JP2008309051A - タービンシュラウドの冷却構造 - Google Patents

タービンシュラウドの冷却構造 Download PDF

Info

Publication number
JP2008309051A
JP2008309051A JP2007157028A JP2007157028A JP2008309051A JP 2008309051 A JP2008309051 A JP 2008309051A JP 2007157028 A JP2007157028 A JP 2007157028A JP 2007157028 A JP2007157028 A JP 2007157028A JP 2008309051 A JP2008309051 A JP 2008309051A
Authority
JP
Japan
Prior art keywords
cooling air
turbine
thermal barrier
barrier coating
turbine shroud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007157028A
Other languages
English (en)
Inventor
Atsushi Sato
篤 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2007157028A priority Critical patent/JP2008309051A/ja
Publication of JP2008309051A publication Critical patent/JP2008309051A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

【課題】タービン動翼とのラビングにより、内面の一部が摺動磨耗して薄くなる場合でも、金属部の温度上昇を抑制して、寿命低下を抑制することができるタービンシュラウドの冷却構造を提供する。
【解決手段】タービンシュラウド12は、その外周面に冷却空気が供給される環状凹部13aを有する金属部13と、金属部の内周面に設けられた遮熱コーティング14とからなる。さらに、環状凹部13aに外方端が連通し、内方端が遮熱コーティング14の内面に向けて延びる冷却空気供給穴15を有する。冷却空気供給穴15は、遮熱コーティング14の内面がラビングにより磨耗するにつれて、流路面積が増大するように形成されている。
【選択図】図1

Description

本発明は、ラビングによる摺動磨耗による冷却能力の低下を抑制するためのタービンシュラウドの冷却構造に関する。
図4はジェットエンジンの一般的構成図である。この図に示すように、ジエットエンジンは、空気を取り入れるファン51、取り入れた空気を圧縮する圧縮機52、圧縮した空気により燃料を燃焼させる燃焼器53、燃焼器53の燃焼ガスによりファン51および圧縮機52を駆動するガスタービン54を備えている。ガスタービン54は、高圧部と低圧部からなり、それぞれ複数段の動翼列と静翼列を備えている。
図5は、タービンシュラウドの従来の冷却構造図である。この図において、タービン部は円筒状のタービンケーシング56に包まれ、タービン動翼57の位置にはその先端と所定の間隙を有してリング状のタービンシュラウド58が設けられている。タービンシュラウド58は燃焼器53で燃焼した高温の主流空気に晒されているため、吸入した空気の一部を用いて冷却している。タービンシュラウド58はタービンケーシング56に取付けられた支持ブラケット56aにより支持され、複数の冷却孔59が設けられ、タービンケーシング56側から供給される冷却空気を冷却孔59から吹き出し、タービンシュラウド58の内側表面に冷却フィルムを形成しタービンシュラウド58を冷却している。
タービンシュラウドのその他の冷却構造として、特許文献1及び2が既に開示されている。
特許文献1の「しみ出し冷却タービンシュラウド」は、必要となる冷却空気量が少なくかつ均一な冷却が可能な冷却機構を備えたタービンシュラウドを目的とする。
そのため、この発明は、図6に示すように、タービンケーシングの内面に取付けられ、タービン動翼を囲み全体がリング状のタービンシュラウド61であって、このタービンシュラウド61には内側に貫通する多数の冷却空気用孔62が設けられており、内面に連続気泡を有する多孔金属板63が取付けられ、冷却空気用孔62と多孔金属板63を通して内部に空気をしみ出すようにしたものである。なおこの図で64は多孔質セラミックである。
特許文献2の「ガスタービンシュラウドのインピンジメント冷却」は、内側シュラウドセグメント入口へ流れる冷却流に対する漏洩路を排除しそしてそらせ板開口と冷却される壁表面との間の衝突流の距離を最小とすることによりインピンジメント冷却効率を最大にすることを目的とする。
そのため、この発明では、図7に示すように、内側シュラウド71が外側シュラウド72に結合され、外側シュラウド72は内側シュラウドに流すために入口73を通して冷却空気を受ける。内側シュラウドは一部熱ガス路74を定める壁75と、この壁の熱ガス路と反対側に複数の空洞とを有する。内側シュラウドはカバーを含み、このカバーから区分室76が垂れ下がり、区分室の床を通して開口77が開けられている。カバーが内側シュラウド本体の上にかぶせられると、区分室は空洞内に収容され、前記入口からの冷却空気は区分室内に流れ前記開口を通り抜けて内部シュラウドの壁がインピンジメント冷却される。使用済みの冷却空気は内側シュラウドの円周方向および/または軸方向に面した側壁並びに/または熱ガス路を定める内側シュラウドの壁を貫通する通路77を通り内側シュラウドを出ていくものである。
特開平10−231704号公報、「しみ出し冷却タービンシュラウド」 特開2001−221065号公報、「ガスタービンシュラウドのインピンジメント冷却」
図3(A)は、上述した従来のタービンシュラウドの模式的断面図である。この図において、1はタービン動翼、2はタービンシュラウド、3はタービンシュラウドの金属部、4は遮熱コーティング、5は冷却空気供給穴である。
タービン動翼1は、この図の下方に紙面に平行に左右に延びる回転軸があり、高温の燃焼ガスGを受けて、回転軸を中心に紙面に直交する方向に回転する。
タービンシュラウド2は、図5に例示したように、タービンケーシングに取付けられた支持ブラケットにより支持され、環状通路2aを形成する。
金属部3は、高温強度に優れた金属からなるが、冷却または遮熱が必要である。
遮熱コーティング4は、例えば耐熱性の多孔質セラミックからなり、高温の燃焼ガスGを遮熱して金属部3の過熱を防止する。
冷却空気供給穴5は、環状通路2aに供給される冷却空気Aを遮熱コーティング4の内側まで導入し、金属部3を冷却するようになっている。
ジェットエンジン、特に航空機用のジェットエンジンは、飛行中に加速・減速することが多く、高負荷時に高速回転させると、タービン動翼1の先端(チップ)がタービンシュラウド2の内面に接触する現象(以下、「ラビング」と呼ぶ)が発生する。
ラビング現象は、高負荷・高速回転により、タービン動翼1が熱膨張と遠心力で外方に伸びるために生じる現象であり、低負荷・低速回転時のチップクリアランス(チップの隙間)を適正に維持するために、避けられない現象である。
そのため、チップが直接接触するタービンシュラウドの遮熱コーティング4には、ラビングの際にチップに損傷を与えないように、摺動により磨耗しやすい材料(例えば、耐熱性の多孔質セラミック)を用いている。
図3(B)は、上述した従来のタービンシュラウドのラビング後の模式的構造図である。遮熱コーティング4は、タービン動翼1の先端(チップ)とのラビングにより、内面の一部が摺動磨耗して薄くなると、遮熱効果の低下により、金属部3の温度が上昇し、タービンシュラウド2の寿命が短くなる問題点があった。
本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、タービン動翼とのラビングにより、内面の一部が摺動磨耗して薄くなる場合でも、金属部の温度上昇を抑制して、寿命低下を抑制することができるタービンシュラウドの冷却構造を提供することにある。
本発明によれば、タービン動翼を囲み全体がリング状のタービンシュラウドの冷却構造であって、
前記タービンシュラウドは、その外周面に冷却空気が供給される環状凹部を有する耐熱性の金属部と、該金属部の内周面に設けられた耐熱性の遮熱コーティングとからなり、
前記環状凹部に外方端が連通し、内方端が前記遮熱コーティングの内面に向けて延びる冷却空気供給穴を有し、
該冷却空気供給穴は、遮熱コーティングの内面が前記ラビングにより磨耗するにつれて、流路面積が増大するように形成されている、ことを特徴とするタービンシュラウドの冷却構造が提供される。
本発明の好ましい実施形態によれば、前記冷却空気供給穴は、内方端が前記遮熱コーティングの内面に連通する貫通穴と、内方端が遮熱コーティングの内面から間隔を隔てて位置する閉鎖穴とからなる。
また、本発明の別の好ましい実施形態によれば、前記冷却空気供給穴は、前記遮熱コーティングの内面に連通する内方端と、該内方端側が細いテーパ穴部とを有する。
上記本発明の構成によれば、遮熱コーティングの内面がタービン動翼とのラビングにより磨耗するにつれて、冷却空気供給穴の流路面積が増大するので、この冷却空気供給穴を通過する冷却空気量が増加し、必要な冷却を維持することができる。
以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。
図1(A)は、本発明の第1実施形態を示すタービンシュラウドの断面図である。
この図において、1はタービン動翼、12はタービンシュラウド、13はタービンシュラウドの金属部、14は遮熱コーティング、15は冷却空気供給穴である。
タービン動翼1は、この図の下方に紙面に平行に左右に延びる回転軸があり、高温の燃焼ガスGを受けて、回転軸を中心に紙面に直交する方向に回転する。
タービンシュラウド12は、図5に例示したように、タービンケーシングの内側に取付けられた支持ブラケットにより支持される。またタービンシュラウド12は、金属部13と遮熱コーティング14とからなる。
金属部13は、高温強度に優れた耐熱性金属(例えばインコネルなど)からなり、タービンケーシングの内側に取付けられる。また、金属部13の外周面には、タービンケーシングの内側に取付けられた状態で内部に冷却空気が供給される環状凹部13aを有する。
遮熱コーティング14は、断熱性能と高温強度に優れ、かつタービン動翼1とのラビング(摺動)により磨耗しやすい材料、例えば、耐熱性の多孔質セラミックからなる。例えば金属部13の内面にセラミックパウダーとポリエステル等の樹脂との混合物を溶射して多孔質セラミック層を形成することができる。
遮熱コーティング14は、金属部13の内周面に一体的に形成され、かつその内面はタービン動翼1の先端(チップ)から所定の間隔を隔てている。
この間隔(遮熱コーティング14の内面とタービン動翼1の先端との間隔)は、低負荷・低速回転時のチップクリアランス(チップの隙間)を適正に維持するように設定される。この結果、高負荷・高速回転時には、遮熱コーティング14とタービン動翼1は、ラビングを生じ得る間隔に設定されている。
図1(A)において、本発明のタービンシュラウドの冷却構造では、複数の冷却空気供給穴15を有する。
冷却空気供給穴15は、金属部13の環状凹部13aに外方端が連通し、内方端が遮熱コーティングの内面に向けて延びる。内方端の向きは、回転軸に垂直でも斜めであってもよい。
この冷却空気供給穴15は、全体として、遮熱コーティング14の内面がタービン動翼1とのラビングにより磨耗するにつれて、流路面積が増大するように形成されている。
図1(A)において、冷却空気供給穴15は、内方端が遮熱コーティング14の内面に連通する貫通穴16aと、内方端が遮熱コーティング14の内面から間隔を隔てて位置する閉鎖穴16b,16cとからなる。閉鎖穴16b,16cは、この例では、遮熱コーティング14の内面からの間隔が異なっている。
図1(B)は、図1(A)のタービンシュラウドのラビング後の模式的断面図である。遮熱コーティング14は、タービン動翼1の先端(チップ)とのラビングにより、内面の一部が摺動磨耗して薄くなると、閉鎖穴16b、閉鎖穴16cの順で閉鎖穴の内方端が遮熱コーティング14の内面に開口(連通)する。
従って、冷却空気供給穴15の流路面積は、ラビング前は貫通穴16aの面積のみであるが、閉鎖穴16b、閉鎖穴16cの順で開口することにより、中間段階では、貫通穴16aの面積に閉鎖穴16bの面積を付加した面積、最終段階ではさらに閉鎖穴16cの面積を付加した面積となる。
環状凹部13aの冷却空気の圧力及び内外差圧は、この流路面積の変化に影響されず、ほぼ一定に保たれるので、冷却空気供給穴15を通過する冷却空気量は流路面積にほぼ比例する。
従って、遮熱コーティング14の内面がタービン動翼1とのラビングにより磨耗するにつれて、冷却空気供給穴15の流路面積が増大するので、この冷却空気供給穴を通過する冷却空気量が増加し、必要な冷却を維持することができる。
なお、上述の例では、遮熱コーティング14の内面からの間隔が異なる閉鎖穴が2種の場合を示したが、閉鎖穴の種類(内面からの間隔)は、1種でも3種以上であってよい。
図2(A)は、本発明の第2実施形態を示すタービンシュラウドの断面図である。
この図において、本発明のタービンシュラウドの冷却構造では、複数の冷却空気供給穴15を有する。
冷却空気供給穴15は、金属部13の環状凹部13aに外方端が連通し、内方端が遮熱コーティングの内面に向けて延びる。内方端の向きは、回転軸に垂直でも斜めであってもよい
この冷却空気供給穴15は、全体として、遮熱コーティング14の内面がタービン動翼1とのラビングにより磨耗するにつれて、流路面積が増大するように形成されている。
この例において、冷却空気供給穴15は、遮熱コーティング14の内面に連通する内方端17aと、内方端側が細いテーパ穴部17bとを有する。テーパ穴部17bの外方穴17cは、断面が一定であり、環状凹部13aに外方端が連通している。
その他の構成は、上述した第1実施形態と同様である。
図2(B)は、図2(A)のタービンシュラウドのラビング後の模式的断面図である。遮熱コーティング14は、タービン動翼1の先端(チップ)とのラビングにより、内面の一部が摺動磨耗して薄くなると、内方端17a、テーパ穴部17bの順で磨滅する。
従って、冷却空気供給穴15の流路面積は、ラビング前は内方端17aの面積のみであるが、内方端17a、テーパ穴部17bの順で磨滅することにより、中間段階では、テーパ穴部17bの断面積、最終段階では外方穴17cの断面積となる。
環状凹部13aの冷却空気の圧力及び内外差圧は、この流路面積の変化に影響されず、ほぼ一定に保たれるので、冷却空気供給穴15を通過する冷却空気量は流路面積にほぼ比例する。
従って、遮熱コーティング14の内面がタービン動翼1とのラビングにより磨耗するにつれて、冷却空気供給穴15の流路面積が増大するので、この冷却空気供給穴を通過する冷却空気量が増加し、必要な冷却を維持することができる。
なお、上述の例では、冷却空気供給穴15の形状をすべて同じに示したが、冷却空気供給穴15の形状は、1種でも2種以上であってよい。また、冷却空気供給穴15の内方端を遮熱コーティング14の内面に連通して示したが、第1実施形態のように、内方端の一部が遮熱コーティング14の内面から間隔を隔てて位置する構成であってもよい。
上述したように、本発明の構成によれば、遮熱コーティング14の内面がタービン動翼1とのラビングにより磨耗するにつれて、冷却空気供給穴15の流路面積が増大するので、この冷却空気供給穴を通過する冷却空気量が増加し、必要な冷却を維持することができる。
なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。
本発明の第1実施形態を示すタービンシュラウドの断面図である。 本発明の第2実施形態を示すタービンシュラウドの断面図である。 従来のタービンシュラウドの模式的断面図である。 ジェットエンジンの一般的構成図である。 タービンシュラウドの従来の冷却構造図である。 特許文献1の「しみ出し冷却タービンシュラウド」の構成図である。 特許文献2の「ガスタービンシュラウドのインピンジメント冷却」の構成図である。
符号の説明
1 タービン動翼、2 タービンシュラウド、2a 環状通路、
3 金属部、4 遮熱コーティング、5 冷却空気供給穴、
12 タービンシュラウド、13 金属部、13a 環状凹部、
14 遮熱コーティング、15 冷却空気供給穴、
16a 貫通穴、16b,16c 閉鎖穴、
17a 内方端、17b テーパ穴部、17c 外方穴

Claims (3)

  1. タービン動翼を囲み全体がリング状のタービンシュラウドの冷却構造であって、
    前記タービンシュラウドは、その外周面に冷却空気が供給される環状凹部を有する耐熱性の金属部と、該金属部の内周面に設けられた耐熱性の遮熱コーティングとからなり、
    前記環状凹部に外方端が連通し、内方端が前記遮熱コーティングの内面に向けて延びる冷却空気供給穴を有し、
    該冷却空気供給穴は、遮熱コーティングの内面が前記ラビングにより磨耗するにつれて、流路面積が増大するように形成されている、ことを特徴とするタービンシュラウドの冷却構造。
  2. 前記冷却空気供給穴は、内方端が前記遮熱コーティングの内面に連通する貫通穴と、内方端が遮熱コーティングの内面から間隔を隔てて位置する閉鎖穴とからなる、ことを特徴とする請求項1に記載のタービンシュラウドの冷却構造。
  3. 前記冷却空気供給穴は、前記遮熱コーティングの内面に連通する内方端と、該内方端側が細いテーパ穴部とを有する、ことを特徴とする請求項1または2に記載のタービンシュラウドの冷却構造。
JP2007157028A 2007-06-14 2007-06-14 タービンシュラウドの冷却構造 Pending JP2008309051A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007157028A JP2008309051A (ja) 2007-06-14 2007-06-14 タービンシュラウドの冷却構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007157028A JP2008309051A (ja) 2007-06-14 2007-06-14 タービンシュラウドの冷却構造

Publications (1)

Publication Number Publication Date
JP2008309051A true JP2008309051A (ja) 2008-12-25

Family

ID=40236873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007157028A Pending JP2008309051A (ja) 2007-06-14 2007-06-14 タービンシュラウドの冷却構造

Country Status (1)

Country Link
JP (1) JP2008309051A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014020319A (ja) * 2012-07-20 2014-02-03 Toshiba Corp タービンのシール装置および火力発電システム
EP2818645A1 (en) * 2013-06-27 2014-12-31 Rolls-Royce plc An abradable liner for a gas turbine engine
JP2015505588A (ja) * 2012-01-26 2015-02-23 アルストム テクノロジー リミテッドALSTOM Technology Ltd ターボ機械用のセグメント化された内環を備えるステータ構成部材
EP3054105A1 (en) * 2015-02-03 2016-08-10 General Electric Company Component, gas turbine component and corresponding method of forming
US9528443B2 (en) 2012-03-30 2016-12-27 Rolls-Royce Plc Effusion cooled shroud segment with an abradable system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339985A (ja) * 2003-05-14 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd 軸流タービンのタービンシュラウド
JP2006138624A (ja) * 2004-11-09 2006-06-01 General Electric Co <Ge> ガスタービンエンジン部品

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339985A (ja) * 2003-05-14 2004-12-02 Ishikawajima Harima Heavy Ind Co Ltd 軸流タービンのタービンシュラウド
JP2006138624A (ja) * 2004-11-09 2006-06-01 General Electric Co <Ge> ガスタービンエンジン部品

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015505588A (ja) * 2012-01-26 2015-02-23 アルストム テクノロジー リミテッドALSTOM Technology Ltd ターボ機械用のセグメント化された内環を備えるステータ構成部材
US9702262B2 (en) 2012-01-26 2017-07-11 Ansaldo Energia Ip Uk Limited Stator component with segmented inner ring for a turbomachine
US9528443B2 (en) 2012-03-30 2016-12-27 Rolls-Royce Plc Effusion cooled shroud segment with an abradable system
JP2014020319A (ja) * 2012-07-20 2014-02-03 Toshiba Corp タービンのシール装置および火力発電システム
US9777587B2 (en) 2012-07-20 2017-10-03 Kabushiki Kaisha Toshiba Seal apparatus of turbine and thermal power system
EP2818645A1 (en) * 2013-06-27 2014-12-31 Rolls-Royce plc An abradable liner for a gas turbine engine
US9752780B2 (en) 2013-06-27 2017-09-05 Rolls-Royce Plc Abradable liner for a gas turbine engine
EP3054105A1 (en) * 2015-02-03 2016-08-10 General Electric Company Component, gas turbine component and corresponding method of forming
US9718735B2 (en) 2015-02-03 2017-08-01 General Electric Company CMC turbine components and methods of forming CMC turbine components

Similar Documents

Publication Publication Date Title
US8277177B2 (en) Fluidic rim seal system for turbine engines
JP3607331B2 (ja) 軸流ガスタービン・エンジンのシール構造
JP5031103B2 (ja) チップシニングを備えたタービン動翼
JP5457965B2 (ja) 回転機械におけるクリアランス制御用のシステム及び方法
US8740551B2 (en) Blade outer air seal cooling
JP4969500B2 (ja) ガスタービン
EP2208860B1 (en) Interstage seal for a gas turbine and corresponding gas turbine
US7766616B2 (en) Turbine blade for a gas turbine, use of a turbine blade and method for cooling a turbine blade
EP2236747B1 (en) Systems, methods, and apparatus for passive purge flow control in a turbine
US7234918B2 (en) Gap control system for turbine engines
JP5841415B2 (ja) 軸流型のガスタービン
EP3023600B1 (en) Engine casing element
WO2016047237A1 (ja) シール構造
WO2016002602A1 (ja) タービン静翼、タービン、及び、タービン静翼の改造方法
JP2006307853A (ja) 軸流流体機械におけるラジアル隙間の調整方法と圧縮機
JP2006037855A (ja) 車室ケーシング及びガスタービン
JP2008106743A (ja) ガスタービンエンジンの構成要素
JP5114800B2 (ja) 鋳造製の金属インペラブレードおよびインペラブレードの製造方法
JP2013245678A (ja) タービン動翼の先端の冷却構造
JP2007192213A (ja) タービンエアフォイルおよびタービンエアフォイルアッセンブリを冷却する方法
JP2013151936A (ja) 後付け可能な、段間の傾斜シール
EP2867502B1 (en) Gas turbine engine component having platform cooling channel
JP2008309051A (ja) タービンシュラウドの冷却構造
US20110255959A1 (en) Turbine alignment control system and method
JP6746486B2 (ja) 分割環及びガスタービン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120229