JP2009000656A - Oil polluted water recycle system - Google Patents

Oil polluted water recycle system Download PDF

Info

Publication number
JP2009000656A
JP2009000656A JP2007165515A JP2007165515A JP2009000656A JP 2009000656 A JP2009000656 A JP 2009000656A JP 2007165515 A JP2007165515 A JP 2007165515A JP 2007165515 A JP2007165515 A JP 2007165515A JP 2009000656 A JP2009000656 A JP 2009000656A
Authority
JP
Japan
Prior art keywords
water
cod
treated water
oily
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007165515A
Other languages
Japanese (ja)
Other versions
JP5157279B2 (en
Inventor
Akira Mochizuki
明 望月
Tomoko Shinomura
知子 篠村
Norihide Saho
典英 佐保
Hisashi Isokami
尚志 磯上
Akira Miyake
亮 三宅
Tatsuro Fujii
達郎 藤居
Akio Honchi
章夫 本地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007165515A priority Critical patent/JP5157279B2/en
Priority to MX2009013432A priority patent/MX2009013432A/en
Priority to PCT/JP2008/060675 priority patent/WO2009001676A1/en
Priority to CA 2690542 priority patent/CA2690542C/en
Publication of JP2009000656A publication Critical patent/JP2009000656A/en
Application granted granted Critical
Publication of JP5157279B2 publication Critical patent/JP5157279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/488Treatment of water, waste water, or sewage with magnetic or electric fields for separation of magnetic materials, e.g. magnetic flocculation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cultivation Of Plants (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil polluted water recycle system by which oil polluted water produced in petroleum production is cleaned and recycled. <P>SOLUTION: The oil polluted water W1 produced in petroleum production is flocculated and magnetically separated by a flocculation magnetic separator 10 to remove an oil polluted component contained in the oil polluted water W1 to obtain primarily cleaned water W2. The resultant primarily cleaned water W2 is treated by a COD removal apparatus 30 using ozone decomposition treatment to remove a water soluble organic materials contained in the oil polluted water W1 to obtain COD treated water W3. The COD treated water W3 is distilled to remove salts components by a solar heat distiller 50 to obtain recyclable cleaned water W4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石油生産の際に発生する油濁水を浄化して再利用する油濁水再利用システムに関する。   The present invention relates to an oily water reuse system that purifies and reuses oily water generated during oil production.

現在、ほとんどの石油生産は水攻法によって水圧を用いて、油層圧力を高めて行われる。そのため、生産初期は石油のみ生産できるが、徐々に水(油濁水)の比率が高くなる。
油濁水の比率が高くなると、パイプライン等の流量の関係から、石油の生産量が低減するため、生産現場では油濁水を浄化処理して廃棄する必要がある。
At present, most oil production is carried out using water pressure by water flooding and raising the reservoir pressure. Therefore, only oil can be produced at the initial stage of production, but the ratio of water (oil turbid water) gradually increases.
When the ratio of oily water increases, the production amount of oil decreases due to the flow rate of the pipeline and the like. Therefore, it is necessary to purify and discard the oily water at the production site.

このような課題に対応するため、例えば特許文献1には、油濁水に含まれる油濁成分などの固形汚濁物を除去する浄化装置として適用できる固液分離装置が開示されている。特許文献1に開示された固液分離装置は、細めの金網や高分子繊維で編んだメッシュを通水分離膜として使用し、被分離物質である汚濁粒子を有する油濁水に、凝集剤と磁性粉を添加して磁性フロックを生成し、この磁性フロックを通水分離膜で分離し、通水分離膜で分離された磁性フロックを磁場発生手段で発生させた磁気により吸引捕集して高濃度スラッジとして回収するものである。   In order to deal with such a problem, for example, Patent Document 1 discloses a solid-liquid separation device that can be applied as a purification device that removes solid contaminants such as oil turbid components contained in oily water. The solid-liquid separation device disclosed in Patent Document 1 uses a mesh knitted with a thin wire mesh or polymer fiber as a water separation membrane, and in an oily water having contaminated particles as a substance to be separated, a flocculant and a magnetic material are used. Magnetic flocs are generated by adding powder, the magnetic flocs are separated by a water separation membrane, and the magnetic flocs separated by the water separation membrane are sucked and collected by the magnetism generated by the magnetic field generating means. It is collected as sludge.

また、例えば特許文献2には、油濁水を多孔質膜で濾過する技術が開示されている。特許文献2に開示された技術は、孔径が0.1μm以下の多孔質膜を使用し、油濁水と多孔質膜との接触角を調整することで、効率よく油濁水を濾過するものである。
特開2002−273261号公報(段落0010、図1参照) 特開平09−234353号公報(段落0008参照)
For example, Patent Document 2 discloses a technique of filtering oily water with a porous membrane. The technique disclosed in Patent Document 2 uses a porous membrane having a pore size of 0.1 μm or less, and efficiently filters the oily water by adjusting the contact angle between the oily water and the porous membrane. .
Japanese Patent Laying-Open No. 2002-273261 (see paragraph 0010, FIG. 1) JP 09-234353 A (see paragraph 0008)

特許文献1、2に記載された技術は、油濁水の固形汚濁物を除去することで、油濁水を浄化することができる。
しかしながら、主な石油生産地は中東地域であるため、年間降水量が少なく、水は貴重な資源である。したがって、油濁水を浄化して生成される浄化水の再利用の要望が高い。
従来開示されている技術で生成される浄化水は、油濁成分などの固形浮遊物、藻類、菌類、微生物等の固形汚濁物は除去できるが、油濁水に溶解している水溶性有機物や塩分までは除去することができず、再利用可能なレベルまで浄化されていないという問題がある。
The techniques described in Patent Literatures 1 and 2 can purify the oily water by removing the solid contaminants of the oily water.
However, since the main oil producing area is the Middle East region, there is little annual precipitation and water is a valuable resource. Therefore, there is a high demand for reuse of purified water generated by purifying oily water.
The purified water produced by the conventionally disclosed technology can remove solid suspended solids such as oil turbid components, and solid contaminants such as algae, fungi, and microorganisms, but water-soluble organic substances and salts dissolved in the oil turbid water. There is a problem that it cannot be removed until it has been purified to a reusable level.

そこで、石油生産時に発生する油濁水を浄化して再利用することができる油濁水再利用システムを提供することを課題とする。   Therefore, an object of the present invention is to provide an oily water reuse system that can purify and reuse oily water generated during oil production.

前記した課題を解決するため、本発明に係る油濁水再利用システムは、処理水生成手段とCOD除去手段で油濁水を浄化した後に、塩分除去手段で蒸留することで、浄化水を生成する油濁水再利用システムとした。   In order to solve the above-described problems, an oily water reuse system according to the present invention is an oil that generates purified water by purifying oily water with treated water generation means and COD removal means and then distilling with salt removal means. A muddy water reuse system was adopted.

本発明によると、石油生産時に発生する油濁水を浄化して再利用することができる油濁水再利用システムを提供することができる。   According to the present invention, it is possible to provide an oily water reuse system that can purify and reuse oily water generated during oil production.

《油濁水再利用システムの概要》
本実施形態に係る油濁水再利用システムは、例えば、水攻法など水圧を用いて石油を生産する石油生産プラントに設置され、石油生産の過程で発生する油濁水に含まれる油濁成分などの固形汚濁物や水溶性有機物などの被除去物を分離、除去する。はじめに、本実施形態に係る油濁水再利用システムについて説明する。
《Outline of oily water reuse system》
The oil turbid water reuse system according to the present embodiment is installed in an oil production plant that produces oil using water pressure such as water flooding, and the oil turbid component contained in the oil turbid water generated in the process of oil production. Separation and removal of objects to be removed such as solid pollutants and water-soluble organic substances. First, the oily water reuse system according to the present embodiment will be described.

石油生産の際に発生する油濁水には、油濁成分などの固形浮遊物、藻類、菌類、微生物等の固形汚濁物と、油濁水に溶解している水溶性有機物や塩分などの被除去物が含まれる。このように油濁水に含まれる被除去物を完全に除去し、再利用可能なレベルまで浄化するためには、蒸留による浄化が好ましいが、水溶性有機物が溶解している水を蒸留すると、蒸留の過程で蒸留装置に備わる加熱器の導管に水溶性有機物が析出して、導管が目詰まりを起こす場合がある。また、目詰まりしないまでも、導管の内側に析出する有機物の堆積によって、導管内の流れが阻害されたり伝熱の効率が低下したりする。また,蒸留により得られる蒸留水に水溶性有機物が含有される懸念もある。したがって、水溶性有機物が溶解した水をそのまま蒸留することができない。
そこで、本実施形態においては、油濁水に含まれる固形汚濁物と水溶性有機物を除去した後に蒸留して、塩分を除去することを特徴とする。
Oily water generated during oil production includes solid suspended matters such as oily suspended components, solid contaminants such as algae, fungi, and microorganisms, and water-soluble organic substances dissolved in the oily water and removed substances such as salt. Is included. In order to completely remove the object to be removed contained in the oily water and purify it to a reusable level, purification by distillation is preferable, but when water in which water-soluble organic substances are dissolved is distilled, distillation is performed. During this process, water-soluble organic substances may be deposited on the conduit of the heater provided in the distillation apparatus, and the conduit may be clogged. Moreover, even if it is not clogged, the flow of the organic substance which deposits inside the conduit will impede the flow in the conduit or reduce the efficiency of heat transfer. There is also a concern that water-soluble organic substances are contained in distilled water obtained by distillation. Therefore, water in which water-soluble organic substances are dissolved cannot be distilled as it is.
Therefore, the present embodiment is characterized in that after removing solid contaminants and water-soluble organic substances contained in the oily water, the salt is removed by distillation.

図1は、本実施形態に係る油濁水再利用システムの構成を示す図である。図1に示すように、油濁水再利用システム1は、石油生産現場における石油生産の過程で生産される油濁水W1に含まれる油濁成分などの固形浮遊物、藻類、菌類、微生物等の固形汚濁物を凝集分離する凝集磁気分離機(処理水生成手段)10と、凝集磁気分離機10によって固形汚濁物が除去された1次浄化水(処理水)W2に溶解している水溶性有機物を除去して、化学的酸素要求量(COD:Chemical Oxygen Demand)の値を下げるCOD除去装置(COD除去手段)30と、COD除去装置30によって水溶性有機物が除去されたCOD処理水W3を、太陽熱を利用して蒸留し、溶解している塩分を除去して浄化水(有用水)W4を生成する太陽熱蒸留器(塩分除去手段)50と、を含んで構成される。   FIG. 1 is a diagram illustrating a configuration of an oily water reuse system according to the present embodiment. As shown in FIG. 1, the oil turbid water reuse system 1 is a solid floating material such as oil turbid components, algae, fungi, microorganisms, etc. contained in the oil turbid water W1 produced in the oil production process at the oil production site. An agglomerated magnetic separator (treated water generating means) 10 for aggregating and separating contaminants and a water-soluble organic substance dissolved in primary purified water (treated water) W2 from which solid contaminants have been removed by the agglomerated magnetic separator 10 A COD removal device (COD removal means) 30 that lowers the value of chemical oxygen demand (COD) by removing the COD treated water W3 from which water-soluble organic substances have been removed by the COD removal device 30 And a solar distiller (salt removal means) 50 that removes dissolved salt and generates purified water (useful water) W4.

前記のような油濁水再利用システム1で生成される浄化水W4の利用方法はいろいろ考えられるが、本実施形態においては、植物栽培プラントPlに利用して、植物の栽培用の水とする例を示した。   Various methods of using the purified water W4 generated by the oily water reuse system 1 as described above are conceivable. In this embodiment, the water is used for plant cultivation by using it for the plant cultivation plant Pl. showed that.

石油生産の工程で発生する油濁水W1は、凝集磁気分離機10に注入され、磁気を利用した凝集分離によって固形汚濁物が除去される。すなわち、凝集磁気分離機10は、油濁水W1の固形汚濁物を除去して1次浄化水W2を生成する。この1次浄化水W2は、固形汚濁物は除去されているが、水溶性有機物や塩分は溶解した状態で含まれている。
一方、除去された固形汚濁物は汚泥として分離され、汚泥処理設備60で処理される。汚泥には、油濁水W1に含まれる重金属や、凝集磁気分離機10で加えられる凝集剤やマグネタイトなどの処理剤等が含まれるため、汚泥処理設備60で分離回収して、再利用できるものについては再利用し、廃棄するものについては、必要に応じてさらなる処理(無毒化など)を加えて廃棄する。
Oil turbid water W1 generated in the oil production process is injected into the flocculating magnetic separator 10, and solid contaminants are removed by flocculation separation using magnetism. That is, the agglomeration magnetic separator 10 removes solid contaminants from the oily water W1 to generate the primary purified water W2. The primary purified water W2 contains solid contaminants but contains water-soluble organic substances and salt in a dissolved state.
On the other hand, the removed solid pollutant is separated as sludge and processed by the sludge treatment facility 60. The sludge contains heavy metals contained in the oily water W1 and treatment agents such as a flocculant and magnetite added by the agglomeration magnetic separator 10, so that the sludge can be separated and recovered by the sludge treatment facility 60 and reused. Recycle and dispose of waste after further processing (such as detoxification) if necessary.

凝集磁気分離機10で生成された1次浄化水W2は、COD除去装置30に注入される。COD除去装置30では、1次浄化水W2に溶解している水溶性有機物を、オゾンによる酸化作用を利用して除去することで1次浄化水W2のCODの値を下げて、COD処理水W3を生成する。
なお、1次浄化水W2はその一部を河川等に放流してもよい。
また、COD除去装置30に注入される1次浄化水W2には塩分が溶解している場合がある。ちなみに、海岸沿いの油田はもちろん、海岸線から数十キロメートルの内陸部にある油田でも、油濁水W1には1%程度の塩分が含まれている場合がある。しかしながら、無機物である塩分はCOD除去装置30で除去されない。したがって、COD除去装置30で生成されるCOD処理水W3には塩分が溶解している場合がある。
The primary purified water W2 generated by the agglomeration magnetic separator 10 is injected into the COD removing device 30. The COD removing device 30 reduces the COD value of the primary purified water W2 by removing the water-soluble organic matter dissolved in the primary purified water W2 by utilizing the oxidizing action by ozone, and the COD treated water W3. Is generated.
A part of the primary purified water W2 may be discharged into a river or the like.
Further, salt may be dissolved in the primary purified water W2 injected into the COD removing device 30. By the way, not only oil fields along the coast but also oil fields in the inland area of several tens of kilometers from the coastline, the oily water W1 may contain about 1% salt. However, the inorganic salt is not removed by the COD removing device 30. Therefore, salt may be dissolved in the COD treated water W3 produced by the COD removing device 30.

植物の栽培用の水については、栽培する植物の種類にもよるが、1%程度の塩分濃度を有すると、植物に致命的な影響を与えることが知られている。このことから、本実施形態にかかるCOD除去装置30で生成されたCOD処理水W3は、植物の栽培には利用できない。
しかしながら、COD処理水W3は、水溶性有機物が除去されているので、蒸留手段で蒸留することができる。したがって、COD除去装置30で生成されたCOD処理水W3を太陽熱蒸留器50に注入して蒸留し、塩分を除去することができる。
About the water for cultivation of a plant, although depending on the kind of plant to grow, when it has salt concentration of about 1%, it is known that it will have a fatal influence on a plant. For this reason, the COD treated water W3 generated by the COD removing apparatus 30 according to the present embodiment cannot be used for plant cultivation.
However, since the water-soluble organic substances are removed from the COD treated water W3, it can be distilled by a distillation means. Therefore, the COD treated water W3 generated by the COD removing device 30 can be poured into the solar distillation unit 50 and distilled to remove salt.

太陽熱蒸留器50に注入されたCOD処理水W3は、太陽熱蒸留器50において、太陽熱を利用した加熱器で加熱されて蒸留される。そして、太陽熱蒸留器50は蒸留で得られる蒸留水を浄化水W4として生成する。
なお、COD処理水W3に溶解している塩分は、太陽熱蒸留器50での蒸留過程において塩Sとして析出されることから、例えば貯蔵タンクに蓄えて保管し、適宜トラック等で処理場に運んで処理すればよい。
The COD treated water W3 injected into the solar distiller 50 is heated and distilled in the solar distiller 50 by a heater using solar heat. And the solar-heated distiller 50 produces | generates the distilled water obtained by distillation as the purified water W4.
The salt dissolved in the COD treated water W3 is precipitated as the salt S in the distillation process in the solar heat distiller 50. Therefore, for example, it is stored and stored in a storage tank, and appropriately transported to a treatment plant by a truck or the like. What is necessary is to process.

太陽熱蒸留器50で生成される浄化水W4は、固形汚濁物、水溶性有機物、塩分等が除去されていることから、浄化水W4を様々な目的に利用することができる。
図1においては、油濁水再利用システム1で生成された浄化水W4を、例えばバイオ燃料用の植物(ジャトロファなど)の栽培用の植物栽培プラントPlに使用した。そして、バイオ燃料生産プラントなどで、植物栽培プラントPlで栽培されたジャトロファなどの植物からバイオ燃料を生産することができる。このように、本実施形態に係る油濁水再利用システム1によって油濁水W1から生成された浄化水W4は、バイオ燃料の生産に利用(再利用)することができる。
以下、油濁水再利用システム1を構成する各機器について説明する。
The purified water W4 produced by the solar heat distiller 50 is free from solid pollutants, water-soluble organic substances, salt, etc., so the purified water W4 can be used for various purposes.
In FIG. 1, the purified water W4 produced | generated by the oil-spilled water reuse system 1 was used for the plant cultivation plant Pl for cultivation of the plant (Jatropha etc.) for biofuels, for example. And in a biofuel production plant etc., biofuel can be produced from plants, such as Jatropha grown in plant cultivation plant Pl. As described above, the purified water W4 generated from the oily water W1 by the oily water reuse system 1 according to this embodiment can be used (reused) for the production of biofuel.
Hereinafter, each apparatus which comprises the oily water reuse system 1 is demonstrated.

《凝集磁気分離機》
図2は、凝集磁気分離機の概略を示す図である。図2において、油濁成分等を含んだ油濁水W1は、ポンプPによって原水タンク12に送り込まれて一旦溜められる。原水タンク12では、モータMによって駆動される攪拌機12aによって油濁水W1を攪拌する。攪拌された油濁水W1は、油濁水W1中の油は水面近傍に薄く広がると同時にエマルジョン化して水中に分散する。凝集磁気分離機10では、原水タンク12から出た配管にインラインミキサー13を介して再び原水タンク12に戻るような循環経路14が設けられており、インラインミキサー13を運転して循環経路14内で油濁水W1を循環させることにより原水タンク12内の水中油を充分にエマルジョン化する。循環系を構成するインラインミキサー13、循環経路14を所定時間運転させて油濁水W1の油がエマルジョン化した後で、インラインミキサー13を止めて原水バルブ15を開ける。
なお、ここでは貯留式のエマルジョン生成法を示したが、連続式のAPI(American Petroleum Institute)型、PPI(Parallel Plate Interceptor)型、CPI(Coagulated Plate Interceptor)型の油分離方式やサイクロンを用いて油層を取り除き、エマルジョン状態の油濁水W1のみを凝集槽16へ送水する方式でも良い。
《Aggregating magnetic separator》
FIG. 2 is a diagram showing an outline of the aggregation magnetic separator. In FIG. 2, oily water W1 containing oily components and the like is sent to the raw water tank 12 by a pump P and temporarily stored. In the raw water tank 12, the oily water W1 is stirred by a stirrer 12a driven by a motor M. In the stirred oily water W1, the oil in the oily water W1 spreads thinly near the water surface, and at the same time, is emulsified and dispersed in water. In the agglomeration magnetic separator 10, a circulation path 14 is provided in the piping exiting from the raw water tank 12 so as to return to the raw water tank 12 again via the inline mixer 13. The oil-in-water in the raw water tank 12 is sufficiently emulsified by circulating the oily water W1. After the in-line mixer 13 and the circulation path 14 constituting the circulation system are operated for a predetermined time and the oil of the oily water W1 is emulsified, the in-line mixer 13 is stopped and the raw water valve 15 is opened.
In addition, although the storage type emulsion generation method was shown here, the continuous API (American Petroleum Institute) type, PPI (Parallel Plate Interceptor) type, CPI (Coagulated Plate Interceptor) type oil separation method and cyclone are used. A method may be used in which the oil layer is removed and only the oily water W1 in the emulsion state is fed to the coagulation tank 16.

これにより、エマルジョン化した油を含む油濁水W1は凝集槽16に流れ込む。この時、油濁水W1に泥、砂、塩等の小さな固形物が入っていると、これらの固形物は流れとともに凝集槽16に流入する。また、固形物によっては、油が表面に吸着しているものも存在する。
凝集槽16では、鉄やアルミニウムの塩である凝集剤、例えば硫酸第2鉄や塩化第1鉄、ポリ塩化アルミニウム等を加えて、モータMで駆動する攪拌機16aで攪拌し、凝集を起こさせる。この時、同時にマグネタイト(四三酸化鉄)等の磁性体の粒子(磁性成分)を添加することにより、油のエマルジョン粒子、水中の固形汚濁物、磁性粒子が凝集して、数百マイクロメートルから数ミリメートル程度の大きさのフロック(磁性フロック)が形成される(凝集槽16においてフロックを形成した水を以下、中間処理水と称す)。したがって、凝集槽16が磁性フロック生成手段となる。
Thereby, the oily water W1 containing the emulsified oil flows into the coagulation tank 16. At this time, if small solids such as mud, sand, and salt are contained in the oily water W1, these solids flow into the agglomeration tank 16 together with the flow. Some solids have oil adsorbed on the surface.
In the aggregating tank 16, an aggregating agent that is a salt of iron or aluminum, for example, ferric sulfate, ferrous chloride, polyaluminum chloride, or the like is added and agitation is caused by the agitator 16 a driven by the motor M to cause aggregation. At this time, by adding magnetic particles (magnetic component) such as magnetite (iron tetroxide) at the same time, oil emulsion particles, solid contaminants in water, magnetic particles are aggregated, and from several hundred micrometers A floc having a size of several millimeters (magnetic floc) is formed (the water in which the floc is formed in the coagulation tank 16 is hereinafter referred to as intermediate treated water). Therefore, the agglomeration tank 16 becomes a magnetic floc generating means.

ここで、前記循環経路14によってエマルジョン化が充分に行えていないと、均一にフロックを形成することができず、凝集剤の必要投入量が多くなる上に、汚泥発生量が増える。さらに、フロックに取り込まれなかった油相が下流に流出して排水に含有するとともに、下流の分離装置を油で汚染してしまう。また、凝集反応において、凝集剤は通常酸性を示すものが多いため、水酸化ナトリウム等のアルカリを入れてpHを調整するのが望ましい。さらに、凝集課程中に高分子ポリマー等を注入することによってフロックの強度を高めることも可能である。この中間処理水を分離部17に通水する。   Here, if the emulsion path is not sufficiently emulsified, flocs cannot be formed uniformly, increasing the required amount of flocculant and increasing the amount of sludge generated. Furthermore, the oil phase that has not been taken into the floc flows out downstream and is contained in the waste water, and the downstream separator is contaminated with oil. In the agglomeration reaction, the aggregating agent usually shows acidity, and therefore it is desirable to adjust the pH by adding an alkali such as sodium hydroxide. Furthermore, it is possible to increase the strength of the floc by injecting a polymer or the like during the aggregation process. The intermediate treated water is passed through the separation unit 17.

分離部17には、数マイクロメートルから数十マイクロメートル程度の目開きの回転濾過膜18が存在し、濾過膜によって濾過されて回転濾過膜18内部に1次浄化水W2を得ることができる。回転濾過膜18に堆積したフロックは洗浄装置19による洗浄水によって剥がされ、回転円筒体(磁気分離手段)20の近傍に落とされる。回転円筒体20の内側には、永久磁石、超電導バルク磁石、あるいは電磁石の磁場発生手段(磁気分離手段)21が取り付けられており、この磁場発生手段21の磁気力によってフロックは吸引され、回転円筒体20の表面に沿って汚泥回収板22によって掻き取られて汚泥タンク23に溜められる。汚泥回収板22による掻き取りは水中でなく大気中で行われるので、ある程度の水分は下に落下し、含水率の低い汚泥を得ることができる。   The separation unit 17 includes a rotary filtration membrane 18 having an opening of about several micrometers to several tens of micrometers. The primary purified water W2 can be obtained inside the rotary filtration membrane 18 by being filtered by the filtration membrane. The floc deposited on the rotary filtration membrane 18 is peeled off by the cleaning water from the cleaning device 19 and dropped to the vicinity of the rotary cylinder (magnetic separation means) 20. A permanent magnet, a superconducting bulk magnet, or an electromagnet magnetic field generating means (magnetic separation means) 21 is attached to the inside of the rotating cylindrical body 20, and the floc is attracted by the magnetic force of the magnetic field generating means 21, and the rotating cylinder It is scraped off along the surface of the body 20 by the sludge collecting plate 22 and stored in the sludge tank 23. Since the scraping by the sludge collecting plate 22 is performed not in water but in the air, a certain amount of water falls down and sludge having a low water content can be obtained.

これにより、汚泥を処分する際のコストが低減でき、場合によっては燃料を新たにほとんど加えなくても燃焼させることができる。油を中心とするフロックは比重が軽いため水に浮くものが多い。しかし、水中の固形汚濁物の影響や凝集剤の量によっては比重が重くなり水に沈むフロックも存在し、比重差による水からの高除去率分離は難しい。この点、磁気力による分離は容易に高除去率を得ることが可能である。   Thereby, the cost at the time of disposal of sludge can be reduced, and it can be made to burn even if it adds little fuel depending on the case. Many flocs, mainly oil, float on water because of their low specific gravity. However, depending on the influence of solid contaminants in the water and the amount of the flocculant, there is a floc that becomes heavier and sinks in the water, so it is difficult to separate a high removal rate from water due to a difference in specific gravity. In this respect, separation by magnetic force can easily obtain a high removal rate.

さらに、凝集剤として硫酸アルミニウム等のアルミニウム化合物を使用することで、油濁水W1に含まれるホウ素を除去し、油濁水W1のホウ素濃度を低くすることができる。ホウ素が多量に含まれる水を植物の栽培に利用すると植物に悪影響を及ぼすことが知られているため、ホウ素が多量に含まれる水を植物の栽培に利用することは避けたほうがよい。
とくに、中東地域のような乾燥した地域では、乾燥が原因で土壌中のホウ素が過剰になりがちで、しばしばホウ素過剰による植物の生育障害を引き起こすことが知られている。したがって、特に乾燥した地域での植物の栽培に使用する水には、ホウ素が少ないことが好ましい。例えば、ジャトロファの場合、ホウ素濃度が4ppm以上の水の使用は、致命的な影響を与えることが知られている。
本実施形態における、凝集磁気分離機10は、油濁成分である固形汚濁物の除去の際にあわせてホウ素を除去することができ、油濁水W1のホウ素濃度を下げることができるので、ホウ素濃度が4ppm未満になるように設定(凝集槽16で使用するアルミニウム化合物の種類や量、攪拌時間の設定など)することで、図1に示すように、油濁水再利用システム1で生成される浄化水W4を、ジャトロファの植物栽培プラントPlにも利用することができる。
なお、栽培する植物の種類や、栽培する環境条件(土壌や気象など)によって、許容されるホウ素濃度は異なることも知られており、凝集磁気分離機10で除去するホウ素の量は適宜設定すればよい。本実施形態の油濁水再利用システム1によれば、前記のように例えばアルミニウム化合物の種類や量、攪拌時間などを適宜設定することで、ホウ素濃度を幅広く設定できる。
さらに、後段の処理である蒸留によってもホウ素を除去できるため、さらにホウ素濃度を低くすることができ、乾燥した地域における植物栽培に好適な水(浄化水W4)を得ることができる。
Furthermore, by using an aluminum compound such as aluminum sulfate as a flocculant, boron contained in the oily water W1 can be removed, and the boron concentration of the oily water W1 can be lowered. It is known that using water containing a large amount of boron for plant cultivation adversely affects plants, so it is better to avoid using water containing a large amount of boron for plant cultivation.
In particular, in dry regions such as the Middle East region, it is known that boron in the soil tends to be excessive due to dryness, often causing plant growth failure due to excessive boron. Therefore, it is preferable that the water used for cultivation of plants in a dry region is low in boron. For example, in the case of Jatropha, the use of water having a boron concentration of 4 ppm or more is known to have a fatal effect.
In the present embodiment, the agglomerated magnetic separator 10 can remove boron in accordance with the removal of solid contaminants, which are oil turbid components, and can reduce the boron concentration in the oily water W1, so that the boron concentration Is set to be less than 4 ppm (type and amount of aluminum compound used in the coagulation tank 16, setting of stirring time, etc.), as shown in FIG. The water W4 can also be used for the plant cultivation plant Pl of Jatropha.
It is known that the allowable boron concentration varies depending on the type of plant to be cultivated and the environmental conditions to be cultivated (soil, weather, etc.), and the amount of boron to be removed by the agglomeration magnetic separator 10 is appropriately set. That's fine. According to the oily water recycling system 1 of the present embodiment, the boron concentration can be set broadly by appropriately setting, for example, the type and amount of the aluminum compound and the stirring time as described above.
Furthermore, since boron can also be removed by distillation, which is a subsequent treatment, the boron concentration can be further reduced, and water (purified water W4) suitable for plant cultivation in a dry region can be obtained.

また、凝集磁気分離機10に使用する磁石は、永久磁石や電磁石でも効果はあるが、超電導のバルク体、特に高温超電導のバルクを利用すれば小型で大きな磁気力を発生できるため、高除去率装置として適している。また、この時、高温超電導のバルクをGM(Gifford McMahon)冷凍機やパルスチューブ冷凍機等の小型冷凍機で伝導的に冷却する方式をとれば、液体ヘリウムや液体窒素等の冷媒を補充する必要が無いため、操作性も優れる。
本実施形態に係る油濁水再利用システム1(図1参照)は、前記のような構成の凝集磁気分離機10を有し、油濁水W1の固形汚濁物を除去した1次浄化水W2を生成することができる。
本実施形態では,油濁成分や固形汚濁物の除去法として凝集磁気分離の例を示したが、凝集過程において、磁性粒子(磁性成分)の代わりに砂粒子や加圧空気を入れて、沈降や浮上やサイクロン等を利用して分離する、他の凝集分離方式を用いた場合でも、本実施形態と同等の効果が得られる。
The magnet used for the agglomerated magnetic separator 10 is effective even if it is a permanent magnet or an electromagnet. However, if a superconducting bulk body, particularly a high-temperature superconducting bulk, is used, a small and large magnetic force can be generated. Suitable as a device. At this time, if a method of conductively cooling the bulk of high-temperature superconductivity with a small refrigerator such as a GM (Gifford McMahon) refrigerator or a pulse tube refrigerator, it is necessary to replenish a refrigerant such as liquid helium or liquid nitrogen. Because there is no, there is excellent operability.
The oil turbid water reuse system 1 (see FIG. 1) according to the present embodiment includes the agglomeration magnetic separator 10 having the above-described configuration, and generates primary purified water W2 from which solid contaminants of the oil turbid water W1 are removed. can do.
In this embodiment, an example of agglomerated magnetic separation has been shown as a method for removing oily turbid components and solid contaminants. However, in the agglomeration process, sand particles and pressurized air are used instead of magnetic particles (magnetic components), and sedimentation is performed. Even in the case of using another aggregating and separating method that separates using levitation, cyclone, or the like, the same effect as the present embodiment can be obtained.

《COD除去装置》
1次浄化水W2に溶解する水溶性有機物を除去するCOD除去手段として、本実施形態においては、オゾン分解処理と活性炭吸着処理を利用するCOD除去装置を使用した。図3は、本実施形態に使用するCOD除去装置の構成を示す図である。図3に示すように、COD除去装置30は、凝集磁気分離機10が生成する1次浄化水W2を注入するオゾン処理槽31と、オゾン処理槽31にオゾンを供給するオゾン発生器32と、活性炭33aが充填されている活性炭処理層33とを含んで構成される。
<< COD removal device >>
In the present embodiment, a COD removal device that uses an ozonolysis treatment and an activated carbon adsorption treatment is used as a COD removal means for removing water-soluble organic substances dissolved in the primary purified water W2. FIG. 3 is a diagram showing a configuration of the COD removing apparatus used in the present embodiment. As shown in FIG. 3, the COD removing device 30 includes an ozone treatment tank 31 for injecting the primary purified water W2 generated by the aggregation magnetic separator 10, an ozone generator 32 for supplying ozone to the ozone treatment tank 31, And an activated carbon treatment layer 33 filled with activated carbon 33a.

オゾン発生器32は、特に限定するものではないが、例えば空気や誘電体を挟んだ2つの電極間に、交流の高電圧を通電して放電を発生させ、放電プラズマのエネルギで酸素をオゾン化する方式(無声放電方式)のものなどが使用できる。   The ozone generator 32 is not particularly limited, but, for example, an alternating high voltage is applied between two electrodes sandwiching air or a dielectric to generate a discharge, and oxygen is ozonized with the energy of the discharge plasma. A method of performing (silent discharge method) can be used.

図3に示すように、凝集磁気分離機10で生成された1次浄化水W2は、オゾン処理槽31に注入されて貯留され、オゾン処理槽31には、オゾン発生器32で発生したオゾンが供給される。オゾンは非常に酸化力が強い物質であるため、オゾン槽31に貯留される1次浄化水W2に溶解している水溶性有機物を酸化して、生物分解で除去しやすい物質(生物易分解性物質)に分解することができる。   As shown in FIG. 3, the primary purified water W <b> 2 generated by the aggregation magnetic separator 10 is injected and stored in the ozone treatment tank 31, and ozone generated in the ozone generator 32 is stored in the ozone treatment tank 31. Supplied. Since ozone is a substance having a very strong oxidizing power, a substance (biodegradable) that oxidizes water-soluble organic matter dissolved in the primary purified water W2 stored in the ozone tank 31 and is easily removed by biodegradation. Substance).

オゾン処理槽31で、水溶性有機物が生物易分解性物質に分解された1次浄化水W2は、活性炭33aが充填される活性炭処理槽33に注入される。
活性炭処理槽33では、活性炭33aの表面に付着している微生物によって、1次浄化水W2に含まれる生物易分解性物質を生物分解するとともに、1次浄化水W2に残留している水溶性有機物を吸着除去する。
The primary purified water W2 obtained by decomposing water-soluble organic substances into biodegradable substances in the ozone treatment tank 31 is injected into the activated carbon treatment tank 33 filled with the activated carbon 33a.
In the activated carbon treatment tank 33, biodegradable substances contained in the primary purified water W2 are biodegraded by microorganisms adhering to the surface of the activated carbon 33a, and water-soluble organic matter remaining in the primary purified water W2 Is removed by adsorption.

このように、本実施形態に係るCOD除去装置30においては、1次浄化水W2に溶解している水溶性有機物をオゾンで酸化分解するとともに、酸化分解によって生成される生物易分解性物質を活性炭に付着する微生物で生物分解することで浄化し、COD処理水W3を得る。   As described above, in the COD removing apparatus 30 according to the present embodiment, the water-soluble organic matter dissolved in the primary purified water W2 is oxidized and decomposed with ozone, and the biodegradable substance generated by the oxidative decomposition is activated carbon. Purified by biodegradation with microorganisms adhering to the COD treated water W3 is obtained.

オゾンは酸素から生成される物質であることから、浄化処理した後の水(COD処理水W3)に不純物が残留しないという利点がある。また、空気中に広く存在する酸素から生成されるため、必要なときに必要な量を得ることができるという利点もある。このことから、本実施形態においては、オゾン分解処理によるCOD除去装置30を使用した。さらに、オゾン分解処理で生成される生物易分解性物質を生物分解するためと、残留する水溶性有機物を吸着除去するために、COD除去装置30に活性炭吸着処理を備えた。しかしながら、COD除去手段は、オゾン分解処理と活性炭吸着処理によるCOD除去装置30に限定されるものではない。油濁水等に溶解している水溶性有機物を除去して浄化する技術としては、オゾン分解処理と活性炭吸着処理によるもののほか、フェントン処理、電気分解処理によるものなどが周知であり、これらの技術をCOD除去手段として使用してもよい。これらの技術は単独で使用してもよいし、2つ以上を組み合わせて使用してもよい。   Since ozone is a substance generated from oxygen, there is an advantage that no impurities remain in the water after the purification treatment (COD treated water W3). Moreover, since it produces | generates from the oxygen which exists widely in air, there also exists an advantage that a required quantity can be obtained when needed. From this, in this embodiment, the COD removal apparatus 30 by an ozonolysis process was used. Furthermore, in order to biodegrade the biodegradable substance produced by the ozonolysis treatment and to remove the remaining water-soluble organic substances by adsorption, the COD removal device 30 was provided with an activated carbon adsorption treatment. However, the COD removing means is not limited to the COD removing device 30 using the ozonolysis treatment and the activated carbon adsorption treatment. As technologies for removing and purifying water-soluble organic substances dissolved in oily water, etc., in addition to ozonolysis treatment and activated carbon adsorption treatment, those by Fenton treatment and electrolysis treatment are well known. You may use as a COD removal means. These techniques may be used alone or in combination of two or more.

このようにして得られたCOD処理水W3には、水溶性有機物が含まれないことから、蒸留手段で蒸留しても水溶性有機物が析出したり、生成される蒸留水に残留することがない。さらに、固形汚濁物は凝集磁気分離機10(図2参照)によって除去されている。したがって、COD処理水W3を蒸留手段で蒸留しても、固形汚濁物や水溶性有機物によって、蒸留手段の加熱器が有する導管が目詰まりを起こすことがない。このことから、本実施形態に係るCOD処理水W3は、蒸留手段でさらに浄化して、塩分を除去することが可能である。   Since the COD-treated water W3 obtained in this way does not contain water-soluble organic substances, water-soluble organic substances do not precipitate or remain in the produced distilled water even when distilled by distillation means. . Further, the solid contaminants are removed by the agglomeration magnetic separator 10 (see FIG. 2). Therefore, even if the COD treated water W3 is distilled by the distillation means, the conduit of the heater of the distillation means is not clogged by the solid pollutant or the water-soluble organic matter. From this, the COD treated water W3 according to this embodiment can be further purified by distillation means to remove salt.

なお、図3に示すCOD除去装置30においては、吸着剤として活性炭33aを使用したが、これに限定されるものではなく、例えばゼオライトであってもよい。さらに、図3に示すCOD除去装置30においては、活性炭処理槽33で生物分解を実施しているが、これも限定されるものではなく、活性炭処理槽33とは別の装置で行うように構成してもよい。   In the COD removing apparatus 30 shown in FIG. 3, the activated carbon 33a is used as the adsorbent. However, the present invention is not limited to this, and for example, zeolite may be used. Furthermore, in the COD removal apparatus 30 shown in FIG. 3, biodegradation is performed in the activated carbon treatment tank 33, but this is not limited, and the apparatus is configured to be performed in an apparatus different from the activated carbon treatment tank 33. May be.

《太陽熱蒸留器》
本実施形態においては、COD除去装置30(図3参照)で生成されたCOD処理水W3(図3参照)を蒸留手段で蒸留して、塩分を除去した浄化水W4(図1参照)を得ることを特徴としているが、COD処理水W3を蒸留する蒸留手段として、太陽熱を利用した加熱器を有する太陽熱蒸留器を使用した。太陽熱蒸留器として、例えば図4に示すものが知られている。図4は、太陽熱蒸留器の一例を示す図である。
《Solar Distiller》
In the present embodiment, the COD treated water W3 (see FIG. 3) generated by the COD removing device 30 (see FIG. 3) is distilled by a distillation means to obtain purified water W4 (see FIG. 1) from which salt has been removed. However, as a distillation means for distilling the COD treated water W3, a solar distiller having a heater using solar heat was used. For example, a solar distillation apparatus shown in FIG. 4 is known. FIG. 4 is a diagram illustrating an example of a solar still.

図4に示すように、COD除去装置30で生成されたCOD処理水W3は、ポンプPによって太陽熱蒸留器50の加熱器51に導水され、太陽熱によって加熱される。加熱器51は、例えばCOD処理水W3が流れる導管が太陽の照射面に平行に広がるように配置され、導管に照射される太陽熱によって、導管を流れるCOD処理水W3が加熱される。ここで、導管を例えば黒色など、太陽熱を吸収しやすい色にすることで、太陽熱の吸収効率が向上し、COD処理水W3を効率よく加熱することができる。さらに、導管の肉厚を薄くすることで伝熱の効率が向上し、内部を流れるCOD処理水W3が効率よく加熱される。また、導管を太陽の照射面に対して可能な限り広げて配置することでも加熱の効率が向上する。そして、送水の圧損を抑制するためには管径を太く曲管部を少なくすることが好ましい。   As shown in FIG. 4, the COD treated water W <b> 3 generated by the COD removing device 30 is led by the pump P to the heater 51 of the solar still 50 and heated by solar heat. For example, the heater 51 is arranged such that a conduit through which the COD treated water W3 flows extends in parallel to the irradiation surface of the sun, and the COD treated water W3 flowing through the conduit is heated by solar heat irradiated on the conduit. Here, by making the conduit a color that easily absorbs solar heat, such as black, the solar heat absorption efficiency is improved, and the COD treated water W3 can be efficiently heated. Furthermore, the efficiency of heat transfer is improved by reducing the wall thickness of the conduit, and the COD treated water W3 flowing inside is efficiently heated. In addition, heating efficiency is improved by arranging the conduit as wide as possible with respect to the solar irradiation surface. And in order to suppress the pressure loss of water supply, it is preferable to make a pipe diameter thick and to reduce a curved pipe part.

加熱されたCOD処理水W3は、散水器52によって冷却槽53に散水され、散水されたCOD処理水W3は、冷却槽53の空気との熱交換によって、蒸発して蒸気STを得る。なお、散水器52は特に限定するものではなく、例えば図示しないファンの回転によって、COD処理水W3を散水する機能を有すればよい。
冷却槽53では、蒸発に伴う潜熱によってCOD処理水W3は冷却され、蒸発しないCOD処理水W3は冷却水として、冷却槽53に貯留される。
The heated COD treated water W3 is sprinkled into the cooling tank 53 by the sprinkler 52, and the sprinkled COD treated water W3 is evaporated by heat exchange with the air in the cooling tank 53 to obtain steam ST. In addition, the water sprinkler 52 is not specifically limited, For example, what is necessary is just to have the function to sprinkle COD process water W3 by rotation of the fan which is not shown in figure.
In the cooling tank 53, the COD treated water W3 is cooled by latent heat accompanying evaporation, and the COD treated water W3 that does not evaporate is stored in the cooling tank 53 as cooling water.

一方、蒸発して蒸気STとなったCOD処理水W3は、凝縮槽54に注入される。凝縮槽54には、冷却槽53で冷却されたCOD処理水W3が冷却水Wcとして循環していて、凝縮槽54に注入された蒸気STは、冷却水Wcで冷却されて凝縮され、浄化水W4を得る。そして、蒸気STを冷却したCOD処理水W3は冷却槽53に戻される。   On the other hand, the COD treated water W <b> 3 evaporated to become steam ST is injected into the condensing tank 54. The COD treated water W3 cooled in the cooling tank 53 circulates in the condensing tank 54 as cooling water Wc, and the steam ST injected into the condensing tank 54 is cooled and condensed by the cooling water Wc, and purified water. Get W4. Then, the COD treated water W3 that has cooled the steam ST is returned to the cooling bath 53.

このような構成の太陽熱蒸留器50では、ポンプPによってCOD処理水W3が加熱器51に注入される。COD処理水W3は加熱器51で太陽日射により10℃乃至20℃程度温度が上昇し、散水器52によって冷却槽53に散水される。冷却槽53では温度が上昇したCOD処理水W3が空気との熱交換により蒸発し、この蒸発に伴う潜熱によりCOD処理水W3が冷却される一方、空気が加熱される。冷却槽53で蒸発した蒸気STは、凝縮槽54に送られ、冷却槽53で冷却されたCOD処理水W3によって蒸気STが冷却されて凝縮される。冷却槽53で蒸発して凝縮槽54に送られる蒸気STは、冷却槽53で冷却されて凝縮槽54に送られるCOD処理水W3よりも、10℃程度温度が高いので、凝縮槽54では蒸気STの一部が冷却されて凝縮され、浄化水W4を得る。   In the solar still 50 having such a configuration, the COD treated water W3 is injected into the heater 51 by the pump P. The temperature of the COD treated water W <b> 3 rises by about 10 ° C. to 20 ° C. due to solar radiation in the heater 51 and is sprinkled into the cooling tank 53 by the water sprinkler 52. In the cooling tank 53, the COD treated water W3 whose temperature has increased is evaporated by heat exchange with air, and the COD treated water W3 is cooled by the latent heat accompanying this evaporation, while the air is heated. The steam ST evaporated in the cooling tank 53 is sent to the condensing tank 54, and the steam ST is cooled and condensed by the COD treated water W3 cooled in the cooling tank 53. The steam ST evaporated in the cooling tank 53 and sent to the condensation tank 54 has a temperature of about 10 ° C. higher than the COD treated water W3 cooled in the cooling tank 53 and sent to the condensation tank 54. A part of ST is cooled and condensed to obtain purified water W4.

図4に示す構成の太陽熱蒸留器50において、加熱器51で太陽熱を利用してCOD処理水W3を加熱し、さらに蒸発及び凝縮によって浄化水W4を得るようにしているので、浄化水W4を得るのに必要な動力は、ポンプPの動力及び散水器52の動力であり、自然エネルギである太陽熱を最大限に利用して、非常に少ない動力で浄化水W4を得ることが可能になる。従って、低コストでCOD処理水W3を蒸留して浄化水W4を得ることができるとともに、二酸化炭素の排出を抑えることができ、地球環境に配慮したシステムを構築することができる。   In the solar distiller 50 having the configuration shown in FIG. 4, the COD treated water W3 is heated by the heater 51 using solar heat, and the purified water W4 is obtained by evaporation and condensation, so that the purified water W4 is obtained. The power required for this is the power of the pump P and the power of the water sprinkler 52, and it is possible to obtain the purified water W4 with very little power by utilizing the solar heat that is natural energy to the maximum. Therefore, it is possible to obtain the purified water W4 by distilling the COD treated water W3 at a low cost, and it is possible to suppress the discharge of carbon dioxide and to construct a system in consideration of the global environment.

なお、本実施形態における蒸留手段として、図4に示すように、冷却槽53及び凝縮槽54を有する太陽熱蒸留器50を使用したが、これに限定されるものではなく、例えば疎水性多孔質膜を使用した膜蒸留器なども知られている。   In addition, as the distillation means in this embodiment, as shown in FIG. 4, although the solar-heated distiller 50 which has the cooling tank 53 and the condensation tank 54 was used, it is not limited to this, For example, a hydrophobic porous membrane Also known are membrane distillers that use water.

図5は、膜蒸留器の一例を示す図である。図5に示すように、膜蒸留器55は、加熱されたCOD処理水W3が流れる導管と、冷却水Wcが流れる導管とが疎水性多孔質膜56を介して接する構造を有する。
疎水性多孔質膜56は、水蒸気となった水分子が透過可能なサイズの多数の微細な孔を有する膜であり、液体である水(COD処理水W3)と気体である水蒸気とを分離することができる。そして、疎水性多孔質膜56を透過した水蒸気は、冷却水Wcで冷却され凝縮し、浄化水W4を得る。なお、図5に示すように、疎水性多孔質膜56と冷却水Wcが流れる導管の間に、浄化水W4が凝縮する空間領域を有していてもよい。
FIG. 5 is a diagram showing an example of a membrane still. As shown in FIG. 5, the membrane distiller 55 has a structure in which a conduit through which the heated COD treated water W <b> 3 flows and a conduit through which the cooling water Wc flows are in contact via a hydrophobic porous membrane 56.
The hydrophobic porous membrane 56 is a membrane having a large number of fine pores that are permeable to water molecules that have become water vapor, and separates water (COD treated water W3) that is liquid and water vapor that is gas. be able to. And the water vapor which permeate | transmitted the hydrophobic porous membrane 56 is cooled and condensed with the cooling water Wc, and the purified water W4 is obtained. In addition, as shown in FIG. 5, you may have the space area | region where the purified water W4 condenses between the hydrophobic porous membrane 56 and the conduit | pipe where the cooling water Wc flows.

そして、図5に示すような、膜蒸留器55を使用した場合であっても、COD処理水W3の加熱に太陽熱を利用することができる。
そして、COD除去装置30(図3参照)によってCODが除去されていることから、膜蒸留器55を使用した場合であっても、加熱段階での伝熱効率が低下したり、疎水性多孔質膜56が目詰まりしたりしない。
And even if it is a case where the membrane distiller 55 as shown in FIG. 5 is used, a solar heat can be utilized for the heating of the COD process water W3.
Since COD is removed by the COD removing device 30 (see FIG. 3), even when the membrane still 55 is used, the heat transfer efficiency in the heating stage is reduced, or the hydrophobic porous membrane is used. 56 is not clogged.

このように、蒸留手段として、太陽熱を利用した太陽熱蒸留器50を使用することで、地球環境に与える負担を小さくできる。そして、COD処理水W3を蒸留し、蒸留によって浄化された浄化水W4を得ることができる。さらに、COD除去装置30(図3参照)によってCODが除去されているので、伝熱効率が低下することなく、太陽熱を有効に利用できる。   Thus, the burden given to the global environment can be reduced by using the solar heat distiller 50 using solar heat as the distillation means. And the COD process water W3 can be distilled and the purified water W4 purified by distillation can be obtained. Furthermore, since COD is removed by the COD removal apparatus 30 (see FIG. 3), solar heat can be used effectively without lowering the heat transfer efficiency.

なお、塩分除去手段は、太陽熱蒸留器50(図4参照)や膜蒸留器55(図5参照)に限定されるものではない。塩分を含む水の浄化技術としては、例えば逆浸透膜法や凍結法などが周知の技術であり、本実施形態に係る塩分除去手段として使用できる。   The salinity removing means is not limited to the solar distiller 50 (see FIG. 4) or the membrane distiller 55 (see FIG. 5). As a technique for purifying water containing salt, for example, a reverse osmosis membrane method or a freezing method is a well-known technique and can be used as the salt removal means according to the present embodiment.

以上のように、本実施形態においては、石油生産時に発生する油濁水を、最終的に蒸留して浄化することから、生成される浄化水は、被除去物である固形汚濁物、水溶性有機物および塩分がほとんど含まれないクリーンな水である。このため、浄化水を幅広い用途に利用することができる。さらに、凝集磁気分離機10(図1参照)においては、前記のように、凝集剤としてアルミニウム化合物を添加して凝集分離することによって、油濁水W1(図1参照)に含まれるホウ素を除去して、ホウ素濃度を下げることができる。
このように、凝集磁気分離機10において凝集剤を使用した凝集処理を行うことで、ホウ素が除去されることから、その後の工程において機器選択の自由度が広がる。
さらに、前記のように、ホウ素の過剰は植物には有害であり、特に乾燥した地域では、与える水にホウ素が多く含まれていなくても、ホウ素が過剰になりがちで植物の生育障害が発生することがあるため、ホウ素を含んだ水を植物の栽培に利用することは避けたほうがよい。本実施形態に係る油濁水再利用システム1で生成される浄化水W4は、ホウ素が除去され、含まれるホウ素濃度が低いため植物の栽培にも利用できる。
As described above, in the present embodiment, since the oily water generated during the oil production is finally distilled and purified, the generated purified water is a solid pollutant, a water-soluble organic substance to be removed. And clean water with little salt. For this reason, purified water can be used for a wide range of applications. Furthermore, in the flocculating magnetic separator 10 (see FIG. 1), as described above, boron contained in the oily water W1 (see FIG. 1) is removed by adding and aggregating an aluminum compound as a flocculating agent. Thus, the boron concentration can be lowered.
Thus, since the boron is removed by performing the aggregating process using the aggregating agent in the aggregating magnetic separator 10, the degree of freedom of equipment selection is expanded in the subsequent steps.
In addition, as mentioned above, excess boron is harmful to plants, especially in dry areas, even if the supplied water does not contain a lot of boron, it tends to be excessive and cause plant growth problems. Therefore, it is better to avoid using boron-containing water for plant cultivation. The purified water W4 generated by the oily water reuse system 1 according to this embodiment can be used for plant cultivation because boron is removed and the concentration of boron contained is low.

本実施形態においては、図1に示すように、油濁水W1から生成される浄化水W4を植物栽培プラントPl、特にジャトロファの栽培プラントに利用した例を示した。ジャトロファは、その種子から抽出される油分でバイオ燃料を生成できるうえ、食用の植物ではない。したがって、トウモロコシやサトウキビなどとは異なり、食糧の供給に影響を与えることなく、バイオ燃料の生産のためだけに栽培できることから、その栽培量の増加が見込まれる植物である。さらに、栽培に必要な水分の量も比較的少なくてよいことから、例えば石油生産地である中東地域のような、降水量の少ない乾燥した地域でも比較的栽培しやすい植物である。   In this embodiment, as shown in FIG. 1, the example which utilized the purified water W4 produced | generated from the oily water W1 for the plant cultivation plant Pl, especially the cultivation plant of Jatropha was shown. Jatropha is not an edible plant, as it can produce biofuels from the oil extracted from its seeds. Therefore, unlike corn, sugarcane, etc., it can be cultivated only for the production of biofuel without affecting the supply of food. Furthermore, since the amount of water necessary for cultivation may be relatively small, the plant is relatively easy to grow even in a dry region with low precipitation, such as the Middle East region, which is an oil producing region.

図6は、ジャトロファ栽培畑を示す模式図である(写真は参考図)。図6に示すように、ジャトロファJaは、約2.5m(2〜3m)の間隔で栽培でき、1haのジャトロファ栽培畑70には約1600本のジャトロファJaが栽培できる。そして、1600本のジャトロファJaを1haのジャトロファ栽培畑70に栽培すると、栽培開始から6年後には、約2.5〜12トンの種の収穫が見込まれ、この収穫量の種からは約0.71〜3.4kLのバイオ燃料が生産できる。すなわち、1haのジャトロファ栽培畑70から、年間約0.71〜3.4kLのバイオ燃料が生産できる。
なお、このようなジャトロファ栽培畑70が集約して、広大なジャトロファ栽培畑70からなる植物栽培プラントPl(図1参照)が形成される。そして、植物栽培プラントPlで生産されるジャトロファJaからバイオ燃料が生産される。
FIG. 6 is a schematic diagram showing a Jatropha cultivation field (photo is a reference diagram). As shown in FIG. 6, Jatropha Ja can be cultivated at intervals of about 2.5 m (2 to 3 m), and about 1600 Jatropha Ja can be cultivated in 1 ha of Jatropha cultivation field 70. When 1600 Jatropha Jas are cultivated in the 1ha Jatropha cultivation field 70, about 2.5 to 12 tons of seeds are expected to be harvested 6 years after the start of cultivation, and about 0 from the seeds of this harvest amount. .71-3.4kL biofuel can be produced. That is, about 0.71-3.4 kL of biofuel can be produced annually from 1 ha of Jatropha cultivation field 70.
In addition, such a Jatropha cultivation field 70 aggregates, and the plant cultivation plant Pl (refer FIG. 1) which consists of the vast Jatropha cultivation field 70 is formed. And biofuel is produced from Jatropha Ja produced in plant cultivation plant Pl.

ここで、前記のように、ジャトロファJaは乾燥に強い植物であるが、1600本のジャトロファJaが栽培される1haのジャトロファ栽培畑70には、1年間で2500mの水が必要となり、これは、年間降水量250mmに相当する。
この年間降水量は、主な石油生産地である中東地域の年間降水量の数倍(例えば、オマーンの年間降水量約40〜50mmの5〜6倍)であることから、中東地域の降水量だけでは、ジャトロファJaの栽培に必要な水を確保できない。
Here, as described above, Jatropha Ja is a plant resistant to drying, but 1 ha of Jatropha cultivation field 70 where 1600 Jatropha Ja is cultivated requires 2500 m 3 of water per year, This corresponds to an annual precipitation of 250 mm.
This annual precipitation is several times the annual precipitation in the Middle East region, which is the main oil production area (for example, 5-6 times the annual precipitation in Oman, about 40-50 mm). Alone cannot secure the water required for cultivation of Jatropha Ja.

本実施形態においては、石油生産で生じる油濁水から生成される浄化水をジャトロファJaの栽培に利用することで、降水量の少ない中東地域でもジャトロファJaが栽培できるようになる。そして、ジャトロファJaからバイオ燃料を生産することで、新規のエネルギ資源供給源を得ることができるという優れた効果を奏するとともに、砂漠の緑化にも貢献できるという優れた効果を奏する。   In this embodiment, Jatropha Ja can be cultivated even in the Middle East region where the amount of precipitation is low by using purified water generated from oily water produced in oil production for cultivation of Jatropha Ja. And, by producing biofuel from Jatropha Ja, it has an excellent effect of being able to obtain a new energy resource supply source, and also has an excellent effect of being able to contribute to desert greening.

本実施形態に係る油濁水再利用システムの構成を示す図である。It is a figure which shows the structure of the oily water reuse system which concerns on this embodiment. 凝集磁気分離機の概略を示す図である。It is a figure which shows the outline of an aggregation magnetic separator. COD除去装置の構成を示す図である。It is a figure which shows the structure of a COD removal apparatus. 太陽熱蒸留器の一例を示す図である。It is a figure which shows an example of a solar-heat distiller. 膜蒸留器の一例を示す図である。It is a figure which shows an example of a membrane distiller. ジャトロファ栽培畑を示す模式図である。It is a schematic diagram which shows a Jatropha cultivation field.

符号の説明Explanation of symbols

1 油濁水再利用システム
10 凝集磁気分離機(処理水生成手段)
16 凝集槽(磁性フロック生成手段)
20 回転円筒体(磁気分離手段)
21 磁場発生手段(磁気分離手段)
30 COD除去装置(COD除去手段)
32 オゾン発生器
33 活性炭処理槽
50 太陽熱蒸留器(塩分除去手段)
51 加熱器
53 冷却槽
54 凝縮槽
W1 油濁水
W2 1次浄化水(処理水)
W3 COD処理水
W4 浄化水(有用水)
Wc 冷却水
Pl 植物栽培プラント
1 Oily water reuse system 10 Coagulation magnetic separator (processed water generation means)
16 Coagulation tank (magnetic floc generating means)
20 Rotating cylinder (magnetic separation means)
21 Magnetic field generation means (magnetic separation means)
30 COD removal device (COD removal means)
32 Ozone generator 33 Activated carbon treatment tank 50 Solar distiller (salt removal means)
51 Heater 53 Cooling tank 54 Condensing tank W1 Oily water W2 Primary purified water (treated water)
W3 COD treated water W4 Purified water (useful water)
Wc Cooling water Pl Plant cultivation plant

Claims (8)

石油生産の際に発生する油濁水から被除去物である油濁成分を除去した処理水を生成する処理水生成手段と、
前記生成した処理水から被除去物である水溶性有機物を除去するCOD除去手段と、
前記水溶性有機物が除去された処理水に熱を加えることにより被除去物である塩分を除去して有用水を得る塩分除去手段と、を含んで構成されることを特徴とする油濁水再利用システム。
Treated water generating means for generating treated water from which the oil turbidity component to be removed is removed from the turbid water generated during oil production;
COD removing means for removing water-soluble organic substances that are to be removed from the generated treated water;
And a salinity removing means for obtaining useful water by removing the salt content to be removed by applying heat to the treated water from which the water-soluble organic substances have been removed. system.
前記処理水生成手段は、
油濁水に、油濁成分を凝集させる凝集剤および磁性成分を添加することで磁性フロックを生成させる磁性フロック生成手段と、
生成した磁性フロックを磁気の作用で吸引捕集する磁気分離手段と、を備えることを特徴とする請求項1に記載の油濁水再利用システム。
The treated water generating means is
A magnetic floc generating means for generating a magnetic floc by adding a flocculant for aggregating the oil turbid component and a magnetic component to the oil turbid water;
The oily water reuse system according to claim 1, further comprising: a magnetic separation unit that attracts and collects the generated magnetic floc by magnetic action.
前記COD除去手段は、
オゾン分解処理、フェントン処理、電気分解処理、および活性炭吸着処理のうちの少なくとも1つを用いてCODを除去する手段であることを特徴とする請求項1または請求項2に記載の油濁水再利用システム。
The COD removing means includes
The reused oily water according to claim 1 or 2, which is means for removing COD using at least one of ozonolysis treatment, Fenton treatment, electrolysis treatment, and activated carbon adsorption treatment. system.
前記塩分除去手段は、
太陽熱で加熱することにより前記処理水に熱を加える太陽熱蒸留器であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の油濁水再利用システム。
The salt removal means includes
The oily water recycling system according to any one of claims 1 to 3, wherein the system is a solar distiller that heats the treated water by heating with solar heat.
前記塩分を除去した処理水を、植物の栽培に利用することを特徴とする請求項1乃至請求項4のいずれか1項に記載の油濁水再利用システム。   The oily water reuse system according to any one of claims 1 to 4, wherein the treated water from which the salt content has been removed is used for plant cultivation. 石油生産の際に発生する油濁水から被除去物である油濁成分を除去した処理水を生成する処理水生成手段と、
前記処理水から被除去物である塩分を除去して有用水を得る塩分除去手段と、を含んで構成され、油濁水から乾燥地での植物栽培用の有用水を生成する油濁水再利用システムであって、
前記処理水生成手段は、
油濁水に油濁成分を凝集させる凝集剤および磁性成分を添加することで磁性フロックを生成させる磁性フロック生成手段と、
生成した磁性フロックを磁気の作用で吸引捕集する磁気分離手段と、を備えることを特徴とする油濁水再利用システム。
Treated water generating means for generating treated water from which the oil turbidity component to be removed is removed from the turbid water generated during oil production;
And a salinity removing unit that removes the salt content to be removed from the treated water to obtain useful water. The oily water reuse system generates useful water for plant cultivation in dry land from the oily water. Because
The treated water generating means is
A magnetic floc generating means for generating a magnetic floc by adding a flocculant for aggregating the oil turbid component to the oily water and a magnetic component;
An oily water reuse system comprising: magnetic separation means for attracting and collecting the generated magnetic flocs by the action of magnetism.
前記処理水生成手段により生成された処理水から、被除去物である水溶性有機物を除去するCOD除去手段を備え、
オゾン分解処理、フェントン処理、電気分解処理、および活性炭吸着処理のうちの少なくとも1つを用いて、前記処理水のCODを除去することを特徴とする請求項6に記載の油濁水再利用システム。
COD removing means for removing water-soluble organic substances that are to be removed from the treated water produced by the treated water producing means,
The oily water reuse system according to claim 6, wherein COD of the treated water is removed using at least one of ozonolysis treatment, Fenton treatment, electrolysis treatment, and activated carbon adsorption treatment.
前記塩分除去手段は、
太陽熱で加熱することにより前記処理水に熱を加える太陽熱蒸留器であることを特徴とする請求項6または請求項7に記載の油濁水再利用システム。
The salt removal means includes
The oily water recycling system according to claim 6 or 7, wherein the system is a solar distiller that heats the treated water by heating with solar heat.
JP2007165515A 2007-06-22 2007-06-22 Oily water reuse system Expired - Fee Related JP5157279B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007165515A JP5157279B2 (en) 2007-06-22 2007-06-22 Oily water reuse system
MX2009013432A MX2009013432A (en) 2007-06-22 2008-06-11 Oil-contaminated water reutilization system.
PCT/JP2008/060675 WO2009001676A1 (en) 2007-06-22 2008-06-11 Oil-contaminated water reutilization system
CA 2690542 CA2690542C (en) 2007-06-22 2008-06-11 Oil-contaminated water reutilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007165515A JP5157279B2 (en) 2007-06-22 2007-06-22 Oily water reuse system

Publications (2)

Publication Number Publication Date
JP2009000656A true JP2009000656A (en) 2009-01-08
JP5157279B2 JP5157279B2 (en) 2013-03-06

Family

ID=40185497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007165515A Expired - Fee Related JP5157279B2 (en) 2007-06-22 2007-06-22 Oily water reuse system

Country Status (4)

Country Link
JP (1) JP5157279B2 (en)
CA (1) CA2690542C (en)
MX (1) MX2009013432A (en)
WO (1) WO2009001676A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010084A (en) * 2011-06-30 2013-01-17 Hitachi Ltd Water purification process and water purifying apparatus thereof
JP2013150951A (en) * 2012-01-24 2013-08-08 Hitachi Plant Technologies Ltd Oil-containing water treatment system
JP2013184124A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus, and water treatment method
JP2015167904A (en) * 2014-03-06 2015-09-28 オルガノ株式会社 Apparatus and method for treating oil-containing water
US9439046B2 (en) 2014-03-27 2016-09-06 Panasonic Intellectual Property Corporation Of America Method for measuring position, non-transitory recording medium storing position measurement program, and radio apparatus
CN113371910A (en) * 2021-06-11 2021-09-10 刘百仓 Safe recycling method of shale gas industrial wastewater based on solar evaporation

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071057A (en) * 2011-09-28 2013-04-22 Toshiba Corp Water treatment equipment
JP5802578B2 (en) * 2012-03-08 2015-10-28 株式会社東芝 Water treatment apparatus and water treatment method
JP2014064968A (en) * 2012-09-25 2014-04-17 Toshiba Corp Method for treating brine including phenols and heavy metals by using adsorbent and method for regenerating adsorbent
CN107055919B (en) * 2017-02-10 2020-10-27 刘海红 Offshore oil production sewage treatment method based on magnetic microbead reinforced flocculation technology
JP7450215B2 (en) * 2020-03-24 2024-03-15 Dowaテクノロジー株式会社 Treatment method for water produced by oil drilling
EP4146819A1 (en) 2020-05-04 2023-03-15 10X Genomics, Inc. Spatial transcriptomic transfer modes
CN113149321A (en) * 2021-05-13 2021-07-23 深圳市曦力环保科技有限公司 Three-phase separation equipment for restaurant sewage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258699A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of waste water
JP2005087799A (en) * 2003-09-12 2005-04-07 Taikisha Ltd Waste water treatment method and waste water treatment apparatus using the same
WO2006049149A1 (en) * 2004-11-05 2006-05-11 Hitachi, Ltd. Method and apparatus for removing organic substance from oily water from oilfield

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103593A (en) * 1984-10-26 1986-05-22 Sasakura Eng Co Ltd Evaporative oil and water separator
JP4317668B2 (en) * 2001-03-19 2009-08-19 株式会社日立製作所 Membrane magnetic separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258699A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of waste water
JP2005087799A (en) * 2003-09-12 2005-04-07 Taikisha Ltd Waste water treatment method and waste water treatment apparatus using the same
WO2006049149A1 (en) * 2004-11-05 2006-05-11 Hitachi, Ltd. Method and apparatus for removing organic substance from oily water from oilfield

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010084A (en) * 2011-06-30 2013-01-17 Hitachi Ltd Water purification process and water purifying apparatus thereof
JP2013150951A (en) * 2012-01-24 2013-08-08 Hitachi Plant Technologies Ltd Oil-containing water treatment system
JP2013184124A (en) * 2012-03-08 2013-09-19 Toshiba Corp Water treatment apparatus, and water treatment method
JP2015167904A (en) * 2014-03-06 2015-09-28 オルガノ株式会社 Apparatus and method for treating oil-containing water
US9439046B2 (en) 2014-03-27 2016-09-06 Panasonic Intellectual Property Corporation Of America Method for measuring position, non-transitory recording medium storing position measurement program, and radio apparatus
CN113371910A (en) * 2021-06-11 2021-09-10 刘百仓 Safe recycling method of shale gas industrial wastewater based on solar evaporation

Also Published As

Publication number Publication date
MX2009013432A (en) 2010-03-22
JP5157279B2 (en) 2013-03-06
CA2690542C (en) 2013-05-28
CA2690542A1 (en) 2008-12-31
WO2009001676A1 (en) 2008-12-31

Similar Documents

Publication Publication Date Title
JP5157279B2 (en) Oily water reuse system
US11254589B2 (en) Systems and methods for separating surface materials from a fluid using acoustic pressure shock waves
Subramani et al. Treatment technologies for reverse osmosis concentrate volume minimization: A review
CN103420532A (en) Processing method of sewage in oil fields by using film evaporator
US9731989B2 (en) Chemical oxidation or electromagnetic treatment in SAGD operations
CN101500947A (en) Method and apparatus for treating water or wastewater or the like
Al-Absi et al. Brine management strategies, technologies, and recovery using adsorption processes
CN109354292A (en) A kind of minimizing treatment process of landfill leachate film-filter concentration liquid
KR101795698B1 (en) Waste water Treatment Method and apparatus by Centrifuges
CN108128983A (en) A kind of high sulfur-bearing, high saliferous gas field produced water deep purification process technique
CN110683716A (en) Wastewater treatment process for wastewater generated by automobile accessory coating production line
El-badawy et al. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use
CN105254096A (en) Preprocessing method and device for gasification ammonia-cyanide-phenol-contained circulating water
US11618691B1 (en) Waste water treatment to reduce BOD/COD
Maiti et al. Zero liquid discharge wastewater treatment technologies
Maksimov et al. Prospective systems and technologies for the treatment of wastewater containing oil substances
CN207811478U (en) A kind of gas field wastewater desulfurization desalting processing system containing surfactant
CN206156979U (en) High processing apparatus who contains salt difficult degradation saccharin industrial waste water waste gas
JP2005161253A (en) Bio-flocculant of sludge and method and apparatus for treating sludge
Dubrovskaya et al. Development of closed systems of oil-field water treatment as a basis of ecological safety of oil deposits settlements maintenance
CN110117119B (en) Method and system for treating oil-containing water body
Patra Reducing energy cost for wastewater treatment in the Middle East: a physio-chemical prospective
CN107601744B (en) High-salt wastewater treatment system and method thereof
Khalifa Ozonation-Assisted Electro-Membrane Hybrid Reactor for Oily Wastewater Treatment
Gamwo et al. 1 Produced Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees