界面にLi、B、Mg、Bi、F、Pの内一つ以上の元素を含む化合物を存在させたことによって、Li、B、Mg、Bi、F、Pの化合物が、負極活物質粒子同士あるいは、負極活物質粒子、負極構成材料粒子が接触する間の粒子間結合力を高めることができる。したがって、各粒子間の結合力が向上し、その結果として結合した粒子間の接触が強固になり導電性経路を確保できる。更に本発明の技術を用いる効果として、本発明材料を用いた電池の充放電を繰り返した際、負極活物質の膨張/収縮が発生したとしても、負極構成材料粒子間をLi、B、Mg、Bi、F、Pの化合物が強固に結合させている為に膨張/収縮を抑制でき、各材質粒子間の導電性低下を抑制できることから、非水二次電池の充放電特性を向上させることが出来る。   Thus, according to the present invention, in a negative electrode for a non-aqueous secondary battery comprising a negative electrode active material and a negative electrode constituent material such as a conductive material different from the negative electrode active material, The presence of a compound containing one or more elements of Li, B, Mg, Bi, F, and P at the particle surface of any one of the particles and the particle interface between the negative electrode active material and the negative electrode constituent material causes Li, B , Mg, Bi, F, and P can increase the interparticle bonding force during contact between the negative electrode active material particles or between the negative electrode active material particles and the negative electrode constituent material particles. Accordingly, the bonding force between the particles is improved, and as a result, the contact between the bonded particles is strengthened and a conductive path can be secured. Furthermore, as an effect of using the technology of the present invention, even when the battery using the material of the present invention is repeatedly charged and discharged, even if the negative electrode active material expands / shrinks, the anode constituent material particles are intercalated between Li, B, Mg, Since the compound of Bi, F, and P is firmly bonded, expansion / contraction can be suppressed, and the decrease in conductivity between the material particles can be suppressed, so that the charge / discharge characteristics of the non-aqueous secondary battery can be improved. I can do it.

以上、具体例を参照しつつ、本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるのもではない。
例えば、本実施形態の負極活物質を用いるリチウム二次電池は、スパイラル式円筒形のリチウム二次電池に限らず、コイン形のリチウム二次電池や、角形のリチウム二次電池においても本発明の特徴を有する限り同様の効果が得られる。
本実施形態の負極活物質の組成や、それに含まれるMe元素の種類、各構成部材の材質、形状、製造工程、製造条件、リチウム二次電池の形状等の構成に関して、本発明の特徴を有する限り、本発明の範囲に包含される。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples.
For example, the lithium secondary battery using the negative electrode active material of the present embodiment is not limited to a spiral cylindrical lithium secondary battery, but also in a coin-type lithium secondary battery or a square lithium secondary battery. The same effect can be obtained as long as it has characteristics.
The composition of the negative electrode active material of the present embodiment, the type of Me element contained therein, the material, shape, manufacturing process, manufacturing conditions of each component, the configuration of the lithium secondary battery, etc. have the features of the present invention. As long as it is within the scope of the present invention.

本実施形態の非水二次電池を示す縦断面図である。It is a longitudinal cross-sectional view which shows the non-aqueous secondary battery of this embodiment.

符号の説明Explanation of symbols

1 非水二次電池
2 ケース
3 正極
4 負極
5 セパレータ
6 センターピン
7 正極端子
8 負極端子
10 積層体
DESCRIPTION OF SYMBOLS 1 Nonaqueous secondary battery 2 Case 3 Positive electrode 4 Negative electrode 5 Separator 6 Center pin 7 Positive electrode terminal 8 Negative electrode terminal 10 Laminated body

Claims (3)

リチウムの挿入、脱離が可能な負極活物質粒子と、前記負極活物質粒子とは異なる負極構成材料粒子とを少なくとも備える非水二次電池用負極において、
前記負極活物質粒子および前記負極構成材料粒子のうち少なくともいずれかの粒子表面、前記負極活物質粒子と前記負極構成材料粒子との粒子界面に、Li、B、Mg、Bi、F、Pの内一つ以上の元素を含む化合物を存在させたことを特徴とする非水二次電池用負極。
In a negative electrode for a non-aqueous secondary battery comprising at least negative electrode active material particles capable of inserting and desorbing lithium, and negative electrode constituent material particles different from the negative electrode active material particles,
The surface of at least one of the negative electrode active material particles and the negative electrode constituent material particles, and the particle interface between the negative electrode active material particles and the negative electrode constituent material particles, include Li, B, Mg, Bi, F, and P. A negative electrode for a non-aqueous secondary battery, wherein a compound containing one or more elements is present.
前記化合物は、前記負極活物質粒子および前記負極構成材料粒子と混合された後に、不活性ガス雰囲気中で焼成されたものであることを特徴とする請求項1に記載の非水二次電池用負極。   2. The non-aqueous secondary battery according to claim 1, wherein the compound is mixed with the negative electrode active material particles and the negative electrode constituent material particles and then fired in an inert gas atmosphere. Negative electrode. 請求項1または請求項2に記載の非水二次電池用負極を用いたことを特徴とする非水二次電池。   A nonaqueous secondary battery using the negative electrode for a nonaqueous secondary battery according to claim 1.
JP2007162242A 2007-06-20 2007-06-20 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same Active JP5260896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007162242A JP5260896B2 (en) 2007-06-20 2007-06-20 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007162242A JP5260896B2 (en) 2007-06-20 2007-06-20 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2009004148A true JP2009004148A (en) 2009-01-08
JP5260896B2 JP5260896B2 (en) 2013-08-14

Family

ID=40320321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007162242A Active JP5260896B2 (en) 2007-06-20 2007-06-20 Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5260896B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048820A (en) * 1998-07-27 2000-02-18 Sanyo Electric Co Ltd Lithium secondary battery
JP2000164218A (en) * 1998-11-25 2000-06-16 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
JP2000311692A (en) * 1999-04-27 2000-11-07 Kyocera Corp Manufacture of electrochemical element
JP2000340261A (en) * 1999-04-07 2000-12-08 Hydro Quebec COMPLEX TREATMENT WITH LiPO3
JP2001015101A (en) * 1999-06-28 2001-01-19 Matsushita Battery Industrial Co Ltd Nonqueous electrolyte secondary battery, its negative electrode, and negative electrode material
JP2002087807A (en) * 2000-09-11 2002-03-27 Hitachi Maxell Ltd Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2007005201A (en) * 2005-06-27 2007-01-11 Mitsubishi Heavy Ind Ltd Negative electrode material for lithium battery, negative electrode, lithium battery, and its manufacturing method and equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048820A (en) * 1998-07-27 2000-02-18 Sanyo Electric Co Ltd Lithium secondary battery
JP2000164218A (en) * 1998-11-25 2000-06-16 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
JP2000340261A (en) * 1999-04-07 2000-12-08 Hydro Quebec COMPLEX TREATMENT WITH LiPO3
JP2000311692A (en) * 1999-04-27 2000-11-07 Kyocera Corp Manufacture of electrochemical element
JP2001015101A (en) * 1999-06-28 2001-01-19 Matsushita Battery Industrial Co Ltd Nonqueous electrolyte secondary battery, its negative electrode, and negative electrode material
JP2002087807A (en) * 2000-09-11 2002-03-27 Hitachi Maxell Ltd Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2007005201A (en) * 2005-06-27 2007-01-11 Mitsubishi Heavy Ind Ltd Negative electrode material for lithium battery, negative electrode, lithium battery, and its manufacturing method and equipment

Also Published As

Publication number Publication date
JP5260896B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5899442B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR102108159B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
KR102525619B1 (en) Rechargeable lithium battery
JP2019016483A (en) Nonaqueous electrolyte secondary battery
KR101082152B1 (en) Electrolyte for improving life characteristics at a high temperature and lithium secondary battery comprising the same
JP4794172B2 (en) Non-aqueous electrolyte secondary battery and charging method thereof
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
KR102112207B1 (en) Non-aqueous electrolyte solution and lithium secondary battery comprising the same
JP2009129721A (en) Non-aqueous secondary battery
JP2010129192A (en) Lithium ion secondary battery and method for manufacturing the same
JP2008071559A (en) Lithium-ion secondary battery
JP2004022379A (en) Secondary cell, electrolyte therefor and usage thereof
US8906255B2 (en) Lithium-ion secondary battery
KR101897384B1 (en) Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and process for producing same
JP2004031244A (en) Nonaqueous electrolyte and secondary battery using the same
JP4083040B2 (en) Lithium battery
JP5260893B2 (en) Non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP2008282550A (en) Anode for lithium secondary battery and lithium secondary cell using the same
JP4691775B2 (en) Lithium secondary battery
JP2010033830A (en) Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US20190260080A1 (en) Non-aqueous Electrolyte and Lithium Secondary Battery Including the Same
JP5271751B2 (en) Lithium ion secondary battery
JP7006614B2 (en) Electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries using them
JP2006032296A (en) Negative electrode and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250