JP2008298034A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008298034A
JP2008298034A JP2007147895A JP2007147895A JP2008298034A JP 2008298034 A JP2008298034 A JP 2008298034A JP 2007147895 A JP2007147895 A JP 2007147895A JP 2007147895 A JP2007147895 A JP 2007147895A JP 2008298034 A JP2008298034 A JP 2008298034A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
nitrogen oxide
exhaust passage
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007147895A
Other languages
Japanese (ja)
Inventor
Taisuke Ono
泰右 小野
Yoshikazu Uchida
美和 内田
Toshihisa Kanda
俊久 神田
Shogo Matsubayashi
昌吾 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Yanmar Co Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2007147895A priority Critical patent/JP2008298034A/en
Publication of JP2008298034A publication Critical patent/JP2008298034A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device of an internal combustion engine or combustion equipment capable of efficiently removing NOx, CO and the like in exhaust gas and reducing energy consumption. <P>SOLUTION: An exhaust passage 2 is branched off into a plurality of branched exhaust passages 2a, 2b and exhaust inlets of the respective branched exhaust passages 2a, 2b are provided with flow control valves 21, 22, respectively, for regulating flow rates of the exhaust gas into the respective branched exhaust passages 2a, 2b. The each branched exhaust passage 2a, 2b has a nitrogen oxide adsorbent 4 temporarily adsorbing a nitrogen oxide and desorbing the adsorbed nitrogen oxide in an elevated temperature or a reduction atmosphere, an adsorptive material desorption means 3 disposed at the exhaust upstream side of the nitrogen oxide adsorbent 4 and bringing the exhaust gas regulated by the flow control valves 21, 22 into the elevated temperature or the reduction atmosphere, and a burning device 5 disposed at the exhaust downstream side of the nitrogen oxide adsorbent 4 and constituted of a fuel supply means, an air supply means and an ignition means. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ディーゼル機関、ガス機関、ガソリン機関あるいはガスタービン機関等の内燃機関又は焼却炉やボイラ等の燃焼機器の排気ガスを浄化する装置に関し、特に排気通路内に設置されて主として窒素酸化物と一酸化炭素等の未燃成分を除去する排気ガス浄化装置に関する。   The present invention relates to an apparatus for purifying exhaust gas of an internal combustion engine such as a diesel engine, a gas engine, a gasoline engine or a gas turbine engine, or combustion equipment such as an incinerator or boiler, and in particular, is mainly installed in an exhaust passage and mainly composed of nitrogen oxides. And an exhaust gas purifying device for removing unburned components such as carbon monoxide.

排気ガス浄化の対象となる物質は、窒素酸化物、一酸化炭素、未燃炭化水素及びすす等粒子状物質であるが、これらの物質を浄化する装置については、従来各種開発されている。 Substances that are subject to exhaust gas purification are particulate substances such as nitrogen oxides, carbon monoxide, unburned hydrocarbons, and soot. Various devices for purifying these substances have been developed in the past.

窒素酸化物(NOx)を低減するための装置としてはアンモニアや尿素を還元剤として用いた還元触媒を排気通路中に設置し、窒素酸化物を選択的に還元する脱硝装置等が実用化されている。また、比較的小型のガス機関や自動車用ガソリン機関では、窒素酸化物、一酸化炭素(CO)及び未燃炭化水素(HC)の三者を同時に分解できる三元触媒が開発されており、排気ガスの効果的な浄化に寄与している。   As a device for reducing nitrogen oxide (NOx), a denitration device that selectively reduces nitrogen oxide by installing a reduction catalyst using ammonia or urea as a reducing agent in the exhaust passage has been put into practical use. Yes. In addition, relatively small gas engines and gasoline engines for automobiles have developed three-way catalysts capable of simultaneously decomposing nitrogen oxides, carbon monoxide (CO), and unburned hydrocarbons (HC). Contributes to effective gas purification.

しかし、前記三元触媒は、理論空燃比又はそれに近い範囲内で運転されている時には有効に浄化作用を発揮するが、それ以外の条件下、特に空気(酸素)過剰な排気ガス中では有効に作用しないことが判明している。これに対処するため、空気過剰状態で運転されるガス又はガソリン機関においては、前記空気(酸素)過剰条件での運転時に一時的に窒素酸化物を吸蔵材に吸蔵しておき、次に燃料過剰条件で運転することにより、前記吸蔵した窒素酸化物を放出・還元する窒素酸化物吸蔵触媒方式が実用化されている。   However, the three-way catalyst exhibits a purification action effectively when operated within the stoichiometric air-fuel ratio or a range close thereto, but is effective under other conditions, particularly in exhaust gas with excessive air (oxygen). It has been found that it does not work. In order to cope with this, in a gas or gasoline engine operated in an excessive air state, nitrogen oxide is temporarily stored in the storage material during the operation in the above-described excessive air (oxygen) condition, and then the excess fuel is stored. A nitrogen oxide storage catalyst system that releases and reduces the stored nitrogen oxide by operating under conditions has been put into practical use.

しかし、窒素酸化物吸蔵触媒方式は、燃料中の硫黄成分に由来する排ガス中の硫黄酸化物(SOx)によって触媒が被毒し、窒素酸化物の浄化能力が急激に減少することが判明しており、そのため低硫黄含有燃料を使用する機関においてのみ使用されているのが現状である。なお、窒素酸化物浄化塔内において吸蔵材により窒素酸化物を吸蔵し、同じ窒素酸化物浄化塔内において燃焼することにより、吸蔵材に吸着されている窒素酸化物を還元すると共に硫黄酸化物等を放出する構成の浄化装置(特許文献1)も開発されているが、吸蔵材を内蔵する浄化塔内で燃焼する構成のため、現実的に吸蔵材の耐久性が問題となる。   However, it has been found that the nitrogen oxide storage catalyst system poisons the catalyst by sulfur oxide (SOx) in the exhaust gas derived from the sulfur component in the fuel and the purification ability of nitrogen oxide decreases rapidly. Therefore, it is currently used only in engines that use low sulfur content fuel. In addition, nitrogen oxide is occluded by the occlusion material in the nitrogen oxide purification tower and burned in the same nitrogen oxide purification tower, thereby reducing the nitrogen oxide adsorbed on the occlusion material and sulfur oxide etc. Although the purification apparatus (patent document 1) of the structure which discharges | emits is also developed, since it is the structure which burns in the purification tower which contains an occlusion material, durability of an occlusion material becomes a problem in reality.

また、すす等の粒子状物質の除去には、電気集塵器やDPFが実用化されている。該DPFは、フィルターにより粒子状物質を物理的に捕獲し、電気ヒータ等により、前記捕獲した粒子状物質を焼却除去するようになっているが、最近では、酸化作用のある触媒成分を微粒子フィルターに担持させ、粒子状物質を連続的に除去できるDPFも開発されている。   Moreover, an electrostatic precipitator and a DPF have been put into practical use for removing particulate substances such as soot. The DPF physically captures particulate matter with a filter and incinerates and removes the captured particulate matter with an electric heater or the like, but recently, a catalytic component having an oxidizing action is removed by a particulate filter. A DPF that can be supported on a substrate and continuously remove particulate matter has also been developed.

前記三元触媒では、既に説明しているように、空気過剰条件で運転される内燃機関や燃焼機器では触媒機能を発揮させることができず、また、小型のガス機関や自動車用ガソリン機関で実用化されている前記窒素酸化物吸蔵触媒方式では、硫黄酸化物や粒子状物質が含まれる排気中では、その浄化能力を効果的に発揮させることは困難である。   As described above, the three-way catalyst cannot exert its catalytic function in an internal combustion engine or a combustion device operated under an excess air condition, and is practical in a small gas engine or an automobile gasoline engine. In the above-described nitrogen oxide storage catalyst system, it is difficult to exert its purification ability effectively in exhaust gas containing sulfur oxide and particulate matter.

産業用内燃機関や燃焼機器及び船舶用内燃機関では、空気過剰条件で運転されているものが殆どであり、また、硫黄成分が含まれる燃料を使用していることから、排気ガス中には硫黄酸化物や粒子状物質が多く含まれており、そのような排気ガス中でも、性能が十分に発揮できる排気ガス浄化装置が要望されている。   Industrial internal combustion engines, combustion equipment, and marine internal combustion engines are mostly operated under excessive air conditions, and since fuel containing sulfur components is used, sulfur is contained in the exhaust gas. There is a demand for an exhaust gas purifying apparatus that contains a large amount of oxides and particulate matter and that can sufficiently exhibit performance even in such exhaust gas.

なお、アンモニアや尿素等を用いて窒素酸化物を選択的に還元する脱硝装置は、比較的大型の産業用内燃機関や燃焼機器に適用されているが、装置自体が大掛かりで非常に高価なものであり、また、還元剤のアンモニアや尿素の維持費も高くなる。さらに、消費されないアンモニアが大気中に放出される可能性も大きい。   A denitration device that selectively reduces nitrogen oxides using ammonia, urea, etc. is applied to relatively large industrial internal combustion engines and combustion equipment, but the device itself is large and very expensive. In addition, the maintenance cost of the reducing agents ammonia and urea is high. Furthermore, there is a high possibility that ammonia that is not consumed is released into the atmosphere.

本件出願人は、前記各従来例の課題に鑑み、排気ガス中の窒素酸化物、すす等の粒子状物質、一酸化炭素及び未燃炭化水素を除去でき、しかもその浄化能力を低下させることなく維持できる排気ガス浄化装置を開発し、出願している(特許文献2)。該特許文献2に開示されている排気ガス浄化装置の一つは、NOx及びCO等を効率良く除去するために、内燃機関等の排気通路を複数の分岐排気通路に分岐し、各分岐排気通路の排気入口部に排気ガスを遮断可能な排気ガス遮断手段を設け、各分岐排気通路内に、窒素酸化物を一時的に吸着し、その後、昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、該吸着物質脱離手段によって生成された還元雰囲気により生成されたCOやHC等の未燃物質を燃焼して無害化するための燃焼装置と、をそれぞれ備えている。
特開2003−27927号公報 特開2005−207281号公報
In view of the problems of the respective conventional examples, the applicant of the present application can remove particulate oxides such as nitrogen oxides and soot, carbon monoxide and unburned hydrocarbons in the exhaust gas, and without reducing the purification capacity thereof. An exhaust gas purification device that can be maintained has been developed and applied (Patent Document 2). One of the exhaust gas purifying devices disclosed in Patent Document 2 is to divide an exhaust passage of an internal combustion engine or the like into a plurality of branch exhaust passages in order to efficiently remove NOx, CO, and the like. Exhaust gas shutoff means capable of shutting off exhaust gas is provided at the exhaust inlet, and nitrogen oxides are temporarily adsorbed in each branch exhaust passage and then desorbed in a temperature rising or reducing atmosphere. Material, adsorbed substance desorption means for raising the temperature of the exhaust gas or reducing atmosphere, and burning unburned substances such as CO and HC generated by the reducing atmosphere generated by the adsorbed substance desorption means And a combustion device for
JP 2003-27927 A JP-A-2005-207281

前記特許文献2に開示されている分岐排気通路方式の排気ガス浄化装置は、窒素酸化物吸着材の脱離運転時(再生運転時)において、吸着物質脱離手段に、燃料と、分岐排気通路外の空気供給装置から空気を供給する場合においては、前記燃料を前記空気で燃焼させることにより、分岐排気通路内の窒素酸化物吸着材を昇温させると共に還元雰囲気にし、窒素酸化物吸着材内のNOxを脱離させている。しかしながら、外部の空気のみを利用して吸着物質脱離手段を作用させる構成では、空気内の酸素を消費するために、多くの燃料が必要となり、消費エネルギーが増加していた。   The exhaust gas purification device of the branch exhaust passage type disclosed in Patent Document 2 includes fuel and a branch exhaust passage as adsorbed substance desorption means during the nitrogen oxide adsorbent desorption operation (regeneration operation). When air is supplied from an external air supply device, the fuel is burned with the air to raise the temperature of the nitrogen oxide adsorbent in the branch exhaust passage and create a reducing atmosphere. NOx is desorbed. However, in the configuration in which the adsorbed substance desorbing means is operated using only external air, a large amount of fuel is required to consume oxygen in the air, resulting in an increase in energy consumption.

本発明は、上記特許文献2に開示された分岐排気通路を有する排気ガス浄化装置を改良したものであり、NOxやCO等を効率良く除去できることに加え、脱離運転時、吸着物質脱離手段を作動させるために、外部からの空気のみを利用する代わりに、内燃機関等から排出される排気ガスの一部を利用することにより、脱離運転時における吸着物質脱離手段の燃料消費量を低減し、結果として、排気ガス浄化に必要な消費エネルギーを低減できるようにすることを目的としている。   The present invention is an improvement of the exhaust gas purification device having a branched exhaust passage disclosed in Patent Document 2 above, and in addition to being able to efficiently remove NOx, CO, etc., adsorbed substance desorbing means during desorption operation In order to operate the fuel, the fuel consumption of the adsorbent desorption means during the desorption operation can be reduced by using a part of the exhaust gas discharged from the internal combustion engine or the like instead of using only the air from the outside. The purpose is to reduce the energy consumption required for exhaust gas purification.

前記課題を解決するため、請求項1記載の発明は、内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置において、前記排気通路を複数の分岐排気通路に分岐し、分岐排気通路の排気入口部に、各分岐排気通路内への排気ガス流量を調節可能な流量制御弁を設け、各分岐排気通路内には、窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、該窒素酸化物吸着材より排気上流側に配置され、前記流量制御弁により調量される排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、前記窒素酸化物吸着材より排気下流側に配置され、燃料供給手段、空気供給手段及び着火手段から構成される燃焼装置と、をそれぞれ備えている。   In order to solve the above-described problem, the invention according to claim 1 is an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or a combustion device, wherein the exhaust passage is branched into a plurality of branch exhaust passages. A flow rate control valve capable of adjusting the flow rate of exhaust gas into each branch exhaust passage is provided at the exhaust inlet, and nitrogen oxide is temporarily adsorbed in each branch exhaust passage, and the adsorbed nitrogen oxide is removed. Nitrogen oxide adsorbent desorbed in a temperature rising or reducing atmosphere, and an adsorption that is arranged upstream of the nitrogen oxide adsorbing material and is metered by the flow control valve to make the temperature rising or reducing atmosphere. A substance desorbing unit, and a combustion apparatus that is disposed on the exhaust downstream side of the nitrogen oxide adsorbent and includes a fuel supply unit, an air supply unit, and an ignition unit.

請求項2記載の発明は、請求項1記載の排気ガス浄化装置において、前記窒素酸化物吸着材の排気上流側と排気下流側との間の差圧を検出する差圧検出装置を備え、該差圧検出装置により検出された差圧により、吸着運転時及び脱離運転時の排気ガス流量を算出し、脱離運転時に前記窒素酸化物吸着材に流入させる排気ガス流量が最適値となるように、前記流量制御弁を制御する制御装置を備えている。   The invention according to claim 2 is the exhaust gas purification device according to claim 1, further comprising a differential pressure detection device that detects a differential pressure between the exhaust upstream side and the exhaust downstream side of the nitrogen oxide adsorbent, The exhaust gas flow rate during the adsorption operation and the desorption operation is calculated from the differential pressure detected by the differential pressure detection device so that the exhaust gas flow rate that flows into the nitrogen oxide adsorbent during the desorption operation becomes an optimum value. And a control device for controlling the flow rate control valve.

上記構成において、内燃機関等の吸着運転時は、内燃機関等からの排気ガスを、一方の分岐排気通路に全量流入し、その排気ガス中に含まれるNOxを一方の分岐排気通路内の窒素酸化物吸着材により吸着除去する。すなわち、一方の分岐排気通路において、吸着運転を行う。この場合、一方の分岐排気通路内の吸着物質脱離手段及び燃焼装置は停止状態となっている。   In the above configuration, during the adsorption operation of the internal combustion engine or the like, the exhaust gas from the internal combustion engine or the like flows into the one branch exhaust passage, and NOx contained in the exhaust gas is oxidized with nitrogen in the one branch exhaust passage. Adsorbed and removed by an object adsorbent. That is, the adsorption operation is performed in one branch exhaust passage. In this case, the adsorbed substance desorbing means and the combustion device in one branch exhaust passage are in a stopped state.

上記一方の分岐排気通路内の窒素酸化物吸着材によるNOx吸着量が所定量(たとえば飽和量)まで達すると、流量制御弁を作動させることにより、内燃機関等からの排気ガスの大部分を他方の分岐排気通路に流し、残りの少量の排気ガスを前記一方の分岐排気通路に流す状態とする。他方の分岐排気通路内では、吸着物質脱離手段及び燃焼装置が停止した状態で吸着運転が行われ、排気ガス中に含まれるNOxを窒素酸化物吸着材により吸着除去する。反対に、一方の分岐排気通路内では、吸着物質脱離手段及び燃焼装置が作動し、脱離運転(再生運転)が行われる。すなわち、一方の分岐排気通路内では、流量制御弁で調量された少量の排気ガスを吸着物質脱離手段により昇温すると共に還元雰囲気にし、NOxが吸着している窒素酸化物吸着材からNOxを脱離させる。脱離したNOxは、たとえば、窒素酸化物吸着材内の触媒成分により吸着物質脱離手段によって生成された還元雰囲気により還元除去され、あるいは、燃焼装置の燃料過濃燃焼領域において還元除去される。また、吸着物質脱離手段によって生成された還元雰囲気により生成したHCやCO等の未燃物質は、燃焼装置の燃料希薄燃焼領域において燃焼除去される。   When the amount of NOx adsorbed by the nitrogen oxide adsorbent in the one branch exhaust passage reaches a predetermined amount (for example, a saturation amount), the flow control valve is actuated so that most of the exhaust gas from the internal combustion engine etc. The other small amount of exhaust gas is caused to flow through the one branch exhaust passage. In the other branch exhaust passage, the adsorption operation is performed with the adsorbed substance desorbing means and the combustion device stopped, and NOx contained in the exhaust gas is adsorbed and removed by the nitrogen oxide adsorbent. On the other hand, in one branch exhaust passage, the adsorbed substance desorbing means and the combustion device are operated, and a desorption operation (regeneration operation) is performed. That is, in one branch exhaust passage, a small amount of exhaust gas metered by the flow rate control valve is heated by the adsorbed substance desorbing means and brought into a reducing atmosphere, and the NOx is adsorbed from the nitrogen oxide adsorbent adsorbed by NOx. Is removed. The desorbed NOx is reduced and removed by, for example, a reducing atmosphere generated by the adsorbed substance desorbing means by the catalyst component in the nitrogen oxide adsorbent, or is reduced and removed in the fuel rich combustion region of the combustion apparatus. Further, unburned substances such as HC and CO generated by the reducing atmosphere generated by the adsorbed substance desorbing means are burned and removed in the fuel lean combustion region of the combustion apparatus.

次に、他方の分岐排気通路内の窒素酸化物吸着材によるNOx吸着量が所定量まで達すると、流量制御弁を作動させることにより、今度は、内燃機関等からの排気ガスの大部分を一方の分岐排気通路に流し、残りの少量の排気ガスを他方の分岐排気通路に流す状態とする。一方の分岐排気通路内では、吸着物質脱離手段及び燃焼装置が停止し、吸着運転が行われ、他方の分岐排気通路内では、吸着物質脱離手段及び燃焼装置が作動し、脱離運転(再生運転)が行われる。   Next, when the amount of NOx adsorbed by the nitrogen oxide adsorbent in the other branch exhaust passage reaches a predetermined amount, the flow control valve is operated, so that most of the exhaust gas from the internal combustion engine or the like is The other exhaust gas is caused to flow through the other branch exhaust passage. In one branch exhaust passage, the adsorbed substance desorbing means and the combustion apparatus are stopped and the adsorption operation is performed. In the other branch exhaust passage, the adsorbed substance desorbing means and the combustion apparatus are operated, and the desorption operation ( Regeneration operation) is performed.

このように、内燃機関等の運転中、両分岐排気通路内での吸着運転と脱離運転とが、交互に繰り返される。   In this way, during the operation of the internal combustion engine or the like, the adsorption operation and the desorption operation in both branch exhaust passages are alternately repeated.

上記構成によると、NOxの脱離運転(再生運転)のために、内燃機関等から排出される排気ガスの一部を利用して、吸着物質脱離手段を作動させるので、吸着物質脱離手段に用いる燃料の消費量を低減することができ、NOxを脱離させるための必要エネルギー消費量を減少させることができる。これは、排気ガスは温度が高く、しかも酸素濃度が低いので、少量の燃料により、十分に昇温し、還元雰囲気に生成できるからである。   According to the above configuration, the adsorbed material desorbing means is operated using part of the exhaust gas discharged from the internal combustion engine or the like for the NOx desorbing operation (regeneration operation). As a result, the amount of fuel used for the fuel can be reduced, and the amount of energy required for desorbing NOx can be reduced. This is because the exhaust gas has a high temperature and a low oxygen concentration, so that it can be sufficiently heated with a small amount of fuel and generated in a reducing atmosphere.

特に、空気過剰条件で運転が行われるような内燃機関又は燃焼機器において、内燃機関等の通常運転中、排気ガス中の窒素酸化物を窒素酸化物吸着材により効率良く吸着し、脱離運転において燃焼装置により焼却除去して排出することができる。   In particular, in an internal combustion engine or combustion equipment that is operated under excessive air conditions, during normal operation of the internal combustion engine or the like, nitrogen oxide in the exhaust gas is efficiently adsorbed by the nitrogen oxide adsorbent, and in desorption operation It can be incinerated and removed by a combustion device.

請求項2記載の発明は、請求項1記載の排気ガス浄化装置において、前記窒素酸化物吸着材の排気上流側と排気下流側との間の差圧を検出する差圧検出装置を備え、該差圧検出装置により検出された差圧により、吸着運転時及び脱離運転時の排気ガス流量を算出し、脱離運転時に前記窒素酸化物吸着材に流入させる排気ガス流量が最適値となるように、前記流量制御弁を制御する制御装置を備えている。   The invention according to claim 2 is the exhaust gas purification device according to claim 1, further comprising a differential pressure detection device that detects a differential pressure between the exhaust upstream side and the exhaust downstream side of the nitrogen oxide adsorbent, The exhaust gas flow rate during the adsorption operation and the desorption operation is calculated from the differential pressure detected by the differential pressure detection device so that the exhaust gas flow rate that flows into the nitrogen oxide adsorbent during the desorption operation becomes an optimum value. And a control device for controlling the flow rate control valve.

上記構成において、分岐排気通路を通過する排気ガス流量は、差圧検出装置により検出された差圧と、窒素酸化物吸着材の有効開口面積と、予め検定された流量係数と、により算出される。そして、内燃機関等の運転状態に合わせて、流量制御弁を調節し、NOxが吸着された窒素酸化物吸着材を有している分岐排気通路への排気ガス流量を最適化することにより、NOx脱離時に必要な消費エネルギーを低減することができる。また、排気ガス流量を常時検出することにより、様々な運転条件に対応でき、NOx低減率も向上する。   In the above configuration, the flow rate of the exhaust gas passing through the branch exhaust passage is calculated by the differential pressure detected by the differential pressure detection device, the effective opening area of the nitrogen oxide adsorbent, and the flow coefficient that has been verified in advance. . Then, by adjusting the flow rate control valve in accordance with the operating state of the internal combustion engine or the like, and optimizing the exhaust gas flow rate to the branch exhaust passage having the nitrogen oxide adsorbent on which NOx is adsorbed, NOx Energy consumption required for desorption can be reduced. Further, by constantly detecting the exhaust gas flow rate, it is possible to deal with various operating conditions and improve the NOx reduction rate.

請求項3記載の発明は、内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置において、前記排気通路を複数の分岐排気通路に分岐し、各分岐排気通路の排気入口部に排気ガスを遮断可能な排気ガス遮断手段を設け、前記排気通路と、前記各分岐排気通路内の排気ガス遮断手段より排気下流部分との間を、排気バイパス通路によりそれぞれ連通し、前記各分岐排気通路内には、窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、該窒素酸化物吸着材より排気上流側に配置され、前記排気バイパス通路から流入する排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、前記窒素酸化物吸着材より排気下流側に配置され、燃料供給手段、空気供給手段及び着火手段から構成される燃焼装置と、をそれぞれ備えている。   According to a third aspect of the present invention, in the exhaust gas purification apparatus installed in an exhaust passage of an internal combustion engine or combustion equipment, the exhaust passage is branched into a plurality of branch exhaust passages, and an exhaust gas is provided at an exhaust inlet portion of each branch exhaust passage. An exhaust gas blocking means capable of blocking the exhaust gas, and the exhaust passage and the exhaust gas blocking means in each of the branch exhaust passages communicate with each other downstream of the exhaust gas by an exhaust bypass passage. The nitrogen oxide adsorbent that temporarily adsorbs nitrogen oxide and desorbs the adsorbed nitrogen oxide in a temperature rising or reducing atmosphere, and is disposed upstream of the nitrogen oxide adsorbent, The adsorbed substance desorbing means for raising the temperature of the exhaust gas flowing in from the exhaust bypass passage or reducing atmosphere, and the exhaust gas downstream from the nitrogen oxide adsorbent, and comprising fuel supply means, air supply means and ignition means. A combustion device that is, the are provided respectively.

上記構成において、内燃機関の運転開始時、一方の分岐排気通路では、排気ガス遮断弁を開いて吸着運転を行い、他方の分岐排気通路では、排気ガス遮断弁を閉じて、排気ガスを遮断する。   In the above configuration, at the start of operation of the internal combustion engine, in one branch exhaust passage, the exhaust gas shut-off valve is opened to perform the adsorption operation, and in the other branch exhaust passage, the exhaust gas shut-off valve is closed to shut off the exhaust gas. .

内燃機関等から排出される排気ガスの大部分は、開状態の一方の排気ガス遮断弁及び該排気ガス遮断弁に対応する排気バイパス通路を通って、一方の分岐排気通路に流入し、排気ガス中に含まれるNOxを一方の分岐排気通路内の窒素酸化物吸着材により吸着除去する。この間、他方の分岐排気通路には、対応する排気バイパス通路を介して少量の排気ガスが流入している。   Most of the exhaust gas discharged from the internal combustion engine or the like flows into one branch exhaust passage through one exhaust gas shut-off valve in the open state and the exhaust bypass passage corresponding to the exhaust gas shut-off valve, and the exhaust gas NOx contained therein is adsorbed and removed by the nitrogen oxide adsorbent in one branch exhaust passage. During this time, a small amount of exhaust gas flows into the other branch exhaust passage via the corresponding exhaust bypass passage.

一方の分岐排気通路内の窒素酸化物吸着材によるNOx吸着量が所定量まで達すると、一方の分岐排気通路の排気ガス遮断弁を閉じると同時に他方の分岐排気通路の排気ガス遮断弁を開き、内燃機関等からの排気ガスの大部分を他方の分岐排気通路に流し、少量の排気ガスを一方の排気バイパス通路により一方の分岐排気通路に流す。   When the amount of NOx adsorbed by the nitrogen oxide adsorbent in one branch exhaust passage reaches a predetermined amount, simultaneously closing the exhaust gas shut-off valve of one branch exhaust passage and opening the exhaust gas shut-off valve of the other branch exhaust passage, Most of the exhaust gas from the internal combustion engine or the like is caused to flow to the other branch exhaust passage, and a small amount of exhaust gas is caused to flow to the one branch exhaust passage by one exhaust bypass passage.

他方の分岐排気通路内では、排気ガス中に含まれるNOxを窒素酸化物吸着材により吸着除去する。これに対し、一方の分岐排気通路内では、脱離運転が行われ、一方の排気バイパス通路を介して一方の分岐排気通路内に流入する少量の排気ガスを、吸着物質脱離手段により昇温して還元雰囲気にし、NOxが吸着している窒素酸化物吸着材からNOxを脱離させる。脱離したNOxは、たとえば窒素酸化物吸着材内に含まれる触媒成分により吸着物質脱離手段によって生成された還元雰囲気により還元除去される。また、吸着物質脱離手段によって生成された還元雰囲気により生成したHCやCO等の未燃物質は、燃焼装置により燃焼除去される。   In the other branch exhaust passage, NOx contained in the exhaust gas is adsorbed and removed by the nitrogen oxide adsorbent. On the other hand, desorption operation is performed in one branch exhaust passage, and a small amount of exhaust gas flowing into one branch exhaust passage through one exhaust bypass passage is heated by the adsorbent desorption means. Thus, a reducing atmosphere is formed, and NOx is desorbed from the nitrogen oxide adsorbent on which NOx is adsorbed. The desorbed NOx is reduced and removed, for example, by a reducing atmosphere generated by the adsorbent desorption means by the catalyst component contained in the nitrogen oxide adsorbent. Further, unburned substances such as HC and CO generated by the reducing atmosphere generated by the adsorbed substance desorbing means are burned and removed by the combustion device.

上記構成によると、請求項1の場合と同様、NOxの脱離運転(再生運転)のために、内燃機関等から排出される排気ガスの一部を利用して、吸着物質脱離手段を作動させるので、前記請求項1の場合と吸着物質脱離手段に用いる燃料消費量を低減することができ、NOxを脱離させるための必要エネルギー消費量を減少させることができる。しかも、排気ガスの各分岐排気通路への分流割合は、内燃機関等の運転条件に拘わらず一定ではあるが、流量制御弁を備える場合に比べて、コストを低減することができる。   According to the above configuration, as in the case of claim 1, the adsorbed substance desorbing means is operated using part of the exhaust gas discharged from the internal combustion engine or the like for NOx desorption operation (regeneration operation). Therefore, the amount of fuel used for the adsorbent desorption means and the case of claim 1 can be reduced, and the amount of energy required for desorbing NOx can be reduced. Moreover, the ratio of the flow of exhaust gas to each branch exhaust passage is constant regardless of the operating conditions of the internal combustion engine or the like, but the cost can be reduced compared to the case where a flow control valve is provided.

請求項4記載の発明は、請求項1乃至3のいずれかに記載の排気ガス浄化装置において、前記分岐排気通路内の前記吸着物質脱離手段より排気下流側に空燃比センサーを配置し、該空燃比センサーにより測定された空燃比に基づき、前記吸着物質脱離手段より生成される還元ガスの空燃比を最適値に制御する制御装置を備えている。   According to a fourth aspect of the present invention, in the exhaust gas purifying apparatus according to any one of the first to third aspects, an air-fuel ratio sensor is disposed downstream of the adsorbed substance desorbing means in the branch exhaust passage, A control device is provided for controlling the air-fuel ratio of the reducing gas generated by the adsorbed substance desorbing means to an optimum value based on the air-fuel ratio measured by the air-fuel ratio sensor.

上記構成によると、内燃機関等の運転条件に合わせて、脱離運転状態の分岐排気通路に流入する排気ガス流量や燃焼装置及び吸着物質脱離手段に使用する燃料流量等を最適化することができ、NOx脱離時に必要な消費エネルギーを低減でき、また、NOx低減率も向上する。さらに、様々な運転条件に対応でき、効率良くNOxを浄化できる。   According to the above configuration, it is possible to optimize the flow rate of the exhaust gas flowing into the branch exhaust passage in the desorption operation state, the fuel flow rate used for the combustion device and the adsorbed material desorption means, etc. according to the operating conditions of the internal combustion engine or the like. It is possible to reduce energy consumption required for NOx desorption, and to improve the NOx reduction rate. Furthermore, it can cope with various operating conditions and can efficiently purify NOx.

[発明の第1の実施の形態]
図1は本発明による排気ガス浄化装置の第1の実施の形態であり、内燃機関1又は燃焼機器の排気通路2を、第1の分岐排気通路2aと第2の分岐排気通路2bとに分岐し、各分岐排気通路2a,2bの排気入口部(排気上流端部)にそれぞれ第1及び第2の流量制御弁21,22を配置し、各分岐排気通路2a,2bの排気下流側端部を再合流し、下流側排気通路2cに接続している。内燃機関1としては、ディーゼル機関、ガス機関、ガソリン機関又はガスタービン機関等が適用され、また、燃焼機器としては産業用ボイラ等が適用される。
[First Embodiment of the Invention]
FIG. 1 shows a first embodiment of an exhaust gas purification apparatus according to the present invention, in which an exhaust passage 2 of an internal combustion engine 1 or a combustion device is branched into a first branch exhaust passage 2a and a second branch exhaust passage 2b. The first and second flow rate control valves 21 and 22 are disposed at the exhaust inlet portions (exhaust upstream end portions) of the branch exhaust passages 2a and 2b, respectively, and the exhaust downstream end portions of the branch exhaust passages 2a and 2b are disposed. Are rejoined and connected to the downstream exhaust passage 2c. As the internal combustion engine 1, a diesel engine, a gas engine, a gasoline engine, a gas turbine engine or the like is applied, and an industrial boiler or the like is applied as a combustion device.

各流量制御弁21,22は、制御装置として備えられた電子制御ユニット(以下、「ECU」と称する)12にそれぞれ電気的に接続されており、各流量制御弁21,22は、流量0の閉状態から全開状態までの任意の排気ガス流量に調整可能であり、それにより、排気通路2から各分岐排気通路2a、2bに分配される排気ガス量を、所望の分配比率で分配できるようになっている。尚、各分岐排気通路2a、2bに流量制御弁21,22をそれぞれ備える代わりに、両分岐排気通路2a、2bへの分配率を変更可能な単一の分配弁を、排気通路2と分岐排気通路2a、2bとの合流部に配置することもできる。   Each flow control valve 21, 22 is electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 12 provided as a control device, and each flow control valve 21, 22 has a flow rate of 0. The exhaust gas flow rate can be adjusted to an arbitrary flow rate from the closed state to the fully opened state, so that the amount of exhaust gas distributed from the exhaust passage 2 to each branch exhaust passage 2a, 2b can be distributed at a desired distribution ratio. It has become. Instead of providing the flow control valves 21 and 22 in the branch exhaust passages 2a and 2b, a single distribution valve capable of changing the distribution ratio to both the branch exhaust passages 2a and 2b is used as the exhaust passage 2 and the branch exhaust. It can also be arranged at the junction with the passages 2a, 2b.

各分岐排気通路2a、2b内には、各流量制御弁21,22の排気下流近傍位置にそれぞれ吸着物質脱離手段3が配置され、各吸着物質脱離手段3から間隔をおいた排気下流側に窒素酸化物吸着材(以下「NOx吸着材」と称する)4がそれぞれ配置され、各NOx吸着材4から間隔をおいた排気下流側に燃焼装置5がそれぞれ配置されている。   In each branch exhaust passage 2a, 2b, an adsorbed substance desorbing means 3 is disposed in the vicinity of the exhaust downstream of each flow control valve 21, 22, and the exhaust downstream side spaced from each adsorbed substance desorbing means 3 In addition, a nitrogen oxide adsorbent (hereinafter referred to as “NOx adsorbent”) 4 is disposed, and a combustion device 5 is disposed on the exhaust downstream side spaced from each NOx adsorbent 4.

(NOx吸着材4の構成)
NOx吸着材4は、特に空気過剰雰囲気においても効率良く窒素酸化物(以下「NOx」と称する)を吸着することができ、かつ、所定温度に昇温した時あるいは還元雰囲気においては前記吸着したNOxを脱離する性質を有している。該実施の形態では、NOx吸着材4は酸化作用を有する触媒を含み、一酸化炭素(以下「CO」と称する)や炭化水素(以下「HC」と称する)等の未燃成分を酸化すると共に、窒素酸化物吸着材4自体の形状が、粒子状物質を捕獲するのに適した形状となっている。
(Configuration of NOx adsorbent 4)
The NOx adsorbent 4 can efficiently adsorb nitrogen oxides (hereinafter referred to as “NOx”) even in an excess air atmosphere, and the adsorbed NOx when heated to a predetermined temperature or in a reducing atmosphere. Has the property of desorbing. In this embodiment, the NOx adsorbent 4 includes a catalyst having an oxidizing action, and oxidizes unburned components such as carbon monoxide (hereinafter referred to as “CO”) and hydrocarbons (hereinafter referred to as “HC”). The shape of the nitrogen oxide adsorbing material 4 itself is a shape suitable for capturing particulate matter.

(燃焼装置5の構成)
燃焼装置5は、燃料ノズル6と点火装置7を備えると共に、前記燃料ノズル6の排気下流側に空気供給手段15を備えており、これにより、作動時、空気供給手段15の排気上流側に燃料過濃燃焼領域X1を形成し、空気供給手段15の排気下流側に燃料希薄燃焼領域X2を形成できるようになっている。両領域X1及びX2は、それぞれ分岐排気通路2a、2bの流通断面全体に亘るように形成され、したがって燃焼装置5内を通過する排気ガスは、必ず燃料過濃燃焼領域X1と燃料希薄燃焼領域X2を順に通過するようになっている。
(Composition of combustion device 5)
The combustion device 5 includes a fuel nozzle 6 and an ignition device 7, and also includes an air supply unit 15 on the exhaust downstream side of the fuel nozzle 6, whereby the fuel is disposed on the exhaust upstream side of the air supply unit 15 during operation. The rich combustion region X1 is formed, and the lean fuel combustion region X2 can be formed on the exhaust downstream side of the air supply means 15. Both the regions X1 and X2 are formed so as to extend over the entire flow section of the branch exhaust passages 2a and 2b. Therefore, the exhaust gas passing through the combustion device 5 must be the fuel rich combustion region X1 and the fuel lean combustion region X2. Are passed in order.

空気供給手段15は空気調量装置16を介して空気供給源17に接続し、空気調量装置16はECU12により空気の供給及び停止並びにその供給量が制御されるようになっている。   The air supply means 15 is connected to an air supply source 17 via an air metering device 16, and the air metering device 16 is controlled by the ECU 12 to supply and stop air and to control its supply amount.

(吸着物質脱離手段3の構成)
吸着物質脱離手段3は、吸着物質脱離用燃料ノズル(バーナー)31と吸着物質脱離用点火装置32とから構成されている。吸着物質脱離用燃料ノズル31は前記燃料調量装置10に接続している。なお、必要な場合には、燃焼補助用の空気を取り入れる空気供給部33が設けられ、該空気供給部33は空気調量装置16に接続される。
(Configuration of adsorbed substance desorption means 3)
The adsorbed substance desorbing means 3 includes an adsorbed substance desorbing fuel nozzle (burner) 31 and an adsorbed substance desorbing ignition device 32. The adsorbed substance desorbing fuel nozzle 31 is connected to the fuel metering device 10. If necessary, an air supply unit 33 for taking in air for combustion support is provided, and the air supply unit 33 is connected to the air metering device 16.

(各種検出手段)
各分岐排気通路2a,2bには、流量制御弁21、22、吸着物質脱離手段3,NOx吸着材4及び燃焼装置5に加え、以下のような各種検出手段が設けられている。
(Various detection means)
In addition to the flow control valves 21 and 22, the adsorbed substance desorbing means 3, the NOx adsorbent 4, and the combustion device 5, the following various detection means are provided in each branch exhaust passage 2 a and 2 b.

各窒素酸化物吸着材4には、NOx吸着量が所定量(たとえば飽和量又は飽和量より少し少ない量)まで達したことを検出して、ECU12に検出信号を送るNOx吸着量検出センサー29が設けられている。   Each nitrogen oxide adsorbent 4 has a NOx adsorption amount detection sensor 29 that detects that the NOx adsorption amount has reached a predetermined amount (for example, a saturation amount or a little less than the saturation amount) and sends a detection signal to the ECU 12. Is provided.

また、窒素酸化物吸着材4の近傍には、窒素酸化物吸着材4の排気上流側と排気下流側との間の排気ガスの差圧を検出する差圧検出装置25がそれぞれ備えられ、ECU12に電気的に接続している。各差圧検出装置25は、吸着運転時及び脱離運転時のいずれの運転時においても、NOx吸着材4の排気上流側と排気下流側との排気ガスの差圧を検出し、ECU12に入力するようになっており、ECU12内では、上記検出した差圧に基づいて、排気ガス流量を算出する。たとえば、NOx吸着材4の有効開口面積に流量係数を掛けることにより、排気ガス流量を算出する。流量係数は、排気ガスの温度、圧力及び成分(機関負荷)の関数から導き出される。   Further, in the vicinity of the nitrogen oxide adsorbing material 4, a differential pressure detecting device 25 for detecting a differential pressure of exhaust gas between the exhaust upstream side and the exhaust downstream side of the nitrogen oxide adsorbing material 4 is provided, respectively. Is electrically connected. Each differential pressure detection device 25 detects the differential pressure of the exhaust gas between the exhaust upstream side and the exhaust downstream side of the NOx adsorbent 4 during both the adsorption operation and the desorption operation, and inputs it to the ECU 12. In the ECU 12, the exhaust gas flow rate is calculated based on the detected differential pressure. For example, the exhaust gas flow rate is calculated by multiplying the effective opening area of the NOx adsorbent 4 by a flow coefficient. The flow coefficient is derived from a function of exhaust gas temperature, pressure and components (engine load).

さらに、吸着物質脱離手段3とNOx吸着材4との間には、空燃比センサー28がそれぞれ備えられ、ECU12に電気的に接続しており、吸着物質脱離手段3からNOx吸着材4に流入する還元ガスの空燃比(酸素濃度)を検出し、検出信号をECU12に送るようになっている。   Further, an air-fuel ratio sensor 28 is provided between the adsorbent desorption means 3 and the NOx adsorbent 4 and is electrically connected to the ECU 12. The air-fuel ratio (oxygen concentration) of the inflowing reducing gas is detected, and a detection signal is sent to the ECU 12.

(流量制御弁21,22の制御内容)
各流量制御弁21,22は、それぞれ任意に流量を設定することも可能であるが、本実施の形態では、ECU12により、少なくとも次の4つの状態に切換可能となっている。
(Control contents of flow control valves 21, 22)
Each flow control valve 21, 22 can arbitrarily set a flow rate, but in the present embodiment, the ECU 12 can be switched to at least the following four states.

第1の状態は、第1の分岐排気通路2aが吸着運転、第2の分岐排気通路2bが脱離運転する場合であり、内燃機関1の運転時、第1の分岐排気通路2aに流入する排気ガス流量と、第2の分岐排気通路2bに流入する排気ガス流量との比が、8:2又は該比よりも第2の分岐排気通路2bに流入する排気ガス流量の比率が小さくなるように各流量制御弁21,22が制御される。言い換えると、第2の分岐排気通路2bに流入する排気ガス量が、排気通路2から排出される排気ガス全量の20%以下の範囲になるように両流量制御弁21,22が制御される。   The first state is a case where the first branch exhaust passage 2a is in the adsorption operation and the second branch exhaust passage 2b is in the desorption operation, and flows into the first branch exhaust passage 2a during the operation of the internal combustion engine 1. The ratio of the exhaust gas flow rate to the exhaust gas flow rate flowing into the second branch exhaust passage 2b is 8: 2, or the ratio of the exhaust gas flow rate flowing into the second branch exhaust passage 2b is smaller than the ratio. The flow control valves 21 and 22 are controlled. In other words, the flow rate control valves 21 and 22 are controlled such that the amount of exhaust gas flowing into the second branch exhaust passage 2b is in a range of 20% or less of the total amount of exhaust gas discharged from the exhaust passage 2.

第2の状態は、上記第1の状態と反対で、第1の分岐排気通路2aが脱離運転、第2の分岐排気通路2bが吸着運転する場合であり、内燃機関1の運転時、第1の分岐排気通路2aに流入する排気ガス流量と、第2の分岐排気通路2bに流入する排気ガス流量との比が、2:8又は該比よりも第1の分岐排気通路2aに流入する排気ガス流量の比率が小さくなるように各流量制御弁21,22が制御される。言い換えると、第1の分岐排気通路2aに流入する排気ガス量が、排気通路2から排出される排気ガス全量の20%以下の範囲になるように両流量制御弁21,22が制御される。   The second state is a case where the first branch exhaust passage 2a is desorbing and the second branch exhaust passage 2b is performing an adsorption operation, which is opposite to the first state. The ratio of the exhaust gas flow rate flowing into the first branch exhaust passage 2a and the exhaust gas flow rate flowing into the second branch exhaust passage 2b flows into the first branch exhaust passage 2a at 2: 8 or more than that ratio. The flow control valves 21 and 22 are controlled so that the ratio of the exhaust gas flow rate becomes small. In other words, the flow rate control valves 21 and 22 are controlled so that the amount of exhaust gas flowing into the first branch exhaust passage 2a is in a range of 20% or less of the total amount of exhaust gas discharged from the exhaust passage 2.

第3の状態は、内燃機関1の運転開始時の場合であって、第1の分岐排気通路2aが吸着運転、第2の分岐排気通路2bが利用されていない場合であり、第2の流量制御弁22を完全に遮断すると共に第1の流量制御弁21を全開し、排気通路2の排気ガスの全量を第1の分岐排気通路2aに流入させる。   The third state is when the operation of the internal combustion engine 1 is started, in which the first branch exhaust passage 2a is in the adsorption operation and the second branch exhaust passage 2b is not used, and the second flow rate The control valve 22 is completely shut off, and the first flow control valve 21 is fully opened, so that the entire amount of exhaust gas in the exhaust passage 2 flows into the first branch exhaust passage 2a.

第4の状態は、内燃機関1の吸着運転時の別の場合であって、第2の分岐排気通路2bが吸着運転され、第1の分岐排気通路2aが利用されていない場合であり、第1の流量制御弁21を完全に遮断すると共に第2の流量制御弁22を全開し、排気通路2の排気ガスの全量を第2の分岐排気通路2bに流入させる。   The fourth state is another case during the adsorption operation of the internal combustion engine 1, and is a case where the second branch exhaust passage 2b is operated for adsorption and the first branch exhaust passage 2a is not used. The first flow control valve 21 is completely shut off, and the second flow control valve 22 is fully opened, so that the entire amount of exhaust gas in the exhaust passage 2 flows into the second branch exhaust passage 2b.

第1及び第2の状態での排気ガス流量の分配率は、脱離運転時の分岐排気通路2a又は2bに、前述のように全体の排気ガス流量の20%以下の排気ガスを流入させることが好ましいが、特に、10%またはそれ以下の量を流入させることが好ましい。   The distribution ratio of the exhaust gas flow rate in the first and second states is that exhaust gas of 20% or less of the total exhaust gas flow rate flows into the branch exhaust passage 2a or 2b during the desorption operation as described above. However, it is particularly preferable to flow in an amount of 10% or less.

(作用)
作用の一例を説明する。
(1)図1において、内燃機関1の運転開始時、排気ガス浄化装置は、たとえば、第2の流量制御弁22を全閉状態とし、第1の流量制御弁21を全開した前記第3の状態となっており、排気通路2の排気ガスは全量が第1の分岐排気通路2aに流入する。また、いずれの分岐排気通路2a、2b内の燃焼装置5及び吸着物質脱離手段3も停止状態となっている。したがって、第1の分岐排気通路2a内に排出された排気ガスはそのままNOx吸着材4に至り、排気ガス中に含まれるNOxがNOx吸着材4により吸着除去される。同時に、NOx吸着材4に含まれる酸化触媒によりCOやHC等の未燃成分を酸化し、無害化する。
(Function)
An example of the action will be described.
(1) In FIG. 1, at the start of the operation of the internal combustion engine 1, the exhaust gas purification device, for example, the third flow rate control valve 22 is fully closed and the first flow rate control valve 21 is fully opened. The exhaust gas in the exhaust passage 2 is entirely in the state of flowing into the first branch exhaust passage 2a. Further, the combustion device 5 and the adsorbed substance desorbing means 3 in any of the branch exhaust passages 2a, 2b are also stopped. Therefore, the exhaust gas discharged into the first branch exhaust passage 2 a reaches the NOx adsorbent 4 as it is, and NOx contained in the exhaust gas is adsorbed and removed by the NOx adsorbent 4. At the same time, unburned components such as CO and HC are oxidized and rendered harmless by the oxidation catalyst contained in the NOx adsorbent 4.

(2)所定時間運転した後、第1の分岐排気通路2a内のNOx吸着材4によるNOx吸着量が所定量に達すると、NOx吸着量検出センサー29による検出信号がECU12に送られ、ECU12からの弁切換信号により、各流量制御弁21,22は、前記第2の状態、すなわち、排気通路2中の排気ガスの80%以上を第2の分岐排気通路2bに流入させ、残りの20%以下を第1の分岐排気通路2aに流入させる状態に切り換えられる。この流量制御弁21,22の切り換えにより、第2の分岐排気通路2bは吸着運転状態となり、第1の分岐排気通路2aは脱離運転状態となる。 (2) After the operation for a predetermined time, when the NOx adsorption amount by the NOx adsorbent 4 in the first branch exhaust passage 2a reaches a predetermined amount, a detection signal from the NOx adsorption amount detection sensor 29 is sent to the ECU 12, and from the ECU 12 In response to the valve switching signal, the flow control valves 21 and 22 cause the second state, that is, 80% or more of the exhaust gas in the exhaust passage 2 to flow into the second branch exhaust passage 2b, and the remaining 20%. The following is switched to the state of flowing into the first branch exhaust passage 2a. By switching the flow control valves 21 and 22, the second branch exhaust passage 2b is in the adsorption operation state, and the first branch exhaust passage 2a is in the desorption operation state.

上記第2の状態において、吸着運転状態の第2の分岐排気通路2b内の燃焼装置5及び吸着物質脱離手段3は停止状態を維持しており、排気通路2から第2の分岐排気通路2bに流入する排気ガス中に含まれるNOxはNOx吸着材4により吸着除去される。   In the second state, the combustion device 5 and the adsorbed substance desorbing means 3 in the second branch exhaust passage 2b in the adsorption operation state are maintained in a stopped state, and the second branch exhaust passage 2b is extended from the exhaust passage 2. NOx contained in the exhaust gas flowing into the NOx is adsorbed and removed by the NOx adsorbent 4.

一方、上記第2の状態において、脱離運転状態の第1の分岐排気通路2aでは、燃焼装置5及び吸着物質脱離手段3が作動し、前記排気通路2から流入する一部の排気ガスは、吸着物質脱離手段3において、燃料ノズル31からの燃料と混合すると共に、排気ガス中の残留酸素により燃焼し、昇温すると共に還元雰囲気となり、昇温状態で還元された還元ガスをNOx吸着材4へ供給することにより、NOx吸着材4からNOxを脱離させる。すなわち、NOx吸着材4を再生する。脱離したNOxは、NOx吸着材4中の前記触媒成分により吸着物質脱離手段3によって生成された還元雰囲気で還元除去され、また、燃焼装置5の燃料過濃燃焼領域X1において還元除去される。なお、燃焼装置5の燃料過濃燃焼領域X1ではCOあるいは炭化水素が発生する可能性があるが、下流側の燃料希薄燃焼領域X2にて酸化されてCO2及びH2Oとなり、排出される。また、燃料希薄燃焼領域X2では燃焼温度が低いため、燃料希薄燃焼領域X2で生成されるNOxは微量である。 On the other hand, in the second state, in the first branch exhaust passage 2a in the desorption operation state, the combustion device 5 and the adsorbed material desorption means 3 are operated, and a part of the exhaust gas flowing from the exhaust passage 2 is The adsorbed substance desorbing means 3 mixes with the fuel from the fuel nozzle 31 and burns with residual oxygen in the exhaust gas to raise the temperature and become a reducing atmosphere. By supplying the material 4, NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated. The desorbed NOx is reduced and removed in the reducing atmosphere generated by the adsorbed substance desorbing means 3 by the catalyst component in the NOx adsorbent 4, and is reduced and removed in the fuel rich combustion region X1 of the combustion device 5. . The fuel-rich in the combustion region X1 CO or hydrocarbons in the combustion device 5, but may occur, is oxidized at the fuel lean combustion region X2 on the downstream side CO2 and H 2 O, and the is discharged. Further, since the combustion temperature is low in the fuel lean combustion region X2, the amount of NOx generated in the fuel lean combustion region X2 is very small.

(3)次に、第2の分岐排気通路2b内のNOx吸着材4によるNOx吸着量が所定量に達すると、NOx吸着量検出センサー29による検出信号がECU12に送られ、ECU12からの弁切換信号により、各流量制御弁21,22は、前記第1の状態、すなわち、排気通路2中の排気ガスの80%以上を第1の分岐排気通路2aに流入させ、残りの20%以下を第2の分岐排気通路2bに流入させる状態に切り換えられる。この流量制御弁21,22の切り換えにより、第1の分岐排気通路2aは吸着運転状態となり、第2の分岐排気通路2bは脱離運転状態となる。 (3) Next, when the NOx adsorption amount by the NOx adsorbent 4 in the second branch exhaust passage 2b reaches a predetermined amount, a detection signal from the NOx adsorption amount detection sensor 29 is sent to the ECU 12, and the valve is switched from the ECU 12. In response to the signal, each flow control valve 21, 22 causes 80% or more of the exhaust gas in the exhaust passage 2 to flow into the first branch exhaust passage 2a and the remaining 20% or less to the first state. 2 is switched to the state of flowing into the two branch exhaust passages 2b. By switching the flow control valves 21 and 22, the first branch exhaust passage 2a is in the adsorption operation state, and the second branch exhaust passage 2b is in the desorption operation state.

このように、内燃機関等の通常運転中、両分岐排気通路2a、2b内での吸着運転と脱離運転とが、交互に繰り返される。   In this way, during normal operation of the internal combustion engine or the like, the adsorption operation and the desorption operation in both branch exhaust passages 2a and 2b are alternately repeated.

該実施の形態において、各分岐排気通路2a、2b内の排気ガス流量は、差圧検出装置25により検出された差圧と、NOx吸着材4の有効開口面積と、予め検定された流量係数と、により算出され、内燃機関1等の運転状態に合わせて、NOxが吸着しているNOx吸着材4を有している分岐排気通路2a又は2bへの排気ガス流量を最適化することにより、NOx脱離時に必要な消費エネルギーをさらに低減できる。すなわち、両分岐排気通路2a、2bへの排気ガスの分配比率が前記検出排気ガス量に基づき脱離運転に最適になるように、両流量制御弁21,22の制御量を設定変更し、NOx脱離時に必要な消費エネルギーをさらに低減できる。また、分岐排気通路2a、2b内の排気ガス流量を常時検出することにより、様々な運転条件に対応して、NOx低減率を向上させることができる。   In this embodiment, the exhaust gas flow rate in each of the branch exhaust passages 2a and 2b includes the differential pressure detected by the differential pressure detection device 25, the effective opening area of the NOx adsorbent 4, and the flow coefficient that has been verified in advance. By optimizing the exhaust gas flow rate to the branch exhaust passage 2a or 2b having the NOx adsorbent 4 adsorbing NOx in accordance with the operating state of the internal combustion engine 1 or the like, the NOx The energy consumption required for desorption can be further reduced. That is, the control amount of both flow control valves 21 and 22 is changed so that the distribution ratio of the exhaust gas to both branch exhaust passages 2a and 2b is optimal for the desorption operation based on the detected exhaust gas amount, and NOx The energy consumption required for desorption can be further reduced. Further, by constantly detecting the exhaust gas flow rate in the branch exhaust passages 2a and 2b, the NOx reduction rate can be improved in response to various operating conditions.

また、該実施の形態においては、各吸着物質脱離手段3とNOx吸着材4との間に空燃比センサー28を配置することにより、吸着物質脱離手段3で燃焼した後の還元ガスの空燃比を正確に測定しているので、たとえば、空燃比が所定の値より大きい場合は、排気ガス中の残量酸素が多すぎると判断して、吸着物質脱離手段3の燃料供給量を増やし、確実に還元雰囲気が作れるようにする。なお、排気通路2から流入する排気ガス中の残留酸素量が少なすぎて、吸着物質脱離手段における燃焼が十分に行えないような場合には、空気供給部33から空気を供給し、燃焼を助けることができる。   In this embodiment, the air-fuel ratio sensor 28 is disposed between each adsorbent desorption means 3 and the NOx adsorbent 4 so that the reducing gas emptied after being burned by the adsorbent desorption means 3. Since the fuel ratio is accurately measured, for example, when the air-fuel ratio is larger than a predetermined value, it is determined that the residual oxygen in the exhaust gas is too much, and the amount of fuel supplied to the adsorbed material desorbing means 3 is increased. Make sure that a reducing atmosphere can be created. When the amount of residual oxygen in the exhaust gas flowing in from the exhaust passage 2 is too small to sufficiently perform combustion in the adsorbed substance desorbing means, air is supplied from the air supply unit 33 to perform combustion. I can help.

要するに本実施の形態では、NOx脱離運転のために、内燃機関1等から排出される排気ガスの一部を利用して、吸着物質脱離手段3を作動させるので、吸着物質脱離手段で用いる燃料を低減することができ、NOxを脱離させるための必要エネルギー消費量が減少する。   In short, in the present embodiment, for the NOx desorption operation, the adsorbed material desorbing means 3 is operated using a part of the exhaust gas discharged from the internal combustion engine 1 or the like. The fuel used can be reduced, and the energy consumption required for desorbing NOx is reduced.

[発明の第2の実施の形態]
図2は本発明の第2の実施の形態であり、前記第1の実施の形態と異なる構成は、各分岐排気通路2a、2bに流量制御弁を配置する代わりに、各分岐排気通路2a、2bを遮断可能な排気ガス遮断弁を設けると共に、排気ガス通路2と各分岐排気通路2a、2bとをそれぞれ連通する第1及び第2の排気バイパス通路41,42を設けていることである。上記排気ガス遮断弁として、該実施の形態では、排気通路2を第1の分岐排気通路2aと第2の分岐排気通路2bとに切換自在に連通できる単一の切換弁を備えているが、各分岐排気通路2a、2b毎に排気ガス遮断弁を備える構造とすることもできる。
[Second Embodiment of the Invention]
FIG. 2 shows a second embodiment of the present invention. The structure different from the first embodiment is that each branch exhaust passage 2a, instead of arranging a flow control valve in each branch exhaust passage 2a, 2b. In addition to providing an exhaust gas shut-off valve capable of shutting off 2b, first and second exhaust bypass passages 41 and 42 for communicating the exhaust gas passage 2 and the branch exhaust passages 2a and 2b, respectively, are provided. In the present embodiment, the exhaust gas shut-off valve includes a single switching valve that can switchably communicate the exhaust passage 2 with the first branch exhaust passage 2a and the second branch exhaust passage 2b. It can also be set as a structure provided with an exhaust-gas cutoff valve for every branch exhaust passage 2a and 2b.

各排気バイパス通路41,42の流通断面積は、排気通路2の流通断面積と両排気バイパス通路41,42の流通断面積との総和に対する一つの排気バイパス通路41又は42の流通断面積が、20%以下程度になるように設定されている。すなわち、切換弁40を第1の分岐排気通路2a側に切り換えた場合には、排気通路2の排気ガス全量の80%以上が、切換弁40及び第1の排気バイパス通路41を介して第1の分岐排気通路2aに流入し、残りの20%以下が第2の排気バイパス通路42を通って第2の分岐排気通路2bに流入する。反対に、切換弁40を第2の分岐排気通路2b側に切り換えた場合には、排気通路2の排気ガス全量の80%以上が、切換弁40及び第2の排気バイパス通路42を介して第2の分岐排気通路2bに流入し、残りの20%以下が第1の排気バイパス通路41を通って第1の分岐排気通路2aに流入する。   The flow cross-sectional area of each exhaust bypass passage 41, 42 is the flow cross-sectional area of one exhaust bypass passage 41 or 42 relative to the sum of the flow cross-sectional area of the exhaust passage 2 and the flow cross-sectional areas of both the exhaust bypass passages 41, 42. It is set to be about 20% or less. That is, when the switching valve 40 is switched to the first branch exhaust passage 2a side, 80% or more of the total amount of exhaust gas in the exhaust passage 2 passes through the switching valve 40 and the first exhaust bypass passage 41. The remaining 20% or less flows into the second branch exhaust passage 2b through the second exhaust bypass passage 42. On the contrary, when the switching valve 40 is switched to the second branch exhaust passage 2b side, 80% or more of the total exhaust gas in the exhaust passage 2 passes through the switching valve 40 and the second exhaust bypass passage 42. The remaining 20% or less flows into the first branch exhaust passage 2a through the first exhaust bypass passage 41.

その他の構成は、前記第1の実施の形態と同様であり、省略する。   Other configurations are the same as those in the first embodiment, and are omitted.

(作用)
(1)内燃機関1等の運転開始時、切換弁40を第1の分岐排気通路2aに切り換えていると、第1の分岐排気通路2aは吸着運転状態となり、内燃機関1等から排出される排気ガスの80%以上は切換弁40内及び第1の排気バイパス通路41を通って第1の分岐排気通路2a内に流入し、排気ガス中に含まれるNOxを第1の分岐排気通路2a内の窒素酸化物吸着材4により吸着除去する。この間、第2の分岐排気通路2bには、第2の排気バイパス通路42を介して少量の排気ガスが流入している。
(Function)
(1) When the switching valve 40 is switched to the first branch exhaust passage 2a at the start of operation of the internal combustion engine 1 or the like, the first branch exhaust passage 2a enters the adsorption operation state and is discharged from the internal combustion engine 1 or the like. More than 80% of the exhaust gas flows into the first branch exhaust passage 2a through the switching valve 40 and the first exhaust bypass passage 41, and NOx contained in the exhaust gas is transferred into the first branch exhaust passage 2a. The nitrogen oxide adsorbent 4 is used for adsorption removal. During this time, a small amount of exhaust gas flows into the second branch exhaust passage 2 b via the second exhaust bypass passage 42.

(2)第1の分岐排気通路2a内の窒素酸化物吸着材4によるNOx吸着量が所定量まで達するのをNOx吸着量検出センサー29により検出すると、切換弁40を第2の分岐排気通路2b側に切り換え、第2の分岐排気通路2bを吸着運転状態とし、第1の分岐排気通路2aを脱離運転状態とする。 (2) When the NOx adsorption amount detection sensor 29 detects that the NOx adsorption amount by the nitrogen oxide adsorbing material 4 in the first branch exhaust passage 2a reaches a predetermined amount, the switching valve 40 is moved to the second branch exhaust passage 2b. The second branch exhaust passage 2b is set in the adsorption operation state, and the first branch exhaust passage 2a is set in the desorption operation state.

すなわち、第2の分岐排気通路2bの燃焼装置5及び吸着物質脱離手段3は停止した状態が維持され、内燃機関1等からの排気ガスの80%以上は切換弁40内及び第2の排気バイパス通路42を通って第2の分岐排気通路2b内に流入し、排気ガス中に含まれるNOxを第2の分岐排気通路2b内の窒素酸化物吸着材4により吸着除去する。   That is, the combustion device 5 and the adsorbed substance desorbing means 3 in the second branch exhaust passage 2b are maintained in a stopped state, and 80% or more of the exhaust gas from the internal combustion engine 1 or the like is in the switching valve 40 and the second exhaust. It flows into the second branch exhaust passage 2b through the bypass passage 42, and NOx contained in the exhaust gas is adsorbed and removed by the nitrogen oxide adsorbent 4 in the second branch exhaust passage 2b.

一方、第1の分岐排気通路2aは脱離運転状態となり、燃焼装置5及び吸着物質脱離手段3が作動し、第1の排気バイパス通路42を介して20%以下の少量の排気ガスが流入し、該排気ガスは、吸着物質脱離手段3において、燃料ノズル31からの燃料と混合すると共に、排気ガス中の残留酸素により燃焼し、昇温すると共に還元雰囲気となり、この昇温された還元雰囲気の還元ガスをNOx吸着材4へ供給することにより、NOx吸着材4からNOxを脱離させる。すなわち、NOx吸着材4を再生する。脱離したNOxは、窒素酸化物吸着材4中の前記触媒成分により吸着物質脱離手段3によって生成された還元雰囲気で還元除去され、また、燃焼装置5の燃料過濃燃焼領域X1において還元除去される。なお、燃焼装置5の燃料過濃燃焼領域X1ではCOあるいは炭化水素が発生する可能性があるが、下流側の燃料希薄燃焼領域X2にて酸化されてCO2及びH2Oとなり、排出される。また、燃料希薄燃焼領域X2では燃焼温度が低いため、前記燃料過濃燃焼領域X1にて生成したN2が酸化されることはない。また、燃料希薄燃焼領域X2では燃焼温度が低いため、燃料希薄燃焼領域X2で生成されるNOxは微量である。 On the other hand, the first branch exhaust passage 2a is in a desorption operation state, the combustion device 5 and the adsorbed material desorption means 3 are operated, and a small amount of exhaust gas of 20% or less flows through the first exhaust bypass passage 42. The exhaust gas is mixed with the fuel from the fuel nozzle 31 in the adsorbed substance desorbing means 3 and burned by residual oxygen in the exhaust gas to raise the temperature and become a reducing atmosphere. By supplying the reducing gas in the atmosphere to the NOx adsorbent 4, NOx is desorbed from the NOx adsorbent 4. That is, the NOx adsorbent 4 is regenerated. The desorbed NOx is reduced and removed in the reducing atmosphere generated by the adsorbed substance desorbing means 3 by the catalyst component in the nitrogen oxide adsorbing material 4, and is reduced and removed in the fuel rich combustion region X 1 of the combustion device 5. Is done. The fuel-rich in the combustion region X1 CO or hydrocarbons in the combustion device 5, but may occur, is oxidized at the fuel lean combustion region X2 on the downstream side CO2 and H 2 O, and the is discharged. Further, since the combustion temperature is low in the fuel lean combustion region X2, N2 generated in the fuel rich combustion region X1 is not oxidized. Further, since the combustion temperature is low in the fuel lean combustion region X2, the amount of NOx generated in the fuel lean combustion region X2 is very small.

(3)そして、第2の分岐排気通路2b内の窒素酸化物吸着材4によるNOx吸着量が所定量まで達するのをNOx吸着量検出センサー29により検出すると、切換弁40を第1の分岐排気通路2a側に切り換え、第1の分岐排気通路2aを吸着運転状態とし、第2の分岐排気通路2bを脱離運転状態とする。 (3) When the NOx adsorption amount detection sensor 29 detects that the NOx adsorption amount by the nitrogen oxide adsorbing material 4 in the second branch exhaust passage 2b reaches a predetermined amount, the switching valve 40 is switched to the first branch exhaust. Switching to the passage 2a side, the first branch exhaust passage 2a is set in the adsorption operation state, and the second branch exhaust passage 2b is set in the desorption operation state.

このように、内燃機関等の通常運転中、両分岐排気通路2a、2b内での吸着運転と脱離運転とが、交互に繰り返される。   In this way, during normal operation of the internal combustion engine or the like, the adsorption operation and the desorption operation in both branch exhaust passages 2a and 2b are alternately repeated.

要するに本実施の形態では、NOx脱離運転のために、内燃機関1等から排出される排気ガスの一部を利用して、吸着物質脱離手段3を作動させるので、前記第1の実施の形態と同様、吸着物質脱離手段3で用いる燃料を低減することができ、NOxを脱離させるための必要エネルギー消費量が減少させることができ、さらに、コストの高い流量制御弁を備える必要が無いので、製造コストを節約することができる。   In short, in the present embodiment, for the NOx desorption operation, the adsorbed material desorbing means 3 is operated by using a part of the exhaust gas discharged from the internal combustion engine 1 or the like. Similar to the embodiment, the fuel used in the adsorbent desorption means 3 can be reduced, the required energy consumption for desorbing NOx can be reduced, and a high-cost flow control valve needs to be provided. Since there is no, manufacturing cost can be saved.

[その他の実施の形態]
(1)内燃機関自体が希薄燃焼用内燃機関であって、たとえば過給機を備えている場合には、過給機の圧縮機の空気を、図1及び図2の各空気供給手段に利用することができる。
[Other embodiments]
(1) When the internal combustion engine itself is a lean combustion internal combustion engine and is provided with, for example, a supercharger, the air of the compressor of the supercharger is used for each air supply means in FIGS. can do.

(2)NOx吸着材としては、微粒子フィルターの壁にNOx吸着材を使用したものを利用することも可能である。 (2) As the NOx adsorbent, it is also possible to use a NOx adsorbent using a NOx adsorbent on the wall of the particulate filter.

(3)第1及び第2の実施の形態では、排気通路を2本の分岐排気通路に分岐しているが、3つ以上の分岐排気通路に分岐した排気通路に適用することも可能である。この場合は、1つの分岐排気通路を通常運転用に利用している間に、残りの分岐排気通路を再生することも可能であり、また、1本の排気通路を再生運転している間に、残り全部の分岐排気通路を内燃機関等に接続することも可能である。 (3) In the first and second embodiments, the exhaust passage is branched into two branched exhaust passages. However, the present invention can also be applied to an exhaust passage branched into three or more branched exhaust passages. . In this case, it is possible to regenerate the remaining branch exhaust passages while using one branch exhaust passage for normal operation, and while regenerating one exhaust passage. It is also possible to connect all the remaining branch exhaust passages to an internal combustion engine or the like.

本発明は、ディーゼル機関、ガス機関、ガソリン機関又はガスタービン機関等の各種内燃機関又は産業用ボイラ等の燃焼機器の排気ガス浄化装置として利用されるが、特に、希薄燃焼で運転される内燃機関等のように、排気ガス中にNOxが多く含有される内燃機関に適している。また、SOxが含まれる産業用ディーゼル機関等にも適用可能であり、さらには排気ガスの熱を再利用する場合にも適しており、SOxによる被毒を少なくし、排熱を効率よく回収できる。 INDUSTRIAL APPLICABILITY The present invention is used as an exhaust gas purification device for various internal combustion engines such as diesel engines, gas engines, gasoline engines or gas turbine engines, or combustion equipment such as industrial boilers. As described above, it is suitable for an internal combustion engine containing a large amount of NOx in the exhaust gas. It can also be applied to industrial diesel engines that contain SOx, and is also suitable for reusing the heat of exhaust gas, reducing SOx poisoning and efficiently recovering exhaust heat. .

本発明による排気ガス浄化装置の第1の実施の形態を示す概略図である。1 is a schematic view showing a first embodiment of an exhaust gas purification apparatus according to the present invention. 本発明による排気ガス浄化装置の第2の実施の形態を示す概略図である。It is the schematic which shows 2nd Embodiment of the exhaust-gas purification apparatus by this invention.

符号の説明Explanation of symbols

1 内燃機関
2 排気通路
2a 第1の分岐排気通路
2b 第2の分岐排気通路
3 吸着物質脱離手段
4 窒素酸化物吸着材(NOx吸着材)
5 燃焼装置
6 燃料ノズル(燃料供給手段)
7 点火装置(着火手段)
12 電子制御ユニット(制御装置)
15 空気供給手段
21 第1の流量制御弁
22 第2の流量制御弁
25 差圧検出装置
28 空燃比センサー
31 吸着物質脱離手段の燃料ノズル
32 吸着物質脱離手段の点火装置
40 切換弁(排気ガス遮断手段)
41 第1の排気バイパス通路
42 第2の排気バイパス通路
X1 燃料過濃燃焼領域
X2 燃料希薄燃焼領域
1 Internal combustion engine 2 Exhaust passage 2a First branch exhaust passage 2b Second branch exhaust passage 3 Adsorbed substance desorbing means 4 Nitrogen oxide adsorbent (NOx adsorbent)
5 Combustion device 6 Fuel nozzle (fuel supply means)
7 Ignition device (ignition means)
12 Electronic control unit (control device)
15 Air supply means 21 1st flow control valve 22 2nd flow control valve 25 Differential pressure detection device 28 Air-fuel ratio sensor 31 Fuel nozzle 32 of adsorption substance desorption means Ignition apparatus 40 of adsorption substance desorption means Switching valve (exhaust Gas shut-off means)
41 First exhaust bypass passage 42 Second exhaust bypass passage X1 Fuel rich combustion region X2 Fuel lean combustion region

Claims (4)

内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置において、
前記排気通路を複数の分岐排気通路に分岐し、
各分岐排気通路の排気入口部に、各分岐排気通路内への排気ガス流量を調節可能な流量制御弁を設け、
各分岐排気通路内には、
窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
該窒素酸化物吸着材より排気上流側に配置され、前記流量制御弁により調量される排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、
前記窒素酸化物吸着材より排気下流側に配置され、燃料供給手段、空気供給手段及び着火手段から構成される燃焼装置と、をそれぞれ備えていることを特徴とする排気ガス浄化装置。
In an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or combustion equipment,
Branching the exhaust passage into a plurality of branch exhaust passages;
Provided at the exhaust inlet of each branch exhaust passage is a flow rate control valve capable of adjusting the exhaust gas flow rate into each branch exhaust passage,
In each branch exhaust passage,
A nitrogen oxide adsorbent that temporarily adsorbs nitrogen oxide and desorbs the adsorbed nitrogen oxide in a temperature rising or reducing atmosphere;
An adsorbent detachment means that is disposed upstream of the nitrogen oxide adsorbent and makes the exhaust gas metered by the flow rate control valve a temperature rising or reducing atmosphere;
An exhaust gas purification device, comprising: a combustion device that is disposed on the exhaust downstream side of the nitrogen oxide adsorbing material and includes a fuel supply unit, an air supply unit, and an ignition unit.
請求項1記載の排気ガス浄化装置において、
前記窒素酸化物吸着材の排気上流側と排気下流側との間の差圧を検出する差圧検出装置を備え、
該差圧検出装置により検出された差圧により、吸着運転時及び脱離運転時の排気ガス流量を算出し、脱離運転時に前記窒素酸化物吸着材に流入させる排気ガス流量が最適値となるように、前記流量制御弁を制御する制御装置を備えていることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus according to claim 1,
A differential pressure detection device that detects a differential pressure between the exhaust upstream side and the exhaust downstream side of the nitrogen oxide adsorbent;
The exhaust gas flow rate during the adsorption operation and the desorption operation is calculated from the differential pressure detected by the differential pressure detection device, and the exhaust gas flow rate that flows into the nitrogen oxide adsorbent during the desorption operation becomes an optimum value. As described above, an exhaust gas purifying apparatus comprising a control device for controlling the flow rate control valve.
内燃機関又は燃焼機器の排気通路に設置される排気ガス浄化装置において、
前記排気通路を複数の分岐排気通路に分岐し、
各分岐排気通路の排気入口部に排気ガスを遮断可能な排気ガス遮断手段を設け、
前記排気通路と、前記各分岐排気通路内の前記排気ガス遮断手段より排気下流部分との間を、排気バイパス通路によりそれぞれ連通し、
前記各分岐排気通路内には、
窒素酸化物を一時的に吸着し、該吸着した窒素酸化物を昇温又は還元雰囲気で脱離する窒素酸化物吸着材と、
該窒素酸化物吸着材より排気上流側に配置され、前記排気バイパス通路から流入する排気ガスを昇温又は還元雰囲気にする吸着物質脱離手段と、
前記窒素酸化物吸着材より排気下流側に配置され、燃料供給手段、空気供給手段及び着火手段から構成される燃焼装置と、をそれぞれ備えていることを特徴とする排気ガス浄化装置。
In an exhaust gas purification device installed in an exhaust passage of an internal combustion engine or combustion equipment,
Branching the exhaust passage into a plurality of branch exhaust passages;
An exhaust gas blocking means capable of blocking the exhaust gas is provided at the exhaust inlet of each branch exhaust passage,
An exhaust bypass passage communicates between the exhaust passage and an exhaust downstream portion from the exhaust gas blocking means in each branch exhaust passage,
In each branch exhaust passage,
A nitrogen oxide adsorbent that temporarily adsorbs nitrogen oxide and desorbs the adsorbed nitrogen oxide in a temperature rising or reducing atmosphere;
An adsorbent detachment means that is disposed upstream of the nitrogen oxide adsorbent and makes the exhaust gas flowing in from the exhaust bypass passage a temperature rising or reducing atmosphere;
An exhaust gas purification device, comprising: a combustion device that is disposed on the exhaust downstream side of the nitrogen oxide adsorbing material and includes a fuel supply unit, an air supply unit, and an ignition unit.
請求項1乃至3のいずれかに記載の排気ガス浄化装置において、
前記分岐排気通路内の前記吸着物質脱離手段より排気下流側に空燃比センサーを配置し、
該空燃比センサーにより測定された空燃比に基づき、前記吸着物質脱離手段より生成される還元ガスの空燃比を最適値に制御する制御装置を備えていることを特徴とする排気ガス浄化装置。
The exhaust gas purification apparatus according to any one of claims 1 to 3,
An air-fuel ratio sensor is disposed downstream of the adsorbed substance desorbing means in the branch exhaust passage,
An exhaust gas purification apparatus comprising a control device for controlling the air-fuel ratio of the reducing gas generated by the adsorbed substance desorbing means to an optimum value based on the air-fuel ratio measured by the air-fuel ratio sensor.
JP2007147895A 2007-06-04 2007-06-04 Exhaust emission control device Pending JP2008298034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007147895A JP2008298034A (en) 2007-06-04 2007-06-04 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007147895A JP2008298034A (en) 2007-06-04 2007-06-04 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2008298034A true JP2008298034A (en) 2008-12-11

Family

ID=40171765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007147895A Pending JP2008298034A (en) 2007-06-04 2007-06-04 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2008298034A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074328A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Exhaust gas emission control device
JP2005207281A (en) * 2004-01-21 2005-08-04 Yanmar Co Ltd Emission control device and its control method
JP2007077875A (en) * 2005-09-14 2007-03-29 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074328A (en) * 2001-09-04 2003-03-12 Toyota Motor Corp Exhaust gas emission control device
JP2005207281A (en) * 2004-01-21 2005-08-04 Yanmar Co Ltd Emission control device and its control method
JP2007077875A (en) * 2005-09-14 2007-03-29 Toyota Motor Corp Exhaust emission control system for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4608347B2 (en) Exhaust gas purification device
JP4413020B2 (en) Exhaust gas purification device and control method thereof
US20070175206A1 (en) NOx adsorber aftertreatment system for internal combustion engines
US6820414B2 (en) Adsorber aftertreatment system having downstream soot filter
KR101269383B1 (en) Exhaust gas pyrification device
JP4515217B2 (en) Exhaust gas purification device control method
WO2009099181A1 (en) Exhaust gas purification device
JP5285296B2 (en) Exhaust gas purification device
JP4767909B2 (en) Exhaust gas purification device
JP2006272116A (en) Exhaust gas purifying apparatus
JP2006272115A (en) Exhaust gas purifying apparatus
JP2010156277A (en) Exhaust emission purifying method and exhaust emission purifying system
KR101210660B1 (en) Method for controlling exhaust gas purification apparatus
JP2004092431A (en) Emission control device
JP2008298034A (en) Exhaust emission control device
JP2009221922A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110