JP2008305608A - Electrode for lithium secondary battery and its manufacturing method - Google Patents

Electrode for lithium secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2008305608A
JP2008305608A JP2007150162A JP2007150162A JP2008305608A JP 2008305608 A JP2008305608 A JP 2008305608A JP 2007150162 A JP2007150162 A JP 2007150162A JP 2007150162 A JP2007150162 A JP 2007150162A JP 2008305608 A JP2008305608 A JP 2008305608A
Authority
JP
Japan
Prior art keywords
electrode
active material
electrode active
material layer
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007150162A
Other languages
Japanese (ja)
Other versions
JP5152743B2 (en
JP2008305608A5 (en
Inventor
Tetsuo Sakai
哲男 境
Yukio Yamakawa
幸雄 山川
Hitoshi Wada
仁 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HONJIYOU KINZOKU KK
HONSHU KINZOKU KK
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
HONJIYOU KINZOKU KK
HONSHU KINZOKU KK
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HONJIYOU KINZOKU KK, HONSHU KINZOKU KK, Fukuda Metal Foil and Powder Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical HONJIYOU KINZOKU KK
Priority to JP2007150162A priority Critical patent/JP5152743B2/en
Publication of JP2008305608A publication Critical patent/JP2008305608A/en
Publication of JP2008305608A5 publication Critical patent/JP2008305608A5/ja
Application granted granted Critical
Publication of JP5152743B2 publication Critical patent/JP5152743B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery excellent in charge/discharge characteristic. <P>SOLUTION: In the electrode for the secondary battery in which an electrode active material layer is laminated on a substrate by an aerosol deposition method, (1) the substrate contains at least one kind selected from a group comprising Cu, Ni and Fe, (2) an average thickness of the substrate is 5-40 μm, (3) the electrode active material is composite powder comprising an A component which is at least one kind selected from a group comprising Si and Sn and a B component which is at least one kind selected from a group comprising V, Fe, Co, Ni, Cu, Ag and Sb, (4) the laminated amount of the electrode active material is 5-15 mg/cm<SP>2</SP>, and (5) the porosity of the electrode active material is 20-50%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規なリチウム二次電池用電極及びその製造方法に関する。   The present invention relates to a novel electrode for a lithium secondary battery and a method for producing the same.

リチウムイオン電池、リチウムポリマー電池等のリチウム二次電池は、高いエネルギー密度を有しており、近年、移動体通信機器、携帯用電子機器等の主電源として利用が拡大している。   Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a high energy density, and in recent years, their use is expanding as main power sources for mobile communication devices, portable electronic devices and the like.

リチウム二次電池の負極材料としては、従来、黒鉛、結晶化度の低い炭素等の各種炭素材料が広く用いられている。しかしながら、炭素材料だけを用いる場合には、使用可能な電流密度が低く、理論容量(放電容量)も不十分である。例えば、負極材料として炭素材料の一つである黒鉛だけを用いた場合には、理論容量が372mAh/gと少ないため、より一層の高容量化が望まれている。   Conventionally, various carbon materials such as graphite and carbon having a low crystallinity have been widely used as negative electrode materials for lithium secondary batteries. However, when only a carbon material is used, the usable current density is low and the theoretical capacity (discharge capacity) is also insufficient. For example, when only the graphite, which is one of the carbon materials, is used as the negative electrode material, the theoretical capacity is as low as 372 mAh / g, and thus further increase in capacity is desired.

これに対し、リチウム金属を負極材料とする場合には、高い理論容量が得られることが知られている。しかしながら、リチウム金属を用いる場合には、充電時に負極にデンドライトが析出するため、充放電を繰り返すことによりデンドライトが正極側に達して、内部短絡が起きる問題がある。また、デンドライトは比表面積が大きいために反応活性度が高く、その表面に溶媒の分解生成物からなる電子伝導性のない界面皮膜が形成されることにより、内部短絡を生じる前に、電池の内部抵抗が高くなって充放電効率の低下が生じる。これらの理由により、負極材料にリチウム金属を用いるリチウム二次電池は、サイクル寿命が短いという問題が生じ、広く実用化される段階には達していない。   On the other hand, it is known that a high theoretical capacity can be obtained when lithium metal is used as the negative electrode material. However, when lithium metal is used, dendrites are deposited on the negative electrode during charging, and therefore, there is a problem that dendrites reach the positive electrode side by repeating charge and discharge, causing an internal short circuit. In addition, dendrites have a high reaction activity due to their large specific surface area, and a non-electron-conducting interface film consisting of decomposition products of the solvent is formed on the surface of the dendrite before the internal short circuit occurs. The resistance increases and the charge / discharge efficiency decreases. For these reasons, a lithium secondary battery using lithium metal as a negative electrode material has a problem of short cycle life, and has not yet reached a stage where it is widely put into practical use.

従って、汎用の炭素材料よりも放電容量の大きい物質であり、リチウム金属以外の材料からなるリチウム二次電池用負極材料の開発が望まれている。例えば、Si、Sn等の元素、これらの窒化物、酸化物等は、リチウムと合金を形成してリチウムを吸蔵することができ、その吸蔵量は炭素材料よりはるかに大きいため、これらの物質を含有する負極材料の開発がすすんでいる。   Therefore, development of a negative electrode material for a lithium secondary battery, which is a substance having a discharge capacity larger than that of a general-purpose carbon material and made of a material other than lithium metal, is desired. For example, elements such as Si and Sn, nitrides and oxides thereof can form an alloy with lithium and occlude lithium, and the occlusion amount is much larger than that of carbon materials. The development of negative electrode materials is progressing.

しかしながら、これらの物質を含有する負極材料には、充放電サイクルを繰り返すうちに、リチウムの吸蔵・放出に伴って電極の大きな膨張・収縮が生じ、電極自体が瓦解するおそれがあることが指摘されている。   However, it has been pointed out that the negative electrode material containing these substances may cause large expansion / contraction of the electrode as lithium is absorbed and released during repeated charge / discharge cycles, and the electrode itself may be broken down. ing.

更に、従来電極の炭素材料との比較で大きな初期不可逆容量を有しているため、充放電効率が100%近くにならず、サイクル劣化が大きくなる問題が生じる。   Furthermore, since it has a large initial irreversible capacity as compared with the carbon material of the conventional electrode, the charge / discharge efficiency does not become close to 100%, resulting in a problem that the cycle deterioration becomes large.

上記問題を解決するために、近年、リチウムと合金を形成可能な金属元素又は半金属元素の単体,合金又は化合物よりなり、連続する固体内に空孔を有する多孔体を含んで構成されている負極電極が提案されている。この負極電極は、リチウムを吸蔵・放出する際に崩壊しにくいため、優れた充放電サイクル特性が得られるとされている(特許文献1)。   In order to solve the above problems, a metal element or a metalloid element capable of forming an alloy with lithium or a single metal element, an alloy or a compound is formed in recent years, and includes a porous body having pores in a continuous solid. A negative electrode has been proposed. Since this negative electrode is difficult to collapse when inserting and extracting lithium, it is said that excellent charge / discharge cycle characteristics can be obtained (Patent Document 1).

また、負極活物質の粒子の表面に導電性物質膜がコーティングされた負極用粒子を、搬送ガスにより搬送して負極基材に高速で吹き付けた後、熱処理或いは還元処理することにより、負極基材上に間隙を有する負極活物質膜を形成して製造した負極電極が提案されている。この負極電極は、優れた充放電サイクル特性を有し、耐久性及び出力特性の優れたリチウム電池用負極を得られるとされている(特許文献2)。
特開2004−022512号公報 特開2007−005201号公報
Further, the negative electrode particles having the surface of the particles of the negative electrode active material coated with the conductive material film are conveyed by a carrier gas and sprayed onto the negative electrode substrate at a high speed, and then subjected to heat treatment or reduction treatment to thereby obtain a negative electrode substrate. A negative electrode manufactured by forming a negative electrode active material film having a gap thereon has been proposed. This negative electrode has excellent charge / discharge cycle characteristics, and it is said that a negative electrode for a lithium battery having excellent durability and output characteristics can be obtained (Patent Document 2).
JP 2004-022512 A JP 2007-005201 A

しかしながら、引用文献1の負極電極は、発泡ウレタンの触媒化・除去等の工程を必要とするため、製造が複雑であり、製造コストが大きくなる問題がある。   However, since the negative electrode of the cited document 1 requires steps such as catalytic conversion / removal of foamed urethane, there is a problem that the production is complicated and the production cost is increased.

引用文献2の製造方法においても、負極活物質の粒子表面に導電性物質膜をコーティングすることは複雑であり、製造コストが大きくなる問題がある。また、負極用粒子を搬送ガスにより負極基材に高速で吹き付けるため、基材を損傷させる問題がある。さらには、400〜550度の加熱温度で加熱処理するため、基材の強度を低下させる問題もある。   Also in the manufacturing method of the cited document 2, it is complicated to coat the conductive material film on the particle surface of the negative electrode active material, and there is a problem that the manufacturing cost increases. Moreover, since the negative electrode particles are sprayed onto the negative electrode substrate at high speed by the carrier gas, there is a problem that the substrate is damaged. Furthermore, since it heat-processes at the heating temperature of 400-550 degree | times, there also exists a problem which reduces the intensity | strength of a base material.

従って、簡易な方法により、優れた充放電サイクル等の良好な電池性能を発揮するリチウム二次電池用負極の製造方法が求められている。   Therefore, there is a demand for a method for producing a negative electrode for a lithium secondary battery that exhibits good battery performance such as an excellent charge / discharge cycle by a simple method.

本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の工程を得るにより上記目的を達成できることを見出し、本発明を完成するに至った。すなわち、本発明は、下記のリチウム二次電池用電極の製造方法、さらには、その製造方法により製造されるリチウム二次電池用電極に関する。   As a result of intensive studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by obtaining a specific process, and has completed the present invention. That is, this invention relates to the electrode for lithium secondary batteries manufactured by the manufacturing method of the following lithium secondary battery electrode, and the manufacturing method.

項1.エアロゾルデポジション法により基材上に電極活物質層が積層された二次電池用電極であって、
(1)前記基材は、Cu、Ni及びFeからなる群から選択される少なくとも1種を含み、
(2)前記基材の平均厚さは、5μm〜40μmであり、
(3)前記電極活物質層は、Si及びSnからなる群から選ばれる少なくとも1種であるA成分、並びにV、Fe、Co、Ni、Cu、Ag及びSbからなる群から選ばれる少なくとも1種であるB成分から構成される複合粉末からなり、
(4)前記電極活物質層の積層量は、5〜15mg/cmであり、
(5)前記電極活物質層の多孔度は、20〜50%である、
ことを特徴とする電極。
Item 1. An electrode for a secondary battery in which an electrode active material layer is laminated on a substrate by an aerosol deposition method,
(1) The base material includes at least one selected from the group consisting of Cu, Ni and Fe,
(2) The average thickness of the substrate is 5 μm to 40 μm,
(3) The electrode active material layer is at least one selected from the group consisting of A, which is at least one selected from the group consisting of Si and Sn, and V, Fe, Co, Ni, Cu, Ag and Sb. Consisting of a composite powder composed of B component,
(4) The lamination amount of the electrode active material layer is 5 to 15 mg / cm 2 .
(5) The porosity of the electrode active material layer is 20 to 50%.
An electrode characterized by that.

項2.前記複合粉末の一次粒子径が10nm〜300nmであって、平均二次粒子径が1μm〜10μmである、項1に記載の電極。   Item 2. Item 2. The electrode according to Item 1, wherein the composite powder has a primary particle size of 10 nm to 300 nm and an average secondary particle size of 1 μm to 10 μm.

項3.電極活物質層上に、さらにリチウム層を有する、項1又は2に記載の電極。   Item 3. Item 3. The electrode according to Item 1 or 2, further comprising a lithium layer on the electrode active material layer.

項4.リチウム層の積層量が、前記電極活物質層の初期不可逆容量分の80〜120%に相当する、項3に記載の電極。   Item 4. Item 4. The electrode according to Item 3, wherein the stacking amount of the lithium layer corresponds to 80 to 120% of the initial irreversible capacity of the electrode active material layer.

項5.電極活物質層を基材上に積層させることにより、リチウム二次電池用電極を製造する方法であって、
(1)Si及びSnからなる群から選ばれる少なくとも1種であるA成分と(2)V、Fe、Co、Ni、Cu、Ag及びSbなる群から選ばれる少なくとも1種であるB成分とから構成される複合粉末を、Cu、Ni及びFeからなる群から選択される少なくとも1種を含有し、平均厚さが5μm〜40μmである基材に、エアロゾルデポジション法により、積層させる工程、を備えた製造方法。
Item 5. A method for producing an electrode for a lithium secondary battery by laminating an electrode active material layer on a substrate,
(1) From an A component which is at least one selected from the group consisting of Si and Sn and (2) a B component which is at least one selected from the group consisting of V, Fe, Co, Ni, Cu, Ag and Sb A step of laminating the composed composite powder on a substrate containing at least one selected from the group consisting of Cu, Ni and Fe and having an average thickness of 5 μm to 40 μm by an aerosol deposition method; Manufacturing method provided.

項6.前記複合粉末の一次粒子径が10nm〜300nmであって、平均二次粒子径が1μm〜10μmである、項5に記載の製造方法。   Item 6. Item 6. The production method according to Item 5, wherein the composite powder has a primary particle size of 10 nm to 300 nm and an average secondary particle size of 1 µm to 10 µm.

項7.成膜室とエアロゾル室との圧力差が20kPa〜70kPaである条件下で、エアロゾルデポジション法を行う、請求項5又は6に記載の製造方法。   Item 7. The manufacturing method of Claim 5 or 6 which performs the aerosol deposition method on the conditions whose pressure difference of a film-forming chamber and an aerosol chamber is 20 kPa-70 kPa.

項8.前記複合粉末を搬送するガスがAr及びNからなる群から選択される少なくとも1種である、項5〜7のいずれかに記載の製造方法。 Item 8. The gas for transporting the composite powder is at least one selected from the group consisting of Ar and N 2, the manufacturing method according to any one of Items 5-7.

項9.電極活物質層表面にリチウム層を積層させる工程を更に含む、項5〜8のいずれかに記載の製造方法。   Item 9. Item 9. The method according to any one of Items 5 to 8, further comprising a step of laminating a lithium layer on the surface of the electrode active material layer.

項10.前記積層させる工程が、電極物質表面にリチウム層を圧着した後、90〜180℃にて加熱処理する工程である、項9に記載の製造方法。   Item 10. Item 10. The manufacturing method according to Item 9, wherein the laminating step is a step of heat-treating at 90 to 180 ° C after the lithium layer is pressure-bonded to the electrode material surface.

本発明は、エアロゾルデポジション法により基材上に電極活物質層が積層された二次電池用電極であって、(1)前記基材は、Cu、Ni及びFeからなる群から選択される少なくとも1種を含み、(2)前記基材の厚さは、5μm〜40μmであり、(3)前記電極活物質層は、Si及びSnからなる群から選ばれる少なくとも1種の元素であるA成分、並びにV、Fe、Co、Ni、Cu、Ag及びSbからなる群から選ばれる少なくとも1種の元素であるB成分から構成される複合粉末からなり、(4)前記電極活物質層の積層量は、5〜15mg/cmであり、(5)前記電極活物質層の多孔度は、20〜50%である、ことを特徴とする。 The present invention is an electrode for a secondary battery in which an electrode active material layer is laminated on a base material by an aerosol deposition method. (1) The base material is selected from the group consisting of Cu, Ni and Fe. (2) The thickness of the substrate is 5 μm to 40 μm, and (3) the electrode active material layer is at least one element selected from the group consisting of Si and Sn. A composite powder comprising a component and a B component which is at least one element selected from the group consisting of V, Fe, Co, Ni, Cu, Ag and Sb, and (4) Lamination of the electrode active material layer The amount is 5 to 15 mg / cm 2 , and (5) the porosity of the electrode active material layer is 20 to 50%.

本発明はエアロゾルデポジション法により基材上に電極活物質層が積層されていることを特徴とする。これにより、電極活物質層と基材との密着性が優れ、かつサイクル特性が良好なアルカリ二次電池用電極として機能することができる。これは、エアロゾルデポジション法により電極活物質層を積層させることにより、当該電極活物質層が、(1)当該電極活物質層を構成する複合粉末同士、及び複合粉末と基材とが、バインダーを介さず、それぞれ直接的に強固に結合する構造であって、(2)複合粉末が無秩序に配置し、所定の空隙が電極活物質層内に形成した構造(ポーラス構造)をとること等に起因するものと推察される。   The present invention is characterized in that an electrode active material layer is laminated on a substrate by an aerosol deposition method. Thereby, the adhesiveness of an electrode active material layer and a base material is excellent, and it can function as an electrode for alkaline secondary batteries with favorable cycling characteristics. This is because the electrode active material layer is laminated by the aerosol deposition method, so that the electrode active material layer becomes (1) the composite powders constituting the electrode active material layer, and the composite powder and the base material are binders. (2) the composite powder is randomly arranged and a predetermined void is formed in the electrode active material layer (porous structure), etc. It is presumed to be caused.

基材は、Cu、Ni及びFeからなる群から選択される少なくとも1種を含んでいる限り限定的でない。例えば、Cu、Ni又はFeの単独元素から構成されていてもよいし、これらのうち少なくとも2種類以上からなる合金、これらのうち少なくとも1種類と他の元素との合金であってもよい。この中でも、特にCuが好ましい。これにより、負極基材として使用した場合、充放電反応時に溶解しにくく、また、優れた導電性を発揮することができる。   The base material is not limited as long as it contains at least one selected from the group consisting of Cu, Ni and Fe. For example, it may be composed of a single element of Cu, Ni, or Fe, an alloy composed of at least two of these, or an alloy of at least one of these and another element. Among these, Cu is particularly preferable. Thereby, when it uses as a negative electrode base material, it is hard to melt | dissolve at the time of charging / discharging reaction, and can demonstrate the outstanding electroconductivity.

基材の表面粗度も特に限定されず、例えば、公知の平滑な圧延銅箔、粗面及び平滑面を有する電解銅箔等のいずれも用いることができる。特に本発明では、基材表面が平滑であることが好ましい。例えば、公知の圧延処理、電解平滑処理等により、平滑にすればよい。   The surface roughness of the substrate is not particularly limited, and any of known smooth rolled copper foil, electrolytic copper foil having a rough surface and a smooth surface, and the like can be used. In particular, in the present invention, the substrate surface is preferably smooth. For example, it may be smoothed by a known rolling process, electrolytic smoothing process, or the like.

基材の平均厚さは、5μm〜40μmである、好ましくは10μm〜35μm程度である。平均厚さが5μm未満であると、基材の変形、しわが大きくなるおそれがある。平均厚さが40μmを超えると、電極を曲げ加工する際に基材の剛性が大きくなるため電極活物質層が脱落したり、電極全体の厚みが大きくなり電池設計上電池自体の容量が低下してしまい、合金系電極の利点となる電池のコンパクト化が達成できなくなる。本発明における平均厚さとは、デジマチィクマイクロメーターにより測定されるものである。   The average thickness of the base material is 5 μm to 40 μm, preferably about 10 μm to 35 μm. If the average thickness is less than 5 μm, the deformation and wrinkle of the substrate may be increased. When the average thickness exceeds 40 μm, the rigidity of the base material increases when the electrode is bent, so that the electrode active material layer falls off or the entire electrode thickness increases, and the capacity of the battery itself decreases due to battery design. As a result, it becomes impossible to achieve a compact battery, which is an advantage of the alloy-based electrode. The average thickness in the present invention is measured by a digitalmatic micrometer.

電極活物質層は、(1)Si及びSnからなる群から選ばれる少なくとも1種の元素であるA成分、並びに(2)V、Fe、Co、Ni、Cu、Ag及びSbからなる群から選ばれる少なくとも1種の元素であるB成分、から構成される複合粉末からなる。   The electrode active material layer is selected from (1) an A component which is at least one element selected from the group consisting of Si and Sn, and (2) a group consisting of V, Fe, Co, Ni, Cu, Ag and Sb. It is composed of a composite powder composed of a B component which is at least one element.

A成分とB成分との割合は限定的でないが、両者の合計量を100原子%として、A成分30〜70原子%程度とB成分70〜30原子%程度とすることが好ましく、より好ましくはA成分40〜60原子%程度とB成分60〜40原子%程度である。   Although the ratio of the A component and the B component is not limited, it is preferable that the total amount of both is 100 atomic%, and the A component is about 30 to 70 atomic% and the B component is about 70 to 30 atomic%, more preferably. The A component is about 40 to 60 atomic% and the B component is about 60 to 40 atomic%.

A成分とB成分との好ましい組合せとしては、例えば、Sn−Cu、Sn−V、Sn−Fe、Sn−Co、Sn−Ag、Sn−Sb等が挙げられる。   Preferable combinations of the A component and the B component include, for example, Sn—Cu, Sn—V, Sn—Fe, Sn—Co, Sn—Ag, Sn—Sb and the like.

電極活物質層を構成する複合粉末は、一次粒子径が10nm〜300nmであって、二次凝集物の平均粒子径(平均二次粒子径)が1μm〜10μmであることが好ましく、より好ましくは2μm〜8μmである。   The composite powder constituting the electrode active material layer preferably has a primary particle size of 10 nm to 300 nm, and an average particle size (average secondary particle size) of secondary aggregates of 1 μm to 10 μm, more preferably. 2 μm to 8 μm.

特に、複合粉末の一次粒子径は、実質的に10nm〜300nmの範囲にあることが好ましい。具体的には、全一次粒子のうち、90%以上の一次粒子が10nm〜300nmの範囲であることが好ましい。   In particular, the primary particle size of the composite powder is preferably substantially in the range of 10 nm to 300 nm. Specifically, 90% or more of the primary particles are preferably in the range of 10 nm to 300 nm among all the primary particles.

このような複合粉末として、例えば、後述するメカニカルアロイング法等によって製造されたものを使用することが好ましい。   As such a composite powder, for example, it is preferable to use a powder produced by a mechanical alloying method described later.

本発明において、一次粒子径は、透過型電子顕微鏡による目視観察によって測定される値である。平均二次粒子径は、例えば、レーザー回折法により、レーザー回折装置(島津製作所製、「SALD−3000」)を用いて求められる値である。   In the present invention, the primary particle diameter is a value measured by visual observation with a transmission electron microscope. The average secondary particle diameter is, for example, a value obtained by a laser diffraction method using a laser diffraction apparatus (manufactured by Shimadzu Corporation, “SALD-3000”).

基材上に積層されている電極活物質層の積層量(質量)は、通常5〜15mg/cm程度、好ましくは6〜12mg/cm程度である。5mg/cmを下回ると、電池に必要な容量が得られない。一方、15mg/cmを上回ると、電極活物質層と基材との層間剥離が生じやすくなる。 The lamination amount (mass) of the electrode active material layer laminated on the substrate is usually about 5 to 15 mg / cm 2 , preferably about 6 to 12 mg / cm 2 . If it is less than 5 mg / cm 2 , the capacity required for the battery cannot be obtained. On the other hand, when it exceeds 15 mg / cm 2 , delamination between the electrode active material layer and the substrate tends to occur.

電極活物質層の平均厚みは限定的でないが、通常10μm〜40μm程度、好ましくは13μm〜30μm程度とすればよい。   The average thickness of the electrode active material layer is not limited, but is usually about 10 μm to 40 μm, preferably about 13 μm to 30 μm.

電極活物質層の多孔度は、20〜50%程度である。好ましくは30〜50%である。20%未満であると、充放電時の電極の体積変化が大きくなり、サイクル特性の劣化が大きくなる。一方、50%を超えると、電極全体の厚みが大きくなり電池設計上電池自体の容量が低下してしまい、合金系電極の利点となる電池のコンパクト化が達成できなくなる。   The porosity of the electrode active material layer is about 20 to 50%. Preferably it is 30 to 50%. If it is less than 20%, the volume change of the electrode at the time of charge / discharge increases, and the deterioration of the cycle characteristics increases. On the other hand, if it exceeds 50%, the thickness of the entire electrode increases, and the capacity of the battery itself decreases due to the battery design, and it becomes impossible to achieve the compactness of the battery, which is an advantage of the alloy electrode.

本発明における多孔度とは、複合粉末(電極活物質層を構成する前の状態)の真密度とエアロゾルデポジション法により積層した電極活物質層の密度との比をいう。すなわち、下記の式(1)によって求められるものである。   The porosity in the present invention refers to the ratio between the true density of the composite powder (the state before constituting the electrode active material layer) and the density of the electrode active material layer laminated by the aerosol deposition method. That is, it is obtained by the following formula (1).

多孔度(%)=[(電極活物質層の密度)/(複合粉末の真密度)]×100 (1)   Porosity (%) = [(Density of electrode active material layer) / (True density of composite powder)] × 100 (1)

上記複合粉末の真密度は、例えば、定容積膨張法による乾式密度測定で、乾式自動密度計(島津製作所製、「アキュピック1330」)を用いて測定できる。電極活物質層の密度は、電極活物質層の質量を当該活物質層が占める体積で除した値によって求めることができる。   The true density of the composite powder can be measured, for example, by dry density measurement by a constant volume expansion method using a dry automatic densimeter (“Acupic 1330” manufactured by Shimadzu Corporation). The density of the electrode active material layer can be determined by a value obtained by dividing the mass of the electrode active material layer by the volume occupied by the active material layer.

本発明の電極には、電極活物質層上にさらにリチウム層が設けられていてもよい。これにより、より一層優れた可逆性、充放電特性及びサイクル特性を有する電極と得ることができる。   In the electrode of the present invention, a lithium layer may be further provided on the electrode active material layer. As a result, an electrode having even more excellent reversibility, charge / discharge characteristics, and cycle characteristics can be obtained.

リチウム層は、リチウム元素を含有していればよく、例えば、Li単独、LiとAl、In、Pb、Ag,Zn、Mg、Bi、Ga、Sn、Cu、Au等からなる群から選択される少なくとも1種の金属との合金又は金属化合物等が挙げられる。より具体的には、Li、99.9〜80mass%Li−0.1〜20mass%Al、99.9〜80mass%Li−0.1〜20mass%In、99.9〜80mass%Li−0.1〜20mass%Pb、99.9〜80mass%Li−0.1〜20mass%Ag、99.9〜80mass%Li−0.1〜20mass%Zn、99.9〜80mass%Li−0.1〜20mass%Mg、Li−0.1〜20mass%Bi、99.9〜80mass%Li−0.1〜20mass%Ga、99.9〜80mass%Li−0.1〜20mass%Sn、99.9〜80mass%Li−0.1〜20mass%Cu、99.9〜80mass%Li−0.1〜20mass%Au等が例示できる。   The lithium layer only needs to contain a lithium element, and is selected from the group consisting of Li alone, Li and Al, In, Pb, Ag, Zn, Mg, Bi, Ga, Sn, Cu, Au, and the like. An alloy with at least one metal or a metal compound can be used. More specifically, Li, 99.9-80 mass% Li-0.1-20 mass% Al, 99.9-80 mass% Li-0.1-20 mass% In, 99.9-80 mass% Li-0. 1-20 mass% Pb, 99.9-80 mass% Li-0.1-20 mass% Ag, 99.9-80 mass% Li-0.1-20 mass% Zn, 99.9-80 mass% Li-0.1 20 mass% Mg, Li-0.1-20 mass% Bi, 99.9-80 mass% Li-0.1-20 mass% Ga, 99.9-80 mass% Li-0.1-20 mass% Sn, 99.9- Examples thereof include 80 mass% Li-0.1 to 20 mass% Cu, 99.9 to 80 mass% Li-0.1 to 20 mass% Au, and the like.

リチウム層の積層量は、特に制限されず、電極活物質層の積層量等に応じて適宜決定すればよいが、例えば、電極活物質層の初期不可逆容量の80〜120%となるように調整すればよい。80%未満では、不可逆容量の低減量が少なくなるおそれがある。一方、120%を超えると、充電池時にリチウムが電極表面に樹枝状に析出し、短絡するおそれがある。   The stacking amount of the lithium layer is not particularly limited and may be appropriately determined according to the stacking amount of the electrode active material layer. For example, the lithium layer may be adjusted to 80 to 120% of the initial irreversible capacity of the electrode active material layer. do it. If it is less than 80%, the reduction amount of the irreversible capacity may be reduced. On the other hand, if it exceeds 120%, lithium may deposit in a dendritic shape on the electrode surface during rechargeable battery, which may cause a short circuit.

本発明のリチウム二次電池用電極は、特に負極として用いることに適している。   The electrode for a lithium secondary battery of the present invention is particularly suitable for use as a negative electrode.

本発明のリチウム二次電池は、本発明のリチウム二次電池用電極を具備していればよく、当該電極に、公知又は市販の電解液、収容容器等を組み合わせることにより作製される。また、コイン型電池、円筒型電池、角形電池等のいずれのタイプの電池であってもよい。   The lithium secondary battery of the present invention only needs to include the electrode for the lithium secondary battery of the present invention, and is produced by combining the electrode with a known or commercially available electrolytic solution, a container, or the like. Further, any type of battery such as a coin-type battery, a cylindrical battery, and a square battery may be used.

リチウム二次電池用電極の製造方法
本発明のリチウム二次電池用電極の製造方法は、(1)Si及びSnからなる群から選ばれる少なくとも1種であるA成分、並びに(2)V、Fe、Co、Ni、Cu、Ag及びSbからなる群から選ばれる少なくとも1種であるB成分から構成される複合粉末を、Cu、Ni及びFeからなる群から選択される少なくとも1種を含有し、平均厚さが5μm〜40μmである基材に、エアロゾルデポジション法により、積層させる工程を備えることを特徴とする。すなわち、本発明の製造方法は、A成分及びB成分から構成される複合粉末を、エアロデポジション法によって、特定の基材上に積層させることを特徴とする。
Method for Producing Lithium Secondary Battery Electrode The method for producing an electrode for lithium secondary battery of the present invention comprises (1) an A component that is at least one selected from the group consisting of Si and Sn, and (2) V, Fe. A composite powder composed of at least one B component selected from the group consisting of Co, Ni, Cu, Ag and Sb, containing at least one selected from the group consisting of Cu, Ni and Fe; It is characterized by comprising a step of laminating a substrate having an average thickness of 5 μm to 40 μm by an aerosol deposition method. That is, the production method of the present invention is characterized in that a composite powder composed of an A component and a B component is laminated on a specific substrate by an aero deposition method.

エアロゾルポジション法は、一般的に、微粒子等の粉末原料をガス中に分散させて、エアロゾル化したものを、基材表面に吹き付けることにより、当該基板表面に所望の膜を形成する方法である。本発明では、特に、粉末原料として上記複合粉末を用い、所望の成膜装置を用いて、基材に電極活物質層を積層させる。   In general, the aerosol position method is a method of forming a desired film on the surface of a substrate by dispersing a powder raw material such as fine particles in a gas and spraying an aerosol to the surface of a substrate. In the present invention, in particular, the composite powder is used as a powder raw material, and an electrode active material layer is laminated on a substrate using a desired film forming apparatus.

本発明に用いるエアロゾルデポジション法成膜装置を図1に例示する。この成膜装置は、材料粉末(本発明では、エアロゾルとする前の状態の複合粉末)4をキャリアガスに分散させてエアロゾル(複合粉末)5を生成するエアロゾル発生器1、エアロゾル5を搬送する搬送管8、エアロゾル5を噴射する噴射ノズル10、基材11が内蔵されている成膜室9、成膜室9を真空にするガス排気処理機構13を備えている。エアロゾル発生器1には、内部に材料粉末4を収容可能なエアロゾル室3と、このエアロゾル室に取り付けられてエアロゾル室を振動する加振装置7とが備えられている。エアロゾル室には、キャリアガスを導入するためのガスボンベからの導入管6が接続されている。導入管6の先端はエアロゾル室内部の底面より例えば10mm〜30mm程度上部に配置し、かつ材料粉末4中に埋没するようにすればよい。   An aerosol deposition method film forming apparatus used in the present invention is illustrated in FIG. This film forming apparatus conveys an aerosol generator 1 and an aerosol 5 in which a material powder (in the present invention, a composite powder in a state before being converted into an aerosol) 4 is dispersed in a carrier gas to generate an aerosol (composite powder) 5. A transport pipe 8, an injection nozzle 10 for injecting the aerosol 5, a film forming chamber 9 in which a substrate 11 is built, and a gas exhaust processing mechanism 13 for evacuating the film forming chamber 9 are provided. The aerosol generator 1 is provided with an aerosol chamber 3 in which the material powder 4 can be accommodated, and a vibration device 7 attached to the aerosol chamber and vibrating the aerosol chamber. An inlet pipe 6 from a gas cylinder for introducing a carrier gas is connected to the aerosol chamber. The leading end of the introduction tube 6 may be disposed, for example, about 10 mm to 30 mm above the bottom surface of the aerosol chamber and buried in the material powder 4.

成膜室9とエアロゾル室3との間には、ガス発生器2の発生量とガス排気処理機構13の排気量との調整によって圧力差Pが生じる。圧力差Pは、20kPa〜70kPaが好ましい。より好ましくは、35kPa〜65kPaである。この圧力差で電極活物質層を積層させることにより、得られる電極における電極活物質層と基材との密着性、及び複合粉末同士の粒子間結合を強固にできる。また、基材への負担(変形、しわの発生等)も抑制できる。20kPa未満とすると、複合粉末同士の密着性が低下して多孔度が50%を超えやすくなり、また、電極活物質層と基材との間の密着性も低下して、電極がサイクル劣化しやすくなるおそれがある。70kPaを超えると、多孔度が20体積%未満となり、従来のバインダーを用いた電極と同様に充放電時の電極の体積変化が大きくなり、サイクル特性が劣化するおそれが生じる。   A pressure difference P is generated between the film forming chamber 9 and the aerosol chamber 3 by adjusting the amount of gas generated by the gas generator 2 and the amount of exhaust of the gas exhaust processing mechanism 13. The pressure difference P is preferably 20 kPa to 70 kPa. More preferably, it is 35 kPa to 65 kPa. By laminating the electrode active material layer with this pressure difference, the adhesion between the electrode active material layer and the substrate in the obtained electrode and the interparticle bond between the composite powders can be strengthened. Moreover, the burden (deformation, generation | occurrence | production of a wrinkle etc.) to a base material can also be suppressed. If the pressure is less than 20 kPa, the adhesion between the composite powders is lowered and the porosity is likely to exceed 50%, and the adhesion between the electrode active material layer and the substrate is also lowered, resulting in cycle deterioration of the electrode. May be easier. When it exceeds 70 kPa, the porosity becomes less than 20% by volume, and the volume change of the electrode during charging / discharging becomes large as in the case of an electrode using a conventional binder, and the cycle characteristics may be deteriorated.

基材−噴射ノズルの距離12は、2mm〜30mmとすることが好ましい。2mm未満では、キャリアガスに含まれた粉末の直進性が強く、基材を破損するおそれがある。30mmを超えると、キャリアガスに含まれた粉末の直進性が弱く、成膜レートが落ちるおそれがある。   The substrate-jet nozzle distance 12 is preferably 2 mm to 30 mm. If it is less than 2 mm, the straightness of the powder contained in the carrier gas is strong and the substrate may be damaged. If it exceeds 30 mm, the straightness of the powder contained in the carrier gas is weak and the film formation rate may be lowered.

エアロゾルデポジション法に用いる材料粉末を搬送するガス(キャリアガス)は、基材の種類とその厚みに応じて適宜決定すればよいが、本発明では特にAr及びNからなる群から選択される少なくとも1種のガスが好ましい。このガスとすることにより、ガス流速を遅らせ、基材への負担を抑制することができる。また、複合粉末同士及び複合粉末と基材とをより強く密着させたり、得られる電極活物質層の多孔度の低下を抑制できる。 The gas (carrier gas) for conveying the material powder used in the aerosol deposition method may be appropriately determined according to the type of substrate and its thickness, but is selected from the group consisting of Ar and N 2 in the present invention. At least one gas is preferred. By using this gas, the gas flow rate can be delayed and the burden on the substrate can be suppressed. In addition, the composite powders and the composite powder and the substrate can be more closely adhered to each other, and the decrease in the porosity of the obtained electrode active material layer can be suppressed.

エアロゾルデポジション法に行う際の温度(成膜室内の温度)は、室温程度とすればよく、具体的には、15〜50℃程度、好ましくは20〜40℃程度とすればよい。これにより、基材の強度低下を抑制できる。   The temperature at the time of performing the aerosol deposition method (temperature in the film formation chamber) may be about room temperature, specifically about 15 to 50 ° C., preferably about 20 to 40 ° C. Thereby, the strength reduction of a base material can be suppressed.

基材11は上述したものと同様のものが挙げられる。すなわち、Cu、Ni及びFeの少なくとも1種を含み、平均厚さが5μm〜40μm(好ましくは10μm〜35μm)である。このような基材を選択することにより、エアロゾルデポジション処理時に基材の変形及びしわの形成を抑制でき、また、活物質が脱落しにくく、優れた導電性を発揮する電極を得ることができる。   Examples of the substrate 11 are the same as those described above. That is, it contains at least one of Cu, Ni and Fe and has an average thickness of 5 μm to 40 μm (preferably 10 μm to 35 μm). By selecting such a base material, it is possible to suppress the deformation of the base material and the formation of wrinkles during the aerosol deposition process, and it is possible to obtain an electrode that exhibits an excellent electrical conductivity because the active material is unlikely to fall off. .

本発明のエアロゾルデポジション法で用いるA成分及びB成分から構成される複合粉末は、予めメカニカルアロイング法及びメカニカルミリング法等によって処理することが好ましい。メカニカルアロイング法及びメカニカルミリング法の方法は、公知の条件に基づいて実施することができる。例えば、所望の配合割合の複合粉末となるように調合されたA成分及びB成分をボールミルに投入し、粉砕させればよい。この方法を採用することにより、微細化及び合金化が促進でき、また、一次粒子径が10nm〜300nmの粉末に微細化し、平均粒子径が1μm〜10μmの二次粒子に調整できる。このようなメカニカルアロイング法等によって得られる複合粉末をエアロデポジション法により製造することにより、所望の構造の電極を好適に製造できる。   The composite powder composed of the A component and the B component used in the aerosol deposition method of the present invention is preferably processed in advance by a mechanical alloying method, a mechanical milling method, or the like. The mechanical alloying method and the mechanical milling method can be performed based on known conditions. For example, the A component and the B component prepared so as to be a composite powder having a desired mixing ratio may be charged into a ball mill and pulverized. By adopting this method, miniaturization and alloying can be promoted, and the primary particle diameter can be refined to a powder having a particle diameter of 10 nm to 300 nm to adjust to secondary particles having an average particle diameter of 1 μm to 10 μm. By producing a composite powder obtained by such a mechanical alloying method by an aero deposition method, an electrode having a desired structure can be suitably produced.

上記メカニカルアロイング法及びメカニカルミリング法で用いる装置としては、一般に粉体分野で使用される混合機、分散機、粉砕機等をそのまま使用できる。具体的にはライカイ機、ボールミル、振動ミル、アジテーターミル等が例示される。また、乾式又は湿式のいずれであってもよいが、工程上複雑でない乾式であることが好ましい。ミリングの条件は、所望の複合粉末の性状等に応じて適宜設定することができるが、一般的には、室温(特に10〜40℃)で処理における遠心加速度(投入エネルギー)は、5〜20G程度であることが好ましく、7〜15G程度であることがより好ましい。   As an apparatus used in the mechanical alloying method and the mechanical milling method, a mixer, a disperser, a pulverizer and the like generally used in the powder field can be used as they are. Specific examples include a reiki machine, a ball mill, a vibration mill, an agitator mill, and the like. Moreover, although either a dry type or wet type may be sufficient, it is preferable that it is a dry type which is not complicated on a process. Milling conditions can be set as appropriate according to the properties of the desired composite powder, etc. Generally, the centrifugal acceleration (input energy) in processing at room temperature (especially 10 to 40 ° C.) is 5 to 20 G. Is preferably about 7 to 15G.

本発明は、前記のようにして製造されたリチウム二次電池用電極の電極活物質層表面にさらに、リチウム層を積層してもよい。積層方法は限定的でないが、例えば、プラスチックシート等のフィルム上にリチウム層が積層された転写フィルムを用いて、当該リチウム層を電極活物質層表面に転写することにより設ければよい。この転写法を図2を用いて説明すると、プラスチックシート上に形成されたリチウム層16と、エアロゾルデポジション法で作製した電極15の電極活物質層表面とを重ね合わせた後、ロールプレス機14で圧着し、次いで、圧着物17(リチウム層に覆われたエアロゾルデポジション製リチウム二次電池用電極17)からプラスチックシート18のみを剥がせばよい。   In the present invention, a lithium layer may be further laminated on the surface of the electrode active material layer of the electrode for a lithium secondary battery produced as described above. Although the lamination method is not limited, for example, it may be provided by transferring the lithium layer to the surface of the electrode active material layer using a transfer film in which a lithium layer is laminated on a film such as a plastic sheet. This transfer method will be described with reference to FIG. 2. After the lithium layer 16 formed on the plastic sheet and the electrode active material layer surface of the electrode 15 produced by the aerosol deposition method are overlaid, a roll press machine 14 is used. Then, only the plastic sheet 18 is peeled off from the pressure-bonded material 17 (the electrode 17 for the lithium secondary battery made of aerosol deposition covered with the lithium layer).

転写した後、必要に応じて加熱すればよい。これにより、前記のようにして製造されたリチウム層が被覆した電極の電極活物質層の結晶格子中のリチウム不可逆サイトにリチウムをドープでき、この結果、電極の可逆性等を向上させることができる。   After the transfer, heating may be performed as necessary. Thereby, lithium can be doped in the lithium irreversible site in the crystal lattice of the electrode active material layer of the electrode covered with the lithium layer manufactured as described above, and as a result, the reversibility of the electrode can be improved. .

加熱温度は、好ましくは90〜180℃である。90℃未満にすると、リチウムのドープが不十分となるおそれがある。一方、180℃を超えると、エアロゾルデポジション製リチウム二次電池用電極を覆っているリチウムが拡散する前に溶解し、電極活物質層表面にリチウムが分離するためドープが不十分となるおそれがある。   The heating temperature is preferably 90 to 180 ° C. If the temperature is less than 90 ° C., lithium doping may be insufficient. On the other hand, if the temperature exceeds 180 ° C., the lithium covering the lithium secondary battery electrode made of aerosol deposition dissolves before diffusing and the lithium is separated on the surface of the electrode active material layer, so that the dope may be insufficient. is there.

本発明のリチウム二次電池用電極は、エアロゾルデポジション法により電極活物質層が形成された特定の構造を有しているため、基材と活物質粒子(複合粒子)との密着性、及び活物質粒子間の結合が強い電極となっている。このため、充電時のリチウム合金相形成時の体積変化を緩和して、リチウム吸蔵・放出の繰り返しによる電極活物質層の剥離・微粉化等を抑制することができる。すなわち、サイクル特性に優れる。   Since the electrode for a lithium secondary battery of the present invention has a specific structure in which an electrode active material layer is formed by an aerosol deposition method, the adhesion between the base material and the active material particles (composite particles), and This is an electrode with strong bonding between the active material particles. For this reason, volume change at the time of lithium alloy phase formation at the time of charge can be eased, and exfoliation, pulverization, etc. of an electrode active material layer by repetition of lithium occlusion / release can be controlled. That is, the cycle characteristics are excellent.

また、本発明の電極は、電極活物質層上にリチウム層を有する場合は、より一層優れた可逆性、優れた充放電特性、サイクル特性等を発揮することができる。   Moreover, when the electrode of this invention has a lithium layer on an electrode active material layer, it can exhibit the further outstanding reversibility, the outstanding charging / discharging characteristic, cycling characteristics, etc.

本発明の製造方法によれば、複雑な工程を必要としないため、簡易かつ低コストで、優れたサイクル特性等を有するリチウム二次電池用電極を製造することができる。   According to the manufacturing method of the present invention, since a complicated process is not required, a lithium secondary battery electrode having excellent cycle characteristics and the like can be manufactured easily and at low cost.

以下に実施例及び比較例を示し、本発明をより具体的に説明する。ただし、本発明は、下記の実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to the following examples.

実施例1
<メカニカルアロイング方法>
活物質粉末(原料)としてSnとCuを用い、配合割合が原子比で1:1になるように混合し、この活物質粉末(SnCu)100重量部に対して滑剤としてステアリン酸を0.5重量部混合した。次いで、この混合物を粉砕機内(三井鉱山社製、「アトライタMA1D」、直径2mmの軸受鋼ボール:16kg)に投入し、金属間化合物CuSn相とSn相とから構成される複合粉末を得られるように、遠心加速度(投入エネルギー)を7〜15G程度にして、2時間のメカニカルアロイング処理を行なった。
Example 1
<Mechanical alloying method>
Sn and Cu are used as the active material powder (raw material) and mixed so that the blending ratio is 1: 1 by atomic ratio, and 0.5 parts of stearic acid is added as a lubricant to 100 parts by weight of this active material powder (SnCu). Part by weight was mixed. Next, this mixture is put into a pulverizer (“Attritor MA1D” manufactured by Mitsui Mining Co., Ltd., bearing steel balls with a diameter of 2 mm: 16 kg), and a composite powder composed of intermetallic compound Cu 6 Sn 5 phase and Sn phase is prepared. As obtained, the centrifugal acceleration (input energy) was set to about 7 to 15 G, and the mechanical alloying treatment for 2 hours was performed.

得られた複合粉末の一次粒子の粒径を透過型電子顕微鏡で測定した結果、全ての粒子が、10〜300nmの範囲内であることを確認した。複合粉末の二次凝集粒の平均径(平均二次粒子径)は、島津製作所製レーザー回折機「SALD−3000」で測定した結果、8.0μmあることを確認した。複合粉末の真密度は、定容積膨張法による乾式密度測定で、島津製作所製乾式自動密度計「アキュピック1330」を用いて測定した結果、7.5g/cmであることを確認した。 As a result of measuring the particle size of the primary particles of the obtained composite powder with a transmission electron microscope, it was confirmed that all the particles were in the range of 10 to 300 nm. The average secondary particle size (average secondary particle size) of the composite powder was measured by a laser diffractometer “SALD-3000” manufactured by Shimadzu Corporation and confirmed to be 8.0 μm. It was confirmed that the true density of the composite powder was 7.5 g / cm 3 as a result of measurement using a dry automatic density meter “Accumic 1330” manufactured by Shimadzu Corporation by dry density measurement by a constant volume expansion method.

<エアロゾルデポジション法(AD法)>
得られた複合粉末を図1に示す成膜装置を用いてエアロゾルデポジション法により本発明の電極を作製した。エアロゾルデポジション法による電極作製は、平均厚さ10μmの圧延銅箔を基板にして、得られた複合粉末を30g仕込み、(1)基板−ノズル距離:10mm、(2)ノズル口径:直径30mm、(3)成膜室−エアロゾル室圧力差:50kPa(4)キャリアガス:Nガスの条件で実施した。作製した電極は、30mm角で、膜厚22μmであった。電極活物質層の質量は10.1mg/cm、その多孔度は44.1%であった。この電極を1cmの円形ポンチで抜き取って、120℃で3時間、減圧乾燥させることにより、本発明の試験電極(負極)を作製した。
<Aerosol deposition method (AD method)>
The obtained composite powder was used to produce the electrode of the present invention by an aerosol deposition method using the film forming apparatus shown in FIG. Electrode preparation by the aerosol deposition method was carried out using 30 g of the obtained composite powder with a rolled copper foil having an average thickness of 10 μm as a substrate, (1) substrate-nozzle distance: 10 mm, (2) nozzle diameter: 30 mm in diameter, (3) Film formation chamber-aerosol chamber pressure difference: 50 kPa (4) Carrier gas: N 2 gas. The produced electrode was 30 mm square and had a film thickness of 22 μm. The mass of the electrode active material layer was 10.1 mg / cm 2 , and the porosity was 44.1%. This electrode was extracted with a 1 cm 2 circular punch and dried under reduced pressure at 120 ° C. for 3 hours to produce a test electrode (negative electrode) of the present invention.

作製した負極を用い、さらに試験電極計算容量の約20倍以上の容量を有している金属リチウムを対極(正極)として、1モルのLiPF/エチレンカーボネート(EC)+ジエチルカーボネート(DEC)・(EC:DEC=1:1(体積比))溶液を電解液として用い、コイン型試験セル(CR2032タイプ)を作製した。次に、作製した試験セルを、約0.2mA/cm の定電流密度で0Vに達するまで充電し、10分間の休止後、約0.2mA/cm の定電流密度で1.0Vに達するまで放電した。これを1サイクルとして、繰り返し充放電を行うことにより評価した。1サイクル目の放電容量に対する50サイクル目の放電容量の比を放電容量維持率として、77.8%を示した。また、50サイクル目の放電容量は2.9mAh/cmであった。それらの結果を表1に示す。 Using the prepared negative electrode, and using metallic lithium having a capacity of about 20 times or more the calculated test electrode capacity as the counter electrode (positive electrode), 1 mol of LiPF 6 / ethylene carbonate (EC) + diethyl carbonate (DEC). Using a (EC: DEC = 1: 1 (volume ratio)) solution as an electrolyte, a coin-type test cell (CR2032 type) was produced. Next, the prepared test cells were charged until reaching 0V at a constant current density of about 0.2 mA / cm 2, after 10 minutes of rest, to 1.0V at a constant current density of about 0.2 mA / cm 2 Discharged until reached. This was evaluated by repeatedly charging and discharging as one cycle. The ratio of the discharge capacity at the 50th cycle to the discharge capacity at the 1st cycle was taken as 77.8% as the discharge capacity retention rate. The discharge capacity at the 50th cycle was 2.9 mAh / cm 2 . The results are shown in Table 1.

Figure 2008305608
Figure 2008305608

実施例2〜14
実施例1と同様の活物質粉末を用いて、表1に示す条件下で、実施例1と同様にしてエアロゾルデポジション法による電極作製を行った。それらの結果を表1に示す。積層した電極活物質層の質量は5.6〜12.2mg/cm2、多孔度は34.9〜49.5%であった。放電容量維持率は、いずれも65.2%以上であった。また、50サイクル目の放電容量は2〜2.6mAh/cmであった。
Examples 2-14
Using the same active material powder as in Example 1, an electrode was prepared by the aerosol deposition method in the same manner as in Example 1 under the conditions shown in Table 1. The results are shown in Table 1. The laminated electrode active material layer had a mass of 5.6 to 12.2 mg / cm 2 and a porosity of 34.9 to 49.5%. The discharge capacity retention rates were all 65.2% or more. The discharge capacity at the 50th cycle was 2 to 2.6 mAh / cm 2 .

実施例15〜20
表1に示す種類の活物質粉末を、表1に示す配合割合(原子比)で混合し、実施例1と同様のメカニカルアロイング法によって複合粉末を得た。
Examples 15-20
Active material powders of the type shown in Table 1 were mixed at the blending ratio (atomic ratio) shown in Table 1, and composite powders were obtained by the same mechanical alloying method as in Example 1.

得られた複合粉末を表1に記載の条件で、実施例1と同様にしてエアロゾルデポジション法による電極作製を行った。それらの結果を表1に示す。活物質質量は8.8〜10.6mg/cm、多孔度は38.6〜46.5%であった。放電容量維持率は、いずれも70.2%以上であった。また、50サイクル目の放電容量は2〜2.4mAh/cmであった。 The composite powder thus obtained was subjected to the electrode deposition by the aerosol deposition method in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1. The active material mass was 8.8 to 10.6 mg / cm 2 , and the porosity was 38.6 to 46.5%. The discharge capacity retention rate was 70.2% or more in all cases. The discharge capacity at the 50th cycle was 2 to 2.4 mAh / cm 2 .

比較例1〜3
実施例1と同様の活物質粉末を用いて、表1に記載の条件下で、実施例1と同様にしてエアロゾルデポジション法による電極作製を行った。それらの結果を表1に示す。比較例1の、キャリアガスの差圧を15kPaと低くした場合、積層した電極活物質層の質量は4.8mg/cm2と小さく、多孔度が64.9%と大きくなった。比較例2の、キャリアガスの差圧を80kPaと高くした場合、積層した電極活物質層の質量は16.1mg/cm2と大きく、多孔度が10%と小さくなった。比較例3の、キャリアガスの冷却能力がN及びArよりも大きなHeを用いた場合、積層した電極活物質層の質量は2.8mg/cm2と小さく、多孔度は11.3%と低くなった。いずれも、基板との密着性は不良であり、層間剥離を生じ、電極として使用することは困難であるだけでなく、放電容量維持率も60%以下と低いものであった。
Comparative Examples 1-3
Using the same active material powder as in Example 1, an electrode was produced by the aerosol deposition method in the same manner as in Example 1 under the conditions described in Table 1. The results are shown in Table 1. When the differential pressure of the carrier gas in Comparative Example 1 was lowered to 15 kPa, the mass of the laminated electrode active material layer was as small as 4.8 mg / cm 2 and the porosity was as large as 64.9%. When the differential pressure of the carrier gas of Comparative Example 2 was increased to 80 kPa, the mass of the laminated electrode active material layer was as large as 16.1 mg / cm 2 and the porosity was as small as 10%. When the carrier gas cooling capacity of Comparative Example 3 is greater than that of N 2 and Ar, the mass of the laminated electrode active material layer is as small as 2.8 mg / cm 2 and the porosity is 11.3%. It became low. In either case, the adhesion to the substrate was poor, delamination occurred, and it was difficult to use as an electrode, and the discharge capacity retention rate was as low as 60% or less.

比較例4
活物質粉末としてSn及びCuを用い、SnとCuとの配合割合が原子比で1:4になるように、水アトマイズ法により、アトマイズ粉末を作製した。得られたアトマイズ粉末の一次粒子の粒径を透過型電子顕微鏡で測定した結果、全ての粒子が、500nm以上であった。二次凝集粒の平均径は、レーザー回折法で測定した結果、7.8μmであった。この複合粉末を用いた以外は実施例1と同様にして、表1に記載の条件下でエアロゾルデポジション法による電極作製を行った。それらの結果を表1に示す。Nキャリアガスで差圧を45kPaとしたが、複合粉末でなくアトマイズ粉末の場合、積層した電極活物質層の質量は2.4mg/cm2と小さく、多孔度が15%と小さくなった。基板との密着性は不良であり、層間剥離を生じ、電極として使用することは困難であるだけでなく、放電容量維持率は、38.2%で、50サイクル目の放電容量は、0.5mAh/cmと低いものであった。
Comparative Example 4
Sn and Cu were used as the active material powder, and an atomized powder was prepared by a water atomization method so that the mixing ratio of Sn and Cu was 1: 4 in atomic ratio. As a result of measuring the particle size of the primary particles of the obtained atomized powder with a transmission electron microscope, all the particles were 500 nm or more. The average diameter of the secondary agglomerated grains was 7.8 μm as a result of measurement by a laser diffraction method. An electrode was produced by the aerosol deposition method under the conditions shown in Table 1 in the same manner as in Example 1 except that this composite powder was used. The results are shown in Table 1. Although the differential pressure was 45 kPa with N 2 carrier gas, when the atomized powder was used instead of the composite powder, the mass of the laminated electrode active material layer was as small as 2.4 mg / cm 2 and the porosity was as small as 15%. The adhesion to the substrate is poor, delamination occurs, and it is difficult to use as an electrode. The discharge capacity retention rate is 38.2%, and the discharge capacity at the 50th cycle is 0. It was as low as 5 mAh / cm 2 .

比較例5
実施例1と同様の活物質粉末85重量部、バインダー(ポリビニリデンフルオライド:PVdF)が5mass%溶解したN-メチルピロリドン(NMP)溶液をPVdF換算分として10重量部、及びカーボンブラック5重量部を混合することにより合剤を調製した。次いで、電解銅箔に上記合剤をドクターブレードで塗布し、均一な塗膜(約4〜5mg/cm)を形成した。これを80℃で約10分間乾燥してNMPを揮発・除去した後、ロ−ルプレス機により、電解銅箔と塗膜とを密着接合させ、電極活物質層の平均厚さが約10μmのシートを作製した。このシートを1cmの円形ポンチで抜き取り、120℃で3時間、減圧乾燥させて比較例5の試験電極(負極)を得た。
Comparative Example 5
85 parts by weight of the same active material powder as in Example 1, 10 parts by weight of 5 parts by weight of N-methylpyrrolidone (NMP) solution in which 5% by mass of a binder (polyvinylidene fluoride: PVdF) is dissolved, and 5 parts by weight of carbon black Were mixed to prepare a mixture. Subsequently, the said mixture was apply | coated to the electrolytic copper foil with the doctor blade, and the uniform coating film (about 4-5 mg / cm < 2 >) was formed. After this was dried at 80 ° C. for about 10 minutes to volatilize and remove NMP, the electrolytic copper foil and the coating film were closely joined with a roll press machine, and the average thickness of the electrode active material layer was about 10 μm. Was made. The sheet was extracted with a 1 cm 2 circular punch and dried under reduced pressure at 120 ° C. for 3 hours to obtain a test electrode (negative electrode) of Comparative Example 5.

実施例1と同様の方法で試験セルの作製とその評価を行った。放電容量維持率は、17.6%で、50サイクル目の放電容量は、0.3mAh/cmと低いものであった。塗布法で作製した試験セルは、充放電サイクルの繰り返しによる活物質層の体積変化による劣化が大きいために、十分な充放電サイクル特性が得られなかった。 Test cells were prepared and evaluated in the same manner as in Example 1. The discharge capacity retention rate was 17.6%, and the discharge capacity at the 50th cycle was as low as 0.3 mAh / cm 2 . Since the test cell produced by the coating method is greatly deteriorated due to the volume change of the active material layer due to repeated charge / discharge cycles, sufficient charge / discharge cycle characteristics could not be obtained.

実施例21
ガスデポジション装置(アルバック製)を用いて、圧力差(噴射エネルギー)20〜80kPaの条件下で約10分の成膜処理により、プラスチックシート(ポリプロピレン、厚み50μm)表面に、Li金属からなる層(厚み3.7μm、0.2mg/cm)を形成した。形成したLi層の初期不可逆容量分は0.748mAh/cmであった。
Example 21
A layer made of Li metal on the surface of a plastic sheet (polypropylene, thickness 50 μm) by a film forming process for about 10 minutes under a pressure difference (injection energy) of 20 to 80 kPa using a gas deposition apparatus (manufactured by ULVAC). (Thickness 3.7 μm, 0.2 mg / cm 2 ) was formed. The initial irreversible capacity of the formed Li layer was 0.748 mAh / cm 2 .

上記Li層を、実施例1で作製した負極(初期不可逆量分:0.741mAh/cm)表面の電極活物質層に接触させ、図2に示す装置を用いて、ロールプレスにより圧着し、100℃で熱処理した後、プラスチックシートのみを剥離することにより、Li層を電極活物質層表面に転写した。このLi層積層負極を用いて、実施例1と同様の方法で試験セルの作製とその評価を行った。 The Li layer was brought into contact with the electrode active material layer on the surface of the negative electrode (initial irreversible amount: 0.741 mAh / cm 2 ) prepared in Example 1, and was crimped by a roll press using the apparatus shown in FIG. After heat treatment at 100 ° C., only the plastic sheet was peeled off to transfer the Li layer to the surface of the electrode active material layer. Using this Li layer laminated negative electrode, a test cell was prepared and evaluated in the same manner as in Example 1.

実施例1及び21の試験セルの初期の充放電容量曲線を図3に示す。図3の初期充放電曲線の容量からも明らかなように、実施例1の試験セルでは初期不可逆容量が存在しているのに対し、実施例21の試験セルでは不可逆容量が存在しなかった。   The initial charge / discharge capacity curves of the test cells of Examples 1 and 21 are shown in FIG. As apparent from the capacity of the initial charge / discharge curve of FIG. 3, the initial irreversible capacity exists in the test cell of Example 1, whereas the irreversible capacity does not exist in the test cell of Example 21.

図1は、本発明で用いたエアロゾルデポジション法成膜装置を示す。FIG. 1 shows an aerosol deposition method film forming apparatus used in the present invention. 図2は、本発明で用いた転写装置を示す。FIG. 2 shows a transfer apparatus used in the present invention. 図3は、実施例1及び21の電極による初期充放電特性を示すグラフである。FIG. 3 is a graph showing the initial charge / discharge characteristics of the electrodes of Examples 1 and 21.

符号の説明Explanation of symbols

1 エアロゾル発生部
2 ガス発生部
3 エアロゾル容器
4 材料粉末
5 エアロゾル
6 ガス導入管
7 振動機
8 エアロゾル搬送管
9 成膜室
10 噴射ノズル
11 基材
12 基材−ノズルギャップ
13 ガス排気処理機構
14 ロールプレス機
15 エアロゾルデポジション電極
16 リチウム層
17 圧着物
18 プラスチックシート
P1 成膜室圧力
P2 エアロゾル室圧力
P 両チャンバー圧力差
DESCRIPTION OF SYMBOLS 1 Aerosol generating part 2 Gas generating part 3 Aerosol container 4 Material powder 5 Aerosol 6 Gas introduction pipe 7 Vibrator 8 Aerosol conveyance pipe 9 Film formation chamber 10 Injection nozzle 11 Base material 12 Base material-nozzle gap 13 Gas exhaust treatment mechanism 14 Roll Press machine 15 Aerosol deposition electrode 16 Lithium layer 17 Bonded material 18 Plastic sheet P1 Deposition chamber pressure P2 Aerosol chamber pressure P Pressure difference between both chambers

Claims (10)

エアロゾルデポジション法により基材上に電極活物質層が積層された二次電池用電極であって、
(1)前記基材は、Cu、Ni及びFeからなる群から選択される少なくとも1種を含み、
(2)前記基材の平均厚さは、5μm〜40μmであり、
(3)前記電極活物質層は、Si及びSnからなる群から選ばれる少なくとも1種であるA成分、並びにV、Fe、Co、Ni、Cu、Ag及びSbからなる群から選ばれる少なくとも1種であるB成分から構成される複合粉末からなり、
(4)前記電極活物質層の積層量は、5〜15mg/cmであり、
(5)前記電極活物質層の多孔度は、20〜50%である、
ことを特徴とする電極。
An electrode for a secondary battery in which an electrode active material layer is laminated on a substrate by an aerosol deposition method,
(1) The base material includes at least one selected from the group consisting of Cu, Ni and Fe,
(2) The average thickness of the substrate is 5 μm to 40 μm,
(3) The electrode active material layer is at least one selected from the group consisting of A, which is at least one selected from the group consisting of Si and Sn, and V, Fe, Co, Ni, Cu, Ag and Sb. Consisting of a composite powder composed of B component,
(4) The lamination amount of the electrode active material layer is 5 to 15 mg / cm 2 .
(5) The porosity of the electrode active material layer is 20 to 50%.
An electrode characterized by that.
前記複合粉末の一次粒子径が10nm〜300nmであって、平均二次粒子径が1μm〜10μmである、請求項1に記載の電極。   The electrode according to claim 1, wherein the composite powder has a primary particle size of 10 nm to 300 nm and an average secondary particle size of 1 μm to 10 μm. 電極活物質層上に、さらにリチウム層を有する、請求項1又は2に記載の電極。   The electrode according to claim 1, further comprising a lithium layer on the electrode active material layer. リチウム層の積層量が、前記電極活物質層の初期不可逆容量分の80〜120%に相当する、請求項3に記載の電極。   The electrode according to claim 3, wherein the amount of the lithium layer stacked corresponds to 80 to 120% of the initial irreversible capacity of the electrode active material layer. 電極活物質層を基材上に積層させることにより、リチウム二次電池用電極を製造する方法であって、
(1)Si及びSnからなる群から選ばれる少なくとも1種であるA成分と、(2)V、Fe、Co、Ni、Cu、Ag及びSbなる群から選ばれる少なくとも1種であるB成分とから構成される複合粉末を、Cu、Ni及びFeからなる群から選択される少なくとも1種を含有し、平均厚さが5μm〜40μmである基材に、エアロゾルデポジション法により、積層させる工程、を備えた製造方法。
A method for producing an electrode for a lithium secondary battery by laminating an electrode active material layer on a substrate,
(1) an A component that is at least one selected from the group consisting of Si and Sn, and (2) a B component that is at least one selected from the group consisting of V, Fe, Co, Ni, Cu, Ag, and Sb A step of laminating a composite powder composed of a base material containing at least one selected from the group consisting of Cu, Ni and Fe by an aerosol deposition method on a substrate having an average thickness of 5 μm to 40 μm; A manufacturing method comprising:
前記複合粉末の一次粒子径が10nm〜300nmであって、平均二次粒子径が1μm〜10μmである、請求項5に記載の製造方法。   The production method according to claim 5, wherein the composite powder has a primary particle diameter of 10 nm to 300 nm and an average secondary particle diameter of 1 μm to 10 μm. 成膜室とエアロゾル室との圧力差が20kPa〜70kPaである条件下で、エアロゾルデポジション法を行う、請求項5又は6に記載の製造方法。   The manufacturing method of Claim 5 or 6 which performs the aerosol deposition method on the conditions whose pressure difference of a film-forming chamber and an aerosol chamber is 20 kPa-70 kPa. 前記複合粉末を搬送するガスがAr及びNからなる群から選択される少なくとも1種である、請求項5〜7のいずれかに記載の製造方法。 The gas for transporting the composite powder is at least one selected from the group consisting of Ar and N 2, The process according to any one of claims 5-7. 電極活物質層表面にリチウム層を積層させる工程を更に含む、請求項5〜8のいずれかに記載の製造方法。   The manufacturing method in any one of Claims 5-8 which further includes the process of laminating | stacking a lithium layer on the electrode active material layer surface. 前記積層させる工程が、電極物質表面にリチウム層を圧着した後、90〜180℃にて加熱処理する工程である、請求項9に記載の製造方法。   The manufacturing method according to claim 9, wherein the step of laminating is a step of performing heat treatment at 90 to 180 ° C. after the lithium layer is pressure-bonded to the electrode material surface.
JP2007150162A 2007-06-06 2007-06-06 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME Active JP5152743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007150162A JP5152743B2 (en) 2007-06-06 2007-06-06 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150162A JP5152743B2 (en) 2007-06-06 2007-06-06 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Publications (3)

Publication Number Publication Date
JP2008305608A true JP2008305608A (en) 2008-12-18
JP2008305608A5 JP2008305608A5 (en) 2009-09-17
JP5152743B2 JP5152743B2 (en) 2013-02-27

Family

ID=40234159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007150162A Active JP5152743B2 (en) 2007-06-06 2007-06-06 ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP5152743B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104568A1 (en) * 2009-11-04 2011-05-05 Min-Seok Sung Negative Electrode For Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
WO2012073313A1 (en) * 2010-11-29 2012-06-07 株式会社Neomaxマテリアル Secondary battery negative electrode material, secondary battery negative electrode, process for production of secondary battery negative electrode material, and process for production of secondary battery negative electrode
KR101356988B1 (en) * 2011-10-24 2014-02-03 일진전기 주식회사 Negative active material and rechargeable lithium battery comprising same
US20140287303A1 (en) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
JP2016024916A (en) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 Electrode for all-solid battery and method for manufacturing the same
JP2019050186A (en) * 2017-07-31 2019-03-28 本田技研工業株式会社 Self-supporting electrode and method of manufacturing the same
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11489147B2 (en) 2017-09-15 2022-11-01 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11569490B2 (en) 2017-07-31 2023-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive
US11616221B2 (en) 2017-09-15 2023-03-28 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11735705B2 (en) 2017-05-24 2023-08-22 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire
US11888152B2 (en) 2016-03-15 2024-01-30 Honda Motor Co., Ltd. System and method of producing a composite product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2004185810A (en) * 2001-11-20 2004-07-02 Canon Inc Electrode material for lithium secondary battery, electrode structural body with the electrode material, secondary battery with the electrode structure, manufacturing method of the electrode material, manufacturing method of the electrode structural body, and manufacturing method of the secondary battery
JP2004311428A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure with the electrode material and secondary battery with the electrode structure
JP2005078985A (en) * 2003-09-02 2005-03-24 Toshiba Battery Co Ltd Electrode for nonaqueous secondary battery and lithium secondary battery using the same
JP2005108523A (en) * 2003-09-29 2005-04-21 Hitachi Maxell Ltd Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
JP2006114745A (en) * 2004-10-15 2006-04-27 Nec Tokin Corp Laminated piezoelectric ceramic structure and its manufacturing method
JP2006164960A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Non aqueous electrolyte secondary battery
JP2007122992A (en) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007128658A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2008181802A (en) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008181708A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185810A (en) * 2001-11-20 2004-07-02 Canon Inc Electrode material for lithium secondary battery, electrode structural body with the electrode material, secondary battery with the electrode structure, manufacturing method of the electrode material, manufacturing method of the electrode structural body, and manufacturing method of the secondary battery
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP2004311428A (en) * 2003-03-26 2004-11-04 Canon Inc Electrode material for lithium secondary battery, electrode structure with the electrode material and secondary battery with the electrode structure
JP2005078985A (en) * 2003-09-02 2005-03-24 Toshiba Battery Co Ltd Electrode for nonaqueous secondary battery and lithium secondary battery using the same
JP2005108523A (en) * 2003-09-29 2005-04-21 Hitachi Maxell Ltd Thin film electrode, manufacturing method of the same, and lithium secondary battery using that thin film electrode
JP2006114745A (en) * 2004-10-15 2006-04-27 Nec Tokin Corp Laminated piezoelectric ceramic structure and its manufacturing method
JP2006164960A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Non aqueous electrolyte secondary battery
JP2007122992A (en) * 2005-10-27 2007-05-17 Matsushita Electric Ind Co Ltd Negative electrode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2007128658A (en) * 2005-11-01 2007-05-24 Matsushita Electric Ind Co Ltd Manufacturing method of anode for lithium secondary battery and manufacturing method of lithium secondary battery
JP2008181708A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2008181802A (en) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd Manufacturing method of electrode for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012008008; Y.Yamakawa,Y.Honjo,E.Fuchita,M.Wada,T.Sakai: 'エアロゾルデポジション法によるリチウム電池用合金系負極の作製' 電気化学秋季大会予稿集 , 200609, 2G03 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104568A1 (en) * 2009-11-04 2011-05-05 Min-Seok Sung Negative Electrode For Rechargeable Lithium Battery and Rechargeable Lithium Battery Including Same
JP5755246B2 (en) * 2010-11-29 2015-07-29 日立金属株式会社 Anode material for secondary battery, anode for secondary battery, method for producing anode material for secondary battery, and method for producing anode for secondary battery
US9350011B2 (en) 2010-11-29 2016-05-24 Hitachi Metals, Ltd. Secondary battery negative electrode material, secondary battery negative electrode, method for manufacturing secondary battery negative electrode material, and method for manufacturing secondary battery negative electrode
WO2012073313A1 (en) * 2010-11-29 2012-06-07 株式会社Neomaxマテリアル Secondary battery negative electrode material, secondary battery negative electrode, process for production of secondary battery negative electrode material, and process for production of secondary battery negative electrode
KR101356988B1 (en) * 2011-10-24 2014-02-03 일진전기 주식회사 Negative active material and rechargeable lithium battery comprising same
US20140287303A1 (en) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Electrode and method for manufacturing an electrode
JP2016024916A (en) * 2014-07-17 2016-02-08 トヨタ自動車株式会社 Electrode for all-solid battery and method for manufacturing the same
US11383213B2 (en) 2016-03-15 2022-07-12 Honda Motor Co., Ltd. System and method of producing a composite product
US11888152B2 (en) 2016-03-15 2024-01-30 Honda Motor Co., Ltd. System and method of producing a composite product
US11735705B2 (en) 2017-05-24 2023-08-22 Honda Motor Co., Ltd. Production of carbon nanotube modified battery electrode powders via single step dispersion
US11374214B2 (en) 2017-07-31 2022-06-28 Honda Motor Co., Ltd. Self standing electrodes and methods for making thereof
JP2019050186A (en) * 2017-07-31 2019-03-28 本田技研工業株式会社 Self-supporting electrode and method of manufacturing the same
US11569490B2 (en) 2017-07-31 2023-01-31 Honda Motor Co., Ltd. Continuous production of binder and collector-less self-standing electrodes for Li-ion batteries by using carbon nanotubes as an additive
US11489147B2 (en) 2017-09-15 2022-11-01 Honda Motor Co., Ltd. Method for embedding a battery tab attachment in a self-standing electrode without current collector or binder
US11616221B2 (en) 2017-09-15 2023-03-28 Honda Motor Co., Ltd. Method for battery tab attachment to a self-standing electrode
US11535517B2 (en) 2019-01-24 2022-12-27 Honda Motor Co., Ltd. Method of making self-standing electrodes supported by carbon nanostructured filaments
US11325833B2 (en) 2019-03-04 2022-05-10 Honda Motor Co., Ltd. Composite yarn and method of making a carbon nanotube composite yarn
US11834335B2 (en) 2019-03-04 2023-12-05 Honda Motor Co., Ltd. Article having multifunctional conductive wire
US11539042B2 (en) 2019-07-19 2022-12-27 Honda Motor Co., Ltd. Flexible packaging with embedded electrode and method of making

Also Published As

Publication number Publication date
JP5152743B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP5152743B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
CN110537269B (en) Pre-lithiated energy storage device
KR102479722B1 (en) Composite negative active material, negative electrode and lithium secondary battery including the same, and method of preparing the composite negative active material
TWI625885B (en) Combined electrochemical and chemical etching processes for generation of porous silicon particulates
JP4406789B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
CN100555733C (en) Battery
JP6560447B2 (en) Nonaqueous electrolyte secondary battery
JP6597701B2 (en) Negative electrode mixture, negative electrode including the negative electrode mixture, and all-solid-state lithium ion secondary battery including the negative electrode
WO2009128319A1 (en) Negative electrode for lithium ion secondary battery, and method for production thereof
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2009245827A (en) Cathode plate for secondary battery and manufacturing method of the same
JP2010218848A (en) Anode for lithium-ion secondary battery, lithium-ion secondary battery using it, manufacturing method of anode for lithium-ion secondary battery, and slurry used for manufacturing
JP5087842B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP2004319469A (en) Negative electrode active substance and nonaqueous electrolyte secondary cell
JP4270894B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
WO2018193992A1 (en) All-solid lithium ion secondary battery
TWI437746B (en) Non-aqueous electrolyte secondary battery
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2010244767A (en) Method for manufacturing anode for lithium secondary battery
JP2004127535A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP5234600B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and method for producing negative electrode for lithium ion secondary battery
JP2008166142A (en) Electrode for lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of electrode for lithium ion secondary battery
JP6116068B2 (en) Negative electrode for lithium ion secondary battery
JP2017076466A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250