JP2008297142A - Calcium titanate fine particle and toner for electrostatic recording - Google Patents

Calcium titanate fine particle and toner for electrostatic recording Download PDF

Info

Publication number
JP2008297142A
JP2008297142A JP2007143219A JP2007143219A JP2008297142A JP 2008297142 A JP2008297142 A JP 2008297142A JP 2007143219 A JP2007143219 A JP 2007143219A JP 2007143219 A JP2007143219 A JP 2007143219A JP 2008297142 A JP2008297142 A JP 2008297142A
Authority
JP
Japan
Prior art keywords
calcium titanate
fine particles
titanate fine
toner
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007143219A
Other languages
Japanese (ja)
Other versions
JP5122183B2 (en
Inventor
Koji Kurosaki
浩二 黒崎
Takayasu Tanaka
貴康 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2007143219A priority Critical patent/JP5122183B2/en
Publication of JP2008297142A publication Critical patent/JP2008297142A/en
Application granted granted Critical
Publication of JP5122183B2 publication Critical patent/JP5122183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide calcium titanate fine particles that can be used for various usages such as an additive of an electrophotographic toner, because the particles show excellent dispersibility and do not contain sintered particle. <P>SOLUTION: A slurry prepared by mixing a metatitanic acid slurry and calcium hydroxide is subjected to hydrothermal synthesis under atmospheric pressure or a higher pressure in an alkali side to obtain calcium titanate fine particles containing rectangular parallelepiped particles having a specific surface area of 10 to 40 m<SP>2</SP>/g, a longer side length (A) of 0.05 to 0.35 μm and a shorter side length (B) of 0.04 to 0.20 μm, with the aspect ratio A/B of 1.2 to 2.0. If necessary, the calcium titanate fine particles are coated with a hydrophobicizing agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、トナーの添加剤、特に研摩剤として有用なチタン酸カルシウム微粒子、及びそれを用いた静電記録用トナーに関するものである。   The present invention relates to fine particles of calcium titanate useful as a toner additive, particularly as an abrasive, and a toner for electrostatic recording using the same.

近年、電子写真方式を利用した複写機及びプリンターにより得られる静電画像の高精細、高画質化の要求に伴い、粒子径が小さくかつ高流動性のトナーを現像剤として用いて高画質化を達成しようとする試みが行われている。しかし、トナーの粒子径を小さくすると重量あたりの表面積が増大して摩擦帯電量が増加しトナー同士の付着力が強くなり、流動性が低下するという問題が起こる。   In recent years, with the demand for high-definition and high-quality electrostatic images obtained by electrophotographic copying machines and printers, high-quality toners with small particle size and high fluidity are used as a developer. Attempts are being made to achieve. However, if the particle diameter of the toner is reduced, the surface area per weight increases, the triboelectric charge increases, the adhesion between the toners increases, and the fluidity decreases.

これらの問題に対し、チタン酸ストロンチウム粉末は、帯電がほぼ中性であり、また高誘電率を有するものであることから帯電レベルが変化しないという特徴を有しており、従来からトナーの添加剤、特に研摩剤として多量に使用されている。しかしながら、焼成法で合成したチタン酸ストロンチウムの粒径は比較的大きいため、感光体を傷つける場合がある。一方、湿式合成したチタン酸ストロンチウムは微粒子ではあるが、その形状はトナーの添加剤として使用した場合に優れた研摩効果を有する直方体状粒子と、トナー表面に付着し帯電量を変化させる微細な粒状粒子の両方が混在してしまう。   In order to solve these problems, strontium titanate powder has a characteristic that the charge level is not changed because it is almost neutral and has a high dielectric constant. In particular, it is used in large quantities as an abrasive. However, since the particle size of strontium titanate synthesized by the firing method is relatively large, the photoreceptor may be damaged. On the other hand, wet-synthesized strontium titanate is a fine particle, but its shape is a rectangular solid particle that has an excellent polishing effect when used as a toner additive, and fine granular particles that adhere to the toner surface and change the charge amount. Both particles are mixed.

チタン酸ストロンチウムよりも工業的に有利なものとしては、結晶型がチタン酸ストロンチウムと同様のペロブスカイト型結晶で、かつ、安価な材料としてチタン酸カルシウムがある。チタン酸カルシウムの製造方法としては、チタン化合物の加水分解生成物と水溶性カルシウム塩とを強アルカリ水溶液中で反応させる湿式合成法が開示されている(特許文献1参照)。しかし、得られるチタン酸カルシウムは1〜3μmの粗大粒子である。   As an industrial advantage over strontium titanate, calcium titanate is a perovskite-type crystal similar to strontium titanate and an inexpensive material. As a method for producing calcium titanate, a wet synthesis method in which a hydrolysis product of a titanium compound and a water-soluble calcium salt are reacted in a strong alkaline aqueous solution is disclosed (see Patent Document 1). However, the obtained calcium titanate is 1 to 3 μm coarse particles.

また、磁気記録媒体の電磁変換特性とスチル耐久性の両方の性能を同時に向上させるために、直方体状または立方体状であり、その粒子の三辺の長さの和が0.3〜3μmであるチタン酸カルシウムを使用することも行われている(特許文献2参照)。しかし、その製造方法は特許文献1と同一であるため、やはり粒径として十分ではない。   Further, in order to improve both the electromagnetic conversion characteristics and the still durability of the magnetic recording medium at the same time, the magnetic recording medium has a rectangular parallelepiped shape or a cubic shape, and the sum of the lengths of the three sides of the particles is 0.3 to 3 μm. The use of calcium titanate is also performed (see Patent Document 2). However, since the manufacturing method is the same as that of Patent Document 1, the particle size is still not sufficient.

また、ペロブスカイト結晶構造を有し、正方柱または正方柱類似の形状を有するチタン酸カルシウム粉末も開示されている(特許文献3参照)。しかし、正方柱または正方柱類似の形状であるため、トナーの添加剤として使用した場合に研摩効果として十分でない。   Also disclosed is a calcium titanate powder having a perovskite crystal structure and having a square column or a shape similar to a square column (see Patent Document 3). However, since it has a square pillar shape or a square pillar-like shape, it is not sufficient as a polishing effect when used as a toner additive.

また、一次粒子の個数平均粒径が80nm以上220nm以下であり、800nm以上の粒径を有する凝集体の含有率が1個数%以下であり、粒子形状が立方体状及び/または直方体状であるペロブスカイト型結晶の無機微粉体を添加したトナーが開示されている(特許文献4参照)。しかしながら、具体的な内容が記載されているのはチタン酸ストロンチウムのみであって、1μm以下の微粒子タイプのチタン酸カルシウムの内容については、製造方法も含めてまったく不明であった。
特開昭59−045927号公報 特開平06−223361号公報 特開2004−323344号公報 特開2006−195156号公報
In addition, a perovskite in which the number average particle size of primary particles is 80 nm or more and 220 nm or less, the content of aggregates having a particle size of 800 nm or more is 1% by number or less, and the particle shape is cubic and / or cuboid. A toner to which inorganic fine powder of type crystal is added is disclosed (see Patent Document 4). However, the specific content is described only in strontium titanate, and the content of fine particle type calcium titanate of 1 μm or less was completely unknown including the manufacturing method.
JP 59-045927 A Japanese Patent Laid-Open No. 06-223361 JP 2004-323344 A JP 2006-195156 A

以上のことより、チタン酸ストロンチウムより安価で工業的に有利なチタン酸カルシウムを用い、その1μm以下の粒子形状が立方体状及び/または直方体状であるチタン酸カルシウム微粒子は、これまで実質的に前例がなく、これを使用したトナーも前例がなかった。   As described above, calcium titanate fine particles having a particle shape of 1 μm or less in a cubic shape and / or a rectangular parallelepiped shape using calcium titanate, which is less expensive and industrially advantageous than strontium titanate, have been substantially precedent. There was no precedent for the toner using this.

従って、本発明の目的は、研摩効果の優れる直方体状の微粒子を容易かつ安価に製造でき、チタン酸ストロンチウムと同様の特性を持ちつつ、なおかつ分散性に優れ、特にトナーの添加剤に好適なチタン酸カルシウム微粒子、及びこのチタン酸カルシウム微粒子を用いた静電記録用トナーを提供することにある。   Accordingly, an object of the present invention is to produce a cuboidal fine particle having an excellent polishing effect easily and at low cost, having the same characteristics as strontium titanate and having excellent dispersibility, and particularly suitable for a toner additive. An object of the present invention is to provide calcium oxide fine particles and a toner for electrostatic recording using the calcium titanate fine particles.

本発明者らは、トナー用研摩剤として研摩効果の高い直方体状の微粒子を開発すべく鋭意検討した結果、すべての粒子が直方体状で微粒子のチタン酸カルシウムの湿式合成条件を見出した。さらに、研摩剤は外添剤と異なり必ずしも疎水性である必要はないが、トナーの現像システムによっては疎水性を必要とする場合があり、使用目的に適した疎水化度を付与する疎水化処理方法も同時に見出し、本発明を完成させたものである。   As a result of diligent research to develop a cuboidal fine particle having a high polishing effect as an abrasive for a toner, the present inventors have found a wet synthesis condition for all particles having a cuboidal shape and fine calcium calcium titanate. Further, unlike external additives, abrasives do not necessarily need to be hydrophobic, but depending on the toner development system, hydrophobicity may be required, and a hydrophobic treatment that imparts a degree of hydrophobicity suitable for the intended use. At the same time, a method was found and the present invention was completed.

すなわち、本発明のチタン酸カルシウム微粒子は、比表面積が10〜40m/gであって、長辺長Aが0.05〜0.35μm、短辺長Bが0.04〜0.20μm、軸比A/Bが1.2〜5.0の直方体状粒子を含むことを特徴とする。 That is, the calcium titanate fine particles of the present invention have a specific surface area of 10 to 40 m 2 / g, a long side length A of 0.05 to 0.35 μm, a short side length B of 0.04 to 0.20 μm, It contains a rectangular parallelepiped particle having an axial ratio A / B of 1.2 to 5.0.

また、本発明のチタン酸カルシウム微粒子は、チタンカップリング剤、シランカップリング剤、シリコーンオイル、及び脂肪酸化合物のいずれか1種以上の疎水化剤を被覆してもよい。   Moreover, the calcium titanate fine particles of the present invention may be coated with one or more hydrophobizing agents selected from a titanium coupling agent, a silane coupling agent, a silicone oil, and a fatty acid compound.

さらに、前記の疎水化剤を被覆したチタン酸カルシウム微粒子は、疎水化度が35〜75%であることが好ましい。   Furthermore, the calcium titanate fine particles coated with the hydrophobizing agent preferably have a degree of hydrophobicity of 35 to 75%.

また、本発明のチタン酸カルシウム微粒子の帯電量は、鉄粉に対する摩擦帯電量を−100〜+80μC/gに調整することが可能である。   The charge amount of the calcium titanate fine particles of the present invention can be adjusted such that the triboelectric charge amount with respect to iron powder is −100 to +80 μC / g.

本発明のチタン酸カルシウム微粒子によれば、分散性に優れ、かつ、焼結粒子を含まない微粒子であるので、電子写真用トナーの添加剤を始めとした各種用途に使用できる。   Since the calcium titanate fine particles of the present invention are fine particles that are excellent in dispersibility and do not contain sintered particles, they can be used in various applications including additives for electrophotographic toners.

(チタン酸カルシウム微粒子の比表面積、長辺長、短辺長等)
本発明で重要なのは、チタン酸カルシウム微粒子の比表面積が10〜40m/g、好ましくは15〜40m/g、長辺長Aが0.05〜0.35μm、好ましくは0.10〜0.30μm、短辺長Bが0.04〜0.20μm、好ましくは0.05〜0.15μm、軸比A/Bが1.2〜5.0、好ましくは2.0〜4.0の直方体状粒子を含むということである。
(Specific surface area, long side length, short side length, etc. of calcium titanate fine particles)
Importantly in the present invention has a specific surface area of 10 to 40 m 2 / g calcium titanate particles, preferably 15~40m 2 / g, long side length A is 0.05~0.35Myuemu, preferably 0.10 to 0 .30 μm, short side length B is 0.04 to 0.20 μm, preferably 0.05 to 0.15 μm, and axial ratio A / B is 1.2 to 5.0, preferably 2.0 to 4.0. This means that it contains rectangular parallelepiped particles.

本発明のチタン酸カルシウム微粒子をトナーの添加剤として用いた場合は、前記の比表面積、長辺長A、短辺長B、及び軸比A/Bを有し、かつ、直方体状粒子を含むことで高い研摩効果を奏する。比表面積が10m/g未満で、長辺長が0.35μmを超えると感光体を傷つけたり、単位重量あたりの個数が減少し、研摩効果が低下し好ましくなく、また、比表面積が40m/gを超え、長辺長が0.05μm未満のものは、優れた研摩効果が得られにくくなる。 When the calcium titanate fine particles of the present invention are used as a toner additive, the particles have the specific surface area, the long side length A, the short side length B, and the axial ratio A / B, and include cuboid particles. High polishing effect can be achieved. When the specific surface area is less than 10 m 2 / g and the long side length exceeds 0.35 μm, the photoreceptor is damaged, the number per unit weight decreases, the polishing effect decreases, and the specific surface area is 40 m 2. When the length exceeds / g and the long side length is less than 0.05 μm, it is difficult to obtain an excellent polishing effect.

(チタン酸カルシウム微粒子の疎水化剤)
本発明のチタン酸カルシウム微粒子をトナー用研摩剤として用いる場合、必ずしも疎水性である必要はないが、トナーの現像システムによっては疎水性を必要とする場合がある。その際、チタン酸カルシウム微粒子の粒子表面に疎水化剤を被覆するが、当該疎水化剤は、チタンカップリング剤、シランカップリング剤、シリコーンオイル、及び、脂肪酸化合物のいずれか1種以上から選択でき、脂肪酸化合物が好ましく、シランカップリング剤が特に好ましい。脂肪酸化合物は、ステアリン酸、ラウリン酸、パルミチン酸等が好ましく、ステアリン酸が特に好ましい。
(Hydrophobizing agent for calcium titanate fine particles)
When the calcium titanate fine particles of the present invention are used as an abrasive for toner, it is not always necessary to be hydrophobic, but depending on the toner development system, hydrophobicity may be required. At that time, the surface of the calcium titanate fine particles is coated with a hydrophobizing agent, and the hydrophobizing agent is selected from one or more of a titanium coupling agent, a silane coupling agent, a silicone oil, and a fatty acid compound. Fatty acid compounds are preferred, and silane coupling agents are particularly preferred. As the fatty acid compound, stearic acid, lauric acid, palmitic acid and the like are preferable, and stearic acid is particularly preferable.

使用する際の好ましい形態であるシランカップリング剤は、一般式RnSiR'm(R:炭化水素基、R':アルコキシ基、n=1〜3の整数、m=1〜3の整数、n+m=4)で表されるものであり、例えば、プロピルトリメトキシシラン、i−ブチルトリメトキシシラン、n−ブチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−オクチルトリエトキシシラン、n−ドデシルトリエトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、3−グリドキシプロピルトリメトキシシラン等を挙げることができ、炭化水素基Rの炭素の数が2〜10のものが望ましい。炭素数が1のものは分子鎖長が短いため疎水化度が低く、また、乾燥時に粒子間が十分に離れないため凝集が起こり分散性が低下する。   The silane coupling agent which is a preferable form when used is represented by the general formula RnSiR′m (R: hydrocarbon group, R ′: alkoxy group, an integer of n = 1 to 3, an integer of m = 1 to 3, n + m = 4), for example, propyltrimethoxysilane, i-butyltrimethoxysilane, n-butyltrimethoxysilane, n-hexyltrimethoxysilane, n-octyltriethoxysilane, n-dodecyltriethoxy Silane, vinyltrimethoxysilane, phenyltrimethoxysilane, 3-glycoxypropyltrimethoxysilane and the like can be mentioned, and those having 2 to 10 carbon atoms in the hydrocarbon group R are desirable. Those having 1 carbon atom have a short molecular chain length and thus have a low degree of hydrophobicity, and particles are not sufficiently separated during drying, resulting in aggregation and a decrease in dispersibility.

(チタン酸カルシウム微粒子の疎水化度)
疎水化剤で被覆されたチタン酸カルシウム微粒子の疎水化度は、後述する測定方法において、35〜75%であることが好ましい。
(Hydrophobicity of calcium titanate fine particles)
The degree of hydrophobicity of the calcium titanate fine particles coated with the hydrophobizing agent is preferably 35 to 75% in the measurement method described later.

(チタン酸カルシウム微粒子の摩擦帯電量)
また、本発明のチタン酸カルシウム微粒子の帯電量は、鉄粉に対する摩擦帯電量を−100〜+80μC/gに調整することが可能であり、ハードに適した摩擦帯電量に処理剤あるいは処理量を変更することで調整できるという点で好ましい。当該摩擦帯電量は、前記の疎水化剤の種類並びにその被覆量に起因するものである。
(Frictional charge of calcium titanate fine particles)
In addition, the charge amount of the calcium titanate fine particles of the present invention can be adjusted to -100 to +80 μC / g of the triboelectric charge amount with respect to the iron powder. It is preferable in that it can be adjusted by changing. The triboelectric charge amount is attributed to the type of the hydrophobizing agent and the coating amount thereof.

(チタン酸カルシウム微粒子の製造方法)
本発明のチタン酸カルシウム微粒子は、代表的には常圧により、または、オートクレーブを用いた加圧加熱反応法により、ペロブスカイト型チタン酸化合物を製造する方法において、チタン源としてチタン化合物の加水分解物の鉱酸解膠品を、カルシウム源として水酸化カルシウムを用い、その混合液にアルカリ水溶液を添加し、所定のpHに調整後加熱し反応させた後、必要に応じて疎水化処理することで得られる。
(Method for producing calcium titanate fine particles)
The calcium titanate fine particles of the present invention are typically hydrolysates of a titanium compound as a titanium source in a method for producing a perovskite-type titanate compound by atmospheric pressure or a pressure heating reaction method using an autoclave. By using calcium hydroxide as a calcium source, adding alkaline aqueous solution to the mixture, adjusting to a predetermined pH, heating and reacting, and then hydrophobizing as necessary can get.

前記の酸化チタン源としてはチタン化合物の加水分解物の一塩基酸の解膠品を用いる。好ましい一塩基酸は、塩酸、硝酸、過塩素酸等である。具体例を挙げると硫酸法で得られた、SO3含有量が1.0wt%以下、好ましくは0.5wt%以下のメタチタン酸を塩酸でpHを0.8〜1.5に調整して解膠したものを、中和、洗浄、再スラリー化したスラリーを用いる。メタチタン酸の粒径は、0.07μm以下が好ましく、0.03μm以下が特に好ましい。 As the titanium oxide source, a monobasic acid peptized product of a hydrolyzate of a titanium compound is used. Preferred monobasic acids are hydrochloric acid, nitric acid, perchloric acid and the like. As a specific example, a solution obtained by the sulfuric acid method with a SO 3 content of 1.0 wt% or less, preferably 0.5 wt% or less, was adjusted by adjusting the pH to 0.8 to 1.5 with hydrochloric acid. A slurry obtained by neutralizing, washing and reslurrying the glue is used. The particle diameter of metatitanic acid is preferably 0.07 μm or less, and particularly preferably 0.03 μm or less.

アルカリ水溶液としては、苛性アルカリが使用できるが、水酸化ナトリウム水溶液が好ましい。   A caustic alkali can be used as the aqueous alkali solution, but an aqueous sodium hydroxide solution is preferred.

反応時の酸化チタン源の濃度としては、TiOとして0.05〜1.1mol/Lが好ましく、0.1〜0.8mol/Lが特に好ましい。 The concentration of the titanium oxide source during the reaction, 0.05~1.1mol / L is preferable as TiO 2, 0.1~0.8mol / L is particularly preferred.

反応時における酸化チタン源とカルシウム源の混合割合は、CaO/TiOのmol比で、0.9〜1.4が好ましく、0.95〜1.15が特に好ましい。 The mixing ratio of the titanium oxide source and a calcium source in the reaction is, in mol ratio of CaO / TiO 2, preferably from 0.9 to 1.4, particularly preferably 0.95 to 1.15.

反応系の雰囲気は、炭酸カルシウムの生成を防ぐために窒素ガス雰囲気下で反応する等により炭酸ガスの混入を防ぐことが好ましい。   In order to prevent the formation of calcium carbonate, it is preferable to prevent the carbon dioxide gas from being mixed in the reaction system atmosphere by reacting in a nitrogen gas atmosphere.

比表面積が10〜40m/gで、長辺長が0.35μm以下、軸比が1.2〜5.0のチタン酸カルシウム微粒子を得るには、pHを12.0〜13.0範囲に調整し、90〜180℃で反応させる。 In order to obtain calcium titanate fine particles having a specific surface area of 10 to 40 m 2 / g, a long side length of 0.35 μm or less, and an axial ratio of 1.2 to 5.0, the pH is in the range of 12.0 to 13.0. And react at 90-180 ° C.

反応時の温度は60℃以上であれば、チタン酸カルシウム粒子が得られるが、60℃から90℃未満では反応速度が小さく、反応に長時間を要し、得られたチタン酸カルシウムの比表面積は小さく、平均一次粒径の大きな粒子となるため好ましくない。100℃以上の反応には、例えば、オートクレーブを用いる。   If the temperature during the reaction is 60 ° C. or higher, calcium titanate particles can be obtained, but if the temperature is from 60 ° C. to less than 90 ° C., the reaction rate is low, and the reaction takes a long time, and the specific surface area of the obtained calcium titanate Is not preferable because it is small and has a large average primary particle size. For the reaction at 100 ° C. or higher, for example, an autoclave is used.

反応時のpHは12.0以上であればチタン酸カルシウム粒子が得られるが、pH13.0を超えると比表面積が10〜40m/gのチタン酸カルシウム微粒子は得られにくくなるので好ましくない。 If the pH during the reaction is 12.0 or more, calcium titanate particles can be obtained, but if the pH exceeds 13.0, calcium titanate fine particles having a specific surface area of 10 to 40 m 2 / g are difficult to obtain.

上記の反応条件に加えて、メタチタン酸スラリーと水酸化カルシウムを混合したスラリーに、TiとCaに対し0.1〜3.0mol%のクエン酸、酒石酸、リンゴ酸、オキシマロン酸等のオキシカルボン酸を添加し、90〜180℃の温度範囲で反応することで、比表面積が20〜40m/gで、長辺長が0.05〜0.35μm、軸比が1.2〜5.0のチタン酸カルシウム微粒子を得ることができる。クエン酸、酒石酸、リンゴ酸、オキシマロン酸等のオキシカルボン酸添加量は0.1mol%未満では微粒化の効果が小さく、また、3.0mol%を超えると直方体状粒子のエッジがなくなり、研摩効果が低下するので好ましくない。 In addition to the above reaction conditions, 0.1 to 3.0 mol% of oxycarboxylic acid such as citric acid, tartaric acid, malic acid, oxymalonic acid, etc. with respect to Ti and Ca in a slurry obtained by mixing a metatitanic acid slurry and calcium hydroxide By adding an acid and reacting in a temperature range of 90 to 180 ° C., the specific surface area is 20 to 40 m 2 / g, the long side length is 0.05 to 0.35 μm, and the axial ratio is 1.2 to 5. Zero calcium titanate fine particles can be obtained. When the addition amount of oxycarboxylic acid such as citric acid, tartaric acid, malic acid, oxymalonic acid is less than 0.1 mol%, the effect of atomization is small, and when it exceeds 3.0 mol%, the edges of the rectangular parallelepiped particles disappear and polishing is performed. Since the effect is reduced, it is not preferable.

また、本発明のチタン酸カルシウム微粒子を湿式合成後にさらに300〜1000℃の温度で焼結が生じない程度に焼成すれば、結晶性がさらに向上し、環境安定性がより改良される。   Further, if the calcium titanate fine particles of the present invention are baked to a degree at which sintering does not occur at a temperature of 300 to 1000 ° C. after wet synthesis, the crystallinity is further improved and the environmental stability is further improved.

本発明のチタン酸カルシウム微粒子は、従来よりトナーの添加剤として使用されているシリカや酸化チタンと同じように、使用目的によっては、チタンカップリング剤、シランカップリング剤、シリコーンオイル、及び脂肪酸化合物から選択される1種以上の疎水化剤を被覆するが、脂肪酸化合物が好ましく、シランカップリング剤が特に好ましい。具体的な脂肪酸化合物及びシランカップリング剤は前述した通りのものを用いることができる。また、SiO、Al等の無機酸化物を予め被覆しておいてもよい。被覆処理は湿式及び乾式のいずれでもよいが、チタン酸カルシウム粒子の湿式合成後に連続処理できる点で、湿式が好ましい。 The calcium titanate fine particles of the present invention, like silica and titanium oxide conventionally used as an additive for toner, depending on the purpose of use, a titanium coupling agent, a silane coupling agent, a silicone oil, and a fatty acid compound One or more hydrophobizing agents selected from the above are coated, but fatty acid compounds are preferred, and silane coupling agents are particularly preferred. Specific fatty acid compounds and silane coupling agents can be those as described above. Further, it may be previously coated with an inorganic oxide such as SiO 2, Al 2 O 3. The coating treatment may be either wet or dry, but wet is preferred in that it can be continuously treated after wet synthesis of calcium titanate particles.

疎水化剤の処理方法を、シランカップリング剤を例にとると、スラリーの温度を35℃で、6mol/Lの塩酸を加えpH2.5に調整し、シランカップリング剤を添加し4時間撹拌保持後、5mol/Lの水酸化ナトリウム水溶液を加え、pH5.0まで中和し、ろ過、水洗、乾燥する。   Taking the silane coupling agent as an example of the treatment method of the hydrophobizing agent, the temperature of the slurry is 35 ° C., 6 mol / L hydrochloric acid is added to adjust the pH to 2.5, the silane coupling agent is added, and the mixture is stirred for 4 hours. After holding, a 5 mol / L aqueous sodium hydroxide solution is added, neutralized to pH 5.0, filtered, washed with water, and dried.

疎水化剤の添加量は、基体となるチタン酸カルシウム微粒子に対して1.0〜8.0質量%であり、1.5〜6.0質量%が好ましい。1.0質量%未満では、疎水化されていない親水性面が残存し、帯電量の環境変化による影響を受けやすくなり、また、8.0質量%を超えると、基体表面に被覆されない過剰な処理剤による副生物が発生し、特性的、経済的、あるいは環境的に好ましくない。   The addition amount of the hydrophobizing agent is 1.0 to 8.0% by mass, preferably 1.5 to 6.0% by mass, based on the calcium titanate fine particles serving as the substrate. If it is less than 1.0% by mass, a non-hydrophobic hydrophilic surface remains and is easily affected by the environmental change in the amount of charge. If it exceeds 8.0% by mass, the substrate surface is not covered excessively. By-products due to the treatment agent are generated, which is undesirable in terms of characteristics, economy, and environment.

水洗後の乾燥温度もしくは乾式処理後の熱処理は100℃〜190℃、好ましくは110℃〜170℃である。100℃未満では乾燥効率が悪く、疎水化度が低くなり、また、190℃を超えると、炭化水素基の熱分解が起こり、変色と疎水化度の低下が起こるので好ましくない。   The drying temperature after washing with water or the heat treatment after the dry treatment is 100 ° C. to 190 ° C., preferably 110 ° C. to 170 ° C. If it is less than 100 ° C., the drying efficiency is poor and the degree of hydrophobicity is low, and if it exceeds 190 ° C., thermal decomposition of the hydrocarbon group occurs, causing discoloration and a decrease in the degree of hydrophobicity.

本発明のチタン酸カルシウム微粒子は、磁性一成分トナー、二成分トナー及び非磁性一成分トナーのあらゆる静電記録方式で使用される。また粉砕法あるいは重合法で製造したトナーの添加剤としても使用できる。トナー用のバインダー樹脂としては、公知の合成樹脂及び天然樹脂であれば如何なるものでも使用できる。具体的には、例えば、スチレン系樹脂、アクリル系樹脂、オレフィン系樹脂、ジエン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、エポキシ系樹脂、シリコーン系樹脂、フェノール系樹脂、石油樹脂及びウレタン系樹脂等が挙げられる。また、目的に応じて帯電調整剤や離型剤等の添加剤をバインダー中に添加したトナーでもよい。   The calcium titanate fine particles of the present invention are used in all electrostatic recording methods of magnetic one-component toner, two-component toner and non-magnetic one-component toner. It can also be used as an additive for toners produced by a pulverization method or a polymerization method. As the binder resin for the toner, any known synthetic resin and natural resin can be used. Specifically, for example, styrene resin, acrylic resin, olefin resin, diene resin, polyester resin, polyamide resin, epoxy resin, silicone resin, phenol resin, petroleum resin, urethane resin, etc. Is mentioned. Further, a toner in which an additive such as a charge adjusting agent or a release agent is added to the binder depending on the purpose may be used.

本発明のチタン酸カルシウム微粒子は、トナーに0.1〜5.0wt%添加して使用され、必要に応じ電子写真の分野で使用されている公知の流動化剤、例えば、シリカ、酸化チタン、酸化アルミ等の1種または2種以上と併用してもよい。   The calcium titanate fine particles of the present invention are used by adding 0.1 to 5.0 wt% to the toner, and if necessary, known fluidizing agents used in the field of electrophotography, such as silica, titanium oxide, You may use together with 1 type, or 2 or more types, such as aluminum oxide.

また、粒子径の異なる2種以上の本発明のチタン酸カルシウム微粒子を同時に使用してもかまわない。   Two or more kinds of the calcium titanate fine particles of the present invention having different particle diameters may be used at the same time.

本発明のチタン酸カルシウム微粒子は、前述の通り微粒子で、かつ、尖ったエッジを持つ直方体状粒子を含有しているため、トナーの添加剤として使用した場合に、優れた研摩効果を有する。   Since the calcium titanate fine particles of the present invention are fine particles and contain rectangular parallelepiped particles having sharp edges as described above, they have an excellent polishing effect when used as a toner additive.

以下に実施例を挙げて本発明をさらに詳細に説明する。以下に挙げる例は単に例示のために記すものであり、本発明の範囲がこれによって制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The following examples are given for illustration only and are not intended to limit the scope of the invention.

(チタン酸カルシウム微粒子の製造)
[実施例1]
硫酸法で得られた0.03μmのメタチタン酸を脱鉄漂白処理した後、4mol/Lの水酸化ナトリウム水溶液を加えpH9.0とし、脱硫処理を行い、その後、6mol/Lの塩酸によりpH5.5まで中和しろ過水洗を行った。洗浄済みケーキに水を加えTiOとして1.25mol/Lのスラリーとした後、6mol/Lの塩酸を加えpH1.2とし解膠処理を行った。この解膠スラリーを5mol/Lの水酸化ナトリウム水溶液を加えpH6.5まで中和しろ過水洗を行った。TiOとして0.726molの洗浄済みケーキに水を加えスラリーとした後、2Lの反応容器に投入し、該解膠・中和メタチタン酸スラリーにCaO/TiOモル比で1.03の水酸化カルシウム粉末を添加し混合後、TiO濃度0.726mol/Lに調整した。スラリーpHを10mol/Lの水酸化ナトリウム溶液を添加して13.0に調整後、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した。次に、この反応容器に窒素を流しながら、さらに撹拌混合しつつメタチタン酸と水酸化カルシウムの混合溶液を98℃に加温し、6.5時間撹拌保持した。なお、該反応物を透過型電子顕微鏡で観察すると、直方体状粒子の粒子であり、側面からみた長辺長は0.25〜0.35μm、軸比は1.5〜3.2であった。反応終了スラリーをろ過、洗浄、乾燥後、ハンマーミルを用いて粉砕したものの比表面積は10.2m/gであった。また、X線回折による同定ではチタン酸カルシウム単一相であった。
(Production of calcium titanate fine particles)
[Example 1]
After 0.03 μm metatitanic acid obtained by the sulfuric acid method was subjected to deiron bleaching treatment, a 4 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 9.0, followed by desulfurization treatment, and then pH 5 with 6 mol / L hydrochloric acid. The solution was neutralized to 5 and washed with filtered water. Water was added to the washed cake to make a 1.25 mol / L slurry as TiO 2 , and then 6 mol / L hydrochloric acid was added to adjust the pH to 1.2, followed by peptization. The peptized slurry was neutralized to pH 6.5 by adding a 5 mol / L sodium hydroxide aqueous solution and washed with filtered water. Water was added to 0.726 mol of washed cake as TiO 2 to make a slurry, and the slurry was put into a 2 L reaction vessel, and the peptized / neutralized metatitanic acid slurry was hydroxylated at a CaO / TiO 2 molar ratio of 1.03. After adding calcium powder and mixing, the TiO 2 concentration was adjusted to 0.726 mol / L. The slurry pH was adjusted to 13.0 by adding a 10 mol / L sodium hydroxide solution, and then nitrogen gas was blown in and left for 20 minutes to replace the inside of the reaction vessel with nitrogen gas. Next, while flowing nitrogen into the reaction vessel, the mixed solution of metatitanic acid and calcium hydroxide was heated to 98 ° C. while stirring and mixing, and stirred and held for 6.5 hours. When the reaction product was observed with a transmission electron microscope, it was a rectangular parallelepiped particle having a long side length of 0.25 to 0.35 μm as viewed from the side and an axial ratio of 1.5 to 3.2. . The slurry after the reaction was filtered, washed and dried, and then pulverized using a hammer mill. The specific surface area was 10.2 m 2 / g. Moreover, it was a calcium titanate single phase by the identification by X-ray diffraction.

[実施例2]
実施例1の98℃で6.5時間撹拌した後の反応終了スラリーを35℃まで冷却し、6mol/Lの塩酸を加えpH2.5に調整し、i−ブチルトリメトキシシラン1.5g(1.5質量%)を添加し4時間撹拌保持後、5mol/Lの水酸化ナトリウム水溶液を加え、pH5.0まで中和し、ろ過水洗を行った。ろ過水洗済ケーキは150℃で乾燥した後、ハンマーミルで粉砕し、疎水性チタン酸カルシウム微粉末を得た。
[Example 2]
The reaction-finished slurry after stirring at 98 ° C. for 6.5 hours in Example 1 was cooled to 35 ° C., adjusted to pH 2.5 by adding 6 mol / L hydrochloric acid, and 1.5 g of i-butyltrimethoxysilane (1 0.5 mass%) was added and the mixture was stirred and maintained for 4 hours, then added with a 5 mol / L aqueous sodium hydroxide solution, neutralized to pH 5.0, and washed with filtered water. The filtered water-washed cake was dried at 150 ° C. and then pulverized with a hammer mill to obtain hydrophobic calcium titanate fine powder.

[実施例3]
実施例1において、反応前のpH13.0を12.7としたほかは、同例の場合と同様に反応した。反応後35℃まで冷却し、6mol/Lの塩酸を加えpH2.5に調整し、i−ブチルトリメトキシシラン2.1g(2.1質量%)を添加し4時間撹拌保持後、5mol/Lの水酸化ナトリウム水溶液を加え、pH5.0まで中和し、ろ過水洗を行った。ろ過水洗済ケーキは150℃で乾燥した後、ハンマーミルで粉砕し、目的とする疎水性チタン酸カルシウム微粉末を得た。なお、該反応物を透過型電子顕微鏡で観察すると、直方体状粒子の粒子であり、側面からみた長辺長は0.20〜0.35μm、軸比は1.7〜4.7であった。反応終了スラリーをろ過、洗浄、乾燥後、ハンマーミルを用いて粉砕したものの比表面積は15.0m/gであった。また、X線回折による同定ではチタン酸カルシウム単一相であった。
[Example 3]
In Example 1, the reaction was performed in the same manner as in Example 1 except that the pH 13.0 before the reaction was changed to 12.7. After the reaction, the mixture was cooled to 35 ° C., adjusted to pH 2.5 by adding 6 mol / L hydrochloric acid, added with 2.1 g (2.1% by mass) of i-butyltrimethoxysilane, held for 4 hours with stirring, and then 5 mol / L. Of sodium hydroxide was added to neutralize to pH 5.0, followed by washing with filtered water. The filtered water-washed cake was dried at 150 ° C. and then pulverized with a hammer mill to obtain the desired hydrophobic calcium titanate fine powder. When the reaction product was observed with a transmission electron microscope, it was a rectangular parallelepiped particle having a long side length of 0.20 to 0.35 μm and an axial ratio of 1.7 to 4.7. . The reaction-terminated slurry was filtered, washed, dried, and then pulverized using a hammer mill. The specific surface area was 15.0 m 2 / g. Moreover, it was a calcium titanate single phase by the identification by X-ray diffraction.

[実施例4]
反応前のスラリーの調整は実施例1と同様の方法で行い、スラリーpHを10mol/Lの水酸化ナトリウム溶液を添加し12.7に調整後、オートクレーブに仕込み、窒素ガスを吹き込み20分間放置し反応容器内を窒素ガス置換した後、150℃に加温し、4時間撹拌保持した。なお、該反応物を透過型電子顕微鏡で観察すると、直方体状粒子の粒子であり、側面からみた長辺長は0.10〜0.20μm、軸比は1.3〜3.5であった。反応終了スラリーをろ過、洗浄、乾燥後、ハンマーミルを用いて粉砕したものの比表面積は19.9m/gであった。また、X線回折による同定ではチタン酸カルシウム単一相であった。
[Example 4]
The slurry before the reaction was adjusted in the same manner as in Example 1. The slurry pH was adjusted to 12.7 by adding a 10 mol / L sodium hydroxide solution, then charged into an autoclave, blown with nitrogen gas and allowed to stand for 20 minutes. After replacing the inside of the reaction vessel with nitrogen gas, the reaction vessel was heated to 150 ° C. and stirred for 4 hours. When the reaction product was observed with a transmission electron microscope, it was a rectangular parallelepiped particle, the long side length as viewed from the side was 0.10 to 0.20 μm, and the axial ratio was 1.3 to 3.5. . The reaction-terminated slurry was filtered, washed, dried, and then pulverized using a hammer mill. The specific surface area was 19.9 m 2 / g. Moreover, it was a calcium titanate single phase by the identification by X-ray diffraction.

[実施例5]
実施例4の150℃で4時間撹拌した後の反応終了スラリーを35℃まで冷却し、6mol/Lの塩酸を加えpH2.5に調整し、i−ブチルトリメトキシシラン2.8g(2.8質量%)を添加し4時間撹拌保持後、5mol/Lの水酸化ナトリウム水溶液を加え、pH5.0まで中和し、ろ過水洗を行った。ろ過水洗済ケーキは150℃で乾燥した後、ハンマーミル粉砕し、疎水性チタン酸カルシウム微粉末を得た。
[Example 5]
The slurry after completion of the reaction after stirring at 150 ° C. for 4 hours in Example 4 was cooled to 35 ° C., adjusted to pH 2.5 by adding 6 mol / L hydrochloric acid, and 2.8 g (2.8 g of i-butyltrimethoxysilane). (Mass%) was added and the mixture was stirred and held for 4 hours. A 5 mol / L aqueous sodium hydroxide solution was added to neutralize to pH 5.0, followed by washing with filtered water. The filtered water-washed cake was dried at 150 ° C. and then pulverized with a hammer mill to obtain hydrophobic calcium titanate fine powder.

[実施例6]
実施例1において、脱硫・解膠・中和・洗浄を行ったメタチタン酸と水酸化カルシウムの混合スラリーに、TiとCaに対し1.0mol%のクエン酸を添加し、反応時間を40時間としたこと、i−ブチルトリメトキシシラン2.1g(2.1質量%)をi−ブチルトリメトキシシラン4.3g(4.3質量%)としたほかは、同例の場合と同様に処理し、目的とする疎水性チタン酸カルシウム微粉末を得た。なお、該反応物を透過型電子顕微鏡で観察すると、直方体状粒子の粒子であり、側面からみた長辺長は0.15〜0.30μm、短辺長は0.08μmであった。反応終了スラリーをろ過、洗浄、乾燥後、ハンマーミルを用いて粉砕したものの比表面積は30.8m/gであった。また、X線回折による同定ではチタン酸カルシウム単一相であった。
[Example 6]
In Example 1, 1.0 mol% citric acid with respect to Ti and Ca was added to the mixed slurry of metatitanic acid and calcium hydroxide that had been desulfurized, peptized, neutralized, and washed, and the reaction time was 40 hours. The same treatment was performed as in the same example except that 2.1 g (2.1% by mass) of i-butyltrimethoxysilane was changed to 4.3 g (4.3% by mass) of i-butyltrimethoxysilane. The intended hydrophobic calcium titanate fine powder was obtained. When the reaction product was observed with a transmission electron microscope, it was a rectangular parallelepiped particle having a long side length of 0.15 to 0.30 μm and a short side length of 0.08 μm as viewed from the side. The reaction-terminated slurry was filtered, washed, dried, and then pulverized using a hammer mill. The specific surface area was 30.8 m 2 / g. Moreover, it was a calcium titanate single phase by the identification by X-ray diffraction.

[実施例7]
実施例4において、脱硫・解膠・中和・洗浄を行ったメタチタン酸と水酸化カルシウムの混合スラリーに、TiとCaに対し1.0mol%のクエン酸を添加し、反応時間4時間を16時間としたほかは、同例の場合と同様に反応を行った。該反応物を透過型電子顕微鏡で観察すると、直方体状粒子の粒子であり、側面からみた長辺長は0.07〜0.25μm、軸比は1.5〜4.0であり、比表面積は38.5m/gであった。図1に透過型電子顕微鏡写真を示す。また、X線回折による同定ではチタン酸カルシウム単一相であった。
[Example 7]
In Example 4, 1.0 mol% citric acid with respect to Ti and Ca was added to the mixed slurry of metatitanic acid and calcium hydroxide that had been desulfurized, peptized, neutralized, and washed, and the reaction time was 16 hours. The reaction was performed in the same manner as in the same example except for the time. When the reaction product is observed with a transmission electron microscope, the reaction product is a rectangular parallelepiped particle having a long side length of 0.07 to 0.25 μm, an axial ratio of 1.5 to 4.0, and a specific surface area. Was 38.5 m 2 / g. FIG. 1 shows a transmission electron micrograph. Moreover, it was a calcium titanate single phase by the identification by X-ray diffraction.

[実施例8]
実施例7を基体に用い、疎水化表面処理においては実施例5のi−ブチルトリメトキシシラン2.8g(2.8質量%)を5.4g(5.4質量%)とした他は、同例の場合と同様に処理し、疎水性チタン酸カルシウム微粉末を得た。
[Example 8]
Example 7 was used as a substrate, and in the hydrophobic surface treatment, 2.8 g (2.8% by mass) of i-butyltrimethoxysilane of Example 5 was changed to 5.4 g (5.4% by mass). It processed like the case of the same example, and obtained the hydrophobic calcium titanate fine powder.

[実施例9]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をi−ブチルトリメトキシシラン3.6g(3.6質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 9]
In Example 8, except that 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 3.6 g (3.6% by mass) of i-butyltrimethoxysilane, the same as the case of the same example. It processed and obtained hydrophobic calcium titanate fine powder.

[実施例10]
実施例8において、乾燥温度150℃を130℃としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 10]
A hydrophobic calcium titanate fine powder was obtained in the same manner as in Example 8, except that the drying temperature was 150 ° C. in Example 8.

[実施例11]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をメチルトリメトキシシラン5.4g(5.4質量%)としたほかは、同例の場合と同様に処理し、疎水性チタン酸カルシウム微粉末を得た。
[Example 11]
The same treatment as in Example 8 was conducted except that 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 5.4 g (5.4% by mass) of methyltrimethoxysilane in Example 8. A hydrophobic calcium titanate fine powder was obtained.

[実施例12]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をn−プロピルトリメトキシシラン5.4g(5.4質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 12]
In Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 5.4 g (5.4% by mass) of n-propyltrimethoxysilane. It processed and obtained hydrophobic calcium titanate fine powder.

[実施例13]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をn−ヘキシルトリメトキシシラン5.4g(5.4質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 13]
In Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 5.4 g (5.4% by mass) of n-hexyltrimethoxysilane. It processed and obtained hydrophobic calcium titanate fine powder.

[実施例14]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をn−オクチルトリエトキシシラン5.4g(5.4質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 14]
In Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 5.4 g (5.4% by mass) of n-octyltriethoxysilane. It processed and obtained hydrophobic calcium titanate fine powder.

[実施例15]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をn−デシルトリメトキシシラン5.4g(5.4質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 15]
In Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 5.4 g (5.4% by mass) of n-decyltrimethoxysilane. It processed and obtained hydrophobic calcium titanate fine powder.

[実施例16]
実施例8のカップリング処理後の乾燥までの工程において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をi−ブチルトリメトキシシラン3.6g(3.6質量%)とし、ろ過水洗済ケーキを110℃で乾燥したほかは、同例の場合と同様に処理した。この乾燥物を石川式撹拌擂潰機 AGAを用いてフロロシラン4.0質量%を乾式処理後、130℃で熱処理した後、ハンマーミルで粉砕し、疎水性チタン酸カルシウム微粉末を得た。
[Example 16]
In the process until the drying after the coupling treatment in Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane was changed to 3.6 g (3.6% by mass) of i-butyltrimethoxysilane, Except for drying the filtered water-washed cake at 110 ° C., it was treated in the same manner as in the same example. This dry product was subjected to a dry treatment of 4.0% by mass of fluorosilane using an AGA using an Ishikawa stirring crusher AGA, heat-treated at 130 ° C., and then pulverized with a hammer mill to obtain a hydrophobic calcium titanate fine powder.

[実施例17]
実施例8において、i−ブチルトリメトキシシラン5.4g(5.4質量%)をチタンカップリング剤(味の素ファインテクノ(株)製プレンアクトKR TTS)を5.0g(5.0質量%)としたほかは、同例の場合と同様に処理して、疎水性チタン酸カルシウム微粉末を得た。
[Example 17]
In Example 8, 5.4 g (5.4% by mass) of i-butyltrimethoxysilane and 5.0 g (5.0% by mass) of titanium coupling agent (Plenact KR TTS manufactured by Ajinomoto Fine Techno Co., Ltd.) In the same manner as in the same example, a hydrophobic calcium titanate fine powder was obtained.

[実施例18]
実施例7の150℃で16時間撹拌した後50℃まで冷却し、反応終了スラリーをオートクレーブより取り出した。反応終了スラリーを70℃でpH6.5に調整し、ステアリン酸7.0g(7.0質量%)添加後、1h撹拌保持した後、ろ過水洗を行った。ろ過水洗済ケーキは150℃で乾燥した後、ハンマーミルで粉砕し、疎水性チタン酸カルシウム微粉末を得た。
[Example 18]
After stirring at 150 ° C. for 16 hours in Example 7 and cooling to 50 ° C., the reaction completed slurry was taken out from the autoclave. The slurry after the reaction was adjusted to pH 6.5 at 70 ° C., 7.0 g (7.0% by mass) of stearic acid was added, and the mixture was stirred and held for 1 h, and then washed with filtered water. The filtered water-washed cake was dried at 150 ° C. and then pulverized with a hammer mill to obtain hydrophobic calcium titanate fine powder.

各実施例で得られたチタン酸カルシウム微粒子について、以下の諸特性を測定した。   The following various characteristics were measured for the calcium titanate fine particles obtained in each Example.

(比表面積)
MICROMETORICS INSTRUMENT CO.製ジェミニ2360を用い、BET法にて測定した。
(Specific surface area)
MICROMETORICS INSTRUMENT CO. It measured by BET method using Gemini 2360 made.

(疎水化度)
2.5質量%毎のメタノールを含む水溶液を試験管に用意しておき、少量の微粉末を投入し、沈降の有無を確認した。疎水化度としては、沈降無の質量%〜沈降有の質量%を疎水化度(%)として表示した。
(Hydrophobicity)
An aqueous solution containing 2.5% by mass of methanol was prepared in a test tube, a small amount of fine powder was added, and the presence or absence of sedimentation was confirmed. As the degree of hydrophobicity, mass% without sedimentation to mass% with sedimentation was displayed as the degree of hydrophobicity (%).

(摩擦帯電量)
微粉末と還元鉄粉(パウダーテック社製TSV−100)を混合し、ブローオフ粉体帯電量測定装置(東芝ケミカル社製TB−200)にて測定した。
(Frictional charge)
Fine powder and reduced iron powder (TSV-100, manufactured by Powder Tech Co., Ltd.) were mixed and measured with a blow-off powder charge measuring device (TB-200, manufactured by Toshiba Chemical Corporation).

(X線回折による同定)
理学電機工業製ローターフレックスRAD−RCにて、ターゲットCu、50kV×200mAの測定条件で同定を行った。
(Identification by X-ray diffraction)
Identification was carried out under the measurement conditions of target Cu, 50 kV × 200 mA with Rigaku Electric Rota-Flex RAD-RC.

各実施例の結果を表1及び表2に示す。   The results of each example are shown in Tables 1 and 2.

表1の結果より、得られたチタン酸カルシウムは、比表面積が10〜40m/g、長辺長が0.05〜0.35μm、軸比が1.2〜5.0であり、単一組成の直方体状粒子のものが得られていることが分かる。 From the results of Table 1, the obtained calcium titanate has a specific surface area of 10 to 40 m 2 / g, a long side length of 0.05 to 0.35 μm, and an axial ratio of 1.2 to 5.0. It can be seen that rectangular solid particles having one composition are obtained.

また、表2の結果より、得られたチタン酸カルシウムは、疎水化度が35〜75%であり、摩擦帯電量が−100〜+80μC/gであるものが得られていることが分かる。   From the results of Table 2, it can be seen that the obtained calcium titanate has a degree of hydrophobicity of 35 to 75% and a triboelectric charge amount of −100 to +80 μC / g.

以上より、トナーの添加剤、特に研磨剤として有用なチタン酸カルシウムが得られたことが確認できた。   From the above, it was confirmed that calcium titanate useful as a toner additive, particularly an abrasive, was obtained.

実施例7により製造されたチタン酸カルシウムの透過型電子顕微鏡写真である。6 is a transmission electron micrograph of calcium titanate manufactured according to Example 7. FIG.

Claims (5)

比表面積が10〜40m/gであって、長辺長Aが0.05〜0.35μm、短辺長Bが0.04〜0.20μm、軸比A/Bが1.2〜5.0の直方体状粒子を含むことを特徴とするチタン酸カルシウム微粒子。 Specific surface area is 10 to 40 m 2 / g, long side length A is 0.05 to 0.35 μm, short side length B is 0.04 to 0.20 μm, and axial ratio A / B is 1.2 to 5 Calcium titanate fine particles, comprising 0.0 rectangular parallelepiped particles. 更に、チタンカップリング剤、シランカップリング剤、シリコーンオイル、及び脂肪酸化合物のいずれか1種以上の疎水化剤を被覆したことを特徴とする請求項1記載のチタン酸カルシウム微粒子。   2. The calcium titanate fine particles according to claim 1, further comprising one or more hydrophobizing agents selected from a titanium coupling agent, a silane coupling agent, a silicone oil, and a fatty acid compound. 疎水化度が35〜75%であることを特徴とする請求項2記載のチタン酸カルシウム微粒子。   The calcium titanate fine particles according to claim 2, wherein the degree of hydrophobicity is 35 to 75%. 鉄粉に対する摩擦帯電量が−100〜+80μC/gであることを特徴とする請求項1乃至3のいずれか1項記載のチタン酸カルシウム微粒子。   4. The calcium titanate fine particles according to claim 1, wherein the triboelectric charge amount with respect to the iron powder is −100 to +80 μC / g. 5. 請求項1乃至4のいずれか1項記載のチタン酸カルシウム微粒子を添加剤として用いたことを特徴とする静電記録用トナー。   5. A toner for electrostatic recording, wherein the calcium titanate fine particles according to claim 1 are used as an additive.
JP2007143219A 2007-05-30 2007-05-30 Calcium titanate fine particles and electrostatic recording toner Active JP5122183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007143219A JP5122183B2 (en) 2007-05-30 2007-05-30 Calcium titanate fine particles and electrostatic recording toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007143219A JP5122183B2 (en) 2007-05-30 2007-05-30 Calcium titanate fine particles and electrostatic recording toner

Publications (2)

Publication Number Publication Date
JP2008297142A true JP2008297142A (en) 2008-12-11
JP5122183B2 JP5122183B2 (en) 2013-01-16

Family

ID=40171011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007143219A Active JP5122183B2 (en) 2007-05-30 2007-05-30 Calcium titanate fine particles and electrostatic recording toner

Country Status (1)

Country Link
JP (1) JP5122183B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013668A (en) * 2009-06-02 2011-01-20 Konica Minolta Business Technologies Inc Toner and surface treatment method of titanate compound
JP2013200383A (en) * 2012-03-23 2013-10-03 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, developer cartridge, process cartridge, image forming apparatus, and image forming method
WO2019123916A1 (en) * 2017-12-20 2019-06-27 日本化学工業株式会社 Modified perovskite complex oxide, method for producing same and composite dielectric material
JP2019151507A (en) * 2018-03-01 2019-09-12 チタン工業株式会社 Strontium titanate powder, production method thereof and external additive for electric photograph toner
WO2020017419A1 (en) 2018-07-17 2020-01-23 チタン工業株式会社 Calcium titanate powder, method for producing same and external toner additive for electrophotography
WO2022059460A1 (en) * 2020-09-18 2022-03-24 チタン工業株式会社 Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277054A (en) * 2002-03-19 2003-10-02 Titan Kogyo Kk Strontium titanate fine powder, method for manufacturing the same and electrostatic recording toner which uses the powder as external additive
JP2006184394A (en) * 2004-12-27 2006-07-13 Canon Inc Toner and image forming method
JP2006243330A (en) * 2005-03-03 2006-09-14 Canon Inc Image forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003277054A (en) * 2002-03-19 2003-10-02 Titan Kogyo Kk Strontium titanate fine powder, method for manufacturing the same and electrostatic recording toner which uses the powder as external additive
JP2006184394A (en) * 2004-12-27 2006-07-13 Canon Inc Toner and image forming method
JP2006243330A (en) * 2005-03-03 2006-09-14 Canon Inc Image forming method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013668A (en) * 2009-06-02 2011-01-20 Konica Minolta Business Technologies Inc Toner and surface treatment method of titanate compound
JP2013200383A (en) * 2012-03-23 2013-10-03 Fuji Xerox Co Ltd Toner for electrostatic charge image development, electrostatic charge image developer, toner cartridge, developer cartridge, process cartridge, image forming apparatus, and image forming method
JP7204673B2 (en) 2017-12-20 2023-01-16 日本化学工業株式会社 Method for producing modified perovskite-type composite oxide
WO2019123916A1 (en) * 2017-12-20 2019-06-27 日本化学工業株式会社 Modified perovskite complex oxide, method for producing same and composite dielectric material
KR102510234B1 (en) * 2017-12-20 2023-03-16 니폰 가가쿠 고교 가부시키가이샤 Modified perovskite-type composite oxide, manufacturing method thereof, and composite dielectric material
CN111511686A (en) * 2017-12-20 2020-08-07 日本化学工业株式会社 Modified perovskite-type composite oxide, method for producing same, and composite dielectric material
KR20200100124A (en) * 2017-12-20 2020-08-25 니폰 가가쿠 고교 가부시키가이샤 Modified Perovskite Composite Oxide, Manufacturing Method thereof, and Composite Dielectric Material
JPWO2019123916A1 (en) * 2017-12-20 2020-12-24 日本化学工業株式会社 Modified perovskite type composite oxide, its manufacturing method, and composite dielectric material
JP2019151507A (en) * 2018-03-01 2019-09-12 チタン工業株式会社 Strontium titanate powder, production method thereof and external additive for electric photograph toner
JP7131926B2 (en) 2018-03-01 2022-09-06 チタン工業株式会社 Strontium titanate powder, method for producing the same, and external additive for electrophotographic toner
KR20210005743A (en) 2018-07-17 2021-01-14 타이탄 고교 가부시키가이샤 Calcium titanate powder and its manufacturing method and external additive for electrophotographic toner
WO2020017419A1 (en) 2018-07-17 2020-01-23 チタン工業株式会社 Calcium titanate powder, method for producing same and external toner additive for electrophotography
WO2022059460A1 (en) * 2020-09-18 2022-03-24 チタン工業株式会社 Pigment composed of particles containing calcium-titanium composite oxide as main component, and use thereof

Also Published As

Publication number Publication date
JP5122183B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP6577427B2 (en) Strontium titanate fine particles for toner and method for producing the same
JP6151651B2 (en) Strontium titanate fine particles for toner and method for producing the same
JP5122183B2 (en) Calcium titanate fine particles and electrostatic recording toner
JP7131926B2 (en) Strontium titanate powder, method for producing the same, and external additive for electrophotographic toner
JP5142354B2 (en) ε-Fe2O3 crystal manufacturing method
ES2628504T3 (en) Liquid suspension of cerium oxide particles and their preparation procedure
JP4165859B2 (en) Strontium titanate fine powder, method for producing the same, and toner for electrostatic recording using the same as an external additive
JP5091685B2 (en) External additive for toner and method for producing the same
JP6866002B2 (en) A method for producing aluminosilicate nanoparticles having excellent dispersibility, a rubber reinforcing material containing the aluminosilicate nanoparticles, and a rubber composition for a tire containing the aluminosilicate nanoparticles.
US20110006247A1 (en) Hydrophobized silicon-iron mixed oxide
JP2018110168A (en) Magnetic particle and method of producing the same
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
JP7177614B2 (en) Calcium titanate powder, method for producing the same, and external additive for electrophotographic toner
EP1510502A2 (en) Black pigment powder comprising FeTiO4 having a low value of magnetization, process for producing the same, and applications thereof
JP5005414B2 (en) Zinc oxide, method for producing the same, and cosmetics using the same
JP2008254989A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP7030546B2 (en) External additive particles for electrophotographic toner and their manufacturing method
JP2008031010A (en) Method for producing alumina organic solvent dispersed liquid
JP2022162095A (en) Method of producing strontium titanate
JP2008254994A (en) Zinc oxide, method for producing the same, and cosmetic using the same
JP2008254993A (en) Zinc oxide, method for producing the same, and cosmetic using the same
TWI828809B (en) Spherical forsterite particles, production method thereof, and resin composition containing spherical forsterite particles
KR101546603B1 (en) Manufacturing method of the zirconium dioxide powders
JP6282908B2 (en) Method for producing zinc oxide
JP2014148568A (en) Heat radiation property composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5122183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250