JP2009001473A - Copper oxide powder - Google Patents

Copper oxide powder Download PDF

Info

Publication number
JP2009001473A
JP2009001473A JP2007166984A JP2007166984A JP2009001473A JP 2009001473 A JP2009001473 A JP 2009001473A JP 2007166984 A JP2007166984 A JP 2007166984A JP 2007166984 A JP2007166984 A JP 2007166984A JP 2009001473 A JP2009001473 A JP 2009001473A
Authority
JP
Japan
Prior art keywords
copper
oxide powder
copper oxide
powder
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007166984A
Other languages
Japanese (ja)
Other versions
JP4977820B2 (en
Inventor
Kazushi Kamimura
一志 上村
Masami Mogi
正実 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2007166984A priority Critical patent/JP4977820B2/en
Publication of JP2009001473A publication Critical patent/JP2009001473A/en
Application granted granted Critical
Publication of JP4977820B2 publication Critical patent/JP4977820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper oxide powder which easily realizes high crystal growth in a copper-containing multiple oxide and excels also in work efficiency. <P>SOLUTION: The copper oxide powder has an average particle diameter of primary particles of 0.5-40 nm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅を含有する複合酸化物の製造に適した酸化銅粉末に関する。   The present invention relates to a copper oxide powder suitable for producing a complex oxide containing copper.

酸化物超電導体の分野を始めとして各種の分野において、含銅複合酸化物が用いられている。これらの含銅複合酸化物に対しては、ペロブスカイト構造を始めとする各種の結晶構造が十分に成長していることが要求される。そして、当該要求を満足するため、これらの含銅複合酸化物の使用原料や焼成条件に対し、様々な提案がなされている。
本願出願人も、特許文献1において、これらの含銅複合酸化物の製造に適する酸化銅粉末の製造方法について開示した。
Copper-containing composite oxides are used in various fields including the field of oxide superconductors. For these copper-containing composite oxides, various crystal structures including a perovskite structure are required to be sufficiently grown. And in order to satisfy the said request | requirement, various proposals are made | formed with respect to the use raw material and baking conditions of these copper containing complex oxide.
The applicant of the present application also disclosed in Patent Document 1 a method for producing a copper oxide powder suitable for producing these copper-containing composite oxides.

特公平5−59845号公報Japanese Patent Publication No. 5-59845

本願出願人が特許文献1において開示した方法で製造した酸化銅粉末は、含銅複合酸化物として酸化物超電導材料を例とした場合、有効なペロプスカイト型の構造を得やすく、従来よりも高い超電導特性を発揮する事が可能である。
しかし、当該酸化物超電導材料を始め、各種触媒の分野において、さらに、高い結晶性を有する含銅複合酸化物を容易に製造可能とする酸化銅粉末に対する期待は、大きなものであった。
そこで、本発明者らは、これらの期待に応えるべく、含銅複合酸化物において容易に高い結晶成長を実現し、作業性にも優れた酸化銅粉末の提供を本発明の課題とした。
The copper oxide powder produced by the method disclosed in Patent Document 1 by the applicant of the present application is easy to obtain an effective perovskite structure when an oxide superconducting material is used as a copper-containing composite oxide. It is possible to demonstrate superconducting properties.
However, in the field of various catalysts including the oxide superconducting material, there is a great expectation for a copper oxide powder that can easily produce a copper-containing composite oxide having high crystallinity.
Therefore, in order to meet these expectations, the present inventors have made it an object of the present invention to provide a copper oxide powder that easily realizes high crystal growth in a copper-containing composite oxide and is excellent in workability.

上述の課題を解決するため、本発明者らが研究を行った結果、従来の技術に係る酸化銅粉末よりも、遙かに微細な1次粒径を有する酸化銅粉末に想到した。そして、当該微細な1次粒子を有する酸化銅粉末を用いて、含銅複合酸化物の例として酸化物超電導体を製造してみたところ、従来の酸化銅粉末を使用した場合に較べ、超電導特性が向上することを確認し、本発明を完成した。   As a result of studies conducted by the present inventors in order to solve the above-mentioned problems, a copper oxide powder having a much finer primary particle diameter than the copper oxide powder according to the prior art has been conceived. And when the oxide superconductor was manufactured as an example of copper containing complex oxide using the copper oxide powder which has the said fine primary particle, compared with the case where the conventional copper oxide powder is used, it is a superconducting characteristic. As a result, the present invention was completed.

即ち、上述の課題を解決するための第1の手段は、
1次粒子の平均粒子径が、0.5nm以上、40nm以下であることを特徴とする酸化銅粉末である。
That is, the first means for solving the above-described problem is:
The copper oxide powder is characterized in that the primary particles have an average particle diameter of 0.5 nm or more and 40 nm or less.

第2の手段は、
2次粒子が第1の手段に記載の1次粒子の凝集体であって、当該2次粒子の比表面積が70m/g以上、300m/g以下であることを特徴とする酸化銅粉末である。
The second means is
The copper oxide powder, wherein the secondary particles are aggregates of primary particles as described in the first means, and the specific surface area of the secondary particles is 70 m 2 / g or more and 300 m 2 / g or less. It is.

本発明によれば、従来の技術に係る酸化銅粉末と同条件で含銅複合酸化物を製造した場合、より結晶性の優れた含銅複合酸化物を製造することが出来た。   According to the present invention, when a copper-containing composite oxide is produced under the same conditions as the copper oxide powder according to the prior art, a copper-containing composite oxide having better crystallinity can be produced.

本発明に係る酸化銅粉末は、1次粒子の平均粒子径が0.5nm〜40nmという粉体特性を有する。ここで粒子径の平均値(平均粒子径)は、1次粒子をTEM(透過型電子顕微鏡)または、SEM(電解放出型走査電子顕微鏡)で観察し、1次粒子形状を確認で
きる粒子100個以上を選択し、各粒子の最も長い部分の長さを測定し、その平均値として求めた。さらに、当該酸化銅粉末は、当該1次粒子が凝集し、比表面積が70m/g〜300m/gの2次粒子を形成している。
The copper oxide powder according to the present invention has powder characteristics such that the average particle diameter of primary particles is 0.5 nm to 40 nm. Here, the average value of the particle diameter (average particle diameter) is 100 particles whose primary particles can be confirmed by observing the primary particles with a TEM (transmission electron microscope) or SEM (electrolytic emission scanning electron microscope). The above was selected, the length of the longest part of each particle was measured, and the average value was obtained. Furthermore, the copper oxide powder, the primary particles are agglomerated, the specific surface area to form a secondary particle of 70m 2 / g~300m 2 / g.

本発明者らは研究の結果、1次粒子の平均粒子径が0.5nm〜40nmという超微細な平均粒子を有する酸化銅粉末を用いて、含銅複合酸化物の例として酸化物超電導体を製造してみたところ、従来の酸化銅粉末を使用した場合に較べ超電導特性が向上することを確認した。本発明に係る酸化銅粉末が、このような超電導特性向上をもたらした機構を解明すべく、当該酸化物超電導体を分析し、結晶性が向上していることを見出した。
酸化銅粉末の1次粒子の平均粒子径を40nm以下に超微細化することで、含銅複合酸化物の結晶性が向上する機構の詳細は未だ不明であるが、比表面積の拡大、表面エネルギーの増加等が考えられる。
一方、本発明者らの製造方法によれば、1次粒子の平均粒子径が0.5nm以上の粒子であれば、比較的容易、且つ、高い生産性をもって製造することが出来る。
As a result of research, the present inventors have used an oxide superconductor as an example of a copper-containing composite oxide using a copper oxide powder having an ultrafine average particle having an average particle diameter of primary particles of 0.5 nm to 40 nm. As a result of manufacturing, it was confirmed that the superconducting characteristics were improved as compared with the case of using conventional copper oxide powder. In order to elucidate the mechanism by which the copper oxide powder according to the present invention has improved such superconducting properties, the oxide superconductor was analyzed and found to have improved crystallinity.
The details of the mechanism by which the crystallinity of the copper-containing composite oxide is improved by making the average particle size of the primary particles of the copper oxide powder ultrafine to 40 nm or less are still unclear, but the specific surface area is increased, the surface energy is increased. An increase in
On the other hand, according to the production method of the present inventors, if the average particle diameter of the primary particles is 0.5 nm or more, the particles can be produced relatively easily and with high productivity.

さらに本発明に係る酸化銅粉末は、上述した構成を有する1次粒子が凝集して比表面積が70m/g〜300m/g、粒径が1μm〜3μmの2次粒子を形成している。この結果、本発明に係る酸化銅粉末は、微細な粒径を有する粒子を含みながらも取り扱い易く、高い作業性を発揮する粉体となっている。 Further copper oxide powder according to the present invention, primary particles agglomerated specific surface area is 70m 2/300 m 2 / g having the structure described above, the particle size to form a secondary particle of 1μm~3μm . As a result, the copper oxide powder according to the present invention is a powder that is easy to handle and exhibits high workability while containing particles having a fine particle size.

次に、本発明に係る酸化銅を生産する方法の一例について説明する。
まず、純度99.9%以上の硝酸銅水和物(Cu(NO・nHO)20kgを、60Lタンクに投入する。そこへ純水(導電率1μs)を加え、およそ10分間撹拌機にて攪拌して溶解し、銅濃度140〜300g/Lの硝酸銅水溶液とする。さらに好ましくは銅濃度220〜300g/Lの範囲とする。この時の溶解温度を15℃以下、さらに好ましくは5℃以下とする。
Next, an example of a method for producing copper oxide according to the present invention will be described.
First, 20 kg of copper nitrate hydrate (Cu (NO 3 ) 2 .nH 2 O) having a purity of 99.9% or more is put into a 60 L tank. Pure water (conductivity 1 μs) is added thereto and dissolved by stirring for about 10 minutes with a stirrer to obtain an aqueous copper nitrate solution having a copper concentration of 140 to 300 g / L. More preferably, the copper concentration is in the range of 220 to 300 g / L. The melting temperature at this time is 15 ° C. or lower, more preferably 5 ° C. or lower.

上記、硝酸銅水溶液と並行して、純度95%以上の炭酸水素アンモニウム(NHHCO)15kgを、200Lタンクに投入する。そこへ、150±5Lの純水(導電率1μs)を加え、撹拌機にて攪拌して溶解し、濃度100g/L前後の炭酸水素アンモニウム水溶液とする。溶解時間に規定はなく、炭酸水素アンモニウムが完全に溶解するまで撹拌を行う。このときの溶解温度を15℃以下、さらに好ましくは5℃以下とする。 In parallel with the copper nitrate aqueous solution, 15 kg of ammonium hydrogen carbonate (NH 4 HCO 3 ) having a purity of 95% or more is charged into a 200 L tank. 150 ± 5 L of pure water (conductivity 1 μs) is added thereto and dissolved by stirring with a stirrer to obtain an aqueous ammonium bicarbonate solution having a concentration of about 100 g / L. The dissolution time is not specified, and stirring is performed until the ammonium hydrogen carbonate is completely dissolved. The melting temperature at this time is 15 ° C. or lower, more preferably 5 ° C. or lower.

上記、200Lタンク内にて製造した炭酸水素アンモニウム水溶液を攪拌しながら、硝酸銅水溶液を3L/minの速度で連続添加し逆中和反応を行う。
このときの炭酸水素アンモニウム水溶液の攪拌は、例えば、3枚・1段羽の撹拌機を当該200Lタンクの底部中心から5〜10cmの位置に設置するのが望ましい。また撹拌機の回転速度は150±30rpmとした。
これは、例えば300rpmを超えるような強撹拌を行うと、得られる1次粒子形状が球状もしくは不定形状となり、均一な粒子径を得る事が困難となること。また2次粒子径が1.0〜10.0μm程度の凝集体が混在しているものとなり、均一な径を有する2次粒子径を得ることが困難と成ることによる。
While stirring the aqueous ammonium hydrogen carbonate solution produced in the 200 L tank, a copper nitrate aqueous solution is continuously added at a rate of 3 L / min to carry out a reverse neutralization reaction.
For stirring the aqueous ammonium hydrogen carbonate solution at this time, it is desirable to install, for example, a three-stage, one-stage stirrer at a position of 5 to 10 cm from the bottom center of the 200 L tank. The rotational speed of the stirrer was 150 ± 30 rpm.
This is because, for example, when strong agitation exceeding 300 rpm is performed, the resulting primary particle shape becomes spherical or indefinite, making it difficult to obtain a uniform particle size. In addition, aggregates having a secondary particle diameter of about 1.0 to 10.0 μm are mixed, which makes it difficult to obtain a secondary particle diameter having a uniform diameter.

逆中和反応時間は、10±1分間として急激な核生成をさせて反応を終了するのが望ましい。尚、このときの反応は吸熱反応である為、液温度は15±5℃程度の範囲となるが、さらに好ましくは10℃以下とする。   The reverse neutralization reaction time is preferably 10 ± 1 minutes, and it is desirable to cause rapid nucleation to complete the reaction. Since the reaction at this time is an endothermic reaction, the liquid temperature is in the range of about 15 ± 5 ° C., more preferably 10 ° C. or less.

続いて得られた反応液を、上排出型遠心分離機を用いて固液分離する。
反応液全量を固液分離した後、濾液が排出されなくなったら、当該上排出型遠心分離機投入口より60±3℃の純温水を26.6L/min投入し45分間洗浄を行う。1回約
1200Lの純水を用い、計1回温水洗浄を行う。
このとき、純温水の液温が70℃以下であれば、洗浄中の塩基性炭酸銅表面が酸化し始めるのを回避出来、スラリー内部までの均一な純温水洗浄が可能となる。また純温水温度が50℃以上あれば、洗浄時間が長引かず、均一に洗浄が可能となる。
Subsequently, the obtained reaction liquid is subjected to solid-liquid separation using an upper discharge centrifuge.
When the filtrate is no longer discharged after solid-liquid separation of the entire reaction solution, 26.6 L / min of pure hot water at 60 ± 3 ° C. is charged from the upper discharge centrifuge inlet and washed for 45 minutes. Using about 1200 L of pure water at a time, hot water washing is performed once in total.
At this time, if the liquid temperature of pure warm water is 70 ° C. or less, it is possible to avoid the surface of the basic copper carbonate being washed from being oxidized, and uniform pure warm water washing up to the inside of the slurry becomes possible. If the pure warm water temperature is 50 ° C. or higher, the cleaning time is not prolonged and the cleaning can be performed uniformly.

当該固液分離を吸引濾過またはフィルタープレスで行うことも考えられる。但し、この場合は、ケーキにひび割れが生じて洗浄が不十分となり易く、銅錯塩と硝酸根、CO等が混在する状態となる。その結果、そのまま乾燥させると、粒子が一部溶解してすぐに固まる為か、崩れた形態の粒子が混在する。さらに、1次粒子間に不純物等が残留し易くなるので好ましくない。 It is conceivable that the solid-liquid separation is performed by suction filtration or filter press. However, in this case, cracks are generated in the cake, and the cleaning is likely to be insufficient, and a state in which copper complex salt, nitrate radical, CO 3 and the like are mixed is present. As a result, if the particles are dried as they are, some of the particles dissolve and harden immediately. Furthermore, impurities and the like are likely to remain between the primary particles, which is not preferable.

こうして得られたスラリー状の塩基性炭酸銅(CuCO・Cu(OH)・nHO)を強制排気型温風乾燥機にて110±10℃の温度で17時間以上乾燥させる。 The slurry-like basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) thus obtained is dried at a temperature of 110 ± 10 ° C. for 17 hours or more in a forced exhaust hot air dryer.

この乾燥後の塩基性炭酸銅の1次粒子を電界放出型走査電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)にて確認したところ、0.5nm〜40nmの平均粒子径を有していた。
さらに、2次粒子径をレーザー回折式粒度分布測定装置にて測定したところ、径が1〜3μm程度の均一な凝集体である事が確認された。
When the primary particles of the basic copper carbonate after drying were confirmed by a field emission scanning electron microscope (SEM) and a transmission electron microscope (TEM), they had an average particle diameter of 0.5 nm to 40 nm. .
Furthermore, when the secondary particle diameter was measured with a laser diffraction particle size distribution analyzer, it was confirmed that the secondary particle diameter was a uniform aggregate having a diameter of about 1 to 3 μm.

続いて、得られた塩基性炭酸銅の乾燥物をステンレス製バット10枚程度に小分けし、250±5℃の温度範囲内で10時間焼成を行う。
焼成温度が300℃以下であれば、1次粒子の焼結の過促進による2次凝集体の肥大化を回避出来るからである。また、当該焼成時の条件として、焼成バット内の塩基性炭酸銅の層厚を30mm以下とし、下層部まで十分に熱を伝え、未反応な部位を残さないことが好ましい。
Subsequently, the obtained dried basic copper carbonate is subdivided into about 10 stainless steel vats and fired for 10 hours within a temperature range of 250 ± 5 ° C.
This is because if the firing temperature is 300 ° C. or less, enlargement of secondary aggregates due to excessive promotion of sintering of primary particles can be avoided. Moreover, as the conditions at the time of the firing, it is preferable that the layer thickness of the basic copper carbonate in the firing vat is 30 mm or less, heat is sufficiently transmitted to the lower layer portion, and no unreacted site is left.

(実施例1)
<酸化銅粉末の製造>
純度99.0%以上の硝酸銅(Cu(NO))と、純度95%以上の炭酸水素アンモニウム(NHHCO)とを準備した。
内容量60Lタンクに、硝酸銅20kgを投入し、導電率1μsの純水を25L加えて10分間撹拌機にて溶解し、銅濃度227g/Lの硝酸銅水溶液とした。このとき、溶解温度は5±1℃に制御した。pHは1.6であった。
一方、内容量200Lタンク内に炭酸水素アンモニウム15kgを投入し、導電率1μsの純水を150L加えた後、撹拌機で溶解し、濃度100g/Lの炭酸水素アンモニウ
ム水溶液とした。このとき、溶解温度は5±1℃に制御した。pHは7.6であった。
(Example 1)
<Manufacture of copper oxide powder>
Copper nitrate (Cu (NO 3 ) 2 ) having a purity of 99.0% or more and ammonium hydrogen carbonate (NH 4 HCO 3 ) having a purity of 95% or more were prepared.
20 kg of copper nitrate was put into a tank with an internal capacity of 60 L, 25 L of pure water having an electrical conductivity of 1 μs was added and dissolved with a stirrer for 10 minutes to obtain a copper nitrate aqueous solution having a copper concentration of 227 g / L. At this time, the dissolution temperature was controlled to 5 ± 1 ° C. The pH was 1.6.
On the other hand, 15 kg of ammonium hydrogen carbonate was put into a 200 L tank, 150 L of pure water having a conductivity of 1 μs was added, and then dissolved with a stirrer to obtain an aqueous ammonium hydrogen carbonate solution having a concentration of 100 g / L. At this time, the dissolution temperature was controlled to 5 ± 1 ° C. The pH was 7.6.

当該溶解した炭酸水素アンモニウム水溶液を攪拌し、ここへ前記硝酸銅水溶液を3.5L/minの速度で連続添加し逆中和反応を行った。このとき撹拌機として、3枚・1段羽のものを用い当該200Lタンクの底部中心から7cmの位置に設置した。また撹拌機の回転速度は150rpmとした。
当該逆中和反応時間は10分間程度で核生成させて反応を終了させ、スラリー状の反応液を得た。熟成後のpHは6.0であった。
The dissolved aqueous ammonium hydrogen carbonate solution was stirred, and the aqueous copper nitrate solution was continuously added thereto at a rate of 3.5 L / min to carry out a reverse neutralization reaction. At this time, as a stirrer, a three-stage, one-stage blade was used, and the stirrer was installed at a position 7 cm from the bottom center of the 200 L tank. The rotational speed of the stirrer was 150 rpm.
The reverse neutralization reaction time was nucleated in about 10 minutes to complete the reaction, and a slurry-like reaction solution was obtained. The pH after aging was 6.0.

続いて当該スラリー状の反応液を、上排出型遠心分離機内に設置して固液分離を行う。そして、反応液全量を固液分離した後、濾液が排出されなくなったら、当該上排出型遠心分離機投入口より、60℃の純温水を26.6L/min投入し45分間の洗浄を行った。1回1200Lの60℃の純温水を用い、計1回の洗浄を行った。   Subsequently, the slurry-like reaction liquid is placed in an upper discharge centrifuge to perform solid-liquid separation. When the filtrate was not discharged after solid-liquid separation of the entire reaction solution, 26.6 L / min of pure hot water at 60 ° C. was added from the upper discharge centrifuge inlet, and washing was performed for 45 minutes. . Washing was performed once in total using 1200 L of pure hot water at 60 ° C.

こうして得られた洗浄後のスラリー状塩基性炭酸銅を、強制排気型乾燥機にて110℃の温度で17時間乾燥させて塩基性炭酸銅粒子を得た。続いて当該塩基性炭酸銅の乾燥物をステンレス製バット10枚程度に小分けし、250℃の温度範囲内で10時間の焼成を行い、本実施例に係る酸化銅を得た。   The washed slurry-like basic copper carbonate thus obtained was dried for 17 hours at a temperature of 110 ° C. in a forced exhaust dryer to obtain basic copper carbonate particles. Subsequently, the dried product of the basic copper carbonate was subdivided into about 10 stainless steel bats and baked for 10 hours within a temperature range of 250 ° C. to obtain a copper oxide according to this example.

得られた酸化銅粉末の粉体物性を示す。
(1)比表面積 86m/g
(2)1次粒子径(平均粒子径) 10nm
(3)2次粒子平均径 2.5μm
尚、比表面積はBET法にて求めた値である。1次粒子径は電解放出型走査電子顕微鏡(SEM)にて撮影した画像からの実測値であり、2次平均粒径はWINDOX製Helos&Rodos乾式レーザー回折式粒度分布測定装置にて測定した値である。
また、実施例1に係る酸化銅粉末の10万倍のSEM写真を図1に示す。
The powder physical property of the obtained copper oxide powder is shown.
(1) Specific surface area 86 m 2 / g
(2) Primary particle diameter (average particle diameter) 10 nm
(3) Secondary particle average diameter 2.5 μm
The specific surface area is a value determined by the BET method. The primary particle size is an actual measurement value from an image taken with a field emission scanning electron microscope (SEM), and the secondary average particle size is a value measured with a WINDOWX Helos & Rodos dry laser diffraction particle size distribution analyzer. .
In addition, a 100,000 times SEM photograph of the copper oxide powder according to Example 1 is shown in FIG.

<酸化物超電導体の製造>
製造した実施例1に係る酸化銅粉末を用いて、酸化物超電導体を製造した。
まず、当該酸化銅粉末、Gd、BaCOを、原子数比がGd:Ba:Cu=1:2:3となるように秤量した後混合した。そして、当該混合物を900℃で20時間の焼成を行い、焼成粉を得た。次いで、この焼成粉をポットミルを用いて平均粒径3μmに粉砕し、再び930℃で30時間焼成した後、ライカイ機で平均粒径10μmに粉砕し、Gd1.0Ba2.0Cu3.07-xの粉末を作成した。
<Manufacture of oxide superconductor>
An oxide superconductor was manufactured using the manufactured copper oxide powder according to Example 1.
First, the copper oxide powder, Gd 2 O 3 , and BaCO 3 were weighed and mixed so that the atomic ratio was Gd: Ba: Cu = 1: 2: 3. And the said mixture was baked at 900 degreeC for 20 hours, and the baked powder was obtained. Then, the calcined powder using a pot mill and ground to an average particle diameter of 3 [mu] m, and calcined for 30 hours again 930 ° C., and pulverized to an average particle size of 10μm in a chaser mill, Gd 1.0 Ba 2.0 Cu 3. A powder of 0 O 7-x was prepared.

次いで、当該酸化銅粉末、Gd、BaCOを、原子数比がGd:Ba:Cu=2:1:1となるように秤量した後混合した。そして、当該混合物を890℃で20時間の焼成を行い、焼成粉を得た。次いで、この焼成粉をポットミルを用いて平均粒径0.5μmに粉砕し、Gd2.0Ba1.0Cu1.0の粉末を製造した。 Next, the copper oxide powder, Gd 2 O 3 , and BaCO 3 were weighed and mixed so that the atomic ratio was Gd: Ba: Cu = 2: 1: 1. And the said mixture was baked at 890 degreeC for 20 hours, and the baked powder was obtained. Next, this fired powder was pulverized to a mean particle size of 0.5 μm using a pot mill to produce a powder of Gd 2.0 Ba 1.0 Cu 1.0 O 5 .

上記製造されたGd1.0Ba2.0Cu3.07-x粉と、Gd2.0Ba1.0Cu1.0粉とを、Gd1.0Ba2.0Cu3.07-x:Gd2.0Ba1.0Cu1.0=1:0.2になるよう秤量して混合し、さらに0.52重量%のPt粉末、および、15重量%のAgO粉末を加えて混合して合成粉を得た。 The Gd 1.0 Ba 2.0 Cu 3.0 O 7-x powder and the Gd 2.0 Ba 1.0 Cu 1.0 O 5 powder manufactured as described above are used as Gd 1.0 Ba 2.0 Cu. 3.0 O 7-x : Gd 2.0 Ba 1.0 Cu 1.0 O 5 = 1: 0.2 and weighed and mixed, then 0.52 wt% Pt powder, and 15 A weight percent Ag 2 O powder was added and mixed to obtain a synthetic powder.

製造された合成粉を、80×65mm、厚さ26mmの直方状態にプレス成型して前駆体を製造した。製造された前駆体を1100℃付近まで上昇させて融液とした。当該融液へ、予め溶融凝固させておいたNd1.8Ba2.4Cu3.4組成の種結晶を、c軸
と平行になる様に前駆体融液上部中央に接触させ、前駆体融液上下に温度勾配をつけながら100時間以上かけて除冷し結晶化を行った。当該結晶化により製造された超電導溶融体を、酸素雰囲気に置換させたガス置換炉でアニール処理を施して、酸化物超電導体を製造した。
The produced synthetic powder was press-molded into a 80 × 65 mm, 26 mm thick rectangular state to produce a precursor. The produced precursor was raised to around 1100 ° C. to obtain a melt. A seed crystal having a composition of Nd 1.8 Ba 2.4 Cu 3.4 O x previously melted and solidified is brought into contact with the melt at the upper center of the precursor melt so as to be parallel to the c-axis. Crystallization was carried out by removing the temperature over 100 hours while applying a temperature gradient above and below the precursor melt. An oxide superconductor was manufactured by subjecting the superconducting melt manufactured by the crystallization to annealing treatment in a gas replacement furnace in which the superconducting melt was replaced with an oxygen atmosphere.

製造した酸化物超電導体を、外部磁場2Tを加えながら77Kまで冷却し、その後、磁場を取り去って酸化物超電導体中央に捕捉される磁束密度を測定したところ1.63Tの値であることが確認された。
当該捕捉磁場の測定結果を示すグラフを図2に示す。
当該グラフは、X軸およびY軸に試料の位置をとり、Z軸に捕捉磁場の強度をとったグラフである。
The manufactured oxide superconductor was cooled to 77K while applying an external magnetic field of 2T, and then the magnetic flux density captured at the center of the oxide superconductor after removing the magnetic field was confirmed to be 1.63T. It was done.
A graph showing the measurement result of the trapped magnetic field is shown in FIG.
The graph is a graph in which the position of the sample is taken on the X axis and the Y axis, and the intensity of the captured magnetic field is taken on the Z axis.

(比較例1)
<酸化銅粉末の製造>
純度99.9%以上の硝酸銅水和物(Cu(NO・nHO)20kgを、200Lタンクに投入する。そこへ35±1Lの純水(導電率1μs)を加え、撹拌機にて10分間溶解を行い、銅濃度が約162g/Lの硝酸銅水溶液とした。このときの溶解温度は21℃に制御した。
(Comparative Example 1)
<Manufacture of copper oxide powder>
20 kg of copper nitrate hydrate (Cu (NO 3 ) 2 .nH 2 O) having a purity of 99.9% or more is put into a 200 L tank. 35 ± 1 L of pure water (conductivity 1 μs) was added thereto and dissolved with a stirrer for 10 minutes to obtain a copper nitrate aqueous solution having a copper concentration of about 162 g / L. The melting temperature at this time was controlled at 21 ° C.

一方、実施例1と同様に製造した炭酸水素アンモニウム水溶液150g/Lを、定量ポンプを用いて上記硝酸銅水溶液の入っている200Lタンクに少量ずつ連続的に注入して中和反応を行った。尚、液温度を26℃に制御した。   On the other hand, 150 g / L of ammonium hydrogen carbonate aqueous solution produced in the same manner as in Example 1 was continuously injected little by little into a 200 L tank containing the aqueous copper nitrate solution using a metering pump to carry out a neutralization reaction. The liquid temperature was controlled at 26 ° C.

当該中和反応の条件として、反応温度を26℃(±1℃)前後になる様に温度コントローラーを用いて恒温槽内の温度を調節した。また、タンク内の撹拌機の速度を150rpmとして45分間をかけて中和を行った。   As a condition for the neutralization reaction, the temperature in the thermostatic bath was adjusted using a temperature controller so that the reaction temperature was around 26 ° C. (± 1 ° C.). Moreover, neutralization was performed over 45 minutes with the speed of the stirrer in the tank being 150 rpm.

続いて反応液を上排出型遠心分離機にて固液分離を行う。
反応液全量を固液分離した後、濾液が排出されなくなったら上排出型遠心分離機投入口より室温の純水を投入し、およそ3時間程洗浄を行う。当該洗浄は、1回約9000Lの純水を用い、計2回水洗濾過を行った。
当該水洗後のスラリー状の塩基性炭酸銅(CuCO・Cu(OH)・nHO)を、強制排気型温風乾燥機にて110℃の温度で48時間乾燥させた。次いで得られた乾燥物をステンレス製バットに移して、250℃で15時間焼成し酸化銅粉末を得た。
Subsequently, the reaction solution is subjected to solid-liquid separation using an upper discharge centrifuge.
After solid-liquid separation of the total amount of the reaction solution, when the filtrate is no longer discharged, pure water at room temperature is introduced from the top of the top discharge type centrifugal separator and washed for about 3 hours. The washing was performed twice with a total of about 9000 L of pure water and twice with water.
The slurry-like basic copper carbonate (CuCO 3 · Cu (OH) 2 · nH 2 O) after the water washing was dried at a temperature of 110 ° C. for 48 hours in a forced exhaust hot air dryer. Next, the obtained dried product was transferred to a stainless steel vat and baked at 250 ° C. for 15 hours to obtain a copper oxide powder.

得られた酸化銅粉末の粉体物性を示す。
(1)比表面積 7.6m/g
(2)1次粒子径(平均粒子径) 60nm
(3)2次粒子平均径 2.1μm
尚、測定条件は、実施例1と同様である。
The powder physical property of the obtained copper oxide powder is shown.
(1) Specific surface area 7.6 m 2 / g
(2) Primary particle size (average particle size) 60 nm
(3) Secondary particle average diameter 2.1 μm
Measurement conditions are the same as in Example 1.

<酸化物超電導体の製造>
製造した比較例1に係る酸化銅粉末を用いて、実施例1と同様の操作を行って、超電導溶融体を製造した。そして製造した比較例1に係る超電導溶融体を、実施例1と同様に、酸素雰囲気に置換させたガス置換炉でアニール処理を施したのち、外部磁場2Tを加えながら77Kまで冷却した。その後磁場を取り去って超電導体中央に捕捉される磁束密度を測定したところ1.3Tの値であることが確認された。
当該捕捉磁場の測定結果を示す実施例1と同様のグラフを図3に示す。
<Manufacture of oxide superconductor>
Using the copper oxide powder according to Comparative Example 1 produced, the same operation as in Example 1 was performed to produce a superconducting melt. Then, the manufactured superconducting melt according to Comparative Example 1 was annealed in a gas substitution furnace substituted with an oxygen atmosphere in the same manner as in Example 1, and then cooled to 77K while applying the external magnetic field 2T. Thereafter, the magnetic field was removed and the magnetic flux density trapped in the center of the superconductor was measured, and it was confirmed that the value was 1.3T.
A graph similar to Example 1 showing the measurement result of the trapped magnetic field is shown in FIG.

実施例1にかかる酸化銅粉末の10万倍のSEM写真である。4 is a 100,000 times SEM photograph of the copper oxide powder according to Example 1. FIG. 実施例1にかかる超電導溶融体の捕捉磁場を示すグラフである。3 is a graph showing a trapped magnetic field of a superconducting melt according to Example 1; 比較例1にかかる超電導溶融体の捕捉磁場を示すグラフである。5 is a graph showing a trapped magnetic field of a superconducting melt according to Comparative Example 1.

Claims (2)

1次粒子の平均粒子径が、0.5nm以上、40nm以下であることを特徴とする酸化銅粉末。   An average particle diameter of primary particles is 0.5 nm or more and 40 nm or less. 2次粒子が請求項1に記載の1次粒子の凝集体であって、当該2次粒子の比表面積が70m/g以上、300m/g以下であることを特徴とする酸化銅粉末。 A copper oxide powder, wherein the secondary particles are aggregates of primary particles according to claim 1, and the specific surface area of the secondary particles is 70 m 2 / g or more and 300 m 2 / g or less.
JP2007166984A 2007-06-25 2007-06-25 Copper oxide powder Active JP4977820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166984A JP4977820B2 (en) 2007-06-25 2007-06-25 Copper oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166984A JP4977820B2 (en) 2007-06-25 2007-06-25 Copper oxide powder

Publications (2)

Publication Number Publication Date
JP2009001473A true JP2009001473A (en) 2009-01-08
JP4977820B2 JP4977820B2 (en) 2012-07-18

Family

ID=40318293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166984A Active JP4977820B2 (en) 2007-06-25 2007-06-25 Copper oxide powder

Country Status (1)

Country Link
JP (1) JP4977820B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144414A (en) * 2011-01-14 2012-08-02 Sumitomo Metal Mining Co Ltd High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder
JP2012201515A (en) * 2011-03-23 2012-10-22 Sumitomo Metal Mining Co Ltd Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution
KR101367187B1 (en) * 2012-11-21 2014-02-27 주식회사 대창 Manufacturing method of copper oxide for printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164812A (en) * 1990-10-30 1992-06-10 Ricoh Co Ltd Copper oxide ultra-fine particle
JPH0559845B2 (en) * 1988-11-24 1993-09-01 Dowa Mining Co
JP2002362909A (en) * 2001-06-05 2002-12-18 Nippon Shokubai Co Ltd Method for producing low valence metallic oxide particle
JP2003183024A (en) * 2001-12-18 2003-07-03 Asahi Kasei Corp Method for producing cupric oxide fine particle
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body
JP2006247551A (en) * 2005-03-11 2006-09-21 Sumitomo Osaka Cement Co Ltd Method of producing microdroplet, method of manufacturing fine particle using the same, and fine particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559845B2 (en) * 1988-11-24 1993-09-01 Dowa Mining Co
JPH04164812A (en) * 1990-10-30 1992-06-10 Ricoh Co Ltd Copper oxide ultra-fine particle
JP2002362909A (en) * 2001-06-05 2002-12-18 Nippon Shokubai Co Ltd Method for producing low valence metallic oxide particle
JP2003183024A (en) * 2001-12-18 2003-07-03 Asahi Kasei Corp Method for producing cupric oxide fine particle
JP2005002418A (en) * 2003-06-12 2005-01-06 Asahi Kasei Corp Metallic oxide particulate-dispersed body
JP2006247551A (en) * 2005-03-11 2006-09-21 Sumitomo Osaka Cement Co Ltd Method of producing microdroplet, method of manufacturing fine particle using the same, and fine particle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012144414A (en) * 2011-01-14 2012-08-02 Sumitomo Metal Mining Co Ltd High purity cupric oxide fine powder, method for producing the same, and method for feeding copper ion to copper sulfate aqueous solution using high purity cupric oxide fine powder
JP2012201515A (en) * 2011-03-23 2012-10-22 Sumitomo Metal Mining Co Ltd Method for producing soluble cupric oxide powder, soluble cupric oxide fine powder, and copper ion feeding method to copper sulfate aqueous solution
KR101367187B1 (en) * 2012-11-21 2014-02-27 주식회사 대창 Manufacturing method of copper oxide for printed circuit board

Also Published As

Publication number Publication date
JP4977820B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
KR101810865B1 (en) Mixed metal oxidized hydroxide and method for prodction
KR101069484B1 (en) Material for positive electrode of lithium secondary battery and process for producing the same
KR102154947B1 (en) MXene particulate material, manufacturing method of the particulate material, and secondary battery
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP3062497B1 (en) Method for producing flaky titanate
KR20130055692A (en) Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
CN112661199B (en) Preparation method of high-tap-density aluminum oxide coated magnesium-manganese co-doped cobaltosic oxide
Aghazadeh et al. Electrochemical preparation and characterization of brain-like nanostructures of Y2O3
CN108147452A (en) A kind of synthetic method of the controllable low-dimensional strontium titanate crystals of size and application
CN105293567B (en) Flaky porous nanometer zinc oxide and preparation method thereof
JP4977820B2 (en) Copper oxide powder
KR19990013782A (en) Method for producing lithium-cobalt composite oxide
US7119041B2 (en) Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP6486518B2 (en) Method for producing negative electrode active material for lithium ion secondary battery
JP5266477B2 (en) Method for producing copper oxide
JP4945815B2 (en) Copper oxide powder
CN109867302B (en) High-purity superfine tetrabasic lead sulfate product and preparation method thereof
CN106745210B (en) A kind of Li adulterates SrTiO3The preparation method and product of porous surface nano particle
CN111408731B (en) Method for preparing hexalobate copper microcrystal by one-step hydrothermal method
Serradilla et al. Synthesizing the Y-123/Y-211 composite by the PVA method
CN101475209A (en) Preparation of layered perovskite YBa2Cu3O7 hollow spherical and porous micron particle
JP7410249B2 (en) Negative thermal expansion material, its manufacturing method and composite material
Augustin et al. Combustion synthesis of ABO~ 3 and AB~ 2O~ 4 compounds-An overview
CN117383928B (en) Preparation method of &lt;111&gt; oriented barium titanate template with high yield and large diameter-thickness ratio
JP4196179B2 (en) Method for producing silicon nitride material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4977820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250