JP2008309495A - Identification and analyzing method of fine organic matter - Google Patents

Identification and analyzing method of fine organic matter Download PDF

Info

Publication number
JP2008309495A
JP2008309495A JP2007154685A JP2007154685A JP2008309495A JP 2008309495 A JP2008309495 A JP 2008309495A JP 2007154685 A JP2007154685 A JP 2007154685A JP 2007154685 A JP2007154685 A JP 2007154685A JP 2008309495 A JP2008309495 A JP 2008309495A
Authority
JP
Japan
Prior art keywords
organic matter
probe
minute
micro
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154685A
Other languages
Japanese (ja)
Inventor
Tomoko Suzuki
知子 鈴木
Kazuhiro Kamishiro
和浩 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007154685A priority Critical patent/JP2008309495A/en
Publication of JP2008309495A publication Critical patent/JP2008309495A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an identification and analyzing method of a fine organic matter capable of certainly sampling the fine organic matter of 10 μm or below to identify the fine organic matter. <P>SOLUTION: The identification and analyzing method of the fine organic matter for irradiating the fine organic matter with near field infrared rays to measure the infrared absorption spectrum of the fine organic matter includes the process of bonding the fine organic matter to a fine organic matter sampling probe formed of or coated with a material enhanced in the reflectivity of infrared rays and the process of measuring the infrared absorption spectrum of the fine organic matter in a state that the fine organic matter is bonded to the fine organic matter sampling probe without being transferred to a measuring substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、微小有機物の同定分析方法に関する。   The present invention relates to a method for identifying and analyzing minute organic substances.

ピンセットでの採取が困難であるような微小有機物の採取方法として、顕微鏡視野下で試料を採取するためのプローブをマニピュレータによって操作するマイクロマニピュレータシステムが一般的に利用されている。
このマイクロマニピュレータシステムは、2本のプローブで微小有機物を挟んで採取したり、1本のプローブでも静電気力や分子間力などによって微小有機物を付着させることができる。
さらに、このマイクロマニピュレータシステムを利用して、採取した微小有機物を分析用試料台上に置くこともできる。
また、試料台に移し替えることなく、試料採取用プローブのまま、分光分析を行う方法として、特許文献1では、赤外分光測定法および該測定法に用いる冶具が提案されている。
また、特許文献2では、試料の採取方法及びその光学的分析方法、並びにこれらの方法に用いる試料採取具が提案されている。
A micromanipulator system in which a probe for sampling a sample under a microscope field is operated by a manipulator is generally used as a method for collecting a minute organic material that is difficult to collect with tweezers.
In this micromanipulator system, two organic probes can be collected by sandwiching the micro organic matter, and even with one probe, the micro organic matter can be attached by electrostatic force or intermolecular force.
Furthermore, using this micromanipulator system, the collected micro organic matter can be placed on the sample stage for analysis.
Further, as a method for performing spectroscopic analysis without changing to a sample stage, a patent document 1 proposes an infrared spectroscopic measurement method and a jig used for the measurement method.
Further, Patent Document 2 proposes a sample collection method, an optical analysis method thereof, and a sample collection tool used for these methods.

従来において、微小有機物の同定分析方法として、該有機物の赤外吸収スペクトルを測定する方法が最も広く一般的に利用されている。
顕微鏡型の顕微赤外分光装置を利用すると、約10μm以上の大きさを有する微小有機物の赤外吸収スペクトルを測定することができる。
測定試料が吸収する赤外波長は、種々の有機分子構造に由来する固有の情報となるため、試料の赤外吸収スペクトルを測定することによって、有機分子構造を同定することが可能となる。
また、有機物の分析方法としての歴史が長いため、膨大なデータベースが存在し、未知の有機物の分析でも該データベースによって同定解析が可能となっている。
特開2001−255263号公報 特開平11−44616号公報
Conventionally, a method for measuring an infrared absorption spectrum of an organic substance is most widely used as an identification analysis method for the minute organic substance.
When a microscope-type microscopic infrared spectroscopic device is used, an infrared absorption spectrum of a minute organic substance having a size of about 10 μm or more can be measured.
Since the infrared wavelength absorbed by the measurement sample is unique information derived from various organic molecular structures, the organic molecular structure can be identified by measuring the infrared absorption spectrum of the sample.
In addition, since it has a long history as an organic substance analysis method, there is a huge database, and identification analysis can be performed using this database even for analysis of unknown organic substances.
JP 2001-255263 A JP-A-11-44616

しかしながら、これら従来の微小有機物の採取方法及び同定分析方法においては、次のような課題を有している。
マイクロマニピュレータを利用した微小有機物の採取方法では、採取すべき微小有機物の大きさが数十μm以下になると、微小有機物に対する重力よりも該プローブとの間に働く静電気力や分子間力の作用の方が大きくなる。
このため、採取した該微小有機物を分光分析用試料台上に置く際、該微小有機物が該プローブから離れなくなるという課題が生じる。
However, these conventional methods for collecting micro organic substances and identification analysis methods have the following problems.
In the method of collecting micro organic matter using a micromanipulator, when the size of the micro organic matter to be collected becomes several tens of μm or less, the action of electrostatic force or intermolecular force acting on the probe rather than gravity on the micro organic matter is affected. Will be bigger.
For this reason, when the collected micro organic matter is placed on the spectroscopic sample stage, there arises a problem that the micro organic matter is not separated from the probe.

これに対し、静電気力を弱める除電装置による処理や、採取した該微小有機物と赤外吸収スペクトル測定用試料台上との間に静電気力を作用させるなどの方法により、採取した該微小有機物を赤外吸収スペクトル測定用試料台上に置くようにすることも考えられる。
しかしながら、これらによっても100%確実に該微小有機物を移し替えることができるとは言えない。
また、無理にプローブを基板に押し付けて移し変えると、該微小有機物をさらに小さく砕いてしまい、同定するに充分なS/N比をもったスペクトルを得ることが出来ない。
以上のように、従来の微小有機物の採取方法では、数十μm以下の微小有機物を採取する場合、該微小有機物を測定用試料台に移し替えることが難しく、同定分析するための赤外吸収スペクトルの測定ができなくなることがあった。
On the other hand, the collected micro organic matter is treated with a static eliminator that weakens the electrostatic force, or the collected micro organic matter is applied to the infrared absorption spectrum measurement sample table by an electrostatic force. It is also conceivable to place it on a sample stage for measuring the external absorption spectrum.
However, it cannot be said that these micro organic substances can be transferred 100% with certainty.
Further, if the probe is forcibly pressed against the substrate and transferred, the minute organic matter is further crushed and a spectrum having an S / N ratio sufficient for identification cannot be obtained.
As described above, in the conventional method of collecting minute organic matter, when collecting minute organic matter of several tens of μm or less, it is difficult to transfer the minute organic matter to a measurement sample stage, and an infrared absorption spectrum for identification analysis. Measurement may not be possible.

微小有機物の同定分析に用いられる赤外分光装置には顕微鏡型の顕微赤外分光装置があり、微小な試料や試料の微小部の分析にも対応できるようになっている。
しかし、これによる場合、光の回折限界により、赤外光波長程度までしか絞れないため、空間分解能は約10μm以上となり、10μm以下の極微小な試料の分析は原理的に困難である。
そのため、試料を上記した特許文献1や特許文献2などの方法により、反射率の高いプローブ上にサンプリングし、分光測定を行っても、試料サイズが10μm以下と極微小である場合は、同定に充分なS/N比を持ったスペクトルを得ることは困難である。
As an infrared spectroscopic device used for identification analysis of a minute organic substance, there is a microscope-type microscopic infrared spectroscopic device, which can cope with analysis of a minute sample or a minute portion of a sample.
However, in this case, because the diffraction limit of light can limit only to the infrared wavelength, the spatial resolution is about 10 μm or more, and it is theoretically difficult to analyze a very small sample of 10 μm or less.
Therefore, even if the sample is sampled on a probe with high reflectivity by the method described in Patent Document 1 or Patent Document 2 described above and spectroscopic measurement is performed, if the sample size is as small as 10 μm or less, the identification is performed. It is difficult to obtain a spectrum having a sufficient S / N ratio.

近年開発が進み、市販されている近接場赤外光を利用した近接場赤外分光装置を用いることによって、10μm以下の微小な有機物の同定分析が可能となることが見出され始めている。
しかしながら、発明者らの鋭意検討を進めた結果、10μm以下の微小な有機物の同定分析は、どのような状況でも可能となる訳ではない。赤外吸収スペクトルを測定する条件を整えなければ、ほとんどの場合、近接場赤外分光装置を用いても10μm以下の微小な有機物の同定分析は難しい、ということがわかった。
それは、近接場赤外光によって赤外光の照射領域を10μm以下にすることは可能となるが、測定試料の赤外吸収スペクトルは、有機分子構造に由来する特性吸収の合成波形であり、各特性吸収には決まったモル吸光係数εが存在する。
このようなことから、測定試料の赤外吸収光を効率良く検出するための測定光学系を設計しなければ、10μm以下の測定試料の赤外吸収スペクトルを取得することは原理的にも難しい。
In recent years, development has progressed, and it has begun to be found that identification analysis of minute organic substances having a size of 10 μm or less becomes possible by using a commercially available near-field infrared spectrometer using near-field infrared light.
However, as a result of diligent investigations by the inventors, identification analysis of minute organic substances of 10 μm or less is not possible in any situation. If the conditions for measuring the infrared absorption spectrum are not prepared, it has been found that in most cases, it is difficult to identify and analyze minute organic substances having a size of 10 μm or less using a near-field infrared spectrometer.
It is possible to reduce the irradiation region of infrared light to 10 μm or less by near-field infrared light, but the infrared absorption spectrum of the measurement sample is a synthetic waveform of characteristic absorption derived from the organic molecular structure, There is a fixed molar extinction coefficient ε for characteristic absorption.
For this reason, it is theoretically difficult to obtain an infrared absorption spectrum of a measurement sample of 10 μm or less unless a measurement optical system for efficiently detecting the infrared absorption light of the measurement sample is designed.

本発明は、上記課題に鑑み、10μm以下の微小な有機物を確実に採取し、該微小有機物の同定が可能となる微小有機物の同定分析方法を提供することを目的とするものである。   In view of the above problems, an object of the present invention is to provide a method for identifying and analyzing a micro organic substance that can reliably collect a micro organic substance of 10 μm or less and identify the micro organic substance.

本発明は、以下のように構成した微小有機物の同定分析方法を提供するものである。
本発明の微小有機物の同定分析方法は、微小有機物に近接場赤外光を照射し、該微小有機物の赤外吸収スペクトルを測定する微小有機物の同定分析方法において、
前記微小有機物を、赤外光の反射率の高い材料で形成され又は該反射率の高い材料で被覆された、該微小有機物の採取用プローブに付着させる過程と、
前記微小有機物を、測定用基板に移し変えることなく、微小有機物の採取用プローブに付着させたままで、該微小有機物の赤外吸収スペクトルを測定する過程と、を含むことを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、近接場赤外光を発生させる部位と、該微小有機物採取用プローブとの間に配置し、
赤外吸収スペクトルを測定することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、微小有機物の採取用プローブに付着させたままで、近接場赤外光を発生させる部位と、赤外光の反射率の高い材料で形成され又は該赤外光の反射率の高い材料で被覆された基板との間に配置し、
赤外吸収スペクトルを測定することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物の採取用プローブが、前記微小有機物を付着させる部分が光学的集光作用のある断面形状を有することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物を付着させる部分の断面形状が、V字形状又は凹面鏡形状を有することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物の採取用プローブが、該プローブから近接場赤外光を発生させるプローブであることを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記プローブから近接場赤外光を発生させるプローブが、該プローブの先端径が2μm以下であることを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、微小有機物の採取用プローブに付着させたままで、前記プローブと、赤外光の反射率の高い材料で形成され又は該赤外光の反射率の高い材料で被覆された基板と、の間に配置し、
赤外吸収スペクトルを測定することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記基板が、前記微小有機物が配置される基板部分が光学的集光作用のある断面形状を有することを特徴とする。また、本発明の微小有機物の同定分析方法は、前記基板部分の断面形状が、V字形状又は凹面鏡形状を有することを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記赤外光の反射率の高い材料として、波長4μmでの反射率が98%以上である材料を用いることを特徴とする。
また、本発明の微小有機物の同定分析方法は、前記波長4μmでの反射率が98%以上である材料として、銀,金,アルミニウム,インジウム,鉛のいずれかを用いることを特徴とする。
The present invention provides a method for identifying and analyzing minute organic substances configured as follows.
The method for identifying and analyzing a micro organic substance according to the present invention is a method for identifying and analyzing a micro organic substance by irradiating the micro organic substance with near-field infrared light and measuring an infrared absorption spectrum of the micro organic substance.
Attaching the micro organic material to a probe for collecting the micro organic material, which is formed of a material having a high reflectance of infrared light or coated with the material having a high reflectance;
And measuring the infrared absorption spectrum of the micro organic substance while it is attached to the probe for collecting the micro organic substance without transferring the micro organic substance to the measurement substrate.
Further, the identification analysis method of the minute organic matter of the present invention, in the process of measuring the infrared absorption spectrum of the minute organic matter,
The micro organic matter is disposed between a site that generates near-field infrared light and the micro organic matter collecting probe,
An infrared absorption spectrum is measured.
Further, the identification analysis method of the minute organic matter of the present invention, in the process of measuring the infrared absorption spectrum of the minute organic matter,
The minute organic substance is made to adhere to a probe for collecting the minute organic substance, and is formed of a portion that generates near-field infrared light and a material having high infrared light reflectance, or has high reflectance of the infrared light. Between the substrate coated with the material,
An infrared absorption spectrum is measured.
The micro organic matter identification and analysis method of the present invention is characterized in that, in the micro organic matter collecting probe, a portion to which the micro organic matter is attached has a cross-sectional shape having an optical condensing function.
In addition, the method for identifying and analyzing a minute organic material according to the present invention is characterized in that a cross-sectional shape of a portion to which the minute organic material is attached has a V shape or a concave mirror shape.
The micro organic matter identification and analysis method of the present invention is characterized in that the micro organic matter collecting probe is a probe that generates near-field infrared light from the probe.
In the method for identifying and analyzing a minute organic substance of the present invention, the probe that generates near-field infrared light from the probe has a tip diameter of 2 μm or less.
Further, the identification analysis method of the minute organic matter of the present invention, in the process of measuring the infrared absorption spectrum of the minute organic matter,
The probe and the substrate formed of a material having a high reflectivity for infrared light or coated with a material having a high reflectivity for infrared light while the micro organic material is attached to a probe for collecting the micro organic matter. Between, and
An infrared absorption spectrum is measured.
In the method for identifying and analyzing a micro organic substance according to the present invention, the substrate has a cross-sectional shape in which a substrate portion on which the micro organic substance is disposed has an optical condensing function. In the method for identifying and analyzing fine organic substances according to the present invention, the cross-sectional shape of the substrate portion is a V-shape or a concave mirror shape.
The micro organic matter identification and analysis method of the present invention is characterized in that a material having a reflectance of 98% or more at a wavelength of 4 μm is used as the material having a high reflectance of infrared light.
In addition, the method for identifying and analyzing minute organic substances according to the present invention is characterized in that any of silver, gold, aluminum, indium, and lead is used as the material having a reflectance of 98% or more at a wavelength of 4 μm.

本発明によれば、10μm以下の微小な有機物を確実に採取し、該微小有機物の同定が可能となる微小有機物の同定分析方法を実現することができる。
また、本発明の上記した微小有機物の採取方法及び同定分析方法によれば、微小有機物を赤外吸収スペクトル測定用試料台上に移し替えることなく、微小有機物採取用プローブに付着させた状態のまま、赤外吸収スペクトルを測定することが可能となる。
そのため、試料である微小有機物の採取から赤外吸収スペクトル測定による同定分析まで時間的な効率の良い分析方法となる。
また、本発明の上記した構成によれば、試料が移し替えることができなかったり、紛失してしまうなどの試料採取上の問題がなくなるため、希少な試料も確実に赤外吸収スペクトルを測定することができる、試料採取の効率の良い同定分析方法となる。
また、本発明の上記した構成によれば、発生した散乱光を多重散乱させ信号を増幅させることで、より良好なS/N比を持った赤外吸収スペクトルを得ることができる。その結果、確実な同定分析が可能となる。
以上のように試料採取の効率が良く、さらに時間的な効率も良い微小有機物の採取方法及び確実な同定分析方法を提供することができる。
According to the present invention, it is possible to realize a method for identifying and analyzing a minute organic substance that can reliably collect a minute organic substance of 10 μm or less and identify the minute organic substance.
Further, according to the above-described method for collecting a micro organic substance and the identification analysis method of the present invention, the micro organic substance remains attached to the probe for collecting the micro organic substance without being transferred onto the sample table for infrared absorption spectrum measurement. Infrared absorption spectrum can be measured.
For this reason, the analysis method is efficient in terms of time from collection of a minute organic material as a sample to identification analysis by infrared absorption spectrum measurement.
In addition, according to the above-described configuration of the present invention, since there is no problem in sample collection such that the sample cannot be transferred or lost, an infrared absorption spectrum is surely measured even for a rare sample. Therefore, it is an identification analysis method with good sampling efficiency.
Moreover, according to the above-described configuration of the present invention, an infrared absorption spectrum having a better S / N ratio can be obtained by multiplying the generated scattered light to amplify the signal. As a result, reliable identification analysis is possible.
As described above, it is possible to provide a method for collecting a micro organic substance and a reliable identification analysis method with good sample collection efficiency and time efficiency.

本発明を実施するための最良の形態を、以下の実施例により説明する。   The best mode for carrying out the present invention will be described by the following examples.

以下に、上記した本発明の構成を適用した実施例における微小有機物に近接場赤外光を照射し、該微小有機物の赤外吸収スペクトルを測定する微小有機物の同定分析方法について説明する。
[実施例1]
実施例1においては、本発明を適用した微小有機物の同定分析方法について説明する。
図1に、本実施例における微小有機物の同定分析方法を説明する図を示す。
図1において、1は照射赤外光、2は検出赤外光、3は近接場光発生用プローブ、4は近接場赤外光発生領域、5は微小有機物の採取用プローブ、6は微小有機物である。
Hereinafter, a method for identifying and analyzing a minute organic substance, in which the minute organic substance in the embodiment to which the configuration of the present invention is applied is irradiated with near-field infrared light and the infrared absorption spectrum of the minute organic substance is measured will be described.
[Example 1]
In Example 1, a method for identifying and analyzing minute organic substances to which the present invention is applied will be described.
FIG. 1 is a diagram illustrating a method for identifying and analyzing minute organic substances in the present embodiment.
In FIG. 1, reference numeral 1 is irradiation infrared light, 2 is detection infrared light, 3 is a probe for generating near-field light, 4 is a near-field infrared light generation region, 5 is a probe for collecting a minute organic substance, and 6 is a minute organic substance. It is.

本実施例において、微小有機物の赤外吸収スペクトルを測定するに際し、
まず、微小有機物の採取用プローブに付着させる過程において、微小有機物6の採取は、微小有機物の採取用プローブ5を取り付けたマニピュレータにより採取する。
微小有機物採取用プローブ5は、赤外光の反射率の高い材料である金を蒸着したものが用いられる。
但し、このように金蒸着により被覆されたものに限らず、金で形成されたものを用いるようにしてもよい。
ここで、赤外光の反射率の高い材料として、波長4μmでの反射率が98%以上である材料から選択することができる。
例えば、銀,金,アルミニウム,インジウム,鉛のいずれかを用いることができる。
In this example, when measuring the infrared absorption spectrum of the minute organic matter,
First, in the process of adhering to the probe for collecting the micro organic substance, the micro organic substance 6 is collected by a manipulator equipped with the probe 5 for collecting the micro organic substance.
As the micro organic matter collecting probe 5, a gold-deposited material, which is a material having high infrared light reflectivity, is used.
However, it is not limited to those coated by gold vapor deposition, and those formed of gold may be used.
Here, as a material having a high reflectance of infrared light, a material having a reflectance of 98% or more at a wavelength of 4 μm can be selected.
For example, any of silver, gold, aluminum, indium, and lead can be used.

次に、微小有機物の赤外吸収スペクトルを測定する過程において、前記微小有機物を、測定用基板に移し変えることなく、微小有機物の採取用プローブに付着させたままで、近接場赤外光を発生させる部位と、該微小有機物採取用プローブとの間に配置する。
具体的には、マニピュレータにより微小有機物6を採取した後、微小有機物の採取用プローブ5はマニピュレータから外し、近接場赤外分光装置の試料ステージに設置する。
この近接場赤外分光装置には、近接場光発生用プローブ3、赤外光1の焦点位置を近づけて設置するための補助手段となる実体顕微鏡および観察のためのカメラを備えられている。
その際、微小有機物の採取用プローブ5は、前記微小有機物を付着させる部分が光学的集光作用のある断面形状とするため、図2(a)に示すように凹面鏡形状とし、又は図2(b)に示すようにV字形状にすることができる。
これにより、散乱光を多重散乱させ、より良好なスペクトルを得ることができる。
Next, in the process of measuring the infrared absorption spectrum of the minute organic matter, the near-field infrared light is generated while the minute organic matter remains attached to the probe for collecting the minute organic matter without being transferred to the measurement substrate. It arrange | positions between a site | part and this micro organic substance collection | recovery probe.
Specifically, after collecting the micro organic matter 6 with the manipulator, the micro organic matter collecting probe 5 is removed from the manipulator and placed on the sample stage of the near-field infrared spectrometer.
This near-field infrared spectroscopic device includes a near-field light generating probe 3, a stereomicroscope serving as auxiliary means for setting the focal position of the infrared light 1 close to each other, and a camera for observation.
At that time, the probe 5 for collecting the minute organic matter has a concave mirror shape as shown in FIG. 2A because the portion to which the minute organic matter is attached has a cross-sectional shape having an optical condensing function, or FIG. It can be V-shaped as shown in b).
Thereby, scattered light can be scattered multiple times and a better spectrum can be obtained.

[実施例2]
実施例2においては、実施例1よりも、より一層赤外吸収光の検出効率が上がるようにした構成例について説明する。
図3に、微小有機物を、微小有機物の採取用プローブに付着させたままで、近接場赤外光を発生させる部位と、赤外光の反射率の高い材料である金で蒸着された基板との間に配置した構成例を説明する図を示す。
図3には図1の実施例1と同じ構成に同一の符号が付されているので、共通する部分の説明は省略する。
図3において、7は金で蒸着された基板である。
[Example 2]
In the second embodiment, a configuration example in which the detection efficiency of infrared absorption light is further increased as compared with the first embodiment will be described.
FIG. 3 shows a portion where a minute organic substance is attached to a probe for collecting the minute organic substance and generates a near-field infrared light and a substrate deposited with gold which is a material having a high reflectance of infrared light. The figure explaining the structural example arrange | positioned between is shown.
In FIG. 3, the same components as those in the first embodiment shown in FIG.
In FIG. 3, 7 is a substrate deposited by gold.

本実施例においては、試料である微小有機物を、上記した赤外光の反射率の高い材料の一つである金を蒸着したシリコン基板との間に配置して、赤外吸収光を測定するようにされている。
これによると、無蒸着のシリコン基板との間に配置して、赤外吸収光を測定する場合に比べ、赤外吸収光の検出効率を向上させることが可能となる。
なお、上記構成例では、基板を金蒸着により被覆するようにしたが、このような構成に限らず、金で形成されたものを用いるようにしてもよい。
その際、基板は微小有機物が配置される基板部分を、図3に示すように光学的集光作用のある断面形状のV字形状とすることができる。
このようにV字形状又は凹面鏡形状にすることで散乱光を多重散乱させ、より良好なスペクトルを得ることができる。
このようにして、φ10μm、厚さ5μmの柱状のポリメタクリル酸メチル(PMMA)樹脂を日本分光製近接場赤外分光装置NFIR−200によって赤外吸収スペクトルを計測した。
その結果、図6のようにS/Nの高いデータベースによる同定解析可能なスペクトルを得ることができた。
In the present embodiment, the minute organic matter as a sample is placed between the above-described silicon substrate on which gold, which is one of the highly reflective materials of infrared light, is deposited, and infrared absorption light is measured. Has been.
According to this, it becomes possible to improve the detection efficiency of infrared absorption light compared with the case where it arrange | positions between non-deposition silicon substrates and measures infrared absorption light.
In the above configuration example, the substrate is coated by gold vapor deposition. However, the configuration is not limited to this, and a substrate formed of gold may be used.
At that time, the substrate portion on which the minute organic substance is disposed can be formed into a V-shaped cross section having an optical condensing function as shown in FIG.
Thus, by making it V shape or a concave mirror shape, scattered light can be multiple-scattered and a better spectrum can be obtained.
In this way, an infrared absorption spectrum of a columnar polymethyl methacrylate (PMMA) resin having a diameter of 10 μm and a thickness of 5 μm was measured by a near-field infrared spectrometer NFIR-200 manufactured by JASCO Corporation.
As a result, a spectrum that can be identified and analyzed by a database having a high S / N as shown in FIG. 6 was obtained.

[実施例3]
実施例3においては、微小有機物の採取用プローブを、近接場赤外光を発生させるプローブで構成した構成例について説明する。
図4に、微小有機物の採取用プローブを、近接場赤外光を発生させるプローブで構成した構成例を説明する図を示す。
図4には図1の実施例1と同じ構成に同一の符号が付されているので、共通する部分の説明は省略する。
図4において、8は微小有機物の採取用プローブが近接場赤外光を発生させるプローブで構成された試料採取兼近接場光発生源用プローブである。
[Example 3]
In Example 3, a configuration example in which a probe for collecting a minute organic substance is configured with a probe that generates near-field infrared light will be described.
FIG. 4 is a diagram illustrating a configuration example in which a probe for collecting a minute organic substance is configured with a probe that generates near-field infrared light.
In FIG. 4, the same components as those of the first embodiment shown in FIG.
In FIG. 4, reference numeral 8 denotes a sample-collecting / near-field light source probe composed of a probe for collecting near-infrared light.

本実施例においては、前記微小有機物を、微小有機物の採取用プローブに付着させたままで、前記試料採取兼近接場光発生源用プローブと、赤外光の反射率の高い材料で形成され又は該赤外光の反射率の高い材料で被覆された基板と、の間に配置する。
ここで用いられるブローブは、先端径が2μm以下であることが望ましい。
このような構成により、赤外吸収スペクトルを測定することで、効率よく赤外吸収スペクトルを測定することが可能となる。
さらに、図5に示すように、微小有機物が配置される基板部分が光学的集光作用のある断面形状のV字形状とすることができる。
このようにV字形状又は凹面鏡形状にすることで散乱光を多重散乱させ、より良好なスペクトルを得ることができる。
In this embodiment, the micro organic substance is made to adhere to the probe for sampling the micro organic substance, and is formed of the sample-collecting / near-field light source probe and a material having a high reflectance of infrared light, or And a substrate coated with a material having a high reflectance of infrared light.
The probe used here preferably has a tip diameter of 2 μm or less.
With such a configuration, the infrared absorption spectrum can be efficiently measured by measuring the infrared absorption spectrum.
Furthermore, as shown in FIG. 5, the substrate portion on which the minute organic substance is arranged can be formed into a V-shaped cross section having an optical condensing function.
Thus, by making it V shape or a concave mirror shape, scattered light can be multiple-scattered and a better spectrum can be obtained.

(比較例)
φ10μm、厚さ5μmの柱状のポリメタクリル酸メチル(PMMA)樹脂を無蒸着のシリコン基板上に付着させ、実施例2と同様に日本分光製近接場赤外分光装置NFIR−200によって赤外吸収スペクトルを計測した。
その結果、図6と同じ吸光度範囲で示すと、図7のようにS/Nの高くないデータベースによる同定解析が困難なスペクトルしか得ることができなかった。
(Comparative example)
A columnar polymethyl methacrylate (PMMA) resin having a diameter of 10 μm and a thickness of 5 μm is deposited on a non-deposited silicon substrate, and an infrared absorption spectrum is obtained by a near-field infrared spectrometer NFIR-200 manufactured by JASCO Corporation as in Example 2. Was measured.
As a result, when the same absorbance range as that in FIG. 6 is shown, only a spectrum that is difficult to identify and analyze using a database having a low S / N as shown in FIG. 7 could be obtained.

本発明の実施例1における微小有機物の同定分析方法を説明する図。The figure explaining the identification analysis method of the micro organic substance in Example 1 of this invention. 本発明の実施例1における集光作用のあるプローブ形状を説明する図であり、(a)は凹面鏡形状を有するプローブ、(b)はV字形状を有するプローブを示す図。It is a figure explaining the probe shape with the condensing effect in Example 1 of this invention, (a) is a probe which has a concave mirror shape, (b) is a figure which shows the probe which has a V-shape. 本発明の実施例2における微小有機物を、微小有機物の採取用プローブに付着させたままで、近接場赤外光を発生させる部位と、赤外光の反射率の高い材料である金で蒸着された基板との間に配置した構成例を説明する図。The minute organic material in Example 2 of the present invention was deposited on a portion that generates near-field infrared light while being attached to a probe for collecting the minute organic material, and gold, which is a material having high infrared light reflectivity. The figure explaining the structural example arrange | positioned between board | substrates. 本発明の実施例3における微小有機物の採取用プローブを、近接場赤外光を発生させるプローブで構成した構成例を説明する図。The figure explaining the structural example which comprised the probe for extraction | collection of the minute organic substance in Example 3 of this invention with the probe which generate | occur | produces a near-field infrared light. 本発明の実施例3における集光作用のあるV字形状とした基板形状を説明する図。The figure explaining the board | substrate shape made into the V shape with the condensing effect | action in Example 3 of this invention. 本発明の実施例における赤外線反射率の高い測定基板を用いて測定した赤外吸収スペクトルを示す図。The figure which shows the infrared absorption spectrum measured using the measurement board | substrate with a high infrared reflectance in the Example of this invention. 従来の方法により測定した赤外吸収スペクトルを示す図。The figure which shows the infrared absorption spectrum measured by the conventional method.

符号の説明Explanation of symbols

1:照射赤外光
2:検出赤外光
3:近接場光発生用プローブ
4:近接場赤外光発生領域
5:微小有機物の採取用プローブ
6:微小有機物
7:基板
8:試料採取兼近接場光発生源用プローブ
1: Irradiation infrared light 2: Detection infrared light 3: Probe for generating near-field light 4: Near-field infrared light generation region 5: Probe for collecting minute organic matter 6: Minute organic matter 7: Substrate 8: Sample collection and proximity Field light source probe

Claims (12)

微小有機物に近接場赤外光を照射し、該微小有機物の赤外吸収スペクトルを測定する微小有機物の同定分析方法において、
前記微小有機物を、赤外光の反射率の高い材料で形成され又は該反射率の高い材料で被覆された、該微小有機物の採取用プローブに付着させる過程と、
前記微小有機物を、測定用基板に移し変えることなく、微小有機物の採取用プローブに付着させたままで、該微小有機物の赤外吸収スペクトルを測定する過程と、
を含むことを特徴とする微小有機物の同定分析方法。
In a method for identifying and analyzing a minute organic substance, the near-field infrared light is irradiated to the minute organic substance and the infrared absorption spectrum of the minute organic substance is measured.
Attaching the micro organic material to a probe for collecting the micro organic material, which is formed of a material having a high reflectance of infrared light or coated with the material having a high reflectance;
The process of measuring the infrared absorption spectrum of the micro organic material while it is attached to the probe for collecting the micro organic material without transferring the micro organic material to the measurement substrate;
A method for identifying and analyzing minute organic substances, comprising:
前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、近接場赤外光を発生させる部位と、該微小有機物採取用プローブとの間に配置し、
赤外吸収スペクトルを測定することを特徴とする請求項1に記載の微小有機物の同定分析方法。
In the process of measuring the infrared absorption spectrum of the minute organic matter,
The micro organic matter is disposed between a site that generates near-field infrared light and the micro organic matter collecting probe,
An infrared absorption spectrum is measured, The identification analysis method of the micro organic substance of Claim 1 characterized by the above-mentioned.
前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、微小有機物の採取用プローブに付着させたままで、近接場赤外光を発生させる部位と、赤外光の反射率の高い材料で形成され又は該赤外光の反射率の高い材料で被覆された基板との間に配置し、
赤外吸収スペクトルを測定することを特徴とする請求項1に記載の微小有機物の同定分析方法。
In the process of measuring the infrared absorption spectrum of the minute organic matter,
The minute organic substance is made to adhere to a probe for collecting the minute organic substance, and is formed of a portion that generates near-field infrared light and a material having high infrared light reflectance, or has high reflectance of the infrared light. Between the substrate coated with the material,
An infrared absorption spectrum is measured, The identification analysis method of the micro organic substance of Claim 1 characterized by the above-mentioned.
前記微小有機物の採取用プローブは、前記微小有機物を付着させる部分が光学的集光作用のある断面形状を有することを特徴とする請求項1から3のいずれか1項に記載の微小有機物の同定分析方法。   4. The identification of a micro organic substance according to claim 1, wherein the part for attaching the micro organic substance has a cross-sectional shape having an optical condensing function. 5. Analysis method. 前記微小有機物を付着させる部分の断面形状が、V字形状又は凹面鏡形状を有することを特徴とする請求項4に記載の微小有機物の同定分析方法。   The method for identifying and analyzing a minute organic substance according to claim 4, wherein a cross-sectional shape of a portion to which the minute organic substance is attached has a V shape or a concave mirror shape. 前記微小有機物の採取用プローブが、該プローブから近接場赤外光を発生させるプローブであることを特徴とする請求項1に記載の微小有機物の同定分析方法。   The method for identifying and analyzing a minute organic substance according to claim 1, wherein the probe for collecting the minute organic substance is a probe that generates near-field infrared light from the probe. 前記プローブから近接場赤外光を発生させるプローブは、該プローブの先端径が2μm以下であることを特徴とする請求項6に記載の微小有機物の同定分析方法。   The method for identifying and analyzing a minute organic substance according to claim 6, wherein the probe that generates near-field infrared light from the probe has a tip diameter of 2 µm or less. 前記微小有機物の赤外吸収スペクトルを測定する過程において、
前記微小有機物を、微小有機物の採取用プローブに付着させたままで、前記プローブと、赤外光の反射率の高い材料で形成され又は該赤外光の反射率の高い材料で被覆された基板と、の間に配置し、
赤外吸収スペクトルを測定することを特徴とする請求項6または請求項7に記載の微小有機物の同定分析方法。
In the process of measuring the infrared absorption spectrum of the minute organic matter,
The probe and the substrate formed of a material having a high reflectivity for infrared light or coated with a material having a high reflectivity for infrared light while the micro organic material is attached to a probe for collecting the micro organic matter. Between, and
An infrared absorption spectrum is measured, The identification analysis method of the micro organic substance of Claim 6 or Claim 7 characterized by the above-mentioned.
前記基板は、前記微小有機物が配置される基板部分が光学的集光作用のある断面形状を有することを特徴とする請求項3または請求項8に記載の微小有機物の同定分析方法。   9. The method for identifying and analyzing micro organic matter according to claim 3, wherein the substrate has a cross-sectional shape in which the micro organic matter is disposed on an optical condensing function. 前記基板部分の断面形状が、V字形状又は凹面鏡形状を有することを特徴とする請求項9に記載の微小有機物の同定分析方法。   The method for identifying and analyzing micro organic matter according to claim 9, wherein the cross-sectional shape of the substrate portion has a V-shape or a concave mirror shape. 前記赤外光の反射率の高い材料として、波長4μmでの反射率が98%以上である材料を用いることを特徴とする請求項1から10のいずれか1項に記載の微小有機物の同定分析方法。   11. The identification analysis of micro organic matter according to claim 1, wherein a material having a reflectance of 98% or more at a wavelength of 4 μm is used as the material having a high reflectance of infrared light. Method. 前記波長4μmでの反射率が98%以上である材料として、銀,金,アルミニウム,インジウム,鉛のいずれかを用いることを特徴とする請求項11に記載の微小有機物の同定分析方法。   12. The method for identifying and analyzing minute organic substances according to claim 11, wherein any one of silver, gold, aluminum, indium and lead is used as the material having a reflectance of 98% or more at a wavelength of 4 [mu] m.
JP2007154685A 2007-06-12 2007-06-12 Identification and analyzing method of fine organic matter Pending JP2008309495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154685A JP2008309495A (en) 2007-06-12 2007-06-12 Identification and analyzing method of fine organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007154685A JP2008309495A (en) 2007-06-12 2007-06-12 Identification and analyzing method of fine organic matter

Publications (1)

Publication Number Publication Date
JP2008309495A true JP2008309495A (en) 2008-12-25

Family

ID=40237245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154685A Pending JP2008309495A (en) 2007-06-12 2007-06-12 Identification and analyzing method of fine organic matter

Country Status (1)

Country Link
JP (1) JP2008309495A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176705A1 (en) * 2018-03-16 2019-09-19 学校法人慶應義塾 Infrared analysis apparatus, infrared analysis chip, and infrared imaging device
JP2023027924A (en) * 2021-08-18 2023-03-03 株式会社ユニケミー Microsample retainer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176705A1 (en) * 2018-03-16 2019-09-19 学校法人慶應義塾 Infrared analysis apparatus, infrared analysis chip, and infrared imaging device
JPWO2019176705A1 (en) * 2018-03-16 2021-12-02 学校法人慶應義塾 Infrared analyzers, infrared analysis chips, and infrared imaging devices
US11656173B2 (en) 2018-03-16 2023-05-23 Keio University Infrared analysis system, infrared analysis chip, and infrared imaging device
JP7450930B2 (en) 2018-03-16 2024-03-18 慶應義塾 Infrared analyzer and infrared imaging device
JP2023027924A (en) * 2021-08-18 2023-03-03 株式会社ユニケミー Microsample retainer
JP7248334B2 (en) 2021-08-18 2023-03-29 株式会社ユニケミー Micro sample holder

Similar Documents

Publication Publication Date Title
JP4909273B2 (en) Method and apparatus for enhanced nanospectral scanning
US20140218727A1 (en) Apparatus for use in a sensing application having a destructible cover
JP4520493B2 (en) Manufacturing method of optical fiber probe
US20130040862A1 (en) Multi-pillar structure for molecular analysis
JP2010230687A (en) Method and apparatus for enhanced nano-spectroscopic scanning
CN1930475A (en) Method to detect molecular binding by surface-enhanced Raman spectroscopy
WO2002068919A1 (en) Apertureless near-field scanning raman microscopy using reflection scattering geometry
US9310306B2 (en) Apparatus for use in sensing applications
US20120105841A1 (en) Apparatus for performing sers
Kossakovski et al. Topographical and chemical microanalysis of surfaces with a scanning probe microscope and laser-induced breakdown spectroscopy
US8223330B2 (en) Nanostructures and lithographic method for producing highly sensitive substrates for surface-enhanced spectroscopy
WO2003027619A2 (en) Devices and methods for verifying measurement of analytes by raman spectroscopy and surface plasmon resonance
JP2008309495A (en) Identification and analyzing method of fine organic matter
JP2015026022A (en) Substrate for observing raman scattering light
JP4388625B2 (en) Near-field optical probe
JPH1144616A (en) Sampling method, optical analysis method thereof and sampling tool used to these methods
JP2002243594A (en) Sampling jig and infrared spectrometric method using it
WO2010147296A1 (en) Afm measuring method and system thereof
CN1475786A (en) Manufacturing method of electronic microscope fixed point test piece
JP2006308490A (en) Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis
JP2005164292A (en) Probe for near field light scattering, and near field optical microscope using same
JP4113482B2 (en) Confocal Raman spectroscopy
JP2008233109A (en) Near-field optical probe
JP4527614B2 (en) Aperture manufacturing apparatus and aperture manufacturing method
Pisco et al. Reproducible SERS substrates on optical fiber tips by nanosphere lithography