JP2008517731A - 複数の位相板を有する眼用レンズ - Google Patents

複数の位相板を有する眼用レンズ Download PDF

Info

Publication number
JP2008517731A
JP2008517731A JP2007539132A JP2007539132A JP2008517731A JP 2008517731 A JP2008517731 A JP 2008517731A JP 2007539132 A JP2007539132 A JP 2007539132A JP 2007539132 A JP2007539132 A JP 2007539132A JP 2008517731 A JP2008517731 A JP 2008517731A
Authority
JP
Japan
Prior art keywords
phase plate
ophthalmic lens
focus
curvature
step height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007539132A
Other languages
English (en)
Other versions
JP5011117B2 (ja
Inventor
マーク・エイチ・バンドハウアー
アラン・ジェイ・ラング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson and Johnson Surgical Vision Inc
Original Assignee
Abbott Medical Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Medical Optics Inc filed Critical Abbott Medical Optics Inc
Publication of JP2008517731A publication Critical patent/JP2008517731A/ja
Application granted granted Critical
Publication of JP5011117B2 publication Critical patent/JP5011117B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/044Annular configuration, e.g. pupil tuned
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • A61F2/1618Multifocal lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1654Diffractive lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/041Contact lenses for the eyes bifocal; multifocal
    • G02C7/042Simultaneous type
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/20Diffractive and Fresnel lenses or lens portions
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/22Correction of higher order and chromatic aberrations, wave front measurement and calculation

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Lenses (AREA)

Abstract

複数の焦点をもたらすための眼用レンズが、前面、後面、および光軸を有する光学系を有している。この光学系は、第1の領域および第2の領域を有している。第1の領域は、屈折光パワーを有するとともに、第1の焦点および第2の焦点を形成するための多焦点の位相板を備えている。第2の領域は、屈折光パワーを有するとともに、第3の焦点を形成するための単焦点の位相板を備えている。多焦点の位相板および単焦点の位相板を、異なる曲率半径を有することができる第1および第2のベース曲率上に、それぞれ配置することができる。さらに、この眼用レンズは、多焦点の位相板と単焦点の位相板との間に中間の位相板を配置して有することができ、この中間の位相板が、第3の複数のエシュレットを、第3の曲率半径を有する第3のベース曲率上に配置して備えている。

Description

本発明は、広くは眼用レンズに関し、さらに具体的には、眼に像をもたらすために屈折および回折の両者を組み合わせる多焦点の眼用レンズに関する。
眼内レンズ(IOL)、有水晶体IOL、および角膜インプラントなどといった眼用レンズが、眼の視力を向上させるために使用されている。例えば、今日では、白内障の手術の際に取り除かれる眼の生まれつきの水晶体を置き換えるために、IOLがごく普通に使用されている。さらに最近では、回折型IOLが、レンズの厚さの低減および老眼の矯正のために好都合に使用されている。例えば、屈折型2焦点レンズは、近見および遠見の両方の視力をもたらすため、入射光を2つの回折次数(diffractive orders)に分割している。眼用レンズにおける回折光学系の使用は、Cohenによって特許文献1−12に記載されており、これらはすべて、ここでの言及によって本明細書に取り入れられたものとする。Freemanも、特許文献13−17において眼用レンズにおける回折光学系の使用を説明しており、これらもここでの言及によって本明細書に取り入れられたものとする。
このようなレンズにおいては、光学領域が、一般的には、複数の環状のゾーン(zone)またはエシュレット(echelettes)へと分割されており、これらがゾーン間に特定の位相関係をもたらすために、所定のステップ(step)高さによって光軸に対して平行にずらされている。本明細書において、用語「ゾーン・プレート(zone plate)」または「位相板」は、この技術分野において一般に理解されているように、ゾーン間のステップ高さ、ゾーン間の円周の間隔、および各ゾーンの表面形状によって少なくとも部分的に特徴付けられる同心に配置された環状のゾーンのパターンであると定義される。ゾーン・プレートは、通常は、各ゾーンを通過する光に所定の位相関係を維持するように構成されている。CohenおよびFreemanに加え、Futheyも、例えば特許文献18−20に種々の眼用回折レンズを記載しており、これらもここでの言及によって本明細書に取り入れられたものとする。
米国特許第4,881,804号明細書 米国特許第4,881,805号明細書 米国特許第4,995,714号明細書 米国特許第4,995,715号明細書 米国特許第5,017,000号明細書 米国特許第5,054,905号明細書 米国特許第5,056,908号明細書 米国特許第5,117,306号明細書 米国特許第5,120,120号明細書 米国特許第5,121,979号明細書 米国特許第5,121,980号明細書 米国特許第5,144,483号明細書 米国特許第4,637,697号明細書 米国特許第4,641,934号明細書 米国特許第4,642,112号明細書 米国特許第4,655,565号明細書 米国特許第5,748,282号明細書 米国特許第4,936,666号明細書 米国特許第5,129,718号明細書 米国特許第5,229,797号明細書
1つの手法においては、位相板またはゾーン・プレートが、個々のゾーン間のステップの光学高さ(すなわち、材料の屈折率と周囲の媒体の屈折率との間の差に物理的な高さを掛けたもの)が可視範囲の設計波長における光の波長の2分の1である複数のゾーンを有している。このような設計においては、設計波長の光の約80%が、ゼロ次および1次の回折次数の間で均等に分割され、通常はゼロ次の回折次数が、ゾーン・プレートによって回折されておらず、すなわちゾーン・プレートによって影響されていない光であると考えられる。このゾーン・プレートの構成は、(1)ゼロ次の回折次数が遠見視力のための第1のフォーカスまたは焦点を生み、(2)1次の回折次数が近見または中距離の視力に対応する第2のフォーカスまたは焦点を生む2焦点のレンズを生み出すために使用される。さらに、屈折による色分散の成分と回折による色分散の成分とが互いに打ち消し合う傾向にあるため、1次の回折次数によって生み出される色分散(通常は、屈折による色分散と符号が反対である)を、近見視力の焦点の全体としての色収差を低減するために、使用することができる。しかしながら、遠見視力の焦点は、ゾーン・プレートによって回折されていない光のみを含んでいるため、この回折の色分散の利益を受けることができない。したがって、遠見視力は純粋に屈折によるものであり、屈折の色分散によって引き起こされる色収差について、低減を受けることができない。
回折ゾーンまたは位相板を取り入れてなる眼用レンズの特性は、近くの焦点および遠くの焦点における光の量が、すべての瞳孔サイズについて実質的に一定であるような特性である。或る場合には、例えば中間的または少ない光の状況のもとで、瞳孔のサイズが増すにつれ、遠くの焦点における光の量を増すことが望まれる。遠見視力のためだけの光の量を増加させるための1つの方法は、Cohenの特許文献1に開示されているように、ゾーン・プレートをレンズの中央部のみに限定し、レンズの外側領域を屈折のみにすることである。他の手法が、ここでの言及によって本明細書に取り入れられたものとするLeeらの米国特許第5,699,142号に開示されている。Leeらは、移行領域においてゾーン間のステップ高さが徐々に減らされているアポダイゼーション・ゾーン(an apodization zone)を有する回折レンズを教示している。ゾーン間のステップは、得られる波面に望ましくない回折効果を生じうる急激な不連続がもたらされることがないよう、ベース曲線BCに中心合わせされている。これらの設計のどちらも、レンズの外側の屈折部分は、色収差を低減するための回折力の使用による利益を有しておらず、光量の少ない条件下において瞳孔のサイズが大きくなるとき、色収差が大きくなる可能性がある。
多焦点/2焦点IOLに関する1つの問題は、ハロ(halos)の問題である。この問題は、使用されない焦点の像からの光が焦点ずれの像を生み出し、これが使用される焦点の像に重ねられる場合に現れる。例えば、遠方の点光源または広がりのわずかな光源からの光が、2焦点IOLによって生み出される遠方の焦点によって眼の網膜上に結像される場合、同時にIOLによって生み出される近い焦点が、IOLの遠方の焦点によって形成される像の上に焦点のずれた像を重ねる。この焦点のずれた像が、IOLの遠方の焦点によって生成される焦点の合った像を囲んで、光のリングの形態で現れることがある。
眼科の用途において回折レンズの性能を改善するための装置および方法が、必要とされている。
本発明の1つの態様は、前面、後面、および光軸を有する光学系を備える眼用レンズに関係する。この眼用レンズは、第1の光パワー(power)を有する第1の領域および第2の光パワーを有する第2の領域を、さらに有している。第1の領域が、第1の焦点および第2の焦点を形成するように構成された多焦点の位相板を備える一方で、第2の領域は、第3の焦点を形成するための単焦点の位相板を備えている。単焦点の位相板および多焦点の位相板は、好ましくは、少なくとも1つのベース(base)曲率の周囲に配置される。特定の実施形態においては、第1の領域が、有限の第1の曲率半径を有する第1のベース曲率を備えており、第2の領域が、第1の曲率半径とは異なる有限の第2の曲率半径を有する第2のベース曲率を備えている。この眼用レンズは、第3の光パワーを有し、第3の位相板を有している第3の領域を、さらに備えることができる。例えば、第3の領域は、単焦点の位相板と多焦点の位相板との間に配置される中間の領域であってよい。
1つの実施形態においては、第1の領域が、光学系の中央に配置され、第2の領域が、第1の領域の外側に配置される。あるいは、第2の領域が、光学系の中央に配置され、第1の領域が、第2の領域の外側に配置される。どちらの実施形態においても、ベース曲率は、球面、放物線、楕円、双曲線、または他の何らかの非球面形である形状を有することができる。第1の領域は、好ましくは多焦点の位相板の回折光パワーよりも大きい屈折光パワーを有することができ、第2の領域は、好ましくは単焦点の位相板の回折光パワーよりも大きい屈折光パワーを有することができる。
単焦点の位相板および多焦点の位相板を、両者とも光学系の前面に配置でき、あるいは光学系の後面に配置することができる。あるいは、単焦点の位相板および多焦点の位相板を、光学系の両表面に配置してもよい。
本発明の他の態様においては、多焦点の位相板および単焦点の位相板の少なくとも一方が、複数の同心ゾーンを有し、隣接ゾーン間に光軸に沿った或るステップを有している。あるいは、多焦点の位相板および単焦点の位相板の少なくとも一方が、自身の表面を横切って変化する屈折率を有している。好ましくは、表面を横切っての屈折率の変化が、光学系の中心からの半径方向であるが、他の構成も可能である。そのような屈折率の変化は、例えば位相ホログラムによって生成できる。
多焦点の位相板は、MODが0.5である位相板、またはMODが1.5である位相板、あるいはより一般的にはMODがx.5である位相板(xは整数)など、2焦点の位相板であってよい。単焦点の位相板は、MODが1である位相板、MODが2である位相板、あるいはより一般的にはMODがy.0である位相板(yは整数)であってよい。例えば1つ以上の負の回折次数を生み出す他の種類の位相板も、使用可能である。
本発明のとくに有用な態様においては、第1の領域が、第1の曲率半径を有する第1のベース曲率を備え、第2の領域が、第2の曲率半径を有する第2のベース曲率を備えており、第1の曲率半径が第2の曲率半径と異なっている。さらに、多焦点の位相板が、MODが0.5である位相板であってよく、単焦点の位相板が、MODが1である位相板であってよい。この構成においては、第1の焦点が、多焦点の位相板のゼロ次の回折次数に対応し、第2の焦点が、多焦点の位相板の第1の回折次数に対応し、第3の焦点が、単焦点の位相板の第1の回折次数に対応する。
第1の焦点を、遠見視力をもたらすために使用でき、第2の焦点を、近見視力または中距離視力をもたらすために使用することができる。第2のベース曲率を、第3の焦点が第1の焦点または第2の焦点と実質的に同じ位置、第1および第2の焦点の間、あるいは第1または第2の焦点と異なる他の何らかの位置に配置されるように構成することができる。多焦点の位相板および単焦点の位相板のいずれかまたは両方を、第2および/または第3の焦点における色収差を調節するように構成することができる。同様に、単焦点の位相板、第2のベース曲率、あるいは両方を、第1の焦点および第2の焦点の少なくとも一方において、第1の領域によって生み出される球面収差または他の収差を低減するように、構成することができる。
本発明のさらなる態様においては、眼用レンズが、前面、後面、および光軸を有する光学系、第1の領域、ならびに第2の領域を有している。第1の領域は、第1の位相板を、有限の第1の曲率半径を有する第1のベース曲率上に配置して有している。第2の領域は、第2の位相板を、有限の第2の曲率半径を有する第2のベース曲率上に配置して有している。さらに、第1の曲率半径が、第2の曲率半径と相違することができる。
本発明の他の態様においては、眼用レンズが、前面、後面、および光軸を有する光学系を有している。この眼用レンズは、第1の屈折光パワーを有する第1の領域をさらに有しており、第1の領域は、(1)第1の曲率半径を有する第1のベース曲率、および(2)第1の焦点と第1の焦点よりも光学系に近く位置する第2の焦点とを形成するための多焦点の位相板を有している。この眼用レンズは、第2の屈折光パワーを有する第2の領域をさらに有しており、第2の領域は、(1)第2の曲率半径を有する第2のベース曲率、および(2)第3の焦点を形成するための単焦点の位相板を有している。好ましくは、第1の領域および第2の領域の両者が屈折光パワーを有するよう、第1の曲率半径および第2の曲率半径の両者が有限である。
本発明のさらに他の態様においては、眼用レンズが、前面、後面、および光軸を有する光学系を備えている。さらに眼用レンズは、第1の屈折光パワーを有する第1の領域を備えており、第1の領域が、多焦点の位相板を、第1の曲率半径を有する第1のベース曲率上に配置して有している。さらに眼用レンズは、第2の屈折光パワーを有する第2の領域を備えており、第2の領域が、単焦点の位相板を、第1の曲率半径と異なる有限の第2の曲率半径を有する第2のベース曲率上に配置して有している。好ましくは、第1の領域および第2の領域の両者が屈折光パワーを有するよう、第1の曲率半径および第2の曲率半径の両者が有限である。
本発明の1つの態様においては、眼用レンズが、前面、後面、第1のベース曲率、および光軸を有する光学系を有している。さらに眼用レンズは、光を第1の焦点および第2の焦点へと導くように構成された多焦点の位相板を有しており、多焦点の位相板は、光軸に平行な方向において第1のベース曲率に中心合わせされた第1の複数のエシュレットを有しており、第1のベース曲率は、第1の曲率半径を有している。さらに眼用レンズは、多焦点の位相板を囲むとともに、結果として第2の焦点へと導かれる光の全体としての振幅および/または分布を変化させるように構成されている中間の位相板を有しており、中間の位相板は、第1のベース曲率に中心合わせされ、あるいは第1の曲率半径と異なる第2の曲率半径を有する第2のベース曲率に中心合わせされた第2の複数のエシュレットを有している。さらに眼用レンズは、屈折光パワーを有するが回折光パワーを有さない外側屈折領域を有している、外側屈折領域が、中間の位相板を囲むとともに、光を第1の焦点へと導くように構成されている。
いくつかの実施形態においては、第1の複数のエシュレットが、隣接エシュレット間に第1のステップ高さを有しており、第2の複数のエシュレットが、隣接エシュレット間に第2のステップ高さを有している。第2のステップ高さは、第1のステップ高さよりも小さくてよい。特定の実施形態においては、第1のステップ高さが、式0.5×λ/(n2−n1)によって決定され、第2のステップ高さが、式B×λ/(n2−n1)によって決定され、ここで
Bは定数であり、
λは設計波長であり、
n2は眼用レンズの屈折率であり、
n1は位相板に隣接する媒体の屈折率であり、
ここで、Bは約0.25、約0.75、または1より大きく、あるいは1より小さい他の何らかの値である。1つの実施形態においては、第2の複数のエシュレットが、4つのエシュレットを含んでいるが、任意の数のエシュレットを使用することができる。他の実施形態においては、第2の複数のエシュレットが、1つ以上の隣接エシュレット間の第1のステップ高さ、および1つ以上の隣接エシュレット間の第2のステップ高さを有することができる。そのような実施形態においては、第1のステップ高さを、式0.375×λ/(n2−n1)によって決定でき、第2のステップ高さが、式0.125×λ/(n2−n1)によって決定される。
本発明のさらに他の態様においては、眼用レンズが、前面、後面、および光軸を有する光学系を有している。さらに眼用レンズは、多焦点の位相板、単焦点の位相板、および多焦点の位相板と単焦点の位相板との間に位置する中間の位相板を有している。多焦点の位相板を、第1の焦点および第2の焦点へと光を導くように構成できる。さらに多焦点の位相板は、第1の複数のエシュレットを、第1の曲率半径を有する第1のベース曲率上に配置して有している。単焦点の位相板は、第2の複数のエシュレットを、第1の曲率半径と異なる第2の曲率半径を有する第2のベース曲率上に配置して有している。中間の位相板は、第3の曲率半径を有する第3のベース曲率上に配置され、結果として第2の焦点へと導かれる光の全体としての振幅および/または分布を変化させるように構成された第3の複数のエシュレットを有している。
眼用レンズの第3の曲率半径は、第1の曲率半径と同じであってよく、あるいは第1の曲率半径よりも大きくても、小さくてもよい。多焦点の位相板および中間の位相板が、一般的には、第1の焦点を含む平面にハロ像を生成する。
特定の実施形態においては、第1の複数のエシュレットが、隣接エシュレット間に第1のステップ高さを有しており、第2の複数のエシュレットが、隣接エシュレット間に第2のステップ高さを有している。第2のステップ高さは、第1のステップ高さよりも小さくてよい。第1のステップ高さを、式0.5×λ/(n2−n1)によって決定でき、第2のステップ高さを、式B×λ/(n2−n1)によって決定でき、ここで
Bは定数であり、
λは設計波長であり、
n2は眼用レンズの屈折率であり、
n1は位相板に隣接する媒体の屈折率であり、
ここで、Bは約0.25、約0.75、または1より大きく、あるいは1より小さい他の何らかの値である。1つの実施形態においては、第2の複数のエシュレットが、4つのエシュレットを含んでいるが、任意の数のエシュレットを使用することができる。特定の実施形態においては、第2の複数のエシュレットが、1つ以上の隣接エシュレット間の第1のステップ高さ、および1つ以上の隣接エシュレット間の第2のステップ高さを有することができる。そのような実施形態においては、第1のステップ高さが、式0.375×λ/(n2−n1)によって決定され、第2のステップ高さが、式0.125×λ/(n2−n1)によって決定される。他の実施形態においては、第1の複数のエシュレットが、隣接エシュレット間に第1のステップ高さを有しており、第2の複数のエシュレットが、隣接エシュレット間に複数の異なるステップ高さを有しており、それら複数の異なるステップ高さのそれぞれが、第1のステップ高さよりも小さい。あるいは、それら複数の異なるステップ高さが、光軸からの距離が増すにつれて徐々に減少している。
本発明の実施形態を、以下の詳細な説明を添付の図面と組み合わせて検討することによって、よりよく理解できるであろう。そのような実施形態は、あくまで例示の目的において、本発明の新規かつ非自明な態様を表現している。図面は、以下の19個の図を含んでおり、同様の番号が同様の部分を指し示している。
本発明の実施形態は、一体となって眼の視力の向上をもたらす屈折光パワーおよび回折光パワーの両者を有する複数の表面領域を有している多焦点の眼用レンズ(例えば、眼内レンズ(IOL)、有水晶体IOL、および角膜インプラント)に向けられている。本明細書において、用語「力(パワー)」または「光パワー」は、現実または仮想のフォーカスまたは焦点を形成する目的で入射光を向け直すというレンズ、光学系、光学表面、または光学表面の少なくとも一部分の能力を意味する。光パワーは、反射、屈折、回折、またはこれらの何らかの組み合わせによってもたらすことができ、通常はジオプタ(Diopters)という単位で表現される。表面、レンズ、または光学系の光パワーが、一般的には、メートルを単位として表現した場合の表面、レンズ、または光学系の焦点距離の逆数に等しいことを、当業者であれば理解できるであろう。本明細書において、用語「屈折光パワー」または「屈折力(屈折パワー)」は、光が表面、レンズ、または光学系と相互作用するときに光の屈折によって生み出される光パワーを意味する。本明細書において、用語「回折光パワー」または「回折力(回折パワー)」は、例えば位相板の回折次数によって生み出されるように、光が表面、レンズ、または光学系と相互作用するときに光の回折からもたらされる光パワーを意味する。位相板に関して、用語「回折光パワー」または「回折力(回折パワー)」は、当該用語が使用される回折位相板と実質的に同じ様相で設計波長の光を収束または発散させる屈折レンズ由来の実質的に等価な光パワーを意味する。
図1が、眼22の中に配置され、光軸21を有している従来技術の2焦点IOL20を示している。IOL20は、例えば特許文献15のFreemanまたは特許文献12のCohenの教示にしたがって製作された位相板23を有している。位相板23は、ベース曲率Cを有する前面24に配置されており、コリメート光の形態で眼22へと進入する遠方の物体からの入射光26によって照射されている。入射光26の第1の部分27は、位相板23による影響を実質的に受けず、前面24および後面28によって屈折を通じて合焦され、遠見視力をもたらすべくほぼ眼22の網膜30上に位置する第1の焦点29を生む。入射光26の第2の部分32は、位相板23によって回折され、近見視力または中距離視力をもたらすべく第2の焦点34を生む。第2の焦点34を形成するための前面24の正味の光パワーは、一般的には、(1)ベース曲率Cゆえの前面24の屈折光パワーと、(2)位相板23の回折光パワーとの組み合わせになると考えられる。実際の眼においては、第2の焦点34を形成する光は、網膜30に向かって伝搬を続けるが、わかりやすくするため、この光が第2の焦点34で終わるものとして描かれていることを、当業者であれば理解できるであろう。
本明細書において、用語「近見視力」は、IOL20などのレンズまたは画像化システムの少なくとも一部によってもたらされる視力であって、被験者に比較的近い物体の焦点が実質的に被験者の眼の網膜に一致する視力を指す。用語「近見視力」は、おおむね物体が約25cm〜約50cmの距離にある場合にもたらされる視力に相当する。反対に、本明細書において、用語「遠見視力」は、レンズまたは画像化システムの少なくとも一部によってもたらされる視力であって、被験者から比較的遠い物体の焦点が実質的に眼の網膜に一致する視力を指す。用語「遠見視力」は、おおむね物体が被験者から少なくとも約1メートル〜2メートル、好ましくは5〜6メートル超の距離にある場合にもたらされる視力に相当する。用語「中距離視力」は、一般的には、レンズまたは画像化システムの少なくとも一部によってもたらされる視力であって、被験者から中間的な距離にある物体の焦点が実質的に眼の網膜に一致する視力を指す。中距離視力は、おおむね物体が約40センチメートル〜約1.5メートルの距離にある場合にもたらされる視力に相当する。
再び図1を参照すると、IOL20が、前面24、後面28、および位相板23の組み合わせゆえ、事実上2つの光パワーを有している。入射光26が、通常は他の高次および低次の回折次数へと回折されると考えられるため、IOL20がさらなる光パワーを有することができることを、理解できるであろう。例えば、位相板23が特許文献12のCohenの教示にしたがって製作される場合、設計波長の光のほぼ80%が、ゼロ次の回折次数と1次の回折次数との間でほぼ均等に分割される一方で、光の残りの20%は、位相板23のより高次の回折次数(例えば、a+1よりも高い回折次数)および/またはより低次の回折次数(例えば、a−1以下の回折次数)の間で分割される。
図2は、眼22に比較的近接して位置する近傍の物体40について、IOL20の性能を示している。このような状態のもとでは、遠方の焦点29および近傍の焦点34が、近傍の焦点34がほぼ網膜30に位置し、遠方の焦点29が網膜30の後方に位置するように配置される。このように、IOL20は、老眼および/または生まれつきの水晶体の除去に起因して失われた生まれつきの水晶体の調節能力を少なくとも近似する方法で、患者に近見視力および遠見視力の両者を提供する2焦点レンズとして機能することができる。
2焦点IOL20の位相板23は、一般的には、光軸21に沿って隣接ゾーン間に特定のオフセットまたはステップ高さを有している複数の環状のゾーン、ファセット(facets)、またはエシュレットを有している。本明細書において、「ゾーン」、「ファセット」、または「エシュレット」は、ステップまたは他の位相の不連続の間に配置されたゾーンまたは位相板の部位を意味して相互に交換可能に使用される。
IOL20の2焦点の特性は、隣接するゾーン間のステップ高さを、ステップの各側の光線の光学経路長の差がλ/2(ここで、λは設計波長)となるように選択することによって実現できる。例えば、2焦点IOL20が、nIOLの屈折率を有する材料で作られ、前面24に隣接する材料がnである場合、ステップ高さhstepは、
[数式1]
Figure 2008517731

なる関係によって与えられ、本明細書においてλ/2位相板と称される。また、本明細書において、ステップの高さを、その位相高さによって表すことができる。例えば、式(1)によって与えられるステップ高さhstepは、λ/2位相ステップ高さと称される。当業者であれば理解できるとおり、λ/2位相板が、位相板によって回折される全体の光の約40%をそれぞれ含んでいるゼロ次および1次の回折次数を生み出すために使用される。この種の位相板を、ステップ高さが設計波長λの0.5倍の光学経路長の差に相当することを表して、MODが0.5である位相板と称することができる。
あるいは、IOL20が、隣接ゾーン間のステップの各側への光線の光学経路長の差がλとなるようにステップ高さが設定されている単焦点IOLの形態であってもよい。このような位相板は、本明細書において、1λ位相板と称され、1λの位相ステップ高さを有していると称される。したがって、たった今使用した材料の屈折率において、
[数式2]
Figure 2008517731
なる関係によって与えられるステップ高さが、入射光26のエネルギーの事実上100%が位相板23の1次の回折次数へと回折され、したがって近傍の焦点34へと回折される単焦点のIOLをもたらす。この種の位相板を、ステップ高さが設計波長λの1倍の光学経路長の差に相当することを表して、MODが1である位相板と称することができる。
あるいは、特許文献20においてFutheyが教示しているように、位相板23を、ステップの各側への光線の光学経路長の差が3λ/2となるような隣接ゾーン間のステップ高さで構成してもよい。この場合、遠方および近傍の焦点29、34の位置は、前面24および後面28の屈折力と位相板23の1次および2次の回折次数との組み合わせによってもたらされる。この種の位相板は、ステップ高さが設計波長λの1.5倍の光学経路長の差に相当することを表して、MODが1.5である位相板と称することができる。より大きなMODの位相板が、ここでの言及によって本明細書に取り入れられたものとする米国特許第5,589,982号において、Faklisらによって教示されている。
このような約束事にもとづき、MODがx.5(ここで、xは整数)である位相板は、隣接ゾーン間のステップ高さが設計波長λの(x+1/2)倍の光路長差に相当する位相板であり、ここでxは1以上の整数である。MODがx.5である位相板は、位相板に入射する光からのエネルギーの大部分が、一般的には2つの回折次数の間で分割されることを特徴とする。MODがxである位相板は、隣接ゾーン間のステップ高さが設計波長λのx倍の光路長差に相当する位相板を指し、ここでxは1以上の整数である。MODがxである位相板は、入射光からのエネルギーの大部分またはすべてが、ただ1つの回折次数に含まれることを特徴とする。この同じ約束事が、隣接ゾーン間に物理的なステップ高さを有さない位相板にも当てはまる。例えば、位相板23を、ホログラフィックまたは他のそのような方法を使用して製造して、隣接ゾーン間の位相の変化が、隣接ゾーン間のステップ高さが設計波長λのx倍の光路長差に相当する実質的に等価な位相板によって生み出される位相の変化と同じであるMODがxの位相板を形成することができる。あるいは、種々のゾーンを、透過型格子の形態で設けることが可能である。
図3を参照すると、本発明の或るいくつかの実施形態において、眼用レンズ100が光学系102を有している。光学系102は、前面104、後面106、および光軸108を有している。光学系102は、第1のフォーカスまたは焦点F1および第2のフォーカスまたは焦点F2を提供、生成、または形成するため、或る光パワーを有し、多焦点の位相板112を有している第1の領域110を含んでいる。さらに、光学系102は、第3の焦点F3を提供、生成、または形成するため、或る光パワーを有し、単焦点の位相板122を有している第2の領域120を含んでいる。一般的な約束事として、物体からの光が多焦点の位相板112などといった2焦点または多焦点の位相板と相互作用することによって生み出される光線は、図面において、物体からの光が単焦点の位相板122などといった単焦点の位相板と相互作用することによって生み出される光線に比べ、より細い線で表現されている。例えば、図3に示されている入力光線124は、それぞれ第1の焦点F1および第2の焦点F2へと導かれる2つの合焦光線124aおよび124bへと分割され、これらが細い線で表されている。対照的に、図3に示されている入力光線126は、第3の焦点F3へと導かれるただ1つの合焦光線126aを生み、これがより太い線で表されている。
眼用レンズ100は、哺乳類の眼の後室または前室に配置するための眼内レンズであってよい。すなわち、眼用レンズ100を、例えば白内障手術の際の生まれつきの水晶体の除去の後に、眼の生まれつきの水晶体を置き換えるために使用することができる。あるいは、眼用レンズ100が、虹彩の前、虹彩の後、あるいは虹彩によって定められる平面に配置される有水晶体レンズであってよい。あるいは、眼用レンズ100が、例えば角膜の間質細胞層に挿入される角膜インプラントであってもよい。また、眼用レンズ100が、被験者の視力の提供または改善に使用されるコンタクトレンズまたは何らかの他の種類の眼用装置であってよい。あるいは、眼用レンズ100を、例えば先に埋め込んだIOLまたは角膜インプラントの補足または補正のため、画像化システムの一部として使用してもよく、あるいはLangらがここでの言及によって本明細書に取り入れられたものとする米国特許第6,231,603号において開示しているような調節レンズ・システムにおいて、使用することができる。
眼用レンズ100は、ポリメチルメタクリレート(PMMA)など、剛な光学系において一般的に使用されている任意の材料、またはシリコーン系のポリマー材料、アクリル系のポリマー材料、ポリヒドロキシエチルメタクリレート、ポリホスファゼン、ポリウレタン、およびこれらの混合物などのヒドロゲル形成ポリマー材料、などといった弾性変形または折りたたみが可能な光学系において一般的に使用されている任意の材料で構成できる。材料は、好ましくは、光学的に透明な光学系を形成し、眼の環境において生体適合性を呈する。眼用レンズ100は、感光性の材料(例えば、感光性樹脂またはハロゲン化銀)または可変の屈折率の材料など、位相板112、122を形成するために有用な材料で製作でき、あるいはそのような材料を含むことができる。例えば位相板112、122間の境界または位相板112、122内の隣接ゾーン間の境界において光を選択的に阻止するため、光学系102の一部分を、より不透明な材料で構成できる。そのような材料は、散乱光を少なくするように機能でき、あるいは他の方法で位相板112、122の一方または両方の性能を定義または変更するように機能できる。
適切なレンズ材料の選択は、当業者のよく知るところである。例えば、David J. Appleらの「Intraocular Lenses:Evolution, Design, Complications, and Pathology」(1989年)、William & Wilkinsを参照されたい。折りたたみ可能/変形可能な材料は、そのような変形可能材料から作られた光学系を巻き、折りたたみ、あるいは他の方法で変形させて、小さな切開を通して眼へと挿入できるためとくに好都合である。レンズ材料は、例えば約150ミクロン〜約1000ミクロン、好ましくは約150ミクロンまたは約200ミクロン〜約500ミクロンの範囲の厚さを有する比較的薄くて好ましくは柔軟な光学系部分を可能にする屈折率を、好ましくは有している。眼用レンズ100が眼内レンズである場合、光学系102は、約4mmまたはそれ以下〜約7mmまたはそれ以上、好ましくは約5.0mm〜約6.0mm、あるいは約6.5mmの直径を有することができる。
IOLとして構成される場合、眼用レンズ100は、光学系102を眼の中で中心合わせし、あるいは他のやり方で光学系102を眼の中に配置するため、この技術分野において利用できる種々の手段のいずれかを備えることができる。例えば、眼用レンズ100は、1つ以上の固定用部材またはハプティック(haptic)を有することができる。ハプティックは、光学系102と同じ材料で製作が可能であり、さらには/あるいは1部品のIOLを形成すべく光学系102と一緒に一体に形成できる。あるいは、1つ以上のハプティックを、別個に形成して光学系102へと取り付け、複数の部品からなる構成としてもよい。固定用部材は、充分な支持強度および弾性を呈し、かつ/または予定される体内または眼内の環境において実質的に生物学的に不活性である種々の材料のいずれかで構成できる。この目的に適した材料として、例えばシリコーン系ポリマー材料、アクリル系ポリマー材料、ポリヒドロキシエチルメタクリレート、ポリホスファゼン、ポリウレタンなどといったヒドロゲル形成ポリマー材料、およびこれらの組み合わせ、などといったポリマー材料が挙げられる。他の実施形態においては、眼用レンズ100が、嚢袋(capsular bag)の変形に応答し、さらには/あるいは眼の毛様体筋(ciliary muscle)に応答して光学系102を光軸108に沿って動かすことができる位置決め手段を有している。
或るいくつかの実施形態においては、単焦点の位相板122および多焦点の位相板112が、図3に示されているようにどちらも前面104に配置されている。代案としては、単焦点の位相板122および多焦点の位相板112がどちらも、後面106に配置される。他の実施形態においては、単焦点の位相板122および多焦点の位相板112が、光学系102の両面104、106に配置される。例えば、多焦点の位相板112を前面104に配置できる一方で、単焦点の位相板122が後面106に配置される。
多焦点の位相板112を有する第1の領域110を、光学系102の中心に配置することができ、単焦点の位相板122を有する第2の領域120を、第1の領域110の外側に配置することができる。あるいは、第2の領域120を、光学系102の中心に配置することができ、第1の領域110を、第2の領域120の外側に配置することができる。位相板112、122はそれぞれ、好ましくは、前方から見たときに円形の外径を有している。
多焦点の位相板112が、第1の複数の回折ゾーン、ファセット、またはエシュレット130(まとめて、128)を有することができる一方で、単焦点の位相板122は、第2の複数の回折ゾーン、ファセット(facet)、またはエシュレット130(まとめて、132)を有している。第1の領域110は、典型的には、実質的に円形である中央回折ゾーン134を、典型的には環状の形状を有する残りの回折ゾーン130で囲んで備えている。回折ゾーン130のそれぞれの外径の決定は、この技術分野において周知であり、一般的には、設計波長λおよびレンズの所望の焦点距離の関数である。設計波長λは、例えば可視、赤外、または紫外の波長帯など、電磁スペクトルの範囲の任意のどこかにあってよい。設計波長λは、一般には可視の波長帯にあり、好ましくは約400nm〜約800nmの範囲にあり、より好ましくは約500nm〜約600nmの範囲にあり、さらに好ましくは約540nm〜約560nmの範囲にある。いくつかの実施形態においては、設計波長λが約500nmであり、約546nmであり、あるいは約550nmである。
図3に示されているように、多焦点の位相板112が光学系102の中央に配置される場合、多焦点の位相板112は、外径Dを有する。回折ゾーン130のそれぞれは、好ましくは、残りの回折ゾーン130のそれぞれと実質的に同じ面積を有するが、中央のゾーン134は、随意により、例えばFutheyの特許文献19またはCohenの特許文献11に教示されているように、残りの環状の回折ゾーン130の面積よりも小さい、または大きい面積を有することができる。
眼用レンズ100がIOLである場合、直径Dを、眼の虹彩が明るい光の条件のもとで単焦点の位相板122を通過する光から実質的に防止されるように、選択することができる。外径Dは、好ましくは約5mm未満であり、さらに好ましくは約4mm未満である。或るいくつかの実施形態においては、設計波長λが約550nmであり、外径Dが約3.0mmであり、中央の回折ゾーン134を含め8つの回折ゾーン130を有している。他の実施形態においては、外径Dが約3.3mm、3.6mm、または3.9mmであり、それぞれ10、12、または14個の回折ゾーン130を有している。
回折ゾーン130は、好ましくは、隣接するゾーン130間にステップ138が形成されるように光軸108と平行にずらされており、ステップ138は、それぞれの回折ゾーン130の間に所定の位相関係を生み出すように選択されている。多焦点の位相板112の隣接ゾーン130間のステップ138のサイズは、好ましくは、単焦点の位相板122の隣接ゾーン130間のステップ138のサイズと異なっている。特定のいくつかの実施形態においては、回折ゾーン130が、多焦点および/または単焦点の位相板112、122の種々のゾーン130間に所定の位相関係をもたらすような第1の領域110、第2の領域120、または両者における屈折率の変化によって形成される。本明細書において上述した材料および方法を使用することで、隣接ゾーン130間のステップ138をなくし、あるいは少なくとも隣接ゾーン130間のステップ138のサイズを小さくするように、回折ゾーン130を形成することができる。好ましくは、表面を横切っての屈折率の変化は、光学系の中心から半径方向である。所定の屈折率の変化は、多焦点の位相板112または単焦点の位相板122が位相ホログラムである場合に生み出すことができる。そのようなホログラムは、感光性樹脂やハロゲン化銀などといった材料を使用して製造でき、ホログラフィック的に形成された干渉パターンに露出することによって屈折率を変化させることができる。位相板112、122を製造するための他の手段も、眼用レンズ100の種々の実施形態において期待でき、これら実施形態と矛盾しない。ホログラムは、代案として、透過率が光軸からの距離とともに変化する透過ホログラムの形態をとってもよい。
多焦点の位相板112および単焦点の位相板122は、領域110、120が位相板112、122によって生み出される回折光パワーとは別個の屈折光パワーを有するよう、ベース曲率C1上またはベース曲率C1の周囲に配置することができる。図3に示されているように、領域110、120の屈折光パワーは、眼用レンズ100を両凸レンズとして形成することによって生み出すことができるが、例えば平‐凸、平‐凹、凹‐凹、またはメニスカス・レンズなど、他のレンズ形態も使用可能である。さらに、眼用レンズ100の光パワーは、正であっても、負であってもよい。例えば、眼用レンズ100が偽水晶体眼のためのIOLである場合、IOLは、一般的には正の光パワーを有するが、眼用レンズ100が有水晶体IOL(例えば、生まれつきの水晶体を含んでいる眼に使用されるIOL)として使用される場合には、IOLは、矯正すべき眼の状態に応じて、正または負の光パワーを有することができる。
前面104および後面106の全体的な輪郭または形状は、入射光の屈折にもとづいて光学系を生み出すために一般的に使用されている任意の輪郭または形状であってよい。例えば、ベース曲率C1によって表されているように、前面104の全体形状または輪郭は、おおむね有限な全体としての曲率半径R1(図示されていない)を有する球であってよい(すなわち、平坦でなく、実質的に平坦でもなく、おおよそ可視光またはそれ以下の波長の程度の表面の偏差を有している)。第1の領域110の範囲における前面104の詳細な輪郭は、ベース曲率C1と多焦点の位相板112の輪郭との合計である。同様に、第2の領域120の範囲における前面104の詳細な輪郭は、ベース曲率C1と単焦点の位相板122の輪郭との合計である。
あるいは、前面104、後面106、または両面104、106の全体的な輪郭または形状は、放物線、楕円、双曲線、または例えば球面収差や非点収差などといった収差を小さくするためのこの技術分野において一般的な任意の非球面形状であってよい。例えば、後面106は、米国特許第6,609,673号および第6,830,332号ならびに米国特許出願第10/724,852号(これらはすべて、ここでの言及によって本明細書に取り入れられたものとする)においてPiersらが説明しているように、個々の角膜または角膜のグループにもとづいて球面収差を小さくするように設計された非球面であってよい。この技術分野において使用されている前面104および後面106の他の非球面かつ非対称の表面形状も、眼用レンズ100の実施形態に矛盾しない。例えば、後面106または両面104、106を、中央レンズ半径R1および円錐定数kを有するものとして定めることができる。そのような実施形態においては、これに限られるわけではないが、表面形状zを
[数式3]
Figure 2008517731
によって定めることができ、ここで、rは光軸からの半径方向の距離であり、zは光の伝搬方向の後退(sag)であり、a、a、・・・は係数である。
第1および第2の領域110、120の屈折光パワーは、好ましくは、約−10ジオプタ〜少なくとも約+50ジオプタの範囲にあり、より好ましくは、少なくとも約+10ジオプタ〜少なくとも約+40ジオプタの範囲にあり、最も好ましくは、少なくとも約+10ジオプタ〜少なくとも約+30ジオプタの範囲にある。最も好ましい範囲は、例えば白内障手術の後の無水晶体眼に使用されるIOLの典型である。眼用レンズ100が有水晶体IOL(生まれつきの水晶体を依然として有している眼に使用されるIOL)である場合には、第1および第2の領域110、120の屈折光パワーは、好ましくは、少なくとも約−30ジオプタ〜少なくとも約+30ジオプタの範囲にあり、より好ましくは、少なくとも約−20ジオプタ〜少なくとも約+20ジオプタの範囲にあり、さらに好ましくは、少なくとも約−10ジオプタ〜少なくとも約+10ジオプタの範囲にある。使用しようとする眼用レンズの特定の用途および種類に応じ、他の屈折光パワーの範囲も好ましい。
好ましくは、第1および第2の領域110、120の屈折光パワーは、多焦点の位相板112および/または単焦点の位相板122の回折光パワーよりもはるかに大きい。例えば、眼用レンズ100が偽水晶体眼のためのIOLである場合、第1および第2の領域110、120の屈折光パワーが、好ましくは少なくとも約10ジオプタ〜少なくとも約40ジオプタである一方で、多焦点および単焦点の位相板112、122は、少なくとも約+2ジオプタ〜少なくとも約+6ジオプタ、好ましくは約+4ジオプタの屈折光パワーを有する少なくとも1つの回折次数、例えば1次の回折次数を有している。
第2の領域120の全体としての光パワーは、第2の領域120の屈折光パワーおよび単焦点の位相板122の回折光パワーの和と考えることができる。例えば、屈折光パワーが30ジオプタであって、回折光パワーが+4ジオプタである場合には、第2の領域120の全体としての光パワーは、ほぼ34ジオプタになると考えられる。多焦点の位相板112は少なくとも2つの回折次数を生成するため、第1の領域110は、少なくとも2つの有効光パワーを有するものと考えることができる。例えば、第1の領域110を、30ジオプタの屈折光パワーを有し、さらに光パワーを有さないゼロ次の回折次数と+4ジオプタの屈折光パワーを有する1次の回折次数とを生み出す多焦点の位相板112を有するように、構成することができる。この構成を用い、多焦点の位相板112を、30ジオプタの屈折光パワーにほぼ等しい第1の有効光パワーと、34ジオプタ(すなわち、屈折光パワー(30ジオプタ)および多焦点の位相板112の1次の回折次数の回折光パワー(+4ジオプタ)の和)の第2の有効光パワーとを有するものと考えることができる。多焦点の位相板112によってもたらされる追加の+4ジオプタの光パワーは、本明細書において、多焦点の位相板112の「追加の力」と称される。
眼用レンズ100には、先の段落で述べたように、考えられる利益が少なくとも2つ存在する。第1に、多焦点の位相板112の1次の回折次数によって生み出される追加の力によって、光軸108に沿った第1の焦点F1および第2の焦点F2の位置を、近見視力および遠見視力の両方をもたらすことができるように構成できる。すなわち、第1の焦点F1が、遠見視力をもたらすように構成される一方で、多焦点の位相板112の追加の力が、第2の焦点F2が近見視力をもたらすように構成される。あるいは、例えば、眼用レンズ100が、嚢袋および/または眼の毛様体筋に応答する運動アセンブリによって何らかの調節がもたらされる調節レンズ・システムの一部である場合に、追加の力を、第1の焦点F1が遠見視力をもたらし、第2の焦点F2が中距離視力をもたらすように、構成してもよい。
上述の構成について考えられる第2の利益は、多焦点および単焦点の位相板112、122の1次の回折次数によって生み出される色分散に関係している。1次の回折次数の色分散が、通常は、典型的な屈折材料の色分散と符号が反対であることは、この技術分野において公知である。さらに、回折光パワーが約+2ジオプタ〜約+4ジオプタの範囲にある場合にもたらされる負の分散の大きさは、ほぼシリコーンやアクリルなどといった多くの光学材料に存在する正の分散を補償するために必要とされる分散の大きさである。したがって、約20〜40ジオプタの光パワーを有する屈折レンズを、例えば約+2〜+4ジオプタの追加の力を有する多焦点の位相板と組み合わせることで、屈折色分散と回折色分散とが互いにほぼ打ち消し合うため、全体としての色収差が低減された光学素子がもたらされる。
あるいは、位相板112、122の回折光パワーが、約+2ジオプタ〜約+4ジオプタという上述の範囲の外側であってよい。回折光パワーについて選択される値は、位相板112、122の屈折光パワー、眼用レンズ100の全体としての光パワー、および眼用レンズ100の回折および屈折成分の間の所望の相互作用、などといったパラメータにもとづいて決定できる。位相板112、122の一方または両方の回折光パワーも、負のジオプタの力であってよい。位相板112、122を、第1の焦点F1、第2の焦点F2、および第3の焦点F3のうちの1つ以上の色収差を調節するため、他の方法で構成してもよい。また、位相板112、122を、第1の焦点F1、第2の焦点F2、および第3の焦点F3のうちの1つ以上の他の単色収差(例えば、球面収差、非点収差、など)を調節するように構成することができる。
特定の実施形態においては、多焦点の位相板112が、多焦点の位相板112に入射する光がもっぱら2つの異なる回折次数の間(例えば、0次および1次の回折次数の間、または1次および2次の回折次数の間)で分割される2焦点の位相板であってよい。第1の領域110および多焦点の位相板112を、2つの回折次数の光を例えば遠見視力および近見視力または遠見視力および中距離視力もたらすために使用するように、配置することができる。そのような実施形態においては、いくらかの光が、通常は他の回折次数にも含まれている。多焦点の位相板112を、3つ以上の回折次数に有意な量の光をもたらすように構成してもよい。例えば、多焦点の位相板112が、近見視力、中距離視力、および遠見視力をもたらすため、あるいは被写界深度を実質的に増加させるため、3つの回折次数をもたらすことができる。
図3に示した例示の実施形態においては、多焦点の位相板112が、MODが1.5である位相板であり、単焦点の位相板122が、MODが1である位相板であるが、位相板112、122について、MODがx.5である位相板および/またはMODがyである位相板からなる他の組み合わせも、本発明の実施形態に矛盾しない。多焦点および単焦点の位相板112、122を、第1の焦点F1および第3の焦点F3が同じ位置または実質的に同じ位置に配置されるように、構成することができる。本明細書において、用語「実質的に同じ」は、本発明の実施形態による光学系またはIOLの2つ以上の焦点に関して使用される場合には、(1)本発明の実施形態による光学系またはIOLの2つの部位からの光によって形成される焦点の位置が、個々に、あるいは総合として、それらの部位の被写界深度または焦点深度を超えては異ならないことを意味し、あるいは(2)本発明の実施形態による光学系またはIOLの2つの部位からの光によって形成される焦点の位置の相違の大きさが、臨床的に有意であるためには小さすぎる(例えば、光学系またはIOLの2つの部位によって形成される2つの焦点の位置の相違が小さいために、平均的な患者が、第1の部位の焦点深度に等しい焦点深度を有する従来からのIOLと第2の部位の焦点深度に等しい焦点深度を有する従来からのIOLとの間の視覚における違いを知覚できない)ことを意味する。
多焦点の位相板112を、それぞれが光学系への入射エネルギーの約40%を含んでいる第1の屈折次数および第2の屈折次数を生み出すように構成することができる。多焦点の位相板112およびベース曲率C1を、第1の回折次数が第1の焦点F1に対応して遠見視力をもたらす一方で、第2の回折次数が第2の焦点F2に対応して近見視力または中距離視力をもたらすように、選択することができる。さらに、もっぱら第1の回折次数のみをもたらすMODが1である位相板122を、やはり遠見視力をもたらすように構成することができる。
多焦点の位相板112外径Dを、中程度〜明るい光の状態のもとでは、第2の領域120および単焦点の位相板122が光をほとんど、あるいはまったく受け取ることがないよう、眼の瞳孔とほぼ同じ寸法となるように選択することができる。この結果、眼によって受け取られる光の大部分が、第1の領域110および多焦点の位相板112によって受け取られ、近見視力および遠見視力がほぼ等しい割合でもたらされる。通常の室内光やほのかな照明などといった光の少ない状況下では、通常は、眼の虹彩が、より大きな直径へと広がり、より多くの光が第2の領域120およびMODが1である位相板122に進入する。すなわち、光の少ない状況下では、単焦点の位相板122に進入する光がすべて遠見視力の提供に使用されるため、虹彩が広がるにつれてより多くの光が遠見視力へと導かれる。したがって、眼用レンズ100は、好都合にも、入手できる光のうちのより高い割合を遠見視力へと導くことによって、光の少ない状況下においてより良好な遠見視力をもたらす。このようなレンズは、「遠見重視レンズ(distant dominant lens)」と称されることもある。
他の実施形態においては、例えば図4に示されているように、多焦点の位相板112が、MODが1.5である位相板であり、単焦点の位相板122が、MODが2である位相板である。このような実施形態においては、第1の焦点F1が遠見視力をもたらし、第2の焦点F2が近見視力または中距離視力をもたらす一方で、単焦点の位相板122が、近見視力または中距離視力をもたらすことができる第3の焦点F3を生み出す。すなわち、眼用レンズ100が、第2の焦点F2および第3の焦点F3が実質的に同じ位置に配置されるように構成されている。
多焦点の位相板112の外径Dが、やはり明るい光の条件のもとでの眼の瞳孔とほぼ同じ寸法となるように選択されるならば、そのような光の条件のもとで、第2の領域120および単焦点の位相板122は、光をほとんど、あるいはまったく受け取らない。しかしながら、この構成においては、眼の瞳孔がより大きな直径へと広がるとき、MODが2である単焦点の位相板122へと進入するすべての光が近見視力または中距離視力の提供へと向けられるため、瞳孔が広がるにつれて、より多くの光が近見視力または中距離視力へと向けられる。したがって、この実施形態においては、眼用レンズ100が、光の少ない状況下においてより良好な近見視力または中距離視力をもたらし、「近見重視レンズ(near dominant lens)」と称される。
図5を参照すると、いくつかの実施形態においては、眼用レンズ100の多焦点の位相板112が、MODが0.5である位相板であり、単焦点の位相板122が、MODが1である位相板である。このような実施形態においては、位相板112、122の両者を、ただ1つのベース曲率C1に配置することができる。MODが0.5である位相板112は、通常は、ゼロ次の回折次数および1次の回折次数を生み出すが、これらをそれぞれ、遠見視力および近見または中距離視力に対応するように構成することができる。さらに、MODが1である位相板122は、近見または中距離の視力をもたらし、第2の焦点F2に対応するただ1つの第1の回折次数を有している。したがって、MODが0.5である位相板112によって生み出される第2の焦点F2と、MODが1である位相板によって生み出される第3の焦点F3が、実質的に同じ位置に配置される。
好ましくは、MODが0.5である位相板112のゼロ次および1次の回折次数が、それぞれの回折次数が光学系102によって受け取られる入射エネルギーの約40%を含むように構成されるが、これら2つの回折次数について、他の割合も可能である。好ましくは、眼用レンズ100が、両方の位相板112、122の1次の回折次数によって生み出される負の分散が、第1および第2の領域110、120の屈折力によって生み出される正の分散と平衡するように、位相板112、122を選択することによって、近見または中距離の視力について色収差の低減を好都合にもたらすように構成される。
図5に示されているように、眼用レンズ100は、当該眼用レンズ100が使用されている眼の瞳孔が光の少ない条件下で広がるにつれて、MODが1である位相板122がより多く露光されるため、近見重視のレンズである。しかしながら、特定の場合には、眼用レンズ100が遠見重視のレンズであることが好ましいかもしれない。この目的を達成する1つの方法は、本明細書においてさらに詳しく後述するとおり、第2の領域120が屈折光パワーのみを有するよう、単焦点の位相板122をまるごと取り除くことである。この手法について考えられる1つの問題は、単焦点の位相板122の負の分散によってもたらされる色収差の好ましい低減が、なくなってしまう点にある。
眼用レンズ100が遠見重視のレンズであると同時に色収差の低減を提供可能であるというこの潜在的課題を克服するため、新規な方法を開発した。図6を参照すると、いくつかの特定の実施形態において、眼用レンズ100が、光学系102、第1の領域110、および第2の領域120を有している。第1の領域110は、多焦点の位相板112を、第1の曲率半径R1(図示されていない)を有することができる第1のベース曲率C1に配置して有しており、第2の領域120は、単焦点の位相板を、第2の曲率半径R2(図示されていない)を有することができる第2のベース曲率C2に配置して有しており、曲率R1、R2は、一般的には有限である(すなわち、平坦でなく、実質的に平坦でもなく、おおよそ光の波長またはそれ以下の程度の表面の偏差を有している)。このような実施形態において、第1の曲率半径R1は、第2の曲率半径R2と異なっている。第1の領域110および第2の領域120はそれぞれ、有限の曲率半径R1、R2によってそれぞれ生み出される屈折光パワーを有している。
多焦点の位相板112は、第1フォーカスまたは焦点F1および第2のフォーカスまたは焦点F2を提供、生成、または形成するように構成でき、焦点F1、F2の位置は、領域110の屈折光パワーによって左右することが可能である。例えば、図5に示した眼用レンズ100の実施形態と同様、近見または中距離の視力よりはむしろ遠見視力をもたらすため、第2のベース曲率C2を、第1の焦点F1と第3の焦点F3とが実質的に同じ位置に配置されるように構成することができる。この実施形態の1つの予期せぬ結果は、MODが0.5である位相板112の1次の回折次数が、近見または中距離の視力に色収差の低減をもたらす一方で、MODが1である位相板122の1次の回折次数が、今や遠見視力について色収差の低減をもたらす用に構成されているため、遠見視力および近見または中距離の視力の両者について、色収差に少なくともいくらかの低減がもたらされる点にある。
いくつかの実施形態において、ベース曲率C1、C2の形状が、球状または実質的に球状である一方で、他の実施形態においては、ベース曲率C1、C2のうちの1つ以上が、非球面および/または非対称の形状である(例えば、球形以外の表面形状を有している)。本明細書において、用語「実質的に球状」は、表面の形状について、球の表面の形状からの偏差が可視光の少なくとも約10波長未満、好ましくは可視光の5波長未満、さらに好ましくは可視光の1波長未満であることを意味する。非球面が、曲率半径(例えばR1、R2)によっておおまかに特徴付けられ、当該非球面の少なくとも一部分の形状が、当該特徴の曲率半径を有する球の形状から外れていることを、当業者であれば理解できるであろう。そのような実施形態においては、非球面のベース曲率を、それぞれ半径R1、R2によって特徴付けることができる。例えば、ベース曲率の一方または両方を、式(3)などの非球面の式によって定めることができ、そこではR1および/またはR2が、対応するベース曲率の中央レンズ半径を表している。
他の特定の実施形態においては、図7に示されているように、MODが1である位相板122および第2のベース曲率C2の曲率半径R2を、第2の領域120によって生み出される第3の焦点F3が第1の領域110によって生み出される第1の焦点F1および第2の焦点F2のどちらにも位置しないように、第1の領域110と別個独立に構成できる。例えば、第2のベース曲率C2を、第3の焦点F3が光軸に沿って第1の焦点F1と第2の焦点F2との間に配置されるように、構成することができる。そのような実施形態においては、第1の焦点F1が遠見視力を提供できる一方で、第2の焦点F2は近見視力を提供でき、第3の焦点F3が中距離視力を提供できる。あるいは、MODが1である位相板122および第2のベース曲率C2を、例えば黄斑変性症に対応するために、第3の焦点F3を光軸108上または光軸108から或る距離だけ離れた任意の好ましい位置に位置させるように、構成することができる。一般に、位相板122および第2のベース曲率C2を定めるパラメータを、位置、色収差、あるいは他の合焦のパラメータまたは特性に関して、第1および第2の焦点F1、F2から完全に独立した焦点をもたらすように選択することが可能である。例えば、眼用レンズ100の第2の領域120を、位相板122によって回折される光の大部分が、とりわけ正の量の色分散をもたらすa−1次の回折次数に含まれるように構成することができる。
さらに他の実施形態においては、多焦点の位相板112が、MODがx.5である位相板であって、単焦点の位相板122が、MODがyである位相板であり、ここでxおよびyは、本明細書において上述したとおり整数である。例えば、xは、x番目の回折次数が第1の焦点F1に対応して遠見視力をもたらし、(x+1)番目の回折次数が第2の焦点F2に対応して近見または中距離の視力をもたらすよう、2以上であってよい。単焦点の位相板122を、眼用レンズ100が遠見重視レンズまたは近見重視レンズのどちらであるべきかに応じて、回折光パワーの大部分が第1の焦点F1(例えば、y=x)または第2の焦点F2(例えば、y=x+1)にそれぞれ対応するように、構成することができる。あるいは、眼用レンズ100を、位相板112、122の少なくとも一方によって回折される光の大部分がa−1の回折次数に含まれるように構成することができる。
本明細書においてすでに概説した種々のパラメータおよび好ましい範囲に加え、眼用レンズ100の実施形態は、第1および第2のベース曲率C1、C2のそれぞれの曲率半径R1、R2の独立した選択など、さらなる独立パラメータをレンズ設計者に提供する。いくつかの実施形態においては、位相板112、122の一方の回折ゾーン130間のステップ高さが、他方の位相板112、122について選択される設計波長とは異なる設計波長にもとづいて選択される。例えば、単焦点の位相板122の回折ゾーンまたはエシュレット130間のステップ高さを、多焦点の位相板112の設計波長に比べ、より青い波長に向かってずらされた設計波長にもとづいて選択できる。単焦点の位相板122について青色にずらされた設計波長を選択することで、例えば、青色の波長帯の光について眼の感度がより高いことから、より良好な暗所視を提供することができ好都合である。一般に、図面のうちの1つに示した眼用レンズ100の1つの実施形態に関して検討した設計パラメータまたは構成を、他の図に示した眼用レンズ100の実施形態においても利用可能である。
図8を参照すると、眼用レンズ100が、或る屈折光パワーを有する第3の領域140をさらに有することができ、ここで第3の領域140が、第3の位相板142を有している。第3の位相板142は、例えば多焦点の位相板であってよく、あるいは単焦点の位相板であってよい。このような実施形態において、第3の領域140を、図8に示すように、第1の領域110と第2の領域120との間に配置することができる。あるいは、第3の領域140を、第1の領域110および第2の領域120の外側に配置することができる。第3の領域140は、さらに曲率半径R3を有する第3のベース曲率C3を有することができ、ここで第3のベース曲率C3は、第1および第2の領域110、120のベース曲率C1、C2と異なっており、あるいは少なくとも一方のベース曲率C1、C2と実質的に同じである(例えば、ベース曲率C1と同じ曲率半径を有している)。特定の実施形態においては、ベース曲率C1、C2、C3の形状が球形または実質的に球形であるが、他の実施形態においては、ベース曲率C1、C2、またはC3のうちの1つ以上が、非球面および/または非対称の形状であってよい。
特定のいくつかの実施形態においては、第3の領域140が、第3の位相板142が多焦点および単焦点の位相板112、122の間に配置されるよう、第1の領域110と第2の領域120との間に位置する中間領域であってよい。このような実施形態において、中間の位相板142を、多焦点の位相板112および単焦点の位相板122の間の推移をもたらすように構成できる。例えば、中間の位相板142の回折ゾーン130のステップ138を、多焦点および単焦点の位相板112、122のステップ・サイズの間のステップ・サイズを有するように、構成することができる。1つの実施形態においては、中間の位相板142の回折ゾーン130間のステップ高さが一定であり、多焦点の位相板112および単焦点の位相板122について選択された設計波長と異なる設計波長にもとづいて選択されている。そのような選択は、2焦点または多焦点のレンズによって形成されるハロの縁をぼかすために、好都合に使用可能である。他の実施形態においては、中間の位相板142の回折ゾーン130間のステップ高さが、例えば半径の関数として、第3の領域140を横切って変化している。
本明細書において検討される眼用レンズ100の実施形態のいずれにおいても、多焦点の位相板112および単焦点の位相板122を、特定の用途または設計に最も適する様相で配置することができる。例えば、単焦点の位相板122を眼用レンズ100の中央に配置し、多焦点の位相板112を単焦点の位相板122の外側に配置することができる。あるいは、両方の位相板112、122が、どちらも眼用レンズ100の中央には配置されないよう、環状の形状を有してもよい。例えば、眼用レンズ100の中央が、空洞、屈折性の光学素子、または何らかの他の種類の光学素子であって、その周囲に位相板112、122が配置されてもよい。
図9を参照すると、特定のいくつかの実施形態においては、眼用レンズ100の第1の領域110が、第1の単焦点の位相板144を第1のベース曲率C1上に配置して有しており、眼用レンズ100の第2の領域120が、第2の単焦点の位相板145を第2のベース曲率C2上に配置して有している。第1のベース曲率C1の光パワーは、第1の単焦点の位相板144の光パワーよりも大きくてよく、第2のベース曲率C2の光パワーは、第2の単焦点の位相板145の光パワーよりも大きくてよい。好ましくは、第1のベース曲率C1の有限の第1の曲率半径R1が、第2のベース曲率C2の有限の第2の曲率半径R2と異なっている。この方法で、第1の曲率半径R1および第2の曲率半径R2が、2つ以上の焦点をもたらす際に第1および第2の単焦点の位相板144、145に適合するように好都合に選択できる独立した設計パラメータとなる。
第1の単焦点の位相板144を、遠見視力をもたらす色補償済みの第1の焦点FM1を生み出すように構成でき、第2の単焦点の位相板145を、近見または中距離視力をもたらす色補償済みの第2の焦点FM2をもたらすように構成できる。これは、好都合にも、瞳孔が比較的小さい明るい屋外の光の条件下での良好な遠見視力、および瞳孔が広がって第2の単焦点の位相板145をより大きく露出する暗い屋内の光の条件下での良好な近見または中距離視力の両方を、患者にもたらすと考えられる。
位相板144、145においては、同程度の大きさの光パワーを有する屈折素子に比べ、典型的には色分散の量が大きいことを、理解できるであろう。本明細書においてすでに述べたように、位相板144、145の色分散は、やはり通常は、屈折素子の色分散に対して符号が反対である。結果として、第1および第2の単焦点の位相板144、145を、回折によるそれらの色分散が、比較的大きい光パワーを有する第1および第2のベース曲率C1、C2の色分散とほぼ同じ大きさかつ反対の符号となるよう、比較的小さい光パワーを有するように好都合に構成することができる。このようにして、第1の単焦点の位相板144と第1のベース曲率C1との組み合わせ、および第2の単焦点の位相板145と第2のベース曲率C2との組み合わせについて、結果としての色収差を大幅に低減することができる。
他の実施形態においては、位相板144、145が、どちらも多焦点の位相板または2焦点の位相板であってよい。さらに他の実施形態においては、眼用レンズ100を、位相板144、145の少なくとも一方によって回折される光の大部分がより高次または低次の回折次数(例えば、ゼロ次または1次の回折次数以外の回折次数)に含まれるように、構成することができる。図3〜9の任意の1つにおいて示した眼用レンズ100の実施形態について利用できる種々の設計パラメータを、適切であれば、本明細書において説明される眼用レンズ100の他の実施形態においても使用可能であることを、理解できるであろう。
図10を参照すると、特定のいくつかの実施形態においては、眼用レンズ200が、前面204、後面206、および光軸208を有する光学系202を有している。さらに眼用レンズ200は、光を第1の焦点F201および第2の焦点F202へと導くように構成された多焦点の位相板212、光を第3の焦点F203へと導くように構成された単焦点の位相板214、および多焦点の位相板212と単焦点の位相板214との間に位置する中間または移行の位相板220を有している。多焦点の位相板212は、第1の複数のエシュレット230(まとめて、221)を第1の曲率半径R201を有する第1のベース曲率C201上に配置して有しており、単焦点の位相板214は、第2の複数のエシュレット230(まとめて、222)を、好ましくは第1の曲率半径R201と異なる第2の曲率半径R202を有する第2のベース曲率C202上に配置して有している。中間の位相板220は、第3の複数のエシュレット230(まとめて、223)を有しており、これら第3の複数のエシュレット230(まとめて、223)が、結果として第1の焦点F201および/または第2の焦点F202へと導かれる光の全体としての振幅および/または分布を変化させるように構成されている。第3の複数のエシュレット230(まとめて、223)は、第3の曲率半径R203を有する第3のベース曲率C203上に配置されている。
図3〜9の任意の1つにおいて示した眼用レンズ100の実施形態について利用できる種々の設計パラメータを、適切であれば、眼用レンズ200の実施形態にも取り入れ可能であることを、理解できるであろう。例えば、図10に示した実施形態と対照的に、多焦点の位相板212を、光学系202の外周側に配置でき、単焦点の位相板214を、光学系202の中心または中心付近に配置できる。さらには、代案として、位相板212、214を、前面204にではなく後面206に配置することができる。他の実施形態においては、位相板122および位相板212、214を、光学系202の両方の表面に配置することができる。さらには、眼用レンズ100に関して説明した材料および形状のいずれも、眼用レンズ200に取り入れることが可能である。
図10に示した例示の実施形態を再び参照すると、例えば遠方点の源からの入射光線一式232が、眼用レンズ200の位相板212、214、220に入射している。以下の検討における光線の使用は、あくまで説明のためのものであり、眼用レンズ200の特定の進歩的態様を指摘することを意図している。入射光線232が眼用レンズ200と相互作用し、対応する合焦光線234が生み出される。さらに具体的には、単焦点の位相板214に入射する光線232が、合焦光線234を表している図10により太い線で示されているように、第3の焦点F203へと向かう合焦光線234を生成する。多焦点の位相板212および中間の位相板220に入射する光線232が、合焦光線234を表している図10により細い線で示されているように、第1および第2の焦点F201、F202の間で分割された合焦光線234を生成する。図示の実施形態においては、第1および第3の焦点F201、F203が、実質的に同じ位置に配置されている。特定のいくつかの実施形態においては、第1の焦点F201および/または第3の焦点F203を、遠見視力をもたらすように配置でき、第2の焦点F202を、近見または中距離視力をもたらすように配置することができる。位相板212、220によって第1および第2の焦点F201、F202へと導かれる光線の大きさまたは光の量が、少なくとも部分的には、位相板212、220の隣接エシュレット230間のステップに依存して決まることを、当業者であれば理解できるであろう。第2の焦点F202へと合焦する合焦光線234は、伝搬を続けて、第1および/または第3の焦点F201、F203を通過する像平面238上に、焦点ずれの像を形成する。この焦点ずれの像は、本明細書において、この技術分野におけるこの用語の一般的使用に一致して、「ハロ像」と称される。像平面238は、図1に示すように平坦であってよく、例えば眼用レンズ200がIOLとして眼に埋め込まれ、像平面238が眼の網膜である場合のように、回転楕円体などのより一般的な形状を有してもよい。
図11を参照すると、図10に示した眼用レンズ200が、眼用レンズ200の特定の進歩的態様を説明するため、入射光線232および合焦光線234のうちのいくつかを選択して示されている。具体的には、単焦点の位相板214の外周のすぐ内側に入射する入射光線240が、合焦光線240aとして第3の焦点F203へと導かれている。さらに、中間の位相板220の外周の内側に入射する入射光線241が、第1の焦点F201へと向かう合焦光線241aおよび第2の焦点F202へと向かう合焦光線241bという2つの光線へと概略的に分割されている。同様に、多焦点の位相板212の外周の内側に入射する入射光線242が、第1の焦点F201へと向かう合焦光線242aおよび第2の焦点F202へと向かう合焦光線242bという2つの光線へと概略的に分割されている。理解できるとおり、光線240a、241a、b、および242a、bは、多焦点の位相板212、中間の位相板220、および単焦点の位相板214によって生み出される光線の種々の軌跡の代表である。例えば、合焦光線240aは、中間の位相板220の外周のちょうど内側に入射して第1の焦点F201へと導かれるすべての光線に対応する光線244aの軌跡に属する。同様に、合焦光線241a、241b、242a、および242bは、それぞれ光線246a、246b、248a、および248bの軌跡に属する。
図12を参照すると、図11の像平面238の正面図が示されており、光線242a、244a、244b、246a、246bの軌跡の像平面238との交差が示されている。像平面238と光線244a、246a、および248aとの交差が、これらの光線からの光が像平面238へと合焦されているため、黒塗りの円250で表されている。円252および254は、それぞれ像平面238と光線246bおよび248bの軌跡との交差を表している。円252、254の内側に含まれる光(黒塗りの円250に含まれている光りを除く)が、多焦点の眼用レンズに一般的につきまとう種類のハロ像の形成に寄与している。図11および12を観察すると、特定の実施形態において、中間の位相板220に入射する光が実質的に円252、254の間に位置する一方で、多焦点の位相板212に入射する光が実質的に円254の内側に位置することを、理解できるであろう。これは、位相板212、220に入射する光が、図11および12に示した幾何学的な光線の表示にしたがって振る舞う範囲において、真実であろう。すなわち、眼用レンズ200について完全な物理的な光の表現が使用される場合には、いくらかの光が上述の領域の外へと散乱されることを理解できるであろう。同様に、より広い源からの光が使用される場合、いくらかの光が上述の領域の外へと散乱されることを理解できるであろう。
本発明の実施形態は、ハロ像の形状がそのようなハロによって引き起こされる外乱の知覚レベルに影響を有しうるという認識からもたらされている。この認識に照らし、中間の位相板220などといった中間の位相板を、結果として第2の焦点F202へと導かれる光の全体としての振幅および/または分布を変化させ、ハロ像に一般的に関係する外乱のレベルを軽減するように、好都合に構成できることを見いだした。この利益を達成する少なくとも1つの方法は、式1(すなわち、λ/2位相板)によって与えられる格子ステップ高さとは異なる格子ステップ高さhstepを有する位相板を形成することによって、例えばゼロ次および1次の回折次数へと進むエネルギーの量を調節することである。1つの実施形態においては、多焦点の位相板212がλ/2の位相板であり、単焦点の位相板214が1λの位相板であり、中間の位相板220が
[数式4]
Figure 2008517731
であるように構成され、本明細書においてλ/4の位相板と称される。そのような実施形態においては、中間の位相板220を通って伝えられる利用可能なエネルギーの約10%が、1次の回折次数へと進み、利用可能なエネルギーの約80%が、ゼロ次の回折次数へと進む。
図13および14を参照し、中間の位相板220を例えばλ/4の位相板として構成した場合に考えられる利益を、次に説明する。図13は、図12の断面13‐13に沿った強度のプロファイルのグラフ表示であり、強度を光軸208からの距離に対してプロットしたものである。図示の強度プロファイルは、(1)単焦点の位相板214および位相板212、220のゼロ次の回折次数によって生み出される黒塗りの円250内の合焦光の強度(Ifocused)、(2)中間の位相板220の1次の回折次数によって生成され、円252の内側に含まれるハロ像に寄与している光の強度(Ihalo,intermediate)、および(3)中間の位相板220の1次の回折次数によって生成され、円254の内側に含まれるハロ像に寄与している光の強度(Ihalo,multifocal)を、断面13‐13に沿ってプロットすることによって得ることができる。図13のプロットは、光を例えば図11に示されているように光線として表すことができる幾何学的な光学系の近似にもとづいている。
図14は、遠方の光源(点光源、またはより広い光源)からの光によってもたらされる強度プロファイルを、例えば位相板212、214、220の有限の開口の回折効果を考慮に入れた物理的な光学系の処理にもとづいて表している。また、図14のプロットは、光源がより広いがゆえの影響、および光源が単に設計波長λのみならず広いスペクトルにわたる光を含んでいることから来る分散の影響も、考慮に入れている。これらのプロットにおいて、Ihaloは、多焦点の位相板212および中間の位相板220によって生み出されてハロ像に寄与する1次の回折次数の組み合わせの影響を含んでいる。IfocusedおよびIhaloの加算が、図15に示されており、ここではIfocusedが、強度プロットのうちでゼロ次の回折次数の光が支配的である部分を表しており、Ihaloが、強度プロットのうちで多焦点の位相板212および中間の位相板220から来る1次の回折次数の光が支配的である部分を表している。これらのプロットが必ずしも比例尺ではないことは、理解できるであろう。例えば、最大ピーク強度Imaxは、一般的には、プロットのIhalo部分に見られる強度よりも少なくとも1桁高い。プロットIhaloの外周部分が大いに傾斜していることも、理解できるであろう。この種の周囲が斜めの強度プロファイルのハロ像が、一般的には被験者に知覚されにくく、したがって、例えば強度が外周において比較的急峻に切断されている図16に示されるプロファイル(Ihaloの外周部分のいくらかの丸みは、物理的な光学系および光の分散の影響によって引き起こされている)が生み出すハロ像に比べて、より許容可能であることが、見いだされた。図16に示されているプロファイルは、中間の位相板が存在しない眼用レンズ(例えば、全光学領域にわたる多焦点の位相板を有しているIOL、あるいは(1)中央部分が2焦点のλ/2の位相板を有する一方で、(2)周辺部分が単焦点の1λの位相板を有するか、回折位相板を持たない単なる屈折ゾーンであるIOL)の典型であることが明らかになっている。
特定の実施形態においては、眼用レンズ200の中間の位相板220が、光軸に沿って同じ高さを有している2つ以上のエシュレット230を含んでいる。例えば、同じ高さを有するエシュレット230の数は、3〜5個、あるいはそれ以上であってよく、より良好な屈折性能が求められる場合には、エシュレット230の数がより多い方が好ましく、中間ゾーン220についてより小さな外径が好ましい場合には、エシュレット230の数がより少ない方が好ましい。例えば、図17を参照すると、中間のゾーン・プレート220が、それぞれエシュレット230間の位相ステップがλ/4である4つのエシュレットを有することができる。さらに図17は、多焦点の位相板212および単焦点の位相板214のエシュレット230のうち、中間のゾーン・プレート220の近くに配置された、いくつかのエシュレット230を示している。図17に示した例示の実施形態においては、中間の位相板220のエシュレット230が、光軸208に平行な方向においてベース曲率C203に中心を位置させるような方法で、ベース曲率C203上に配置されている(図11を参照)。同様の方法で、位相板212、214のエシュレット230は、光軸208に平行な方向においてベース曲率C201、C202に中心を位置させるように、それぞれベース曲率C201、C202上に配置されている。位相板212、214、220のエシュレット230をこのように配置することで、位相板が配置されている全表面(例えば、図17に示されている前面204)にわたって、一貫した位相関係が維持されることが見いだされた。このような種類の位相の考慮は、特許文献2にてCohenによって検討されている。特定の実施形態においては、位相板212、214、220の間の所望の位相関係が、図17に示されるように隣接するゾーン・プレート間のステップ・サイズを変化させることによって維持される。例えば、隣接するエシュレット230の間の位相ステップ高さが、光軸208に沿ったエシュレットの位相高さとともに、多焦点の位相板212ついてλ/2であり、中間の位相板220についてλ/4である。しかしながら、位相板の間の所望の位相関係を維持するために、多焦点の位相板212の最後のエシュレット258と中間の位相板220の最初のエシュレット260との間の位相ステップ高さは、3λ/8へと調節される。同様に、やはり図17に示されているように、中間の位相板220と単焦点の位相板214との間には、5λ/8の位相ステップ高さが使用される。対照的に、米国特許第5,699,142号の図1Dは、この実施形態の図17に見られるようにエシュレットそのものの表面をベース曲線に中心合わせするのではなく、エシュレット間のステップをベース曲率に中心合わせしている。
他の実施形態においては、中間の位相板220が、それぞれ3λ/4の位相高さを有する3つ、4つ、5つ、またはそれ以上のエシュレット230を含んでいる。このようなエシュレット230の配置構成を、1次の回折次数へのエネルギーの量を増やすために使用することができる。この構成を、第2の焦点F202におけるエネルギーの量を増し、周縁における強度が光軸208により近い強度プロファイルよりも高い強度プロファイルを断面13‐13に沿って生み出すために、使用することができる。一般に、エシュレット間に任意の所定の位相高さを有する任意の数のエシュレットを、2つ以上の回折次数の間に所定のエネルギー分布をもたらし、ハロによって生じる強度分布に所定の作用をもたらすために、使用することが可能である。
特定の実施形態においては、このような強度プロファイルの改変を、例えばここでの言及によって本明細書に取り入れられたものとする米国特許第6,474,814号においてGriffinが述べているように、眼に所定の瞳孔径をとらせるために使用することができる。これに代え、あるいはこれに加え、曲率半径または第2のベース曲率C202の他の何らかのパラメータを、エネルギーを第1の焦点F201または第1の焦点F201と第2の焦点F202との間に配置された中間の焦点などといった他の何らかの焦点へと向け直すべく、変更することができる。
さらに他の実施形態においては、中間の位相板220が、多焦点の位相板212により近く配置され、或る1つの位相高さを有している2つのエシュレット230と、単焦点の位相板214により近く配置され、別の位相高さを有している2つのエシュレット230とを含んでいる。例えば、中間の位相板220が、3λ/8の位相高さを有し、多焦点の位相板212に近接して位置している2つのエシュレット230と、λ/8の位相高さを有し、単焦点の位相板214に近接して位置している2つのエシュレット230とを含むことができる。このような中間の位相板220のエシュレットの交互交代を、図14および15に示した強度プロファイルの周縁の傾きをさらに変更するために使用することができる。
図18を参照すると、特定の実施形態において、眼用レンズ300が、前面304、後面306、および光軸308を有する光学系302を有している。さらに、眼用レンズ300は、光を第1の焦点F301および第2の焦点F302へと導くように構成された多焦点の位相板312と、屈折光パワーを有するが回折光パワーを有さない外側屈折領域314と、内側の位相板312を囲むとともに、結果として第2の焦点F302へと導かれる光の全体としての振幅および/または分布を変化させるように構成された中間の位相板320とを有している。多焦点の位相板312は、第1の複数のエシュレット330(まとめて、321)を、曲率半径R301(図示されていない)を有することができる第1のベース曲率C301の周囲に配置して有している。外側の屈折領域314は、中間の位相板320を囲むとともに、光を第3の焦点F303および/または第1の焦点F301へと導くように構成されている。中間の位相板320は、第2の複数のエシュレット330(まとめて、322)を、第1のベース曲率C301または第2のベース曲率C302の周囲に配置して有している。図3〜17の任意のいずれかに示した眼用レンズ100の実施形態について利用できる種々の設計パラメータが、適切であれば、眼用レンズ200の実施形態にも取り入れ可能であることを、理解できるであろう。
特定の実施形態において、外側の屈折領域314を、多焦点の位相板312の第1のベース曲率C301とは異なる第3のベース曲率C303上に配置されるように、構成することができる。例えば、外側の屈折領域314を、例えば眼の瞳孔がより大きいときに眼用レンズをより近見視力優先にするため、入射光を第1の焦点F301ではなく第2の焦点F302へと導くように選択された曲率半径を有する第3のベース曲率C303上へと、配置することができる。あるいは、第3のベース曲率C303が、光を第1および第2の焦点F301、F302の間の焦点F303へと導き、あるいは光軸308上または光軸308外の他の何らかの位置へと導くように構成された曲率半径を有することができる。異なる曲率半径を有する他に、外側の屈折領域314を、代案として、あるいは追加として、ベース曲率C301の形状と異なって形作ることができる。例えば、外側の屈折領域314は、球面収差などといった光学収差を低減するように構成された非球面の形状を有することができる。あるいは、外側の屈折領域314を、1つ以上の曲率半径を有する多焦点または2焦点のレンズとして構成してもよい。
特定の実施形態においては、中間の位相板320のエシュレット330が、いくらかの入射光を第1の焦点F301へと導くゼロ次の回折次数、およびいくらかの入射光を第2の焦点F302へと導く1次の回折次数を有するように構成されている。図19を参照すると、中間の位相板320を、中間の位相板320への入射光のわずかに約10%のみが第2の焦点F302へと導かれるよう、λ/4に位相高さを有する複数のエシュレット330(例えば、図示の実施形態の4つのエシュレット)を備えて構成することができる。そのような実施形態においては、第2の焦点F302へと導かれる光の量が少なくなることで、第1の焦点F301の周囲のハロ像の周縁が大いに傾けられ、ハロ像を視認する被験者にとって外乱が低減される。上述した眼用レンズ200の中間の位相板220の構成を、ここで中間の位相板320にも好都合に適用して、同様の結果を得ることができることを、理解できるであろう。
他の実施形態においては、中間の位相板320を形成する第2の複数のエシュレット330(まとめて、322)を、ベース曲率C301と異なる曲率半径を有しており、あるいはベース曲率C301と異なる他の何らかの特徴を有している第3のベース曲率C303に中心合わせすることができる。例えば、中間の位相板320の1次の回折次数の光が第2の焦点F302ではなく第1の焦点F301に向かって導かれるよう、第3のベース曲率C303の曲率半径を、第1のベース曲率C301の曲率半径よりも大きくなるように構成できる。あるいは、中間の位相板320のベース曲率を、光を第1および第2の焦点F301、F302の間の焦点へと導くように選択された曲率半径を備えて、構成することができ、あるいは眼用レンズ300または眼の収差の低減など、所望の光学的効果をもたらすように他の方法で構成することができる。
以上、本発明の実施について考えられる最良の態様、およびそれを製作および使用する方法およびプロセスについて、これに関する技術分野の当業者が本発明を製作および使用できるように、完全、明快、簡潔、かつ正確な表現にて、説明を提示した。しかしながら、上述した本発明について、完全に均等な変形および代替の構成が容易に可能である。したがって、本発明は、ここに開示した特定の実施形態に限定されるものではない。むしろ、本発明の主題を詳しく特定して明確に請求する以下の特許請求の範囲によって包括的に表現されるとおり、本発明の技術的思想および技術的範囲において生じる変形および代替の構成が、本発明に包含される。
従来技術の2焦点の眼内レンズの側面図であり、遠方の物体からの光がどのように眼の網膜上に合焦されるのかを示している。 従来技術の2焦点の眼内レンズの側面図であり、近くの点光源物体からの光がどのように眼の網膜上に合焦されるのかを示している。 複数の回折位相板を有する本発明による回折眼用レンズの1つの実施形態の側面図であり、外周の位相板が遠見視力をもたらすように構成されている。 複数の回折位相板を有する回折眼用レンズの第2の実施形態の側面図であり、外周の位相板が近見または中距離視力をもたらすように構成されている。 主として2つの回折次数を生成する複数の回折位相板を有している回折眼用レンズの第3の実施形態の側面図であり、外周の位相板が近見または中距離視力をもたらすように構成されている。 主として2つの回折次数を生成する複数の回折位相板を有している回折眼用レンズの第4の実施形態の側面図であり、外周の位相板が遠見視力をもたらすように構成されている。 主として2つの回折次数を生成する複数の回折位相板を有している回折眼用レンズの第5の実施形態の側面図であり、外周の位相板が、中央の位相板によって生み出される焦点の間に位置するフォーカスまたは焦点をもたらすように構成されている。 3つの回折位相板を有する回折眼用レンズの第6の実施形態の側面図である。 2つの位相板を有する回折眼用レンズの第8の実施形態の側面図であり、それぞれの位相板が、異なる有限の曲率半径に配置されている。 2焦点の位相板と単焦点の位相板との間に中間の位相板を配置して有する回折眼用レンズの第9の実施形態の側面図である。 図10に示した回折眼用レンズであり、中間の位相板、2焦点の位相板、および単焦点の位相板の外周に入射する入射光線を示している。 図10に示した回折眼用レンズによって生み出される焦点の内の1つに位置する像平面の正面図である。 図12の断面13‐13に沿った強度プロファイルのグラフ表示である。 図12に示した断面13‐13に沿う光の強度分布のグラフ表示であり、物理的な光学系の効果を含んでいる。 図12に示した断面13‐13に沿う光の強度分布のグラフ表示であり、図14に示した種々の成分の和を示している。 中間の位相板を含んでいない眼用レンズについての光の強度分布のグラフ表示である。 本発明による眼用レンズの1つの実施形態であり、中間の位相板、2焦点の位相板、および単焦点の位相板のエシュレットの輪郭を示している。 2焦点の位相板と屈折領域との間に中間の位相板を配置して有する回折眼用レンズの第10の実施形態の側面図である。 本発明による眼用レンズの1つの実施形態であり、中間の位相板、2焦点の位相板、および屈折領域のエシュレットの輪郭を示している。

Claims (27)

  1. 前面、後面、第1のベース曲率、および光軸を有する光学系と、
    光を第1の焦点および第2の焦点へと導くように構成された多焦点の位相板であって、光軸に平行な方向において第1のベース曲率に中心合わせされた第1の複数のエシュレットを有し、前記第1のベース曲率が第1の曲率半径を有している、多焦点の位相板と、
    多焦点の位相板を囲むとともに、結果として第2の焦点へと導かれる光の全体としての振幅および分布を変化させるように構成されている中間の位相板であって、第1のベース曲率に中心合わせされ、あるいは第1の曲率半径と異なる第2の曲率半径を有する第2のベース曲率に中心合わせされた第2の複数のエシュレットを有している、中間の位相板と、
    屈折光パワーを有するが回折光パワーを有さない外側屈折領域であって、前記中間の位相板を囲むとともに、光を第1の焦点へと導くように構成されている、外側屈折領域と、
    を備えていることを特徴とする眼用レンズ。
  2. 前記第1の複数のエシュレットが隣接エシュレット間に第1のステップ高さを有し、前記第2の複数のエシュレットが隣接エシュレット間に第2のステップ高さを有している、ことを特徴とする請求項1に記載の眼用レンズ。
  3. 前記第2のステップ高さは前記第1のステップ高さよりも小さい、ことを特徴とする請求項2に記載の眼用レンズ。
  4. 前記第1のステップ高さが、式0.5×λ/(n−n)によって決定され、前記第2のステップ高さが、式B×λ/(n−n)によって決定され、ここで
    Bは定数であり、
    λは設計波長であり、
    は眼用レンズの屈折率であり、
    は位相板に隣接する媒体の屈折率である、
    ことを特徴とする請求項2に記載の眼用レンズ。
  5. Bは約0.25であることを特徴とする請求項4に記載の眼用レンズ。
  6. Bは約0.75であることを特徴とする請求項4に記載の眼用レンズ。
  7. 前記第2の複数のエシュレットが4つのエシュレットを含んでいる、ことを特徴とする請求項4に記載の眼用レンズ。
  8. 前記第2の複数のエシュレットが、1つ以上の隣接エシュレット間の第1のステップ高さ、および1つ以上の隣接エシュレット間の第2のステップ高さを備えている、ことを特徴とする請求項1に記載の眼用レンズ。
  9. 前記第1のステップ高さが、式0.375×λ/(n−n)によって決定され、前記第2のステップ高さが、式0.125×λ/(n−n)によって決定され、ここで
    λは設計波長であり、
    は眼用レンズの屈折率であり、
    は位相板に隣接する媒体の屈折率である、
    ことを特徴とする請求項8に記載の眼用レンズ。
  10. 前記第1の複数のエシュレットが隣接エシュレット間に第1のステップ高さを有し、前記第2の複数のエシュレットが隣接エシュレット間に複数の異なるステップ高さを有している、ことを特徴とする請求項1に記載の眼用レンズ。
  11. 前記複数の異なるステップ高さのそれぞれが、第1のステップ高さよりも小さい、ことを特徴とする請求項10に記載の眼用レンズ。
  12. 前記複数の異なるステップ高さが、光軸からの距離が増すにつれて徐々に減少している、ことを特徴とする請求項10に記載の眼用レンズ。
  13. 前面、後面、および光軸を有する光学系と、
    光を第1の焦点および第2の焦点へと導くように構成された多焦点の位相板であって、第1の曲率半径を有する第1のベース曲率上に配置された第1の複数のエシュレットを備えている、多焦点の位相板と、
    第1の曲率半径と異なる第2の曲率半径を有する第2のベース曲率上に配置された第2の複数のエシュレットを備えている、単焦点の位相板と、
    前記多焦点の位相板と前記単焦点の位相板との間に位置する中間の位相板であって、第3の曲率半径を有する第3のベース曲率上に配置され、結果として第2の焦点へと導かれる光の全体としての振幅および分布を変化させるように構成された第3の複数のエシュレットを備えている、中間の位相板と、
    を備えていることを特徴とする眼用レンズ。
  14. 前記第3の曲率半径は前記第1の曲率半径に等しいことを特徴とする請求項13に記載の眼用レンズ。
  15. 前記第3の曲率半径は前記第1の曲率半径よりも大きいことを特徴とする請求項13に記載の眼用レンズ。
  16. 前記多焦点の位相板と前記中間の位相板が、第1の焦点を含む平面にハロ像を生成する、ことを特徴とする請求項13に記載の眼用レンズ。
  17. 前記第1の複数のエシュレットが隣接エシュレット間に第1のステップ高さを有し、前記第2の複数のエシュレットが隣接エシュレット間に第2のステップ高さを有している、ことを特徴とする請求項13に記載の眼用レンズ。
  18. 前記第2のステップ高さは前記第1のステップ高さよりも小さいことを特徴とする請求項17に記載の眼用レンズ。
  19. 第1のステップ高さが、式0.5×λ/(n−n)によって決定され、前記第2のステップ高さが、式B×λ/(n−n)によって決定され、ここで
    Bは定数であり、
    λは設計波長であり、
    は眼用レンズの屈折率であり、
    は位相板に隣接する媒体の屈折率である、
    ことを特徴とする請求項17に記載の眼用レンズ。
  20. Bは約0.25であることを特徴とする請求項19に記載の眼用レンズ。
  21. Bは約0.75であることを特徴とする請求項19に記載の眼用レンズ。
  22. 前記第2の複数のエシュレットが4つのエシュレットを含んでいる、ことを特徴とする請求項19に記載の眼用レンズ。
  23. 前記第3の複数のエシュレットが、1つ以上の隣接エシュレット間の第1のステップ高さ、および1つ以上の隣接エシュレット間の第2のステップ高さを備えている、ことを特徴とする請求項13に記載の眼用レンズ。
  24. 前記第1のステップ高さが、式0.375×λ/(n−n)によって決定され、前記第2のステップ高さが、式0.125×λ/(n−n)によって決定され、ここで
    λは設計波長であり、
    は眼用レンズの屈折率であり、
    は位相板に隣接する媒体の屈折率である、
    ことを特徴とする請求項23に記載の眼用レンズ。
  25. 前記第1の複数のエシュレットが隣接エシュレット間に第1のステップ高さを有し、前記第3の複数のエシュレットが隣接エシュレット間に複数の異なるステップ高さを有している、ことを特徴とする請求項13に記載の眼用レンズ。
  26. 前記複数の異なるステップ高さのそれぞれが、第1のステップ高さよりも小さい、ことを特徴とする請求項25に記載の眼用レンズ。
  27. 前記複数の異なるステップ高さが、光軸からの距離が増すにつれて徐々に減少している、ことを特徴とする請求項25に記載の眼用レンズ。
JP2007539132A 2004-10-25 2005-10-25 複数の位相板を有する眼用レンズ Expired - Fee Related JP5011117B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62226804P 2004-10-25 2004-10-25
US60/622,268 2004-10-25
PCT/US2005/038821 WO2006068696A1 (en) 2004-10-25 2005-10-25 Ophthalmic lens with multiple phase plates

Publications (2)

Publication Number Publication Date
JP2008517731A true JP2008517731A (ja) 2008-05-29
JP5011117B2 JP5011117B2 (ja) 2012-08-29

Family

ID=35784392

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007539132A Expired - Fee Related JP5011117B2 (ja) 2004-10-25 2005-10-25 複数の位相板を有する眼用レンズ
JP2007539131A Expired - Fee Related JP4926068B2 (ja) 2004-10-25 2005-10-25 複数の位相板を有する眼用レンズ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2007539131A Expired - Fee Related JP4926068B2 (ja) 2004-10-25 2005-10-25 複数の位相板を有する眼用レンズ

Country Status (7)

Country Link
US (1) US7455404B2 (ja)
EP (4) EP3480650A1 (ja)
JP (2) JP5011117B2 (ja)
AU (2) AU2005319678B2 (ja)
BR (2) BRPI0517017A (ja)
CA (2) CA2585237C (ja)
WO (2) WO2006047698A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010079537A1 (ja) * 2009-01-06 2010-07-15 株式会社メニコン 無水晶体眼内レンズの製造方法
KR20110028397A (ko) * 2008-07-15 2011-03-17 알콘, 인코퍼레이티드 동공 역학을 이용함으로써 가조절력을 증가시키기 위한 확장된 초점 심도 〔edof〕 렌즈
JP2011528272A (ja) * 2008-07-15 2011-11-17 アルコン,インコーポレイティド 円環状光学部及び拡張された焦点深度を有する調節性iol
JP2012529671A (ja) * 2009-06-09 2012-11-22 ノバルティス アーゲー 色収差の矯正を変化させるiol
JPWO2013118499A1 (ja) * 2012-02-09 2015-05-11 株式会社メニコン 多焦点眼用レンズとその製造方法
JP2015536796A (ja) * 2012-12-18 2015-12-24 ノバルティス アーゲー 被写界深度が改善された眼内レンズを提供する方法およびシステム
JP2019506957A (ja) * 2016-03-03 2019-03-14 ノバルティス アーゲー 回折型iolのためのアポダイゼーションパターンの調整
CN110062899A (zh) * 2016-11-29 2019-07-26 诺华股份有限公司 具有逐区阶梯高度控制的眼内透镜
JP2020521530A (ja) * 2017-06-01 2020-07-27 カール・ツアイス・メディテック・アーゲー 回折格子構造を有する人工水晶体及び人工水晶体を製造する方法
JP2020522293A (ja) * 2017-06-01 2020-07-30 カール・ツアイス・メディテック・アーゲー レーザ生成複屈折構造を有する人工水晶体及び人工水晶体を製造する方法
JP2020197735A (ja) * 2017-02-07 2020-12-10 三井化学株式会社 レンズ、レンズブランクおよびアイウェア
JP2021514713A (ja) * 2018-02-22 2021-06-17 ボシュ・アンド・ロム・インコーポレイテッドBausch & Lomb Incorporated 遠距離優先の眼内レンズ

Families Citing this family (126)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1173790A2 (en) 1999-03-01 2002-01-23 Boston Innovative Optics, Inc. System and method for increasing the depth of focus of the human eye
US20060238702A1 (en) 1999-04-30 2006-10-26 Advanced Medical Optics, Inc. Ophthalmic lens combinations
US7763069B2 (en) 2002-01-14 2010-07-27 Abbott Medical Optics Inc. Accommodating intraocular lens with outer support structure
US7662180B2 (en) 2002-12-05 2010-02-16 Abbott Medical Optics Inc. Accommodating intraocular lens and method of manufacture thereof
US7628810B2 (en) 2003-05-28 2009-12-08 Acufocus, Inc. Mask configured to maintain nutrient transport without producing visible diffraction patterns
US20050046794A1 (en) 2003-06-17 2005-03-03 Silvestrini Thomas A. Method and apparatus for aligning a mask with the visual axis of an eye
US20050131535A1 (en) 2003-12-15 2005-06-16 Randall Woods Intraocular lens implant having posterior bendable optic
US7922326B2 (en) 2005-10-25 2011-04-12 Abbott Medical Optics Inc. Ophthalmic lens with multiple phase plates
US20070168027A1 (en) * 2006-01-13 2007-07-19 Brady Daniel G Accommodating diffractive intraocular lens
US20070258143A1 (en) * 2006-05-08 2007-11-08 Valdemar Portney Aspheric multifocal diffractive ophthalmic lens
US7572007B2 (en) * 2006-08-02 2009-08-11 Alcon, Inc. Apodized diffractive IOL with frustrated diffractive region
US7735998B2 (en) 2006-10-25 2010-06-15 Volk Donald A Multi-layered multifocal lens with blended refractive index
US7740354B2 (en) 2006-10-25 2010-06-22 Volk Donald A Multi-layered gradient index progressive lens
US20080161914A1 (en) 2006-12-29 2008-07-03 Advanced Medical Optics, Inc. Pre-stressed haptic for accommodating intraocular lens
CN101677852B (zh) * 2007-01-12 2012-12-05 爱尔康公司 利用剩余调节来使用有晶状体眼多焦点光学部件改善中距视力
US20080300679A1 (en) * 2007-06-01 2008-12-04 Altmann Griffith E Diffractive Intraocular Lens
US8038293B2 (en) * 2007-07-02 2011-10-18 Abraham Reichert Optical system for enhanced vision
US20090030513A1 (en) * 2007-07-27 2009-01-29 Valyunin Igor G Multifocal Phakic Intraocular Lens
US7777872B2 (en) * 2007-07-31 2010-08-17 Alcon Research, Ltd. Method of measuring diffractive lenses
US8313828B2 (en) 2008-08-20 2012-11-20 Johnson & Johnson Vision Care, Inc. Ophthalmic lens precursor and lens
US8317505B2 (en) 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor and lens
US8747466B2 (en) * 2007-08-27 2014-06-10 Amo Groningen, B.V. Intraocular lens having extended depth of focus
US8974526B2 (en) 2007-08-27 2015-03-10 Amo Groningen B.V. Multizonal lens with extended depth of focus
US8740978B2 (en) 2007-08-27 2014-06-03 Amo Regional Holdings Intraocular lens having extended depth of focus
US20090062911A1 (en) * 2007-08-27 2009-03-05 Amo Groningen Bv Multizonal lens with extended depth of focus
US9216080B2 (en) 2007-08-27 2015-12-22 Amo Groningen B.V. Toric lens with decreased sensitivity to cylinder power and rotation and method of using the same
US20090088840A1 (en) * 2007-10-02 2009-04-02 Simpson Michael J Zonal diffractive multifocal intraocular lenses
WO2009076500A1 (en) * 2007-12-11 2009-06-18 Bausch & Lomb Incorporated Method and apparatus for providing eye optical systems with extended depths of field
US9724190B2 (en) * 2007-12-13 2017-08-08 Amo Groningen B.V. Customized multifocal ophthalmic lens
WO2009076670A1 (en) * 2007-12-13 2009-06-18 Advanced Medical Optics, Inc. Customized multifocal ophthalmic lens
US8240850B2 (en) * 2008-02-06 2012-08-14 Robert Apter Method for determining the configuration of an ophthalmic lens, ophthalmic lens produced according to said method, and method for producing said lens
CA2715537C (en) 2008-02-15 2016-09-06 Amo Regional Holdings System, ophthalmic lens, and method for extending depth of focus
US8439498B2 (en) 2008-02-21 2013-05-14 Abbott Medical Optics Inc. Toric intraocular lens with modified power characteristics
US8034108B2 (en) 2008-03-28 2011-10-11 Abbott Medical Optics Inc. Intraocular lens having a haptic that includes a cap
US7871162B2 (en) 2008-04-24 2011-01-18 Amo Groningen B.V. Diffractive multifocal lens having radially varying light distribution
US8231219B2 (en) 2008-04-24 2012-07-31 Amo Groningen B.V. Diffractive lens exhibiting enhanced optical performance
KR101422503B1 (ko) * 2008-05-09 2014-07-25 삼성전자주식회사 연장된 초점 심도를 갖는 렌즈 및 이를 포함하는 광학시스템
US9335563B2 (en) 2012-08-31 2016-05-10 Amo Groningen B.V. Multi-ring lens, systems and methods for extended depth of focus
US8862447B2 (en) 2010-04-30 2014-10-14 Amo Groningen B.V. Apparatus, system and method for predictive modeling to design, evaluate and optimize ophthalmic lenses
WO2009148454A1 (en) * 2008-06-06 2009-12-10 Sabic Innovative Plastics Ip B.V. Method of modifying a lens
US9417464B2 (en) 2008-08-20 2016-08-16 Johnson & Johnson Vision Care, Inc. Method and apparatus of forming a translating multifocal contact lens having a lower-lid contact surface
AT507254B1 (de) * 2008-09-09 2010-06-15 Fiala Werner Linse mit unabhängigen nichtinterferierenden teilzonen
US8734511B2 (en) * 2008-10-20 2014-05-27 Amo Groningen, B.V. Multifocal intraocular lens
US8771348B2 (en) * 2008-10-20 2014-07-08 Abbott Medical Optics Inc. Multifocal intraocular lens
US8292953B2 (en) 2008-10-20 2012-10-23 Amo Groningen B.V. Multifocal intraocular lens
US8216307B2 (en) 2008-12-19 2012-07-10 Novartis Ag Radially segmented apodized diffractive multifocal design for ocular implant
AT507874B1 (de) * 2009-01-21 2014-05-15 Fiala Werner Dr Linse mit zirkulärem brechkraftprofil
AT507873B1 (de) * 2009-01-21 2014-05-15 Fiala Werner Dr Linse mit zirkulärem brechkraftprofil
NZ594697A (en) 2009-02-12 2014-02-28 Univ Arizona State Diffractive trifocal lens
ES2634107T3 (es) * 2009-03-04 2017-09-26 Perfect Ip, Llc Sistema para formar y modificar lentes y lentes formadas por el mismo
DE102009011838B4 (de) * 2009-03-05 2017-08-31 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Linse und Herstellungsverfahren
US20100312336A1 (en) * 2009-06-09 2010-12-09 Xin Hong Zonal diffractive multifocal intraocular lens with central monofocal diffractive region
CA2766655C (en) 2009-06-26 2017-10-10 Abbott Medical Optics Inc. Accommodating intraocular lenses
EP2461768B1 (en) 2009-08-03 2020-02-19 Johnson & Johnson Surgical Vision, Inc. Intraocular lens for providing accomodative vision
US10004593B2 (en) 2009-08-13 2018-06-26 Acufocus, Inc. Intraocular lens with elastic mask
EP3290003B1 (en) 2009-08-13 2023-12-13 AcuFocus, Inc. Method of manufacturing masked intraocular implants and lenses
CA2770732C (en) 2009-08-13 2017-04-25 Acufocus, Inc. Corneal inlay with nutrient transport structures
WO2011024125A1 (en) * 2009-08-27 2011-03-03 Polymer Technologies International (Eou) Refractive-diffractive lens
US9370416B2 (en) * 2009-08-27 2016-06-21 Jagrat Natavar DAVE Refractive-diffractive lens
EP2290411B1 (en) * 2009-08-27 2012-05-09 Polymer Technologies International (EOU) Refractive-diffractive lens
US8652205B2 (en) 2009-10-26 2014-02-18 Novartis Ag Phase-shifted center-distance diffractive design for ocular implant
US8623083B2 (en) 2009-11-06 2014-01-07 Amo Groningen B.V. Diffractive binocular lens systems and methods
GB2507465A (en) * 2009-11-23 2014-05-07 Rayner Intraocular Lenses Ltd Intraocular lens with a Fresnel prism
US8331048B1 (en) 2009-12-18 2012-12-11 Bausch & Lomb Incorporated Methods of designing lenses having selected depths of field
EP2512370B1 (en) * 2009-12-18 2020-10-21 AMO Groningen B.V. Limited echelette lens
US10278810B2 (en) 2010-04-29 2019-05-07 Ojo, Llc Injectable physiologically adaptive intraocular lenses (IOL's)
JP5460452B2 (ja) 2010-04-30 2014-04-02 株式会社ニデック 眼科装置
US9310624B2 (en) * 2010-07-05 2016-04-12 Jagrat Natavar DAVE Refractive-diffractive ophthalmic device and compositions useful for producing same
TWI432769B (zh) * 2010-12-01 2014-04-01 Chi Mei Corp An optical plate having a microstructure and a method for manufacturing the optical plate
US9817246B2 (en) 2010-12-01 2017-11-14 Amo Groningen B.V. Multifocal lens having an optical add power progression, and a system and method of providing same
US20120140166A1 (en) 2010-12-07 2012-06-07 Abbott Medical Optics Inc. Pupil dependent diffractive lens for near, intermediate, and far vision
US8894204B2 (en) 2010-12-17 2014-11-25 Abbott Medical Optics Inc. Ophthalmic lens, systems and methods having at least one rotationally asymmetric diffractive structure
US9931200B2 (en) 2010-12-17 2018-04-03 Amo Groningen B.V. Ophthalmic devices, systems, and methods for optimizing peripheral vision
US9545303B2 (en) 2011-12-02 2017-01-17 Acufocus, Inc. Ocular mask having selective spectral transmission
EP2820474B1 (en) * 2012-02-27 2017-08-02 E- Vision Smart Optics, Inc. Electroactive lens with multiple depth diffractive structures
TWI588560B (zh) 2012-04-05 2017-06-21 布萊恩荷登視覺協會 用於屈光不正之鏡片、裝置、方法及系統
US9201250B2 (en) 2012-10-17 2015-12-01 Brien Holden Vision Institute Lenses, devices, methods and systems for refractive error
JP2015533430A (ja) 2012-10-17 2015-11-24 ブリエン ホールデン ビジョン インスティテュートBrien Holden Vision Institute 屈折異常用のレンズ、デバイス、方法、及びシステム
EP2928413B1 (en) 2012-12-04 2019-08-14 AMO Groningen B.V. Lenses systems and methods for providing binocular customized treatments to correct presbyopia
AU2014228357B2 (en) 2013-03-11 2018-08-23 Johnson & Johnson Surgical Vision, Inc. Intraocular lens that matches an image surface to a retinal shape, and method of designing same
US9204962B2 (en) 2013-03-13 2015-12-08 Acufocus, Inc. In situ adjustable optical mask
US9427922B2 (en) 2013-03-14 2016-08-30 Acufocus, Inc. Process for manufacturing an intraocular lens with an embedded mask
JP2014219446A (ja) * 2013-05-01 2014-11-20 パナソニック株式会社 回折格子レンズおよび撮像装置
CA2942198C (en) 2014-03-10 2023-08-01 Amo Groningen B.V. Enhanced toric lens that improves overall vision where there is a local loss of retinal function
CA2946356C (en) 2014-04-21 2022-09-20 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
CN107072779B (zh) * 2014-09-09 2020-01-14 斯塔尔外科有限公司 具有扩展的景深和增强的远距视力的眼科植入物
US10881504B2 (en) 2016-03-09 2021-01-05 Staar Surgical Company Ophthalmic implants with extended depth of field and enhanced distance visual acuity
EP3220859B8 (en) 2014-11-19 2020-06-10 AcuFocus, Inc. Fracturable mask for treating presbyopia
EP3130314A1 (en) 2015-08-12 2017-02-15 PhysIOL SA Trifocal intraocular lens with extended range of vision and correction of longitudinal chromatic aberration
ES2660306T3 (es) 2015-10-02 2018-03-21 Rayner Intraocular Lenses Limited Lente multifocal y procedimiento para su fabricación
WO2017062316A1 (en) 2015-10-05 2017-04-13 Acufocus, Inc. Methods of molding intraocular lenses
CA3005891C (en) 2015-11-24 2023-12-12 Acufocus, Inc. Toric small aperture intraocular lens with extended depth of focus
US10359643B2 (en) 2015-12-18 2019-07-23 Johnson & Johnson Vision Care, Inc. Methods for incorporating lens features and lenses having such features
EP3413841A1 (en) 2016-02-09 2018-12-19 AMO Groningen B.V. Progressive power intraocular lens, and methods of use and manufacture
US10675146B2 (en) * 2016-02-24 2020-06-09 Alcon Inc. Multifocal lens having reduced visual disturbances
WO2017153843A1 (en) 2016-03-11 2017-09-14 Amo Groningen B.V. Intraocular lenses that improve peripheral vision
CA3018545A1 (en) 2016-03-23 2017-09-28 Johnson & Johnson Surgical Vision, Inc. Power calculator for an ophthalmic apparatus with corrective meridians having extended tolerance or operation band
EP3433667B1 (en) 2016-03-23 2022-09-28 Johnson & Johnson Surgical Vision, Inc. Ophthalmic apparatus with corrective meridians having extended tolerance band with freeform refractive surfaces
WO2017182878A1 (en) 2016-04-19 2017-10-26 Amo Groningen B.V. Ophthalmic devices, system and methods that improve peripheral vision
WO2018078439A2 (en) 2016-10-25 2018-05-03 Amo Groningen B.V. Realistic eye models to design and evaluate intraocular lenses for a large field of view
US10426599B2 (en) * 2016-11-29 2019-10-01 Novartis Ag Multifocal lens having reduced chromatic aberrations
AU2018235011A1 (en) 2017-03-17 2019-10-24 Amo Groningen B.V. Diffractive intraocular lenses for extended range of vision
US10739227B2 (en) 2017-03-23 2020-08-11 Johnson & Johnson Surgical Vision, Inc. Methods and systems for measuring image quality
US10420638B2 (en) * 2017-04-27 2019-09-24 Novartis Ag Multifocal ophthalmic lens having chromatic aberration correction
US11523897B2 (en) 2017-06-23 2022-12-13 Amo Groningen B.V. Intraocular lenses for presbyopia treatment
EP3639084A1 (en) 2017-06-28 2020-04-22 Amo Groningen B.V. Extended range and related intraocular lenses for presbyopia treatment
US11262598B2 (en) 2017-06-28 2022-03-01 Amo Groningen, B.V. Diffractive lenses and related intraocular lenses for presbyopia treatment
US11327210B2 (en) 2017-06-30 2022-05-10 Amo Groningen B.V. Non-repeating echelettes and related intraocular lenses for presbyopia treatment
CN108652789B (zh) * 2017-07-20 2020-04-21 东莞东阳光医疗智能器件研发有限公司 近距视力加强的全视程衍射人工晶体
TWI636296B (zh) * 2017-08-28 2018-09-21 精華光學股份有限公司 視力矯正用光學鏡片
AU2018330604A1 (en) 2017-09-11 2020-04-02 Amo Groningen B.V. Methods and apparatuses to increase intraocular lenses positional stability
CN109725441A (zh) * 2017-10-28 2019-05-07 郑克立 一种全息眼镜片
CA3082053A1 (en) 2017-11-30 2019-06-06 Amo Groningen B.V. Intraocular lenses that improve post-surgical spectacle independent and methods of manufacturing thereof
US11324588B2 (en) * 2018-04-09 2022-05-10 Mediphacos Industrias Medicas S/A Diffractive intraocular lens
WO2019217471A1 (en) 2018-05-09 2019-11-14 Acufocus, Inc. Intraocular implant with removable optic
ES2956033T3 (es) 2018-08-17 2023-12-12 Staar Surgical Co Composición polimérica que exhibe nanogradiente de índice de refracción
AU2020416055A1 (en) 2019-12-30 2022-08-25 Amo Groningen B.V. Lenses having diffractive profiles with irregular width for vision treatment
US11886046B2 (en) 2019-12-30 2024-01-30 Amo Groningen B.V. Multi-region refractive lenses for vision treatment
EP4120960A4 (en) * 2020-03-20 2024-04-10 Roop, Prakhyat LENS TO PROVIDE POSITIVE AND NEGATIVE DIFFRACTION
WO2022039683A1 (en) * 2020-08-21 2022-02-24 Vsy Biyoteknoloji Ve Ilac Sanayi A.S. A zonal diffractive ocular lens
EP4200664A1 (en) * 2020-08-21 2023-06-28 VSY Biyoteknoloji Ve Ilac Sanayi Anonim Sirketi A zonal diffractive ocular lens
US11364696B2 (en) 2020-09-18 2022-06-21 Johnson & Johnson Vision Care, Inc Apparatus for forming an ophthalmic lens
JP2023545091A (ja) * 2020-10-08 2023-10-26 アルコン インコーポレイティド 位相シフト構造を有する眼科用レンズとその方法
US20230011320A1 (en) * 2021-07-09 2023-01-12 Amo Groningen B.V. Diffractive lenses for range of vision
US12025859B1 (en) * 2022-07-19 2024-07-02 Robert Bush Optical apparatuses for enhancing scotopic vision
WO2024020078A1 (en) * 2022-07-20 2024-01-25 Clerio Vision, Inc. Methods and devices for chromatic aberration correction

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154119A (ja) * 1987-11-12 1989-06-16 Allen L Cohen 多焦点眼科用レンズ
JPH0228615A (ja) * 1988-04-01 1990-01-30 Minnesota Mining & Mfg Co <3M> 多焦点屈析眼科レンズ
JPH0279815A (ja) * 1988-08-26 1990-03-20 Allen L Cohen 回折多焦点の目のレンズの設計方法及び製造方法
JPH02137814A (ja) * 1987-11-12 1990-05-28 Allen L Cohen 眼科用多焦点回折レンズ
JPH02249631A (ja) * 1988-11-16 1990-10-05 Bausch & Lomb Inc 回折性コンタクトレンズおよび眼内レンズの製造システムならびにその製造方法
JPH04254817A (ja) * 1990-08-08 1992-09-10 Minnesota Mining & Mfg Co <3M> 複焦点眼科用レンズ
JP2000511299A (ja) * 1996-05-23 2000-08-29 アルコン ラボラトリーズ,インコーポレイテッド 改良された回折多焦点眼用レンズ
WO2003034949A2 (en) * 2001-10-22 2003-05-01 Thinoptx, Inc. Deformable intraocular multi-focus lens
JP2003532157A (ja) * 2000-05-03 2003-10-28 アドバンスト メディカル オプティクス, インコーポレーテッド 眼用レンズシステム
WO2004049979A1 (en) * 2002-11-29 2004-06-17 Pharmacia Groningen Bv Multifocal ophthalmic lens

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1805561C3 (de) 1967-10-30 1980-10-23 Societe Des Lunetiers, Paris Ophthalmische Linse mit starker Brechkraft und vorgegebenem Astigmatismus
US4460275A (en) 1977-08-02 1984-07-17 Automated Optics, Inc. Method and apparatus adapted for automatic or semi-automatic fabrication of ultra-precision opthalmic lenses, e.g., contact lenses
US4340283A (en) * 1978-12-18 1982-07-20 Cohen Allen L Phase shift multifocal zone plate
EP0064812B1 (en) 1981-04-29 1985-08-14 Pilkington P.E. Limited Artificial eye lenses
US4504982A (en) 1982-08-05 1985-03-19 Optical Radiation Corporation Aspheric intraocular lens
EP0104832B1 (en) 1982-09-29 1987-11-11 Pilkington Brothers P.L.C. Improvements in or relating to ophthalmic lenses
GB2129157B (en) 1982-10-27 1986-02-05 Pilkington Perkin Elmer Ltd Bifocal contact lenses having defractive power
US4606626A (en) 1982-12-13 1986-08-19 Seiko Epson Corporation Progressive multifocal ophthalmic lenses with prism for correcting chromatic aberration
US4504892A (en) 1983-01-21 1985-03-12 Zulfilar Farida Y Art lighting system with stepwise creation and display of workpiece
GB8404817D0 (en) 1984-02-23 1984-03-28 Pilkington Perkin Elmer Ltd Ophthalmic lenses
US5144483A (en) 1986-05-14 1992-09-01 Cohen Allen L Diffractive multifocal optical device
US5017000A (en) 1986-05-14 1991-05-21 Cohen Allen L Multifocals using phase shifting
US5121979A (en) 1986-05-14 1992-06-16 Cohen Allen L Diffractive multifocal optical device
US4710193A (en) 1986-08-18 1987-12-01 David Volk Accommodating intraocular lens and lens series and method of lens selection
US5236970A (en) 1987-02-05 1993-08-17 Allergan, Inc. Optically clear reinforced silicone elastomers of high optical refractive index and improved mechanical properties for use in intraocular lenses
US4898461A (en) 1987-06-01 1990-02-06 Valdemar Portney Multifocal ophthalmic lens
US5225858A (en) 1987-06-01 1993-07-06 Valdemar Portney Multifocal ophthalmic lens
US6007747A (en) 1987-08-24 1999-12-28 Pharmacia & Upjohn Company Method of making an aspheric soft lens
US5054905A (en) * 1987-11-12 1991-10-08 Cohen Allen L Progressive intensity phase bifocal
US5056908A (en) * 1987-11-12 1991-10-15 Cohen Allen L Optic zone phase channels
US5116111A (en) 1988-04-01 1992-05-26 Minnesota Mining And Manufacturing Company Multi-focal diffractive ophthalmic lenses
US5076684A (en) 1988-04-01 1991-12-31 Minnesota Mining And Manufacturing Company Multi-focal diffractive ophthalmic lenses
US5089024A (en) 1988-04-19 1992-02-18 Storz Instrument Company Multi-focal intraocular lens
EP0681198A1 (en) 1988-07-20 1995-11-08 Allen L. Dr. Cohen Multifocal ophthalmic lens
US4995714A (en) 1988-08-26 1991-02-26 Cohen Allen L Multifocal optical device with novel phase zone plate and method for making
FR2638859B1 (fr) 1988-11-09 1991-02-08 Essilor Int Lentille ophtalmique diffractive gravee
GB8829819D0 (en) 1988-12-21 1989-02-15 Freeman Michael H Lenses and mirrors
US5121980A (en) 1989-04-19 1992-06-16 Cohen Allen L Small aperture multifocal
US4936666A (en) 1989-08-08 1990-06-26 Minnesota Mining And Manufacturing Company Diffractive lens
US5089023A (en) 1990-03-22 1992-02-18 Massachusetts Institute Of Technology Diffractive/refractive lens implant
US5178636A (en) 1990-05-14 1993-01-12 Iolab Corporation Tuned fresnel lens for multifocal intraocular applications including small incision surgeries
US5096285A (en) 1990-05-14 1992-03-17 Iolab Corporation Multifocal multizone diffractive ophthalmic lenses
US5117306A (en) 1990-07-17 1992-05-26 Cohen Allen L Diffraction bifocal with adjusted chromaticity
US5220359A (en) 1990-07-24 1993-06-15 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
US5050981A (en) 1990-07-24 1991-09-24 Johnson & Johnson Vision Products, Inc. Lens design method and resulting aspheric lens
US5120120A (en) 1990-07-27 1992-06-09 Cohen Allen L Multifocal optical device with spurious order suppression and method for manufacture of same
SK377492A3 (en) 1992-01-28 1995-05-10 Johnson & Johnson Vision Prod Multifocal refracting lens and method of its manufacture
US5444106A (en) 1992-04-21 1995-08-22 Kabi Pharmacia Ophthalmics, Inc. High refractive index silicone compositions
US5384606A (en) 1992-06-22 1995-01-24 Allergan, Inc. Diffractive/refractive spectacle and intraocular lens system for age-related macular degeneration
EP0582346A1 (en) 1992-08-03 1994-02-09 Koninklijke Philips Electronics N.V. Transmission system with increased sampling rate detection
US5344447A (en) 1992-11-12 1994-09-06 Massachusetts Institute Of Technology Diffractive trifocal intra-ocular lens design
US5448312A (en) 1992-12-09 1995-09-05 Johnson & Johnson Vision Products, Inc. Pupil-tuned multifocal ophthalmic lens
US5760871A (en) 1993-01-06 1998-06-02 Holo-Or Ltd. Diffractive multi-focal lens
US5748282A (en) 1993-01-27 1998-05-05 Pilkington Barnes Hind, Inc. Multifocal contact lens
US5349471A (en) 1993-02-16 1994-09-20 The University Of Rochester Hybrid refractive/diffractive achromatic lens for optical data storage systems
US5895422A (en) 1993-06-17 1999-04-20 Hauber; Frederick A. Mixed optics intraocular achromatic lens
CA2128938C (en) 1993-07-28 1999-09-14 Shiao H. Chang Intraocular lens with fracture resistant haptics
US5486951A (en) 1993-12-16 1996-01-23 Eastman Kodak Company Gradial zone lens and method of fabrication
US5581405A (en) 1993-12-29 1996-12-03 Eastman Kodak Company Hybrid refractive/diffractive achromatic camera lens and camera using such
US5543966A (en) 1993-12-29 1996-08-06 Eastman Kodak Company Hybrid refractive/diffractive achromatic camera lens
US5589982A (en) 1994-06-03 1996-12-31 Rochester Photonics Corporation Polychromatic diffractive lens
IL117937A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Combined multifocal toric lens designs
US5684560A (en) 1995-05-04 1997-11-04 Johnson & Johnson Vision Products, Inc. Concentric ring single vision lens designs
US5652638A (en) 1995-05-04 1997-07-29 Johnson & Johnson Vision Products, Inc. Concentric annular ring lens designs for astigmatism
US5929969A (en) 1995-05-04 1999-07-27 Johnson & Johnson Vision Products, Inc. Multifocal ophthalmic lens
US5715031A (en) 1995-05-04 1998-02-03 Johnson & Johnson Vision Products, Inc. Concentric aspheric multifocal lens designs
US5682223A (en) 1995-05-04 1997-10-28 Johnson & Johnson Vision Products, Inc. Multifocal lens designs with intermediate optical powers
IL118065A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Aspheric toric lens designs
IL118064A0 (en) 1995-05-04 1996-08-04 Johnson & Johnson Vision Prod Concentric annular ring lens designs for astigmatic presbyopes
SE9501714D0 (sv) 1995-05-09 1995-05-09 Pharmacia Ab A method of selecting an intraocular lens to be implanted into an eye
AU6330696A (en) 1995-06-06 1996-12-24 Scientific Optics, Inc. Asymmetric bifocal intraocular lens
US5724258A (en) 1996-05-09 1998-03-03 Johnson & Johnson Vision Products, Inc. Neural network analysis for multifocal contact lens design
US5683457A (en) 1996-05-09 1997-11-04 Prism Opthalmics, L.L.C. Prismatic intraocular lenses and related method of using such lenses to restore vision in patients with central field loss
US5728156A (en) 1996-08-06 1998-03-17 Prism Opthalmics, L.L.C. Prismatic intraocular lenses and related methods of in situ alteration of their optical characteristics
US5777719A (en) 1996-12-23 1998-07-07 University Of Rochester Method and apparatus for improving vision and the resolution of retinal images
WO1998031299A2 (de) 1997-01-21 1998-07-23 TECHNOMED GESELLSCHAFT FüR MED. UND MED.-TECHN. SYSTEME MBH Verfahren zur herstellung einer künstlichen augenlinse
FR2760717B1 (fr) * 1997-03-17 2001-02-16 Zodiac Int Plancher gonflable, notamment pour embarcation gonflable
US5888122A (en) 1997-04-10 1999-03-30 Prism Ophthalmics, L.L.C. Method for manufacturing an intraocular lens
US6019472A (en) 1997-05-12 2000-02-01 Koester; Charles J. Contact lens element for examination or treatment of ocular tissues
US6089711A (en) 1997-11-05 2000-07-18 Blankenbecler; Richard Radial gradient contact lenses
IL123574A0 (en) 1998-03-05 1998-10-30 Holo Or Ltd Progressive multifocal lens construction for eyeglasses
JP3686253B2 (ja) 1998-04-10 2005-08-24 オリンパス株式会社 回折光学素子を用いたズームレンズ
IL124991A (en) 1998-06-18 2002-12-01 Rotlex 1994 Ltd Multifocal lens combining the advantages of progressive addition lenses and diffractive lenses
CA2339776C (en) 1998-08-06 2005-10-25 John B. W. Lett Multifocal aspheric lens
US6120148A (en) 1998-10-05 2000-09-19 Bifocon Optics Gmbh Diffractive lens
US6082856A (en) 1998-11-09 2000-07-04 Polyvue Technologies, Inc. Methods for designing and making contact lenses having aberration control and contact lenses made thereby
US6231603B1 (en) 1998-11-10 2001-05-15 Allergan Sales, Inc. Accommodating multifocal intraocular lens
US6139145A (en) 1998-11-13 2000-10-31 Israel; Henry M. Ophthalmic optical element incorporating a holographic element and use of same in cases of central field loss
JP4374640B2 (ja) 1999-03-02 2009-12-02 コニカミノルタホールディングス株式会社 回折レンズ及びその設計方法
US6224211B1 (en) 1999-06-08 2001-05-01 Medjet, Inc. Super vision
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6050687A (en) 1999-06-11 2000-04-18 20/10 Perfect Vision Optische Geraete Gmbh Method and apparatus for measurement of the refractive properties of the human eye
US6536899B1 (en) 1999-07-14 2003-03-25 Bifocon Optics Gmbh Multifocal lens exhibiting diffractive and refractive powers
CN100473371C (zh) 1999-08-11 2009-04-01 阿斯科莱平医疗技术股份公司 用于对折射性视力缺陷进行矫正的装置及其矫正元件的制作方法
DE19938203A1 (de) * 1999-08-11 2001-02-15 Aesculap Meditec Gmbh Verfahren und Vorrichtung zur Korrektur von Sehfehlern des menschlichen Auges
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
DE10006896A1 (de) 2000-02-16 2001-08-30 Wavelight Laser Technologie Ag Verfahren zum Herstellen einer künstlichen okularen Linse
US6473232B2 (en) 2000-03-08 2002-10-29 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
US6413276B1 (en) 2000-04-26 2002-07-02 Emmetropia, Inc. Modified intraocular lens and method of correcting optical aberrations therein
US6338559B1 (en) 2000-04-28 2002-01-15 University Of Rochester Apparatus and method for improving vision and retinal imaging
US6609793B2 (en) * 2000-05-23 2003-08-26 Pharmacia Groningen Bv Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations
US6582076B1 (en) 2000-08-30 2003-06-24 Johnson & Johnson Vision Care, Inc. Ophthalmic lenses useful in correcting astigmatism and presbyopia
US6474814B1 (en) 2000-09-08 2002-11-05 Florida Optical Engineering, Inc Multifocal ophthalmic lens with induced aperture
US6547391B2 (en) 2000-12-08 2003-04-15 Johnson & Johnson Vision Care, Inc. Ocular aberration correction taking into account fluctuations due to biophysical rhythms
US20020093701A1 (en) * 2000-12-29 2002-07-18 Xiaoxiao Zhang Holographic multifocal lens
US6818158B2 (en) 2001-01-25 2004-11-16 Visiogen, Inc. Accommodating intraocular lens system and method of making same
SE0101293D0 (sv) 2001-04-11 2001-04-11 Pharmacia Groningen Bv Technical field of the invention
US20030014107A1 (en) * 2001-06-28 2003-01-16 Michael Reynard Multifocal phakic intraocular lens
US6520638B1 (en) 2001-08-14 2003-02-18 Johnson & Johnson Vision Care, Inc. Methods for designing multifocal ophthalmic lenses
US6609673B1 (en) 2001-09-21 2003-08-26 Martin D. Johnson Fishing line feeding device for a fishing pole
US6851803B2 (en) * 2002-10-24 2005-02-08 C. Benjamin Wooley Ophthalmic lenses with reduced chromatic blur
US6709103B1 (en) 2002-10-31 2004-03-23 Johnson & Johnson Vision Care, Inc. Methods for designing multifocal ophthalmic lenses
US7896916B2 (en) * 2002-11-29 2011-03-01 Amo Groningen B.V. Multifocal ophthalmic lens
US6972032B2 (en) * 2003-01-14 2005-12-06 Visioncare Ophthalmic Technologies Inc. Intraocular lens implant
DE10307554A1 (de) * 2003-02-21 2004-09-02 Acritec Gmbh Intraokularlinsen-Set
US6951391B2 (en) * 2003-06-16 2005-10-04 Apollo Optical Systems Llc Bifocal multiorder diffractive lenses for vision correction
US7188949B2 (en) * 2004-10-25 2007-03-13 Advanced Medical Optics, Inc. Ophthalmic lens with multiple phase plates

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154119A (ja) * 1987-11-12 1989-06-16 Allen L Cohen 多焦点眼科用レンズ
JPH02137814A (ja) * 1987-11-12 1990-05-28 Allen L Cohen 眼科用多焦点回折レンズ
JPH0228615A (ja) * 1988-04-01 1990-01-30 Minnesota Mining & Mfg Co <3M> 多焦点屈析眼科レンズ
JPH0279815A (ja) * 1988-08-26 1990-03-20 Allen L Cohen 回折多焦点の目のレンズの設計方法及び製造方法
JPH02249631A (ja) * 1988-11-16 1990-10-05 Bausch & Lomb Inc 回折性コンタクトレンズおよび眼内レンズの製造システムならびにその製造方法
JPH04254817A (ja) * 1990-08-08 1992-09-10 Minnesota Mining & Mfg Co <3M> 複焦点眼科用レンズ
JP2000511299A (ja) * 1996-05-23 2000-08-29 アルコン ラボラトリーズ,インコーポレイテッド 改良された回折多焦点眼用レンズ
JP2003532157A (ja) * 2000-05-03 2003-10-28 アドバンスト メディカル オプティクス, インコーポレーテッド 眼用レンズシステム
WO2003034949A2 (en) * 2001-10-22 2003-05-01 Thinoptx, Inc. Deformable intraocular multi-focus lens
WO2004049979A1 (en) * 2002-11-29 2004-06-17 Pharmacia Groningen Bv Multifocal ophthalmic lens

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028397A (ko) * 2008-07-15 2011-03-17 알콘, 인코퍼레이티드 동공 역학을 이용함으로써 가조절력을 증가시키기 위한 확장된 초점 심도 〔edof〕 렌즈
JP2011528451A (ja) * 2008-07-15 2011-11-17 アルコン,インコーポレイティド 瞳孔力学により疑似調節度合を高めた焦点深度拡張(edof)レンズ
JP2011528272A (ja) * 2008-07-15 2011-11-17 アルコン,インコーポレイティド 円環状光学部及び拡張された焦点深度を有する調節性iol
KR101630260B1 (ko) * 2008-07-15 2016-06-14 알콘, 인코퍼레이티드 동공 역학을 이용함으로써 가조절력을 증가시키기 위한 확장된 초점 심도 〔edof〕 렌즈
WO2010079537A1 (ja) * 2009-01-06 2010-07-15 株式会社メニコン 無水晶体眼内レンズの製造方法
JP2010158315A (ja) * 2009-01-06 2010-07-22 Menicon Co Ltd 無水晶体眼内レンズの製造方法
US8500805B2 (en) 2009-01-06 2013-08-06 Menicon Co., Ltd. Method for manufacturing aphakic intraocular lens
JP2012529671A (ja) * 2009-06-09 2012-11-22 ノバルティス アーゲー 色収差の矯正を変化させるiol
JPWO2013118499A1 (ja) * 2012-02-09 2015-05-11 株式会社メニコン 多焦点眼用レンズとその製造方法
JP2015536796A (ja) * 2012-12-18 2015-12-24 ノバルティス アーゲー 被写界深度が改善された眼内レンズを提供する方法およびシステム
JP2019506957A (ja) * 2016-03-03 2019-03-14 ノバルティス アーゲー 回折型iolのためのアポダイゼーションパターンの調整
JP7084312B2 (ja) 2016-03-03 2022-06-14 アルコン インコーポレイティド 回折型iolのためのアポダイゼーションパターンの調整
JP2019535445A (ja) * 2016-11-29 2019-12-12 ノバルティス アーゲー ゾーン毎ステップ高制御を有する眼内レンズ
CN110062899B (zh) * 2016-11-29 2021-05-28 爱尔康公司 具有逐区阶梯高度控制的眼内透镜
JP7021213B2 (ja) 2016-11-29 2022-02-16 アルコン インコーポレイティド ゾーン毎ステップ高制御を有する眼内レンズ
CN110062899A (zh) * 2016-11-29 2019-07-26 诺华股份有限公司 具有逐区阶梯高度控制的眼内透镜
JP2020197735A (ja) * 2017-02-07 2020-12-10 三井化学株式会社 レンズ、レンズブランクおよびアイウェア
JP7073455B2 (ja) 2017-02-07 2022-05-23 三井化学株式会社 レンズ、レンズブランクおよびアイウェア
JP2020521530A (ja) * 2017-06-01 2020-07-27 カール・ツアイス・メディテック・アーゲー 回折格子構造を有する人工水晶体及び人工水晶体を製造する方法
JP2020522293A (ja) * 2017-06-01 2020-07-30 カール・ツアイス・メディテック・アーゲー レーザ生成複屈折構造を有する人工水晶体及び人工水晶体を製造する方法
JP7152421B2 (ja) 2017-06-01 2022-10-12 カール・ツアイス・メディテック・アーゲー 回折格子構造を有する人工水晶体及び人工水晶体を製造する方法
US11583391B2 (en) 2017-06-01 2023-02-21 Carl Zeiss Meditec Ag Artificial eye lens with laser-generated birefringent structure and method for producing an artificial eye lens
JP7356355B2 (ja) 2017-06-01 2023-10-04 カール・ツアイス・メディテック・アーゲー レーザ生成複屈折構造を有する人工水晶体及び人工水晶体を製造する方法
JP2021514713A (ja) * 2018-02-22 2021-06-17 ボシュ・アンド・ロム・インコーポレイテッドBausch & Lomb Incorporated 遠距離優先の眼内レンズ
JP7336449B2 (ja) 2018-02-22 2023-08-31 ボシュ・アンド・ロム・インコーポレイテッド 遠距離優先の眼内レンズ

Also Published As

Publication number Publication date
EP1805552B1 (en) 2018-09-26
WO2006047698A1 (en) 2006-05-04
JP2008518281A (ja) 2008-05-29
JP4926068B2 (ja) 2012-05-09
AU2005299605B2 (en) 2011-07-07
AU2005299605A1 (en) 2006-05-04
EP2527908A1 (en) 2012-11-28
AU2005319678A1 (en) 2006-06-29
EP2527908B1 (en) 2019-03-20
BRPI0518378A2 (pt) 2008-11-18
JP5011117B2 (ja) 2012-08-29
BRPI0517017A (pt) 2008-09-30
CA2585250A1 (en) 2006-06-29
EP1805551B1 (en) 2017-06-21
EP1805552A1 (en) 2007-07-11
AU2005299605C1 (en) 2012-02-16
CA2585250C (en) 2014-12-16
US20060098162A1 (en) 2006-05-11
US7455404B2 (en) 2008-11-25
AU2005319678B2 (en) 2011-06-30
CA2585237C (en) 2015-01-06
EP1805551A1 (en) 2007-07-11
EP3480650A1 (en) 2019-05-08
WO2006068696A1 (en) 2006-06-29
CA2585237A1 (en) 2006-05-04

Similar Documents

Publication Publication Date Title
JP4926068B2 (ja) 複数の位相板を有する眼用レンズ
US8506075B2 (en) Ophthalmic lens with multiple phase plates
US7188949B2 (en) Ophthalmic lens with multiple phase plates
AU2007213725B8 (en) Pseudo-accomodative IOL having multiple diffractive patterns
CA2590085C (en) Apodized aspheric diffractive lenses
US8734511B2 (en) Multifocal intraocular lens
EP2407816A1 (en) Zonal diffractive multifocal intraocular lenses
WO2010046356A1 (en) Multifocal intraocular lens
WO2022192339A1 (en) Intraocular lens providing extended depth of focus
AU2011232771B2 (en) Ophthalmic lens with multiple phase plates
AU2011226972B2 (en) Ophthalmic lens with multiple phase plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100915

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100924

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101014

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101021

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111004

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5011117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees