JP2008306841A - Driving device and driving device unit - Google Patents

Driving device and driving device unit Download PDF

Info

Publication number
JP2008306841A
JP2008306841A JP2007151464A JP2007151464A JP2008306841A JP 2008306841 A JP2008306841 A JP 2008306841A JP 2007151464 A JP2007151464 A JP 2007151464A JP 2007151464 A JP2007151464 A JP 2007151464A JP 2008306841 A JP2008306841 A JP 2008306841A
Authority
JP
Japan
Prior art keywords
vibration shaft
vibration
bearing portion
shaft
moving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007151464A
Other languages
Japanese (ja)
Other versions
JP4982795B2 (en
Inventor
Tatatomi Sagawa
忠臣 寒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2007151464A priority Critical patent/JP4982795B2/en
Publication of JP2008306841A publication Critical patent/JP2008306841A/en
Application granted granted Critical
Publication of JP4982795B2 publication Critical patent/JP4982795B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device and a driving device unit that have a bearing portion enabling the prevention of axial rotation of a vibrating shaft without hampering vibration in the axial direction and are small in size and high in positional accuracy. <P>SOLUTION: The vibrating shaft and the bearing portion respectively have a restriction face for restricting the axial rotation of the vibrating shaft when they are abutted against each other. The restriction face of the vibrating shaft is abutted and pressed against the restriction face of the bearing portion. At this time, the pressing force is so controlled that the maximum resistance force received from the bearing portion when the vibrating shaft is vibrating is equal to or lower than 2.5 times the maximum frictional force between a moving member and the vibrating shaft. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電素子等の電気機械変換素子を利用した駆動装置及び駆動装置ユニットに関する。   The present invention relates to a driving device and a driving device unit using an electromechanical transducer such as a piezoelectric element.

圧電素子等、駆動電圧に応じて伸縮する電気機械変換素子を利用した駆動装置として、振動軸に接続された電気機械変換素子に駆動電圧を供給して振動軸を軸方向に振動させ、この振動軸に摩擦保持された移動部材を軸方向に移動させる駆動装置が知られている(例えば、特許文献1参照)。   As a drive device that uses an electromechanical transducer that expands and contracts in response to the drive voltage, such as a piezoelectric element, the drive shaft is supplied to the electromechanical transducer connected to the vibration shaft to vibrate the vibration shaft in the axial direction. 2. Description of the Related Art A driving device that moves a moving member frictionally held on a shaft in the axial direction is known (see, for example, Patent Document 1).

このような方式(以下、SIDM方式(スムーズインパクト駆動方式)と称する。)の駆動装置は、小型、高精度、静音、電源OFF時の安定保持といった優れた特徴を有していることから、ズームレンズのレンズの駆動や、情報記録再生装置の記録再生ヘッドの駆動など、様々な用途への応用が検討されている。   A drive device of such a method (hereinafter referred to as a SIDM method (smooth impact drive method)) has excellent characteristics such as small size, high accuracy, quietness, and stable holding when the power is turned off. Application to various uses, such as driving of a lens of a lens and driving of a recording / reproducing head of an information recording / reproducing apparatus, has been studied.

図9は、SIDM方式の駆動装置の駆動原理を示す模式図である。図9(a)は、初期状態を示している。圧電素子42の一端には固定部材41が、もう一端には振動軸43が接続され、振動軸43には移動部材44が摩擦45によって保持されている。駆動電圧を供給して圧電素子42をゆっくり伸ばすと、移動部材44は摩擦45によって保持されたまま振動軸43と一緒に図の右方向に動く(図9(b))。次に、駆動電圧を変化させて圧電素子42を急速に縮めると、移動部材44は慣性によって摩擦部が滑り、移動部材44と振動軸43とが相対的に移動する(図9(c))。   FIG. 9 is a schematic diagram illustrating the driving principle of the SIDM driving device. FIG. 9A shows an initial state. A fixed member 41 is connected to one end of the piezoelectric element 42, and a vibration shaft 43 is connected to the other end, and a moving member 44 is held on the vibration shaft 43 by friction 45. When the drive voltage is supplied and the piezoelectric element 42 is slowly extended, the moving member 44 moves in the right direction of the drawing together with the vibration shaft 43 while being held by the friction 45 (FIG. 9B). Next, when the drive voltage is changed and the piezoelectric element 42 is rapidly contracted, the frictional portion of the moving member 44 slides due to inertia, and the moving member 44 and the vibration shaft 43 move relative to each other (FIG. 9C). .

このような動作を繰り返すことにより、長いストロークの移動が可能となる。また、逆に、圧電素子42を急速に伸ばしてゆっくり縮める動作を繰り返すことで、移動部材44を逆方向(図の左方向)に移動させることができる。   By repeating such an operation, a long stroke can be moved. Conversely, the moving member 44 can be moved in the reverse direction (the left direction in the figure) by repeating the operation of rapidly extending the piezoelectric element 42 and contracting it slowly.

図10は、SIDM方式を用いた従来の駆動装置50の例を示す図である。図10(a)は駆動装置50の分解斜視図、図10(b)は駆動装置50の組立斜視図を示している。   FIG. 10 is a diagram illustrating an example of a conventional driving device 50 using the SIDM system. 10A is an exploded perspective view of the drive device 50, and FIG. 10B is an assembled perspective view of the drive device 50. FIG.

圧電素子52は多数の圧電板を積層して構成されており、一端521が固定部材51に固定されると共に他端522が振動軸53の一端531に固定されている。振動軸53は断面が円形の丸軸であり、固定部材51に一体的に形成された軸受け部56、57に設けられた貫通丸穴に嵌め合うように挿入されて支持されている。移動部材54は本体541とキャップ542とによって振動軸53を挟み込み、押圧バネ543で本体541とキャップ542とに挟み込み方向の付勢力を与えることによって、振動軸53に摩擦保持される。   The piezoelectric element 52 is configured by laminating a large number of piezoelectric plates. One end 521 is fixed to the fixing member 51 and the other end 522 is fixed to one end 531 of the vibration shaft 53. The vibration shaft 53 is a round shaft having a circular cross section, and is inserted and supported so as to fit in through-holes provided in bearing portions 56 and 57 formed integrally with the fixing member 51. The moving member 54 is frictionally held by the vibration shaft 53 by sandwiching the vibration shaft 53 between the main body 541 and the cap 542 and applying a biasing force in the sandwiching direction between the main body 541 and the cap 542 by the pressing spring 543.

圧電素子52に、図示しない駆動電圧供給部によって駆動電圧を供給することで、上記のような動作原理に基づいて、移動部材54を振動軸53の軸方向に移動させることができる。このとき、移動部材54の形状や質量によっては、振動軸53の回りに大きな力のモーメントがかかり、移動部材54が振動軸53の回りを回転して移動部材54の位置精度を悪化させるという問題があった。   By supplying a driving voltage to the piezoelectric element 52 by a driving voltage supply unit (not shown), the moving member 54 can be moved in the axial direction of the vibration shaft 53 based on the operation principle as described above. At this time, depending on the shape and mass of the moving member 54, a large moment of force is applied around the vibration shaft 53, and the moving member 54 rotates around the vibration shaft 53 to deteriorate the positional accuracy of the moving member 54. was there.

このような問題を回避するため、移動部材の回転を規制するための案内軸を設け、移動部材を振動軸と案内軸の2本の軸で支持する方法(例えば、特許文献2参照)や、振動軸に移動部材の回転を規制するための規制面を設けて移動部材を支持する方法(例えば、特許文献3参照)が提案されている。
特開平11−98865号公報 特開2002−51576号公報 特開2005−333766号公報
In order to avoid such a problem, a guide shaft for restricting the rotation of the moving member is provided, and the moving member is supported by two shafts of the vibration shaft and the guide shaft (for example, see Patent Document 2), There has been proposed a method of providing a regulating surface for regulating the rotation of the moving member on the vibration shaft to support the moving member (see, for example, Patent Document 3).
JP-A-11-98865 JP 2002-51576 A JP 2005-333766 A

しかしながら、ユニット全体の小型化に伴い駆動装置としても更なる小型化の要請が強まってきている。特許文献2に記載されている、移動部材を振動軸と案内軸の2本の軸で支持することにより移動部材の回転を防止する方法では、案内軸を設けるための余分のスペースが必要となるため、かかる小型化の要請に十分に応えることができなかった。   However, with the downsizing of the entire unit, there is an increasing demand for further downsizing of the drive device. In the method of preventing rotation of the moving member by supporting the moving member on the two shafts of the vibration shaft and the guide shaft described in Patent Document 2, an extra space for providing the guide shaft is required. Therefore, it has not been possible to sufficiently meet the demand for such downsizing.

一方、特許文献3に記載されている、振動軸に回転を規制するための規制面を設ける方法によれば、余分なスペースを必要とせず、振動軸に対する移動部材の回転を防止することができる。しかし、特許文献3に記載されている駆動装置は振動軸を支持するための軸受け部を有していないために、振動軸自体の軸回転やねじれを抑えることができず、移動部材が振動軸と共に回転して位置精度が低下してしまう場合があった。   On the other hand, according to the method described in Patent Document 3 in which a restriction surface for restricting rotation is provided on the vibration shaft, no extra space is required and rotation of the moving member with respect to the vibration shaft can be prevented. . However, since the drive device described in Patent Document 3 does not have a bearing portion for supporting the vibration shaft, the rotation and torsion of the vibration shaft itself cannot be suppressed, and the moving member has a vibration shaft. In some cases, the positional accuracy may decrease due to rotation.

このような駆動装置に用いる振動軸は、一端に接続された圧電素子の伸縮によって軸方向に振動するという機能を有している。したがって、振動軸の軸回転を防止するために軸受け部で振動軸を完全に固定してしまうと、軸方向の振動を阻害してしまい、駆動装置の動作に大きな影響を及ぼすことになる。逆に、特許文献1などに記載されている、貫通穴に振動軸を挿入しただけの軸受け部では、貫通穴と振動軸のガタ(寸法差)が存在することから、振動軸の軸回転やねじれを十分に防止することができない。   The vibration shaft used in such a drive device has a function of vibrating in the axial direction by expansion and contraction of a piezoelectric element connected to one end. Therefore, if the vibration shaft is completely fixed at the bearing portion in order to prevent the shaft of the vibration shaft from rotating, the vibration in the axial direction is hindered and the operation of the drive device is greatly affected. On the other hand, in the bearing portion described in Patent Document 1 and the like in which the vibration shaft is simply inserted into the through hole, there is a backlash (dimension difference) between the through hole and the vibration shaft. Twist cannot be sufficiently prevented.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、軸方向の振動を阻害せずに、振動軸の軸回転を防止できる軸受け部を備え、小型で高い位置精度を有する駆動装置及び駆動装置ユニットを提供することである。   The present invention has been made in view of the technical problems as described above, and an object of the present invention is to provide a bearing unit that can prevent axial rotation of the vibration shaft without hindering vibration in the axial direction. To provide a driving device and a driving device unit having high positional accuracy.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1. 駆動電圧に応じて伸縮する電気機械変換素子と、前記電気機械変換素子に接続され、該電気機械変換素子の伸縮によって軸方向に振動する振動軸と、前記振動軸に摩擦保持された移動部材と、前記振動軸を支持する軸受け部と、を備え、前記振動軸の振動によって、前記移動部材を前記振動軸に沿って軸方向に移動させる駆動装置において、前記振動軸と前記軸受け部は、互いに当接して該振動軸の軸回転を規制するための規制面をそれぞれ有し、前記振動軸の前記規制面は、前記軸受け部の前記規制面に当接して押圧されており、前記振動軸が振動中に前記軸受け部からうける最大抵抗力が、前記移動部材と前記振動軸との間の最大摩擦力の2.5倍以下であることを特徴とする駆動装置。   1. An electromechanical transducer that expands and contracts in response to a driving voltage; a vibration shaft that is connected to the electromechanical transducer and vibrates in an axial direction by the expansion and contraction of the electromechanical transducer; and a moving member that is frictionally held by the vibration shaft. A drive unit that supports the vibration shaft, and moves the moving member in the axial direction along the vibration axis by the vibration of the vibration shaft. Each of the control surfaces of the vibration shaft is in contact with and pressed against the control surface of the bearing portion so that the vibration shaft is in contact with the control surface. A driving device characterized in that a maximum resistance force received from the bearing portion during vibration is 2.5 times or less of a maximum frictional force between the moving member and the vibration shaft.

2. 前記振動軸の前記規制面は、前記軸受け部を構成する部材の弾性によって前記軸受け部の前記規制面に押圧されていることを特徴とする前記1に記載の駆動装置。   2. 2. The driving apparatus according to 1, wherein the restriction surface of the vibration shaft is pressed against the restriction surface of the bearing portion by elasticity of a member constituting the bearing portion.

3. 前記振動軸の前記規制面は、前記軸受け部と前記振動軸との隙間に注入された発泡性樹脂により前記軸受け部の前記規制面に押圧されていることを特徴とする前記1に記載の駆動装置。   3. 2. The drive according to claim 1, wherein the restriction surface of the vibration shaft is pressed against the restriction surface of the bearing portion by a foamable resin injected into a gap between the bearing portion and the vibration shaft. apparatus.

4. 前記振動軸の前記規制面は、該振動軸の軸方向に延びた凹部によって隔てられた2つの面からなることを特徴とする前記1乃至3の何れか1項に記載の駆動装置。   4). 4. The driving device according to claim 1, wherein the restriction surface of the vibration shaft includes two surfaces separated by a recess extending in an axial direction of the vibration shaft.

5. 前記軸受け部の前記規制面は、前記振動軸の軸方向に延びた凹部によって隔てられた2つの面からなることを特徴とする前記1乃至4の何れか1項の記載の駆動装置。   5. 5. The driving device according to claim 1, wherein the restriction surface of the bearing portion includes two surfaces separated by a concave portion extending in an axial direction of the vibration shaft.

6. 前記1乃至5の何れか1項に記載の駆動装置と、前記電気機械変換素子に駆動電圧を供給して、該電気機械変換素子を伸縮させるための駆動電圧供給部と、を有することを特徴とする駆動装置ユニット。   6). The drive device according to any one of 1 to 5 above, and a drive voltage supply unit for supplying a drive voltage to the electromechanical transducer and expanding and contracting the electromechanical transducer. Drive unit.

本発明によれば、振動軸の規制面が軸受け部の規制面に当接して押圧されているため、振動軸の軸回転を十分に防止でき、高い位置精度を確保することができる。更に、振動軸が振動中に軸受け部からうける最大抵抗力が移動部材と振動軸との間の最大摩擦力の2.5倍以下であることから、振動軸の軸方向の振動を阻害することもなく、小型で高い位置精度を有する駆動装置及び駆動装置ユニットを提供することができる。   According to the present invention, since the restriction surface of the vibration shaft is pressed against the restriction surface of the bearing portion, shaft rotation of the vibration shaft can be sufficiently prevented and high positional accuracy can be ensured. Further, since the maximum resistance force received from the bearing portion during vibration of the vibration shaft is 2.5 times or less of the maximum friction force between the moving member and the vibration shaft, the vibration in the axial direction of the vibration shaft is inhibited. Therefore, it is possible to provide a driving device and a driving device unit that are small and have high positional accuracy.

以下、本発明の実施の形態について図1〜図6を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS.

図1は本発明の駆動装置ユニットの例を示す図である。図1に示す駆動装置ユニットは、駆動電圧に応じて伸縮する電気機械変換素子である圧電素子12を有する駆動装置10と、駆動電圧を供給して圧電素子12を伸縮させるための駆動電圧供給部15とにより構成されている。   FIG. 1 is a diagram showing an example of a drive unit according to the present invention. The driving device unit shown in FIG. 1 includes a driving device 10 having a piezoelectric element 12 that is an electromechanical conversion element that expands and contracts according to a driving voltage, and a driving voltage supply unit that supplies the driving voltage to expand and contract the piezoelectric element 12. 15.

駆動装置10は、固定部材11、圧電素子12、振動軸13、移動部材14、及び、軸受け部20を有し、振動軸13の振動によって移動部材14を振動軸13に沿って軸方向に移動させる駆動装置であり、図9で説明したものと同じ原理に基づいて動作する。圧電素子12の一端には固定部材11が、もう一端には振動軸13が接続され、振動軸13には移動部材14が摩擦保持されている。また、振動軸13は、固定部材11と一体的に構成された軸受け部20によって支持されている。   The drive device 10 includes a fixed member 11, a piezoelectric element 12, a vibration shaft 13, a moving member 14, and a bearing portion 20, and the moving member 14 is moved in the axial direction along the vibration shaft 13 by the vibration of the vibration shaft 13. And operates based on the same principle as described in FIG. A fixed member 11 is connected to one end of the piezoelectric element 12, a vibration shaft 13 is connected to the other end, and a moving member 14 is frictionally held on the vibration shaft 13. The vibration shaft 13 is supported by a bearing portion 20 that is integrally formed with the fixing member 11.

ここでは、電気機械変換素子として圧電素子12を用いているが、駆動電圧に応じて伸縮するという特性を有するものであればこれに限定されるものではなく、圧電素子の他、電歪素子等を用いることもできる。圧電素子の材料としては、チタン酸バリウムや、ジルコン酸チタン酸鉛(PZT)など、公知の材料を適宜選択して用いればよい。また、多数の薄板が積層された積層型の圧電素子は、低い駆動電圧で大きな変位を得ることができるため好ましく用いることができる。   Here, the piezoelectric element 12 is used as the electromechanical conversion element. However, the piezoelectric element 12 is not limited to this as long as it has a characteristic of expanding and contracting according to the drive voltage. Can also be used. As a material of the piezoelectric element, a known material such as barium titanate or lead zirconate titanate (PZT) may be appropriately selected and used. In addition, a stacked piezoelectric element in which a large number of thin plates are stacked can be preferably used because a large displacement can be obtained with a low driving voltage.

移動部材14は本体141とキャップ142とによって振動軸13を挟み込み、押圧バネ143で本体141とキャップ142とに挟み込み方向の付勢力を与えることによって、振動軸13に摩擦保持されている。振動部材14が振動軸13の回りを回転することを防止するため、振動軸13には、丸軸の一部に平面を設けたいわゆるDカット軸を用いている。   The moving member 14 is frictionally held on the vibration shaft 13 by sandwiching the vibration shaft 13 between the main body 141 and the cap 142 and applying a biasing force in the sandwiching direction between the main body 141 and the cap 142 with the pressing spring 143. In order to prevent the vibration member 14 from rotating around the vibration shaft 13, a so-called D-cut shaft in which a flat surface is provided on a part of the round shaft is used as the vibration shaft 13.

図2は、駆動装置10の軸受け部20のA−A断面図である。振動軸13と軸受け部20は、互いに当接して振動軸13の軸回転を規制するための規制面131、201をそれぞれ有している。更に、押さえネジ21の先端部を振動軸13に押し当てて締め付けることによって振動軸13の規制面131は、軸受け部20の規制面201に当接して押圧されている。そのため、振動軸13の軸回転やねじれを十分に抑えることができ、移動軸13に沿って移動する移動部材14の位置決めを高精度に行うことができる。   FIG. 2 is a cross-sectional view taken along the line AA of the bearing portion 20 of the driving device 10. The vibration shaft 13 and the bearing portion 20 have restriction surfaces 131 and 201 for abutting each other to restrict the shaft rotation of the vibration shaft 13. Further, the restriction surface 131 of the vibration shaft 13 is pressed against the restriction surface 201 of the bearing portion 20 by pressing and tightening the tip end of the holding screw 21 against the vibration shaft 13. Therefore, the shaft rotation and twist of the vibration shaft 13 can be sufficiently suppressed, and the moving member 14 that moves along the moving shaft 13 can be positioned with high accuracy.

押さえネジ21による押圧の方向は、軸受け部20の規制面201の法線方向に平行である必要はなく、傾きを有していてもよい。また、振動軸13の、軸方向と垂直な方向における位置精度を更に高めるため、振動軸13と軸受け部20とを、規制面131、201に加え、更に別の位置で接触させることも好ましい。例えば、図2の振動軸13の132の位置で軸受け部20と接触させることで、振動軸13の位置精度を更に向上させることができる。   The direction of pressing by the holding screw 21 does not need to be parallel to the normal direction of the regulating surface 201 of the bearing portion 20 and may have an inclination. In order to further improve the positional accuracy of the vibration shaft 13 in the direction perpendicular to the axial direction, it is also preferable to bring the vibration shaft 13 and the bearing portion 20 into contact with each other at a different position in addition to the regulating surfaces 131 and 201. For example, the positional accuracy of the vibration shaft 13 can be further improved by contacting the bearing portion 20 at the position 132 of the vibration shaft 13 in FIG.

一方、振動軸13は、一端に接続された圧電素子12の伸縮によって軸方向に振動するという機能を有している。したがって、押さえネジ21によって振動軸13と軸受け部20とを強く押圧しすぎると、振動軸13の軸方向の振動を阻害してしまい、駆動装置10の動作に大きな影響を及ぼすことになってしまう。   On the other hand, the vibration shaft 13 has a function of vibrating in the axial direction by expansion and contraction of the piezoelectric element 12 connected to one end. Therefore, if the vibration shaft 13 and the bearing portion 20 are pressed too strongly by the holding screw 21, the vibration in the axial direction of the vibration shaft 13 is hindered and the operation of the driving device 10 is greatly affected. .

本発明者が鋭意検討を進めた結果、振動軸13が振動中に軸受け部20からうける最大抵抗力を、移動部材14と振動軸13との間の最大摩擦力の2.5倍以下とすることで、駆動装置10の動作への影響を最小限に抑えながら、振動軸13の軸回転やねじれを十分に抑えて移動部材14の位置決めを高精度に行うことができることを見いだした。   As a result of intensive studies by the inventor, the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration is set to 2.5 times or less than the maximum friction force between the moving member 14 and the vibration shaft 13. Thus, it has been found that the moving member 14 can be positioned with high accuracy by sufficiently suppressing the shaft rotation and twisting of the vibration shaft 13 while minimizing the influence on the operation of the driving device 10.

図3は、押さえネジ21による押圧力を変化させて振動軸13が振動中に軸受け部20からうける最大抵抗力を変化させた際の、移動部材14の速度の変化を示すグラフである。   FIG. 3 is a graph showing changes in the speed of the moving member 14 when the pressing force applied by the holding screw 21 is changed to change the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration.

図3のグラフの横軸は(軸受け部の抵抗力)/(移動部材の摩擦力)である。ここで、軸受け部の抵抗力というのは、振動軸13が振動中に軸受け部20からうける最大抵抗力であり、振動軸13を軸方向に最大振幅まで移動させる際にかかる最大の抵抗力をいう。図2に示す軸受け部20の場合は、振動軸13が他の部材と接触している3カ所131、132、133における摩擦力が、この抵抗力に該当する。最大振幅は圧電素子12の種類や形状、駆動電圧等によって異なるが、通常は、10nm〜200nm程度である。また、移動部材の摩擦力というのは、移動部材14と振動軸13との間の最大摩擦力である。   The horizontal axis of the graph of FIG. 3 is (the resistance force of the bearing portion) / (the friction force of the moving member). Here, the resistance force of the bearing portion is the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration, and the maximum resistance force that is applied when the vibration shaft 13 is moved to the maximum amplitude in the axial direction. Say. In the case of the bearing portion 20 shown in FIG. 2, the frictional forces at the three locations 131, 132, and 133 where the vibration shaft 13 is in contact with other members correspond to this resistance force. The maximum amplitude varies depending on the type and shape of the piezoelectric element 12, the driving voltage, and the like, but is usually about 10 nm to 200 nm. The frictional force of the moving member is the maximum frictional force between the moving member 14 and the vibration shaft 13.

また、図3のグラフの縦軸は移動部材の速度比であり、横軸が0.3のときの移動部材14の移動速度を1としたときの値を示している。   Also, the vertical axis of the graph of FIG. 3 is the speed ratio of the moving member, and shows a value when the moving speed of the moving member 14 is 1 when the horizontal axis is 0.3.

図3より、(軸受け部の抵抗力)/(移動部材の摩擦力)が2以下の場合、移動部材14の移動速度にほとんど影響しないことが分かる。(軸受け部の抵抗力)/(移動部材の摩擦力)が2を超えると移動速度の低下が始まり、2.5で移動速度は半分まで低下する。更に、(軸受け部の抵抗力)/(移動部材の摩擦力)が2.5を超えると移動速度は急激に低下する。   FIG. 3 shows that when (the resistance force of the bearing portion) / (the friction force of the moving member) is 2 or less, the moving speed of the moving member 14 is hardly affected. When (the resistance force of the bearing portion) / (the frictional force of the moving member) exceeds 2, the moving speed starts decreasing, and at 2.5, the moving speed decreases to half. Furthermore, when (the resistance force of the bearing portion) / (the frictional force of the moving member) exceeds 2.5, the moving speed rapidly decreases.

(軸受け部の抵抗力)/(移動部材の摩擦力)が2.5を超えると、移動速度が半分未満に低下するだけでなく、移動部材14の移動が非常に不安定になってしまう。従って、上述の通り、振動軸13が振動中に軸受け部20からうける最大抵抗力を、移動部材14と振動軸13との間の最大摩擦力の2.5倍以下とすることで、駆動装置10の動作への影響を最小限に抑えることができる。   If (the resistance force of the bearing portion) / (the frictional force of the moving member) exceeds 2.5, not only the moving speed decreases to less than half, but also the movement of the moving member 14 becomes very unstable. Therefore, as described above, the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration is 2.5 times or less than the maximum frictional force between the moving member 14 and the vibration shaft 13. The influence on 10 operations can be minimized.

また、駆動装置10の動作への影響を更に小さくするためには、振動軸13が振動中に軸受け部20からうける最大抵抗力を、移動部材14と振動軸13との間の最大摩擦力の2倍以下とすることが特に好ましい。   Further, in order to further reduce the influence on the operation of the driving device 10, the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration is reduced by the maximum frictional force between the moving member 14 and the vibration shaft 13. It is particularly preferable to make it 2 times or less.

なお、振動軸13が振動中に軸受け部20からうける最大抵抗力を小さくするために、押さえネジ21による振動軸13の押圧力を小さくしすぎると、駆動装置10の動作中に、振動軸13の規制面131を、軸受け部20の規制面201に当接した状態に保てなくなる場合がある。振動軸13の位置精度を確保するためには、少なくとも駆動装置10の動作中に、振動軸13の規制面131を、軸受け部20の規制面201に当接した状態に保つことができるだけの力で振動軸13を軸受け部20に押圧しておくことが必要である。   If the pressing force of the vibration shaft 13 by the holding screw 21 is made too small in order to reduce the maximum resistance force that the vibration shaft 13 receives from the bearing portion 20 during vibration, the vibration shaft 13 is in operation during the operation of the drive device 10. The restriction surface 131 may not be kept in contact with the restriction surface 201 of the bearing portion 20. In order to ensure the positional accuracy of the vibration shaft 13, the force is sufficient to keep the restriction surface 131 of the vibration shaft 13 in contact with the restriction surface 201 of the bearing portion 20 at least during the operation of the driving device 10. Therefore, it is necessary to press the vibration shaft 13 against the bearing portion 20.

振動軸13の規制面131を、軸受け部20の規制面201に当接して押圧するための方法は、押さえネジ21を用いる方法に限定されるものではない。   The method for pressing the regulating surface 131 of the vibration shaft 13 in contact with the regulating surface 201 of the bearing portion 20 is not limited to the method using the holding screw 21.

図4は、軸受け部の別の例を示すA−A断面図である。図4(a)、図4(b)に示す2種類の軸受け部20a、20bは、いずれも押さえネジを用いずに、軸受け部20a、20bを構成する部材の弾性によって振動軸13を押圧している例である。このように、軸受け部20a、20bを構成する部材の弾性によって振動軸13を押圧する構成とすることで、部品点数を削減できるとともに、簡単な構成で確実に振動軸13を押圧することができるため、製造コストを抑えることができる。   FIG. 4 is an AA cross-sectional view showing another example of the bearing portion. The two types of bearing portions 20a and 20b shown in FIGS. 4 (a) and 4 (b) both press the vibration shaft 13 by the elasticity of the members constituting the bearing portions 20a and 20b without using a holding screw. This is an example. Thus, by setting it as the structure which presses the vibration shaft 13 with the elasticity of the member which comprises the bearing parts 20a and 20b, while being able to reduce a number of parts, the vibration shaft 13 can be reliably pressed with a simple structure. Therefore, manufacturing cost can be suppressed.

また、図5は、軸受け部の更に別の例を示すA−A断面図である。図5に示す軸受け部20cは、軸受け部20cと振動軸13との隙間22に発泡性樹脂が注入されている。発泡性樹脂は、注入されてから固化するまでの間に発泡によって膨張して振動軸13を押圧する。このように、発泡性樹脂によって振動軸13を押圧する構成とすることにより、軸受け部に複雑な加工を施すことなく、簡便かつ確実に振動軸13を押圧することができる。   FIG. 5 is an AA cross-sectional view showing still another example of the bearing portion. In the bearing portion 20 c shown in FIG. 5, a foamable resin is injected into the gap 22 between the bearing portion 20 c and the vibration shaft 13. The foamable resin expands by foaming from the time it is injected and solidifies, and presses the vibration shaft 13. Thus, by setting it as the structure which presses the vibration shaft 13 with foaming resin, the vibration shaft 13 can be pressed simply and reliably, without giving a complicated process to a bearing part.

発泡性樹脂に特に制限はなく、通常の手段で入手可能なものの中から、適宜選択して用いればよい。例えば、硬質発泡ウレタンなどが挙げられる。   There is no restriction | limiting in particular in foamable resin, What is necessary is just to select suitably from what can be obtained by a normal means, and to use. For example, hard foam urethane can be used.

図6は、本発明の駆動装置ユニットの別の例を示す図である。図6に示す駆動装置ユニットは、圧電素子12を有する駆動装置10aと、駆動電圧を供給して圧電素子12を伸縮させるための駆動電圧供給部15とにより構成されている。   FIG. 6 is a diagram showing another example of the drive unit according to the present invention. The drive device unit shown in FIG. 6 includes a drive device 10a having a piezoelectric element 12 and a drive voltage supply unit 15 for supplying a drive voltage to expand and contract the piezoelectric element 12.

図6に示す駆動装置10aは、図1に示した駆動装置10と異なり、振動軸13を支持するための軸受け部20を、移動部材14の可動領域の両側2カ所に有している。このように、移動部材14の可動領域の両側に軸受け部20を有することにより、振動軸13を更に安定して支持することができ、位置精度を更に向上させることができる。   Unlike the driving apparatus 10 shown in FIG. 1, the driving apparatus 10 a shown in FIG. 6 has bearing portions 20 for supporting the vibration shaft 13 at two places on both sides of the movable region of the moving member 14. Thus, by having the bearing portions 20 on both sides of the movable region of the moving member 14, the vibration shaft 13 can be supported more stably, and the positional accuracy can be further improved.

駆動装置10aのように2つの軸受け部20を有する場合、振動軸13が振動中に2つの軸受け部20からうける合計の最大抵抗力が、移動部材14と振動軸13との間の最大摩擦力の2.5倍以下となるように振動軸13を押圧すればよい。   When the two bearing portions 20 are provided as in the driving device 10 a, the total maximum resistance force received from the two bearing portions 20 during vibration of the vibration shaft 13 is the maximum frictional force between the moving member 14 and the vibration shaft 13. What is necessary is just to press the vibration shaft 13 so that it may become 2.5 times or less.

また、振動軸13の規制面131や、軸受け部20の規制面201は、それぞれ必ずしも平面である必要はなく、互いに当接して振動軸13の軸回転を規制できる形状であればよい。   In addition, the restriction surface 131 of the vibration shaft 13 and the restriction surface 201 of the bearing portion 20 do not necessarily have to be flat surfaces, as long as they are in contact with each other and can regulate the shaft rotation of the vibration shaft 13.

図7は、規制面の形状が異なる場合の軸受け部のA−A断面図を示す図である。図7(a)は、振動軸13aの規制面134が、振動軸13aの軸方向に延びた凹部135によって隔てられた2つの面からなる場合を示している。振動軸13aは、図1に示した振動軸13の規制面131の幅方向中央部に凹部135を設け、幅方向の両端部134のみが軸受け部20の規制面201に当接するように形成されている。   FIG. 7 is a cross-sectional view taken along line AA of the bearing portion when the shape of the restriction surface is different. FIG. 7A shows a case where the regulating surface 134 of the vibration shaft 13a is composed of two surfaces separated by a recess 135 extending in the axial direction of the vibration shaft 13a. The vibration shaft 13a is formed such that a concave portion 135 is provided in the center portion in the width direction of the restriction surface 131 of the vibration shaft 13 shown in FIG. 1 and only both end portions 134 in the width direction are in contact with the restriction surface 201 of the bearing portion 20. ing.

振動軸13aの規制面134を、このように形成することで、幅の広い単一の平面を規制面とする場合に比べ、軸受け部20の規制面201と当接する面が正確に定まり、より高精度に振動軸の位置決めを行うことができる。また、幅の広い単一の平面を規制面とする場合に比べて規制面の高精度加工も容易となる。   By forming the restricting surface 134 of the vibration shaft 13a in this way, the surface that contacts the restricting surface 201 of the bearing portion 20 can be accurately determined as compared with the case where a single wide plane is used as the restricting surface. The vibration shaft can be positioned with high accuracy. In addition, high-precision processing of the restriction surface is facilitated as compared with a case where a single wide plane is used as the restriction surface.

また、図7(b)は、軸受け部20dの規制面202が、振動軸の軸方向に延びた凹部203によって隔てられた2つの面からなる場合を示している。図1に示した軸受け部20の規制面201の幅方向中央部に凹部203を設け、幅方向の両端部202のみが振動軸13の規制面131に当接するように形成されている。   FIG. 7B shows a case where the restricting surface 202 of the bearing portion 20d is composed of two surfaces separated by a recess 203 extending in the axial direction of the vibration axis. A concave portion 203 is provided in the center portion in the width direction of the regulating surface 201 of the bearing portion 20 shown in FIG. 1, and only the both end portions 202 in the width direction are in contact with the regulating surface 131 of the vibration shaft 13.

この場合も、上記図7(a)の場合と同様に、より高精度に振動軸の位置決めを行うことができると共に、規制面202高精度加工も容易となる。   Also in this case, as in the case of FIG. 7A, the vibration shaft can be positioned with higher accuracy, and high-precision processing of the restriction surface 202 is facilitated.

図8は、駆動装置10の動作中における、時間と圧電素子12の変位との関係を示す図である。上述したように、本発明の駆動装置は、圧電素子12をゆっくり伸ばして急速に縮める動作(又は、圧電素子12を急速に伸ばしてゆっくり縮める動作)ことにより移動部材14を振動軸13に沿って移動させる。   FIG. 8 is a diagram illustrating a relationship between time and displacement of the piezoelectric element 12 during the operation of the driving device 10. As described above, the driving device according to the present invention causes the moving member 14 to move along the vibration axis 13 by the operation of extending the piezoelectric element 12 slowly and contracting it quickly (or the operation of extending the piezoelectric element 12 rapidly and contracting it slowly). Move.

そのため、駆動装置10を動作させるためには、図8に示すように、圧電素子12を鋸歯状に変位させる必要がある。本発明の駆動装置ユニットに用いる駆動電圧供給部15は、圧電素子12に駆動電圧を供給して、圧電素子12をこのような鋸歯状に変位させるためのものである。   Therefore, in order to operate the drive device 10, it is necessary to displace the piezoelectric element 12 in a sawtooth shape as shown in FIG. The drive voltage supply unit 15 used in the drive unit of the present invention is for supplying a drive voltage to the piezoelectric element 12 and displacing the piezoelectric element 12 in such a sawtooth shape.

圧電素子12を鋸歯状に変位させるためには、同じく鋸歯状の駆動電圧を圧電素子12に供給すればよい。また、圧電素子12に供給される電圧の周波数が高くなると供給される電圧波形と変位波形が一致しなくなる現象が見られる。このような現象を利用することで、矩形波の駆動電圧によって鋸歯状の変位を発生させることもできる。駆動電圧を矩形波とする方法を用いれば、駆動電圧供給部15の回路構成を簡素化することができるため特に好ましい。矩形波の駆動電圧によって、圧電素子12に鋸歯状の変位を発生させる方法については、特開2004−104919号公報に記載の方法を用いることもできる。   In order to displace the piezoelectric element 12 in a sawtooth shape, a similar sawtooth drive voltage may be supplied to the piezoelectric element 12. In addition, when the frequency of the voltage supplied to the piezoelectric element 12 is increased, a phenomenon in which the supplied voltage waveform and the displacement waveform do not coincide with each other is observed. By utilizing such a phenomenon, a sawtooth-shaped displacement can be generated by a rectangular wave driving voltage. It is particularly preferable to use a method in which the drive voltage is a rectangular wave because the circuit configuration of the drive voltage supply unit 15 can be simplified. As a method of generating a sawtooth-like displacement in the piezoelectric element 12 by a rectangular wave driving voltage, a method described in Japanese Patent Application Laid-Open No. 2004-104919 can be used.

なお、本実施形態においては振動軸13が圧電素子12に接しているが、圧電素子12の伸縮が振動軸の振動に連動していれば、振動軸13が圧電素子12に直接接している必要はない。   In this embodiment, the vibration shaft 13 is in contact with the piezoelectric element 12. However, if the expansion and contraction of the piezoelectric element 12 is interlocked with the vibration of the vibration shaft, the vibration shaft 13 needs to be in direct contact with the piezoelectric element 12. There is no.

本発明の駆動装置ユニットの例を示す図である。It is a figure which shows the example of the drive device unit of this invention. 駆動装置10の軸受け部20のA−A断面図である。FIG. 3 is a cross-sectional view of the bearing portion 20 of the driving device 10 taken along the line AA. 振動軸13が軸受け部20からうける最大抵抗力を変化させた際の、移動部材14の速度の変化を示すグラフである。4 is a graph showing a change in speed of a moving member 14 when a vibration shaft 13 changes a maximum resistance force received from a bearing portion 20. 軸受け部の別の例を示すA−A断面図である。It is AA sectional drawing which shows another example of a bearing part. 軸受け部の更に別の例を示すA−A断面図である。It is AA sectional drawing which shows another example of a bearing part. 本発明の駆動装置ユニットの別の例を示す図である。It is a figure which shows another example of the drive device unit of this invention. 規制面の形状が異なる場合の軸受け部のA−A断面図を示す図である。It is a figure which shows the AA sectional drawing of the bearing part in case the shape of a control surface differs. 時間と圧電素子12の変位との関係を示す図である。It is a figure which shows the relationship between time and the displacement of the piezoelectric element. SIDM方式の駆動装置の駆動原理を示す模式図である。It is a schematic diagram which shows the drive principle of the drive apparatus of a SIDM system. SIDM方式を用いた従来の駆動装置50の例を示す図である。It is a figure which shows the example of the conventional drive device 50 using a SIDM system.

符号の説明Explanation of symbols

10、10a 駆動装置
12 圧電素子(電気機械変換素子)
13、13a 振動軸
14 移動部材
15 駆動電圧供給部
20、20a、20b、20c、20d 軸受け部
22 発泡性樹脂
131、134 振動軸の規制面
135 振動軸の凹部
201、202 軸受け部の規制面
203 軸受け部の凹部
10, 10a Drive device 12 Piezoelectric element (electromechanical transducer)
DESCRIPTION OF SYMBOLS 13, 13a Vibration shaft 14 Moving member 15 Drive voltage supply part 20, 20a, 20b, 20c, 20d Bearing part 22 Foamable resin 131, 134 Restriction surface of vibration shaft 135 Recessed part of vibration shaft 201, 202 Restriction surface 203 of bearing part Concave part of bearing

Claims (6)

駆動電圧に応じて伸縮する電気機械変換素子と、
前記電気機械変換素子に接続され、該電気機械変換素子の伸縮によって軸方向に振動する振動軸と、
前記振動軸に摩擦保持された移動部材と、
前記振動軸を支持する軸受け部と、を備え、
前記振動軸の振動によって、前記移動部材を前記振動軸に沿って軸方向に移動させる駆動装置において、
前記振動軸と前記軸受け部は、互いに当接して該振動軸の軸回転を規制するための規制面をそれぞれ有し、
前記振動軸の前記規制面は、前記軸受け部の前記規制面に当接して押圧されており、
前記振動軸が振動中に前記軸受け部からうける最大抵抗力が、前記移動部材と前記振動軸との間の最大摩擦力の2.5倍以下であることを特徴とする駆動装置。
An electromechanical transducer that expands and contracts according to the drive voltage;
A vibration shaft that is connected to the electromechanical transducer and vibrates in an axial direction by expansion and contraction of the electromechanical transducer;
A moving member frictionally held on the vibration shaft;
A bearing portion for supporting the vibration shaft,
In the drive device that moves the moving member in the axial direction along the vibration axis by the vibration of the vibration shaft,
The vibration shaft and the bearing portion each have a regulating surface for abutting each other to regulate the shaft rotation of the vibration shaft,
The restriction surface of the vibration shaft is pressed in contact with the restriction surface of the bearing portion,
The drive device according to claim 1, wherein a maximum resistance force received from the bearing portion during vibration of the vibration shaft is 2.5 times or less of a maximum friction force between the moving member and the vibration shaft.
前記振動軸の前記規制面は、前記軸受け部を構成する部材の弾性によって前記軸受け部の前記規制面に押圧されていることを特徴とする請求項1に記載の駆動装置。   The drive device according to claim 1, wherein the restriction surface of the vibration shaft is pressed against the restriction surface of the bearing portion by elasticity of a member constituting the bearing portion. 前記振動軸の前記規制面は、前記軸受け部と前記振動軸との隙間に注入された発泡性樹脂により前記軸受け部の前記規制面に押圧されていることを特徴とする請求項1に記載の駆動装置。   The said restriction surface of the said vibration shaft is pressed by the said restriction surface of the said bearing part with the foamable resin inject | poured into the clearance gap between the said bearing part and the said vibration shaft. Drive device. 前記振動軸の前記規制面は、該振動軸の軸方向に延びた凹部によって隔てられた2つの面からなることを特徴とする請求項1乃至3の何れか1項に記載の駆動装置。   The drive device according to any one of claims 1 to 3, wherein the restriction surface of the vibration shaft includes two surfaces separated by a recess extending in an axial direction of the vibration shaft. 前記軸受け部の前記規制面は、前記振動軸の軸方向に延びた凹部によって隔てられた2つの面からなることを特徴とする請求項1乃至4の何れか1項の記載の駆動装置。   5. The driving device according to claim 1, wherein the restriction surface of the bearing portion includes two surfaces separated by a concave portion extending in an axial direction of the vibration shaft. 請求項1乃至5の何れか1項に記載の駆動装置と、
前記電気機械変換素子に駆動電圧を供給して、該電気機械変換素子を伸縮させるための駆動電圧供給部と、を有することを特徴とする駆動装置ユニット。
A driving device according to any one of claims 1 to 5,
And a drive voltage supply unit configured to supply a drive voltage to the electromechanical transducer and expand and contract the electromechanical transducer.
JP2007151464A 2007-06-07 2007-06-07 DRIVE DEVICE AND DRIVE DEVICE UNIT Expired - Fee Related JP4982795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151464A JP4982795B2 (en) 2007-06-07 2007-06-07 DRIVE DEVICE AND DRIVE DEVICE UNIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151464A JP4982795B2 (en) 2007-06-07 2007-06-07 DRIVE DEVICE AND DRIVE DEVICE UNIT

Publications (2)

Publication Number Publication Date
JP2008306841A true JP2008306841A (en) 2008-12-18
JP4982795B2 JP4982795B2 (en) 2012-07-25

Family

ID=40235048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151464A Expired - Fee Related JP4982795B2 (en) 2007-06-07 2007-06-07 DRIVE DEVICE AND DRIVE DEVICE UNIT

Country Status (1)

Country Link
JP (1) JP4982795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060048A1 (en) * 2010-11-04 2012-05-10 コニカミノルタオプト株式会社 Drive device and equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787765A (en) * 1993-09-18 1995-03-31 Omron Corp Spherical actuator and its assembling method
JPH0984366A (en) * 1995-09-18 1997-03-28 Olympus Optical Co Ltd Piezoelectric actuator
JPH1118447A (en) * 1997-06-24 1999-01-22 Minolta Co Ltd Drive device using electrical mechanical sensing element
JP2000050657A (en) * 1998-07-28 2000-02-18 Minolta Co Ltd Actuator using electromechanical conversion element
JP2001076443A (en) * 1999-09-06 2001-03-23 Minolta Co Ltd Driving device using electro-mechanical conversion element
JP2004153999A (en) * 2004-01-21 2004-05-27 Olympus Corp Piezoelectric actuator
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2006038044A (en) * 2004-07-23 2006-02-09 Yazaki Corp Linear motion actuator and sliding cabling device equipped therewith
JP2009514501A (en) * 2005-11-01 2009-04-02 ピエゾモーター ウプサラ エイビー Robust electromechanical motor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787765A (en) * 1993-09-18 1995-03-31 Omron Corp Spherical actuator and its assembling method
JPH0984366A (en) * 1995-09-18 1997-03-28 Olympus Optical Co Ltd Piezoelectric actuator
JPH1118447A (en) * 1997-06-24 1999-01-22 Minolta Co Ltd Drive device using electrical mechanical sensing element
JP2000050657A (en) * 1998-07-28 2000-02-18 Minolta Co Ltd Actuator using electromechanical conversion element
JP2001076443A (en) * 1999-09-06 2001-03-23 Minolta Co Ltd Driving device using electro-mechanical conversion element
JP2004281666A (en) * 2003-03-14 2004-10-07 Ritsumeikan Thermoelectric converter device
JP2004153999A (en) * 2004-01-21 2004-05-27 Olympus Corp Piezoelectric actuator
JP2006038044A (en) * 2004-07-23 2006-02-09 Yazaki Corp Linear motion actuator and sliding cabling device equipped therewith
JP2009514501A (en) * 2005-11-01 2009-04-02 ピエゾモーター ウプサラ エイビー Robust electromechanical motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060048A1 (en) * 2010-11-04 2012-05-10 コニカミノルタオプト株式会社 Drive device and equipment

Also Published As

Publication number Publication date
JP4982795B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP5124920B2 (en) Drive device
JP4395052B2 (en) Drive device
US7199506B2 (en) Piezoelectric actuator for driving lens
JP2009142014A (en) Ultrasonic motor
JP2007104761A (en) Actuator
WO2011011355A1 (en) Methods for controlling velocity of at least partially resonant actuators systems and systems thereof
JP2009025403A (en) Drive device and method of manufacturing the same
US20080297002A1 (en) Friction drive actuator and hard disk device using such actuator
JP6257224B2 (en) Motor and lens device
JP2007325466A (en) Driving apparatus
CN113950795A (en) Inertial drive motor and method for controlling the same
JP4982795B2 (en) DRIVE DEVICE AND DRIVE DEVICE UNIT
JP2006311794A (en) Driving device
JP6269223B2 (en) Piezoelectric motor
US8803986B2 (en) Vibration actuator, and lens barrel and camera provided with the vibration actuator
JP2005354866A (en) Actuator
JP4804037B2 (en) Impact drive actuator
WO2010032826A1 (en) Apparatus for supporting vibration actuator
JP2009025407A (en) Drive device
JP2004242493A (en) Piezoelectric actuator and electronic device using the same
JP6269224B2 (en) Piezoelectric motor
JP7134817B2 (en) Oscillating wave motor and lens driving device
JP7264601B2 (en) lens driver
JPH07308083A (en) Traveling mechanism and its driving
JP6562785B2 (en) DRIVE DEVICE, ITS CONTROL METHOD, AND CONTROL PROGRAM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees