JP2006308490A - Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis - Google Patents

Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis Download PDF

Info

Publication number
JP2006308490A
JP2006308490A JP2005133263A JP2005133263A JP2006308490A JP 2006308490 A JP2006308490 A JP 2006308490A JP 2005133263 A JP2005133263 A JP 2005133263A JP 2005133263 A JP2005133263 A JP 2005133263A JP 2006308490 A JP2006308490 A JP 2006308490A
Authority
JP
Japan
Prior art keywords
sample
infrared
micro
measurement
sample stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005133263A
Other languages
Japanese (ja)
Inventor
Yumi Mochizuki
由美 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005133263A priority Critical patent/JP2006308490A/en
Publication of JP2006308490A publication Critical patent/JP2006308490A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sample base for an infrared microspectrometry, which prevents a sample from missing and a contaminant from getting mixed, and can readily work a minute-sized or a minute amount of sample into a sample configuration that is suitable for an infrared spectrometry, without the need for a skilled operator. <P>SOLUTION: In the sample base used for the infrared microspectrometry, a plurality of recessed sections 4 are formed on a plate-like matter 1; and in the recessed sections 4, the area of an aperture section 4a is made larger than that of the bottom surface 4b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、赤外分光分析における顕微赤外分光測定用試料台及びこの試料台を使用して顕微赤外分光分析用検体(試料)を作成する顕微赤外分光分析用試料作製方法に関するものである。   The present invention relates to a sample base for microinfrared spectroscopic measurement in infrared spectroscopic analysis and a sample preparation method for microinfrared spectroscopic analysis that uses this sample base to prepare a specimen (sample) for microinfrared spectroscopic analysis. is there.

従来、微小・微量物質(主に有機物)の組成分析方法として、試料を溶媒抽出法等によって濃縮してミクロ錠剤(臭化カリウムの粉末と混合し、円盤状に加圧成型したもの)を作製した上で、これに対して赤外分光測定を行う方法や、微小試料を採取して赤外透過材料または反射材料に載せて加圧し、顕微赤外分光測定を行う方法が知られている。また、試料作製方法として、試料を赤外透過材料で挟み、加圧することによって薄膜試料を作製する方法が知られている。
素子開発の効率を加速させるために、材料の評価・解析は重要である。製品の不良解析を迅速に行い、製品の完成度を高めることが、近年、とくに要求されている。
これらの要求に対し、IR(赤外線)を利用した機器による組成分析は重要であり、とくに有機分析、例えば、レーザプリンタ、複写機などの電子写真製品では微小・微量異物の組成分析、光ディスク製品では有機薄膜の組成分析の試料前処理技術の向上が要求されている。
従来の赤外分光分析装置で測定を行う方法において、試料は赤外光が透過する範囲で均一かつ適当な濃度である必要がある。例えば膜状の試料では、好適な試料の膜厚が透過測定法で10μm以下、反射測定法で5μmである(材料組成によって好適な膜厚は異なっている)。
数十μm以下の微小物質の組成分析を行う場合、前述の条件を満たす試料を作製するには、赤外透過材料または赤外反射材料で挟んで加圧する方法や溶媒に溶かして薄膜化し、顕微赤外分光測定を行う方法が用いられている。
微量物質の場合には溶媒で濃縮した試料を臭化カリウムや塩化ナトリウム等の赤外透過材料の粉末と混合し、直径1〜3mm程度の円盤状に加圧成型する方法(ミクロKBr錠剤法)、試料が濃縮された溶媒を赤外測定用の板に滴下しかつ溶媒が蒸発した後測定する方法、または赤外透過材料の粉末を測定対象物にまぶして回収し、乳鉢で混合した後円盤状に加圧成型する方法(ジョンソン法)が用いられている。
特開2001−74620公報 特開平5−149839号公報
Conventionally, as a method for analyzing the composition of minute and trace substances (mainly organic substances), samples are concentrated by solvent extraction or the like to produce micro tablets (mixed with potassium bromide powder and pressed into a disk shape). In addition, there are known methods for performing infrared spectroscopic measurement on this, and methods for performing microinfrared spectroscopic measurement by collecting a minute sample, placing the sample on an infrared transmitting material or reflecting material, and applying pressure. As a sample preparation method, a method of preparing a thin film sample by sandwiching a sample with an infrared transmitting material and applying pressure is known.
In order to accelerate the efficiency of device development, material evaluation and analysis are important. In recent years, it has been particularly demanded to quickly analyze the defect of a product and improve the completeness of the product.
In response to these demands, composition analysis using IR (infrared) equipment is important, especially organic analysis, for example, composition analysis of micro and trace contaminants in electrophotographic products such as laser printers and copiers, and in optical disc products. There is a demand for improved sample pretreatment techniques for composition analysis of organic thin films.
In a conventional method of measuring with an infrared spectroscopic analyzer, the sample needs to have a uniform and appropriate concentration within a range where infrared light is transmitted. For example, in the case of a film-like sample, the film thickness of a suitable sample is 10 μm or less by the transmission measurement method and 5 μm by the reflection measurement method (the suitable film thickness varies depending on the material composition).
When performing composition analysis of small substances of several tens of μm or less, in order to produce a sample that satisfies the above-mentioned conditions, a method of sandwiching between infrared transmitting material or infrared reflecting material and pressurizing or dissolving in a solvent to form a thin film A method of performing infrared spectroscopy is used.
In the case of trace substances, a sample concentrated with a solvent is mixed with a powder of an infrared transmitting material such as potassium bromide or sodium chloride, and pressed into a disk shape with a diameter of about 1 to 3 mm (micro KBr tablet method). A method in which a sample-concentrated solvent is dropped on a plate for infrared measurement and the solvent is evaporated, or measurement is performed after the solvent evaporates, or a powder of an infrared transmitting material is applied to the object to be collected, and then mixed in a mortar. A method (Johnson method) of pressure-molding into a shape is used.
JP 2001-74620 A Japanese Patent Laid-Open No. 5-149839

しかしながら、加圧して薄膜化する方法やミクロKBr錠剤法はオペレータの熟練が必要であり、また、試料が微小・微量であるため、試料の紛失や汚染物質の混入等の失敗は許されない。
微小試料を溶媒に溶かす場合に試験管で作業すると試料回収のロスが発生する。赤外測定用の平面板で作業すると試料が流れてしまったりするか、または適当な膜厚を有する均一な膜にならないことが多い。
そこで、本発明の目的は、上述した実情を考慮して、オペレータの熟練を必要とせず、試料の紛失や汚染物質の混入を防ぎ、微小・微量試料を赤外分光測定に好適な試料形態に簡便に加工できる顕微赤外分光測定用試料台を提供することにある。
However, the method of pressurizing into a thin film and the micro KBr tablet method require the skill of an operator, and since the sample is minute and minute, failures such as loss of the sample and contamination of contaminants are not allowed.
If a minute sample is dissolved in a solvent, loss of sample recovery occurs when working with a test tube. When working with a flat plate for infrared measurement, the sample often flows or does not become a uniform film having an appropriate film thickness.
In view of the above circumstances, the object of the present invention is to eliminate the need for operator skill, prevent loss of samples and contamination of contaminants, and make micro- and micro-samples suitable for infrared spectroscopic measurement. An object of the present invention is to provide a micro-infrared spectroscopic measurement sample stage that can be easily processed.

上記の課題を解決するために、請求項1に記載の発明は、顕微赤外分光測定に使用する顕微赤外分光測定用試料台であって、板状物質と、該板状物質の面に形成した多数の凹み形状部分と、を有し、各凹み形状部分の開口部の面積を、各凹み形状部分の底面の面積よりも大きく設定したことを特徴とする。
また、請求項2に記載の発明は、前記板状物質は面方位<100>のシリコン基板である請求項1記載の顕微赤外分光測定用試料台を特徴とする。
また、請求項3に記載の発明は、請求項1及び2記載の顕微赤外分光測定用試料台を用いて微小・微量試料を薄膜化・濃縮化させる顕微赤外分光分析用試料作製方法を特徴とする。
In order to solve the above-mentioned problem, the invention described in claim 1 is a micro-infrared spectroscopic sample stage used for micro-infrared spectroscopic measurement, comprising a plate-like substance and a surface of the plate-like substance. And the area of the opening of each recess-shaped portion is set larger than the area of the bottom surface of each recess-shaped portion.
The invention described in claim 2 is characterized in that the plate-like substance is a silicon substrate having a plane orientation <100>, and the sample stage for micro infrared spectroscopy according to claim 1 is characterized.
According to a third aspect of the present invention, there is provided a sample preparation method for microinfrared spectroscopic analysis in which a micro / micro sample is thinned and concentrated using the micro-infrared spectroscopic measurement sample stage according to claims 1 and 2. Features.

本発明によれば、顕微赤外測定用試料台において、試料台の凹み形状部分は底面の面積より開口部の面積の方が大きいので、微小・微量物質を効率よく顕微赤外分光測定に適した形状に加工することができる。   According to the present invention, in the microscopic infrared measurement sample stage, the concave portion of the sample stage has a larger area of the opening than the area of the bottom surface. Can be processed into different shapes.

以下、図面を参照して、本発明の実施の形態を詳細に説明する。図1は本発明による顕微赤外分光測定用試料台を作成するための開口パターンを平面及び断面で示す概略図である。図2は図1の開口パターンをウェットエッチングにて除去することにより得られた凹み形状部分を有する試料台の1部分を示す概略断面図である。
図1及び図2において、顕微赤外分光測定用試料台A(以下の説明では試料台A)上には、面方位<100>シリコン基板1の両面(図では上面のみを示している)にLPCVD法によってSiN膜2を形成する。その後、フォトリソ技術及びSiN膜2のドライエッチングによって、多数のマスク開口部3を有する開口パターンを形成する。
SiN膜2にマスク開口部3を備えたシリコン基板1をエッチング液中に所定時間浸漬することにより異方性エッチングを行うことにより、シリコン基板1面には凹み形状部分4が形成される。
実施例1において詳述するが、凹み形状部分4を形成した後に図1のSiN膜2をウェットエッチングにて除去する。凹み形状部分4の開口部4aは2.7mm四方の正方形で、底面4bは100μm四方の正方形、そして開口部4aから底面4bまでの深さが1.836mmであり、これにより図2に示す凹み形状部分4を有する試料台Aが得られる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an opening pattern for creating a sample base for microinfrared spectroscopy measurement according to the present invention in a plane and a cross section. FIG. 2 is a schematic cross-sectional view showing a portion of a sample stage having a recessed portion obtained by removing the opening pattern of FIG. 1 by wet etching.
1 and 2, the surface orientation <100> on both surfaces of the silicon substrate 1 (only the upper surface is shown in the figure) on the sample base A for microinfrared spectroscopy measurement (sample base A in the following description). A SiN film 2 is formed by LPCVD. Thereafter, an opening pattern having a large number of mask openings 3 is formed by photolithography and dry etching of the SiN film 2.
By performing anisotropic etching by immersing the silicon substrate 1 having the mask opening 3 in the SiN film 2 in an etching solution for a predetermined time, a recessed portion 4 is formed on the surface of the silicon substrate 1.
As will be described in detail in the first embodiment, the SiN film 2 shown in FIG. 1 is removed by wet etching after the recess-shaped portion 4 is formed. The opening 4a of the recessed portion 4 has a square of 2.7 mm square, the bottom surface 4b has a square of 100 μm square, and the depth from the opening 4a to the bottom surface 4b is 1.836 mm. A sample stage A having a shape portion 4 is obtained.

図3はSiN膜のウェットエッチングを説明する第1の図である。図4はSiN膜のウェットエッチングを説明する第2の図である。図5はSiN膜のウェットエッチングを説明する第3の図である。
図3乃至図5に示すように、面方位<100>シリコン基板1の両面(図では上面のみを示している)にLPCVD法によってSiN膜2を形成する。このSiN膜2には多数のマスク開口部3を有する開口パターンを形成する。
その後、濃度25wt%、温度80°のKOH水溶液にて異方性エッチングして、所定時間経過後エッチング液からシリコン基板1を引き上げて異方性エッチングを終了する。SiN膜2をウェットエッチングにて除去することによって図2の凹み形状部分4である開口部4aが形成される。
図5に示すように、マスク開口部3が広い場合、エッチングはまだ進行中であり、マスク開口部3が狭い場合、図に示す以上はエッチングされない。この場合、シリコン基板1の<111>面のエッチングレートが極端に遅いので、<100>と<111>面のなす54.7の角度でエッチングされていく。
試料台Aの凹み形状部分4は底面4bの面積より開口部4aの面積の方が大きく加工されていることにより、溶媒に溶かした試料を凹み形状部分4内に充填することにより効率よく濃縮しかつ薄膜化することができる。円錐や四角錐のような底面のない形状は試料を効率よく濃縮することができる。
しかしながら、顕微赤外分光測定領域(10〜300μm四方)で平面とならないため、顕微赤外分光測定に適していない。開口部4及び截頭形状の底面4bの形状は、円形、正方形、三角形、長方形などとくに限定されない。
FIG. 3 is a first diagram illustrating wet etching of the SiN film. FIG. 4 is a second diagram illustrating wet etching of the SiN film. FIG. 5 is a third diagram illustrating wet etching of the SiN film.
As shown in FIGS. 3 to 5, the SiN film 2 is formed by LPCVD on both surfaces (only the upper surface is shown in the figure) of the plane orientation <100> silicon substrate 1. An opening pattern having a large number of mask openings 3 is formed in the SiN film 2.
Thereafter, anisotropic etching is performed with a KOH aqueous solution having a concentration of 25 wt% and a temperature of 80 °, and after a predetermined time has elapsed, the silicon substrate 1 is pulled up from the etchant to complete the anisotropic etching. By removing the SiN film 2 by wet etching, an opening 4a which is the recessed portion 4 in FIG. 2 is formed.
As shown in FIG. 5, when the mask opening 3 is wide, etching is still in progress, and when the mask opening 3 is narrow, etching is not performed beyond that shown in the figure. In this case, since the etching rate of the <111> plane of the silicon substrate 1 is extremely low, the etching is performed at an angle of 54.7 formed by the <100> and <111> planes.
Since the recessed portion 4 of the sample stage A is processed so that the area of the opening 4a is larger than the area of the bottom surface 4b, it is efficiently concentrated by filling the recessed portion 4 with a sample dissolved in a solvent. And it can be thinned. A shape without a bottom such as a cone or a quadrangular pyramid can concentrate the sample efficiently.
However, since it does not become flat in the microinfrared spectroscopy measurement region (10 to 300 μm square), it is not suitable for microinfrared spectroscopy measurement. The shape of the opening 4 and the truncated bottom surface 4b is not particularly limited, such as a circle, a square, a triangle, or a rectangle.

本発明で使用できる板状物質(面方位<100>シリコン基板1)1は、赤外透過材料、赤外反射材料(赤外反射材料をコーティングした材料も含まれる)等である。板状物質1が赤外透過材料や赤外反射材料であることにより試料処理を行ったままの状態で赤外分光測定を行うことができ、試料の紛失や汚染物質の混入を防ぐことができる。
赤外透過材料の場合は中赤外領域(主に4000〜400cm-1)の一部を透過していていればよい。具体的には、臭化カリウム、塩化ナトリウム、フッ化カルシウム、サファイア、ゲルマニウム(Ge)、セレン化亜鉛、シリコン、ダイヤモンド、二酸化珪素(ガラス、石英)等である。
赤外反射材料としては、金、銀、アルミニウム、ステンレス、またはこれらの金属をコーティングした材料が赤外光の反射率が高く測定信号を効率よく検出できるので好ましい。
これらの赤外透過または赤外反射材料の中で、とくに面方位<100>のシリコン基板が低コストであり、公知のエッチング法を用いて精度良く加工できるので好ましい。
The plate-like substance (plane orientation <100> silicon substrate 1) 1 that can be used in the present invention is an infrared transmitting material, an infrared reflecting material (including a material coated with an infrared reflecting material), or the like. Since the plate-like substance 1 is an infrared transmitting material or an infrared reflecting material, infrared spectroscopic measurement can be performed while the sample is being processed, and loss of the sample or contamination can be prevented. .
In the case of an infrared transmitting material, it is only necessary to transmit a part of the mid-infrared region (mainly 4000 to 400 cm −1 ). Specifically, potassium bromide, sodium chloride, calcium fluoride, sapphire, germanium (Ge), zinc selenide, silicon, diamond, silicon dioxide (glass, quartz) and the like.
As the infrared reflecting material, gold, silver, aluminum, stainless steel, or a material coated with these metals is preferable because it has a high reflectance of infrared light and can detect a measurement signal efficiently.
Among these infrared transmitting or infrared reflecting materials, a silicon substrate having a surface orientation <100> is particularly preferable because it is inexpensive and can be processed with high accuracy using a known etching method.

<実施例1>
長さ2.54cm、幅7.62cm、厚さ2mmの面方位<100>シリコン基板1を用いて、まず、シリコン基板1にLPCVD法にてSiN膜2を両面に形成した。
その後、図3乃至図5に示すように、フォトリソ技術及びSiN膜2のドライエッチングによって、図1の開口パターンを形成した。さらに、その後、濃度25wt%、温度80°のKOH水溶液にて異方性エッチングを行った。
異方性エッチングが進行するにつれ、シリコン基板1は基板面と54.7°をなすエッチングレートの極端に遅い<111>面に沿って開口形成されてゆき、6時間18分後にエッチング液からシリコン基板1を引き上げて異方性エッチングを終了し、SiN膜2をウェットエッチングにて除去することにより凹み形状部分4が得られた。
この凹み形状部分4の開口部4aは平面形状が2.7mm四方の正方形であり、底面4bが100μm四方の正方形、そして開口部4aから底面4bまでの深さが1.836mmである。これによって、図2に示す凹み形状部分を有する試料台Aが得られた。
上述したように、この試料台(顕微赤外測定用試料台)Aにおいては、板状物質として面方位<100>シリコン基板1を使用している。したがって、微小・微量物質の顕微赤外分光測定に好適な試料台Aを低コストで精度良く作製することができる。
<測定例1>
上記実施例1で作製した試料台Aの凹み形状部分4に直径30μmのポリスチレンの粒を入れ、クロロホルム4μlをガラス毛細管で凹み形状部分4に滴下し、ポリスチレンを溶解した。クロロホルムが蒸発した後、試料台Aを顕微赤外分光分析装置(図示せず)のステージ(図示せず)にセットし、顕微透過法にて測定したところ、良好なIRスペクトルが得られた。
<Example 1>
Using a silicon substrate 1 having a surface orientation <100> having a length of 2.54 cm, a width of 7.62 cm, and a thickness of 2 mm, first, SiN films 2 were formed on both sides of the silicon substrate 1 by LPCVD.
Thereafter, as shown in FIGS. 3 to 5, the opening pattern of FIG. 1 was formed by photolithography and dry etching of the SiN film 2. Further, anisotropic etching was then performed using a KOH aqueous solution having a concentration of 25 wt% and a temperature of 80 °.
As the anisotropic etching progresses, the silicon substrate 1 is formed with an opening along the <111> plane having an extremely slow etching rate of 54.7 ° with the substrate surface. The substrate 1 was pulled up to finish the anisotropic etching, and the SiN film 2 was removed by wet etching, whereby a recessed portion 4 was obtained.
The opening 4a of the recessed portion 4 has a square shape with a plane shape of 2.7 mm square, a bottom surface 4b with a square of 100 μm square, and a depth from the opening 4a to the bottom surface 4b of 1.836 mm. As a result, a sample stage A having a recessed portion shown in FIG. 2 was obtained.
As described above, in this sample stage (microscopic infrared measurement sample stage) A, the plane orientation <100> silicon substrate 1 is used as the plate-like substance. Therefore, the sample stage A suitable for micro-infrared spectroscopic measurement of minute and trace substances can be accurately manufactured at low cost.
<Measurement Example 1>
Polystyrene particles having a diameter of 30 μm were put into the recessed portion 4 of the sample stage A prepared in Example 1, and 4 μl of chloroform was dropped into the recessed portion 4 with a glass capillary to dissolve the polystyrene. After the chloroform was evaporated, the sample stage A was set on a stage (not shown) of a microscopic infrared spectroscopic analyzer (not shown) and measured by a microscopic transmission method. As a result, a good IR spectrum was obtained.

<実施例2>
実施例2では、実施例1で作製した試料台表面にイオンスパッタを用いて膜厚300nmの金をコーティングした。
<測定例2>
実施例2で作製した試料台Aの凹み形状部分4に20μm程度の大きさのポリカーボネートの粒を入れ、テトラヒドロフラン4μlをガラス毛細管で凹み形状部分4に滴下し、ポリカーボネートを溶解した。テトラヒドロフランが蒸発した後、試料台Aを図示してない顕微赤外分光分析装置のステージにセットし、顕微反射法にて測定したところ、良好なIRスペクトルが得られた。
図6は比較例として作成した四角錐状の凹み形部分の試料台を示す概略図である。ここでは、比較例として、異方性エッチング時間を18時間に変えた他は実施例1と同様に試料台Aを作製した。これによって、凹み形状部分4の開口部4aが2.7mm四方の正方形、開口部4aから深さが1.907mmの図6に示す四角錐状の凹み形状部分4を有する試料台Aが得られた。
<比較測定例1>
比較例1で作製した試料台Aの凹み形状部分4に直径30μmのポリスチレンの粒を入れ、クロロホルム4μlをガラス毛細管で凹み形状部分4に滴下し、ポリスチレンを溶解した。クロロホルムが蒸発した後、試料台Aを図示してない顕微赤外分光分析装置のステージにセットし、顕微透過法にて測定したところ、IRスペクトルを得ることはできなかった。
本発明によれば、顕微赤外分光測定用試料作製方法において、微小・微量物質を効率よく顕微赤外分光測定に適した形状に加工し、試料紛失や汚染物質の混入を防ぐ試料作製が可能となる。
<Example 2>
In Example 2, gold having a film thickness of 300 nm was coated on the surface of the sample table prepared in Example 1 by ion sputtering.
<Measurement Example 2>
Polycarbonate particles having a size of about 20 μm were put into the recessed portion 4 of the sample stage A produced in Example 2, and 4 μl of tetrahydrofuran was dropped into the recessed portion 4 with a glass capillary to dissolve the polycarbonate. After tetrahydrofuran was evaporated, the sample stage A was set on a stage of a micro infrared spectroscopic analyzer (not shown) and measured by a micro reflection method, and a good IR spectrum was obtained.
FIG. 6 is a schematic view showing a sample base of a concave portion of a quadrangular pyramid shape created as a comparative example. Here, as a comparative example, a sample stage A was prepared in the same manner as in Example 1 except that the anisotropic etching time was changed to 18 hours. As a result, the sample stage A having the square pyramid-shaped concave portion 4 shown in FIG. 6 in which the opening 4a of the concave-shaped portion 4 is a square of 2.7 mm square and the depth from the opening 4a is 1.907 mm is obtained. It was.
<Comparative measurement example 1>
Polystyrene particles having a diameter of 30 μm were placed in the recessed portion 4 of the sample stage A prepared in Comparative Example 1, and 4 μl of chloroform was dropped into the recessed portion 4 with a glass capillary to dissolve the polystyrene. After the chloroform was evaporated, the sample stage A was set on a stage of a microinfrared spectroscopic analyzer (not shown) and measured by a microscopic transmission method. As a result, an IR spectrum could not be obtained.
According to the present invention, in a sample preparation method for microinfrared spectroscopy measurement, it is possible to efficiently prepare minute and trace substances into a shape suitable for microinfrared spectroscopy measurement, thereby preventing sample loss and contamination. It becomes.

本発明による顕微赤外分光測定用試料台を作成するための開口パターンを平面及び断面で示す概略図である。It is the schematic which shows the opening pattern for creating the sample stand for micro infrared spectroscopy measurement by this invention in a plane and a cross section. 図1の開口パターンをウェットエッチングにて除去することにより得られた凹み形状部分を有する試料台の1部分を示す概略断面図である。It is a schematic sectional drawing which shows 1 part of the sample stand which has the recessed shape part obtained by removing the opening pattern of FIG. 1 by wet etching. SiN膜のウェットエッチングを説明する第1の図である。It is the 1st figure explaining wet etching of a SiN film. SiN膜のウェットエッチングを説明する第2の図である。It is the 2nd figure explaining wet etching of a SiN film. SiN膜のウェットエッチングを説明する第3の図である。It is a 3rd figure explaining the wet etching of a SiN film | membrane. 比較例として作成した四角錐状の凹み形の試料台を示す概略図である。It is the schematic which shows the square pyramid-shaped dent-shaped sample stand produced as a comparative example.

符号の説明Explanation of symbols

1 板状物質(シリコン基板)、2 SiN膜、3 マスク開口部、4 凹み形状部分、4a 凹み形状部分の開口部、4b 凹み形状部分の底面   DESCRIPTION OF SYMBOLS 1 Plate-like substance (silicon substrate), 2 SiN film, 3 mask opening part, 4 dent shape part, 4a dent shape part opening part, 4b bottom surface of dent shape part

Claims (3)

顕微赤外分光測定に使用する顕微赤外分光測定用試料台であって、板状物質と、該板状物質の面に形成した多数の凹み形状部分と、を有し、各凹み形状部分の開口部の面積を、各凹み形状部分の底面の面積よりも大きく設定したことを特徴とする顕微赤外分光測定用試料台。   A micro-infrared spectroscopic sample stage for use in micro-infrared spectroscopic measurement, comprising a plate-like substance and a number of concave-shaped parts formed on the surface of the plate-like substance, A sample stage for microinfrared spectroscopy measurement, characterized in that the area of the opening is set to be larger than the area of the bottom surface of each recess-shaped part. 前記板状物質は、面方位<100>のシリコン基板であることを特徴とする請求項1記載の顕微赤外分光測定用試料台。   2. The sample stage for micro infrared spectroscopy measurement according to claim 1, wherein the plate-like substance is a silicon substrate having a plane orientation <100>. 請求項1及び2記載の顕微赤外分光測定用試料台を用いて微小・微量試料を薄膜化及び濃縮化させることを特徴とする顕微赤外分光分析用試料作製方法。   A sample preparation method for microinfrared spectroscopic analysis, comprising thinning and concentrating a micro / trace sample using the microinfrared spectroscopic measurement sample stage according to claim 1 or 2.
JP2005133263A 2005-04-28 2005-04-28 Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis Pending JP2006308490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005133263A JP2006308490A (en) 2005-04-28 2005-04-28 Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005133263A JP2006308490A (en) 2005-04-28 2005-04-28 Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis

Publications (1)

Publication Number Publication Date
JP2006308490A true JP2006308490A (en) 2006-11-09

Family

ID=37475535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005133263A Pending JP2006308490A (en) 2005-04-28 2005-04-28 Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis

Country Status (1)

Country Link
JP (1) JP2006308490A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8446543B2 (en) 2009-01-20 2013-05-21 Panasonic Corporation Chassis assembly for display apparatus
CN108535209A (en) * 2018-03-16 2018-09-14 湖南科技大学 A kind of infrared spectrometer sample compression mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8446543B2 (en) 2009-01-20 2013-05-21 Panasonic Corporation Chassis assembly for display apparatus
CN108535209A (en) * 2018-03-16 2018-09-14 湖南科技大学 A kind of infrared spectrometer sample compression mold

Similar Documents

Publication Publication Date Title
Chen et al. Microsphere enhanced optical imaging and patterning: From physics to applications
US7656525B2 (en) Fiber optic SERS sensor systems and SERS probes
JP4520493B2 (en) Manufacturing method of optical fiber probe
EP0485425A1 (en) Apparatus and microbase for surface-enhanced raman spectroscopy system and method for producing same.
US20130217143A1 (en) Chemical-analysis device integrated with metallic-nanofinger device for chemical sensing
Gosalvez et al. Experimental procurement of the complete 3D etch rate distribution of Si in anisotropic etchants based on vertically micromachined wagon wheel samples
EP2805153B1 (en) Molecular sensing device
CN106290296B (en) SERS substrate based on metal dot matrix, preparation method thereof and method for performing Raman detection by using substrate
JP2006098154A (en) Defect inspection method and its device
CN104404513A (en) Surface-enhanced Raman scattering substrate, and preparation method and application thereof
CN110455775A (en) Super hydrophobic surface for Surface enhanced Raman spectroscopy detection enhances substrate
US20060001872A1 (en) Raman spectroscopy method, Raman spectroscopy system and Raman spectroscopy device
JP2006308490A (en) Sample base for infrared microspectrometry and method of preparing sample for infrared microspectroscopic analysis
JP6063603B2 (en) Device for detecting a substance and method for manufacturing the device
Kondo et al. Surface-enhanced Raman scattering on gold nanowire array formed by mechanical deformation using anodic porous alumina molds
KR20080049166A (en) Method and device for polishing sample
WO2016090407A1 (en) Cuvette for optical spectroscopy
Ramezannezhad et al. A micro optofluidic system for toluene detection application
Horn et al. Trapped particle detection in bonded semiconductors using gray-field photoelastic imaging
JP5848902B2 (en) Film thickness measuring device
JP4388625B2 (en) Near-field optical probe
JP2002168736A (en) Micro-spatula for sampling and its operating method, micro-sampling system and device, and analyzing method of microsample
van den Doel et al. Fluorescence detection in (sub-) nanoliter microarrays
JP2005351733A (en) Inspection method
Malachowski et al. Wafer scale processing of plasmonic nanoslit arrays in 200mm CMOS fab environment