JP2008293870A - Planar heating element and manufacturing method therefor - Google Patents

Planar heating element and manufacturing method therefor Download PDF

Info

Publication number
JP2008293870A
JP2008293870A JP2007139989A JP2007139989A JP2008293870A JP 2008293870 A JP2008293870 A JP 2008293870A JP 2007139989 A JP2007139989 A JP 2007139989A JP 2007139989 A JP2007139989 A JP 2007139989A JP 2008293870 A JP2008293870 A JP 2008293870A
Authority
JP
Japan
Prior art keywords
heating element
mica
sheet
planar heating
composite sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007139989A
Other languages
Japanese (ja)
Inventor
Jiro Tsubouchi
二郎 坪内
Takanori Yoshii
隆徳 吉井
Tokuaki Takeda
篤明 武田
Koji Noguchi
浩二 野口
Yusuke Toyoda
祐輔 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Ryoyu Industrial Corp
Original Assignee
Japan Pionics Ltd
Ryoyu Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd, Ryoyu Industrial Corp filed Critical Japan Pionics Ltd
Priority to JP2007139989A priority Critical patent/JP2008293870A/en
Publication of JP2008293870A publication Critical patent/JP2008293870A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar heating element which can be used over a wide temperature range that includes high temperatures from 250°C to 1,000°C and which can be easily manufactured in a desired shape and size, and to provide its manufacturing method. <P>SOLUTION: The planar heating element is manufactured, by allowing a plurality of mica sheets to be held between two metal thin plates or between a metal thin plate and a flexible heat insulator and heating a composite sheet, in which a flexible heating element is held in a gap between any of the plurality of mica sheets, with its being held in a planar manner or in a curved manner, thereby curing the mica sheets and forming the composite sheet into a single piece. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電気エネルギーを利用する面状発熱体及びその製造方法に関するものである。更に詳細には、250℃〜1000℃の高温領域を含む広い温度領域の加熱が可能で、また、例えば配管の外側面等の曲面に容易に適用させて使用することが可能で、しかも容易に製造することができる面状発熱体及びその製造方法に関するものである。   The present invention relates to a planar heating element using electric energy and a method for manufacturing the same. More specifically, heating in a wide temperature range including a high temperature range of 250 ° C. to 1000 ° C. is possible, and it can be easily applied to a curved surface such as an outer surface of a pipe and used easily. The present invention relates to a planar heating element that can be manufactured and a manufacturing method thereof.

従来から、床暖房、サウナ、洗面化粧台の防曇鏡等の分野で、面状発熱体として、各種の面状の発熱素子を電気絶縁層で被覆した構造のものが広く利用されている。このような面状の発熱素子として、グラフトカーボン、カーボン粉末、金属粉末、あるいは金属酸化物粉末等を含む合成樹脂(導電性樹脂)を用いて、ガラスクロスに含浸させたもの、前記のような導電性樹脂をポリエステルシート、ポリイミドシート、マイカ等の基材に塗布または印刷により保持させたもの、金属箔をエッチングして回路としたもの、あるいは金属抵抗線を用いて、マイカ等の絶縁基板に張り巡らして回路としたもの等が使用されている。   2. Description of the Related Art Conventionally, in the fields of floor heating, saunas, vanity mirrors for vanities, and the like, a sheet heating element having a structure in which various sheet heating elements are covered with an electrical insulating layer has been widely used. As such a planar heating element, a glass cloth impregnated with a synthetic resin (conductive resin) containing graft carbon, carbon powder, metal powder, metal oxide powder or the like, as described above Conductive resin applied to a base material such as polyester sheet, polyimide sheet, mica, etc., or a circuit formed by etching a metal foil, or an insulating substrate such as mica using a metal resistance wire A circuit that has been stretched around is used.

これらのうちでも、発熱素子として、金属箔をエッチングして回路としたもの、金属抵抗線を用いてマイカ等の絶縁基板に張り巡らして回路としたもの、あるいは導電性樹脂を用いてガラスクロスに含浸させたものは、200℃以上の比較的高い温度で使用できる利点がある。
これらの利用分野の一部では、面状発熱体が高い温度の領域で使用されることから、発熱素子を被覆する電気絶縁材料として、シリコーンゴムシート、ポリイミド樹脂シート、マイカ等が使用されている。
Among these, as a heating element, a metal foil is etched to form a circuit, a metal resistance wire is used to stretch around an insulating substrate such as mica, or a circuit cloth is formed using a conductive resin. The impregnated material has an advantage that it can be used at a relatively high temperature of 200 ° C. or higher.
In some of these fields of use, since the planar heating element is used in a high temperature region, a silicone rubber sheet, a polyimide resin sheet, mica, or the like is used as an electrical insulating material that covers the heating element. .

また、半導体等の分野で、200℃〜1000℃の比較的に高温の領域内で使用される面状発熱体として、電気絶縁基板の表面に、抵抗発熱体を設けた構造のものが広く利用されている。このような面状発熱体としては、電気絶縁基板として、アルミナ、シリカ、チタニア等のセラミックが使用され、抵抗発熱体として、酸化錫、酸化インジウム、酸化バナジウム、酸化クロム等の酸化金属が使用され、例えば、コーティング法、溶射法、CVD法等により、電気絶縁基板の表面に、抵抗発熱体が形成されている。   In the field of semiconductors and the like, as a sheet heating element used in a relatively high temperature region of 200 ° C. to 1000 ° C., a structure in which a resistance heating element is provided on the surface of an electrically insulating substrate is widely used. Has been. As such a planar heating element, ceramics such as alumina, silica, and titania are used as an electrical insulating substrate, and metal oxides such as tin oxide, indium oxide, vanadium oxide, and chromium oxide are used as a resistance heating element. For example, a resistance heating element is formed on the surface of the electrically insulating substrate by a coating method, a thermal spraying method, a CVD method, or the like.

特開平1−57585号公報JP-A-1-57585 特開平6−68959号公報JP-A-6-68959 特開平7−226289号公報JP 7-226289 A 特開平7−230876号公報Japanese Patent Laid-Open No. 7-230876

しかしながら、発熱素子を、シリコーンゴムシート、ポリイミド樹脂シート、マイカ等の電気絶縁材料で被覆した面状発熱体については、シリコーンゴムシート、ポリイミド樹脂シートは、柔軟性があるが使用温度の限界が比較的に低い(250℃以下)という不都合があり、マイカは使用温度の限界が比較的に高いが柔軟性に乏しく曲面を有する面状発熱体を製造することが困難であるという不都合があった。   However, for planar heating elements in which the heating elements are covered with an electrically insulating material such as a silicone rubber sheet, polyimide resin sheet, mica, etc., silicone rubber sheets and polyimide resin sheets are flexible, but their operating temperature limits are comparable. However, mica has the disadvantage that it is difficult to produce a planar heating element having a curved surface due to its poor flexibility but relatively high use temperature.

また、セラミック電気絶縁基板の表面に、抵抗発熱体を設けた面状発熱体は、優れた耐熱性を有するが、可撓性、柔軟性がなく、曲面を有する面状発熱体を製造することが困難であるという不都合があった。
従って、本発明が解決しようとする課題は、250℃〜1000℃の高温の領域を含む広い温度領域で使用することが可能で、しかも所望の曲面形状及び大きさで容易に製造することができる面状発熱体及びその製造方法を提供することである。
In addition, a planar heating element having a resistance heating element provided on the surface of a ceramic electrically insulating substrate has excellent heat resistance, but has no flexibility and flexibility, and a planar heating element having a curved surface is manufactured. However, there was an inconvenience that it was difficult.
Therefore, the problem to be solved by the present invention can be used in a wide temperature range including a high temperature range of 250 ° C. to 1000 ° C., and can be easily manufactured in a desired curved shape and size. It is to provide a planar heating element and a method for manufacturing the same.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、可撓性を有するマイカシート(集成マイカシート)を、可撓性の発熱素子の両面に重ね合わせ、その外側に金属薄板あるいは加熱により硬化するセラミック塗料等の可撓性を有する断熱材を配置し、これを加圧面が所望の形状の面を有する複数個の治具、金型等に挟み、加熱加圧してマイカシート等を硬化させるとともに一体成形することにより、発熱素子の両面がマイカで電気絶縁された優れた耐熱性及び断熱性を有する面状発熱体が、所望の形状及び大きさで容易に製造できることを見出し、本発明の面状発熱体及びその製造方法に到達した。   As a result of intensive studies to solve these problems, the inventors of the present invention superimpose a flexible mica sheet (a laminated mica sheet) on both sides of a flexible heating element, and a metal thin plate or A heat insulating material having flexibility such as ceramic paint that hardens when heated is placed, and this is sandwiched between a plurality of jigs, molds, etc. whose pressing surfaces have a desired shape, and heated and pressed to mica sheets, etc. It is found that a sheet-like heating element having excellent heat resistance and heat insulation in which both sides of the heating element are electrically insulated with mica can be easily manufactured in a desired shape and size by integrally molding and heating. The planar heating element of the present invention and the manufacturing method thereof have been reached.

すなわち本発明は、2枚の金属薄板の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形してなることを特徴とする面状発熱体である。
また、本発明は、金属薄板と可撓性を有する断熱材の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形してなることを特徴とする面状発熱体である。
That is, the present invention provides a composite sheet in which a plurality of mica sheets are sandwiched between two thin metal plates, and a flexible heating element is sandwiched between any of the plurality of mica sheets. The sheet heating element is characterized in that the mica sheet is cured by being heated while being held in a shape or a curved surface, and the composite sheet is integrally formed.
Further, according to the present invention, a plurality of mica sheets are sandwiched between a thin metal plate and a flexible heat insulating material, and a flexible heating element is sandwiched between any of the plurality of mica sheets. The planar heating element is formed by heating the composite sheet in a state where the composite sheet is held in a flat shape or a curved shape, thereby curing the mica sheet and integrally molding the composite sheet.

また、本発明は、2枚の金属薄板の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形することを特徴とする面状発熱体の製造方法である。
また、本発明は、金属薄板と可撓性を有する断熱材の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形することを特徴とする面状発熱体の製造方法である。
Further, the present invention provides a composite sheet in which a plurality of mica sheets are sandwiched between two thin metal plates, and a flexible heating element is sandwiched in any gap between the plurality of mica sheets. A method for manufacturing a planar heating element, wherein the mica sheet is cured by heating in a state of being held flat or curved, and the composite sheet is integrally formed.
Further, according to the present invention, a plurality of mica sheets are sandwiched between a thin metal plate and a flexible heat insulating material, and a flexible heating element is sandwiched between any of the plurality of mica sheets. In addition, the mica sheet is cured by heating the composite sheet while being held in a flat or curved shape, and the composite sheet is integrally formed.

本発明の面状発熱体は、可撓性を有する複数枚のマイカシート(集成マイカシート)に、金属箔抵抗体、金属線抵抗体等の可撓性を有する発熱素子を挟み、その外側に金属薄板あるいはセラミック塗料等の可撓性を有する断熱材を配置して、所望の形状に保持した状態で外部から加熱加圧することにより一体成形するので、容易に所望の形状及び大きさで面状発熱体を製造することができる。また、本発明の面状発熱体は、前記の発熱素子の両面がマイカで電気絶縁され、セラミック等で断熱された構成なので、250℃以上の高温の領域を含む広い温度領域で使用することが可能である。   In the planar heating element of the present invention, a flexible heating element such as a metal foil resistor or a metal wire resistor is sandwiched between a plurality of flexible mica sheets (assembled mica sheet), and the outside thereof is sandwiched between them. Since a flexible heat insulating material such as a thin metal plate or ceramic paint is placed and heated and pressed from the outside while being held in a desired shape, it is easily formed into a plane with the desired shape and size. A heating element can be manufactured. In addition, since the sheet heating element of the present invention has a structure in which both sides of the heating element are electrically insulated by mica and insulated by ceramic or the like, it can be used in a wide temperature range including a high temperature range of 250 ° C. or higher. Is possible.

本発明の面状発熱体及びその製造方法は、平面状または曲面状の面を加熱するための電気エネルギーを利用した面状発熱体に適用されるが、特に曲面状の面を高い温度(250℃〜1000℃)で加熱するための面状発熱体に好適に適用される。
以下、本発明の面状発熱体及びその製造方法を、図1〜図4に基づいて説明するが、本発明がこれにより限定されるものではない。尚、図1は本発明の第一の形態の面状発熱体(曲面状)の一例(金属薄板/マイカシート/発熱素子/マイカシート/金属薄板)を示す斜視図、図2は本発明の第二の形態の面状発熱体(曲面状)の一例(金属薄板/マイカシート/発熱素子/マイカシート/断熱材)を示す斜視図である。図3は本発明の第一の形態の面状発熱体(平面状)の例を示す断面図、図4は本発明の第二の形態の面状発熱体(平面状)の例を示す断面図である。このような図3、図4の構成は、曲面状の面状発熱体に適用することもできる。
The planar heating element and the manufacturing method thereof according to the present invention are applied to a planar heating element using electric energy for heating a planar or curved surface. It is suitably applied to a planar heating element for heating at a temperature of from 1000C to 1000C.
Hereinafter, although the planar heating element of this invention and its manufacturing method are demonstrated based on FIGS. 1-4, this invention is not limited by this. 1 is a perspective view showing an example (metal thin plate / mica sheet / heating element / mica sheet / metal thin plate) of a sheet heating element (curved surface) according to the first embodiment of the present invention, and FIG. It is a perspective view which shows an example (metal thin plate / mica sheet / heating element / mica sheet / heat insulation material) of a sheet heating element (curved surface) of the second form. FIG. 3 is a sectional view showing an example of a planar heating element (planar) according to the first embodiment of the present invention, and FIG. 4 is a sectional view showing an example of the planar heating element (planar) according to the second embodiment of the present invention. FIG. 3 and 4 can also be applied to a curved sheet heating element.

本発明の第一の形態の面状発熱体は、図1、図3に示すように、発熱素子1の両面がシート状のマイカ2によって被覆され、さらにこのような構成のシートが2枚の金属薄板3の間に挟持された平面または曲面の形状を有する面状発熱体である。このような本発明の面状発熱体は、2枚の金属薄板3の間に複数枚のマイカシート(集成マイカシート)2が挟持され、該複数枚のマイカシート2のいずれかの間隙に可撓性を有する発熱素子1が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを焼成させるとともに該複合シートを一体成形して製造される。   As shown in FIGS. 1 and 3, the sheet heating element according to the first embodiment of the present invention has both sides of the heating element 1 covered with sheet-like mica 2, and two sheets of such a configuration. This is a planar heating element having a planar or curved shape sandwiched between thin metal plates 3. In such a planar heating element of the present invention, a plurality of mica sheets (stacked mica sheets) 2 are sandwiched between two thin metal plates 3 and can be inserted into any gap between the plurality of mica sheets 2. The composite sheet in which the heat generating element 1 having flexibility is sandwiched is heated in a state of being held in a flat shape or a curved shape, whereby the mica sheet is fired and the composite sheet is integrally formed.

また、本発明の第二の形態の面状発熱体は、図2、図4に示すように、発熱素子1の両面がシート状のマイカ2によって被覆され、さらにこのような構成のシートが金属薄板3と可撓性を有する断熱材4の間に挟持された平面または曲面の形状を有する面状発熱体である。このような本発明の面状発熱体は、金属薄板3と可撓性を有する断熱材4の間に複数枚のマイカシート(集成マイカシート)2が挟持され、該複数枚のマイカシート2のいずれかの間隙に可撓性を有する発熱素子1が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを焼成させるとともに該複合シートを一体成形して製造される。   Moreover, as shown in FIGS. 2 and 4, the sheet heating element according to the second embodiment of the present invention has both surfaces of the heating element 1 covered with sheet-like mica 2, and the sheet having such a configuration is a metal. It is a planar heating element having a planar or curved shape sandwiched between the thin plate 3 and the flexible heat insulating material 4. In such a planar heating element of the present invention, a plurality of mica sheets (stacked mica sheets) 2 are sandwiched between a thin metal plate 3 and a flexible heat insulating material 4, and the plurality of mica sheets 2 are The composite sheet in which the flexible heating element 1 is sandwiched between any gaps is heated in a state of being held flat or curved, thereby firing the mica sheet and integrally forming the composite sheet. Manufactured.

尚、本発明の面状発熱体の形状は、特に限定されることはなく、図1、図2に示すような円筒を切断面が中心軸と平行方向となるように分割した形状、図3、図4に示すような平面状のほか、楕円筒を切断面が中心軸と平行方向となるように分割した形状、球面または楕球面の一部の形状、またはこれらに類似する形状、若しくは平面と前記のような曲面を合わせた形状等とすることができる。
しかしながら、例えば、円筒形、または円筒を切断面が中心軸と平行方向となるように、2分割、3分割、または4分割した形状、若しくは楕円筒形、または楕円筒を切断面が中心軸と平行方向となるように、2分割または4分割した形状が実用的である。
The shape of the planar heating element of the present invention is not particularly limited, and is a shape obtained by dividing a cylinder as shown in FIGS. 1 and 2 so that the cut surface is parallel to the central axis, FIG. In addition to the planar shape shown in FIG. 4, the shape obtained by dividing the elliptic cylinder so that the cut surface is parallel to the central axis, the spherical surface, a partial shape of the elliptical surface, or a shape similar to these, or a flat surface And a shape obtained by combining the curved surfaces as described above.
However, for example, a cylindrical shape, or a shape obtained by dividing the cylinder into two, three, or four divisions, or an elliptical cylinder, or an elliptical cylinder so that the cutting plane is parallel to the central axis, the cutting plane is the central axis. A shape divided into two or four so as to be parallel is practical.

本発明の面状発熱体においては、発熱素子の両面に各々1枚のマイカシートを重ねて硬化及び一体成形を行なってもよいが、厚みが薄いマイカシートを用いて、図3(2)、図4(2)に示すように、発熱素子の少なくとも片面、好ましくは両面に各々複数枚のマイカシートを重ねて硬化及び一体成形を行なった方が、容易に曲げやすい点、曲率半径が小さい面状発熱体が得られる点で好ましい。また、発熱素子は1枚に限定されることなく、図3(3)、図4(3)に示すように、2枚(あるいは3枚以上)の発熱素子と3枚(あるいは4枚以上)のマイカシートを交互に重ね合わせることもできる。   In the sheet heating element of the present invention, one mica sheet may be overlapped on both sides of the heating element to perform curing and integral molding, but using a mica sheet having a small thickness, FIG. 3 (2), As shown in FIG. 4 (2), it is easier to bend and have a smaller radius of curvature when a plurality of mica sheets are stacked and cured and integrally molded on at least one side, preferably both sides, of the heating element. It is preferable at the point from which a heating element is obtained. Further, the number of heating elements is not limited to one, but two (or three or more) heating elements and three (or four or more) heating elements as shown in FIGS. 3 (3) and 4 (3). The mica sheets can be alternately stacked.

本発明の面状発熱体に用いられるマイカとしては、天然マイカ、合成マイカ、あるいはその種類等には特に限定されることがなく、一般式が下記の(1)または(2)で表わされる化合物を主成分とするマイカを用いることができる。(Xは、Li、Na、K、Rb、Ca、Ba、またはSr、Yは、Mg、Fe、Ni、Mn、Al、またはLi、Zは、(Al,Si)、Si、Ge、Al、Fe、またはBを表わす。)これらのうち、KMg(OH)(AlSi10)で表わされる化合物を主成分とする軟質マイカを用いることが好ましい。

Figure 2008293870
The mica used in the planar heating element of the present invention is not particularly limited to natural mica, synthetic mica, or the kind thereof, and the compound represented by the following general formula (1) or (2) Mica whose main component is can be used. (X is Li, Na, K, Rb, Ca, Ba, or Sr, Y is Mg, Fe, Ni, Mn, Al, or Li, Z is (Al, Si), Si, Ge, Al, Of these, it is preferable to use soft mica whose main component is a compound represented by KMg 3 (OH) 2 (AlSi 3 O 10 ).
Figure 2008293870

本発明に使用されるマイカシートは、通常は前記のような天然マイカまたは合成マイカを粉砕し、必要に応じて分級、補強材の添加、接着剤の添加等を行ない、その後これを抄造して成形した集成マイカシートとすることにより製造される。しかし、これに限定されることなく、集成マイカシート以外のものであっても、可撓性、柔軟性を有し、加熱することにより硬化するマイカシートであれば、本発明に使用することができる。尚、前記の接着剤としては、セラミックス系接着剤等の耐熱性に優れた無機系接着剤が好ましいが、シリコン系樹脂、エポキシ系樹脂等の有機系接着剤を用いることもできる。また、本発明に使用されるマイカシートの形状は、テープ状であってもよい。このようにして得られるマイカシートの厚みは、通常は0.05〜2.0mmであり、可撓性、柔軟性を有するものである。   The mica sheet used in the present invention is usually pulverized natural mica or synthetic mica as described above, classified as necessary, added with a reinforcing material, added with an adhesive, etc. Manufactured by forming molded mica sheet. However, the present invention is not limited to this, and even if it is other than a laminated mica sheet, it can be used in the present invention as long as it is a mica sheet that has flexibility and flexibility and is cured by heating. it can. The adhesive is preferably an inorganic adhesive having excellent heat resistance, such as a ceramic adhesive, but an organic adhesive such as a silicon resin or an epoxy resin can also be used. The shape of the mica sheet used in the present invention may be a tape shape. The thickness of the mica sheet thus obtained is usually 0.05 to 2.0 mm and has flexibility and flexibility.

本発明の面状発熱体に用いられる金属薄板は、通常は厚みが0.1〜2mmであり、アルミ薄板、ステンレス薄板等のほか、アルミ箔、ステンレス箔等も使用可能である。金属薄板の厚みが0.1mm未満の場合は強度が弱くなり、2mmを超えると可撓性、柔軟性が失われ所望の曲面形状に形成できなくなる虞がある。金属薄板のうち、被加熱物側に配置される金属薄板は、加熱面を均一にするために用いられる。また、被加熱物側と反対側に配置される金属薄板は、マイカや断熱材から発生する粉塵等の外部への飛散を防止する効果があり、例えばクリーンルーム内で使用される面状発熱体の被覆材として好適である。   The metal thin plate used for the planar heating element of the present invention usually has a thickness of 0.1 to 2 mm, and aluminum foil, stainless steel foil, etc. can be used in addition to aluminum thin plate, stainless steel thin plate and the like. When the thickness of the metal thin plate is less than 0.1 mm, the strength is weak, and when it exceeds 2 mm, the flexibility and flexibility are lost, and it may not be possible to form a desired curved shape. Among the thin metal plates, the thin metal plate disposed on the heated object side is used to make the heating surface uniform. In addition, the metal thin plate placed on the opposite side of the object to be heated has the effect of preventing the dust generated from mica and heat insulating material from being scattered to the outside. For example, a sheet heating element used in a clean room Suitable as a coating material.

本発明の面状発熱体に用いられる可撓性を有する断熱材は、耐熱性があれば特に制限されることがないが、高い温度(250℃〜1000℃)で使用されることを考慮して、セラミックを用いることが好ましい。例えば、面状発熱体の外側表面に、セラミック塗料を塗布、乾燥後、マイカシートの硬化時に合せて、微粉体の状態で固化、あるいは焼成することにより形成させることができる。セラミック塗料としては、例えば、アルミナ、シリカ、ジルコニア、チタニア、マイカ等のセラミック原料、あるいはこれらの2種類以上のセラミック原料を、必要に応じて無機充填材、有機充填材とともに溶媒に溶かしたものを用いることができる。   The flexible heat insulating material used in the planar heating element of the present invention is not particularly limited as long as it has heat resistance, but it is considered that it is used at a high temperature (250 ° C. to 1000 ° C.). It is preferable to use ceramic. For example, it can be formed by applying a ceramic coating on the outer surface of the planar heating element, drying, and solidifying or firing in a fine powder state in accordance with the curing of the mica sheet. Examples of the ceramic paint include ceramic raw materials such as alumina, silica, zirconia, titania, mica, or two or more of these ceramic raw materials dissolved in a solvent together with inorganic fillers and organic fillers as necessary. Can be used.

本発明の第一の形態の面状発熱体は、図3(4)に示すように、さらに片方の金属薄板(被加熱物側と反対側の金属薄板)の外側に可撓性を有する断熱材を設けることもできる。このような面状発熱体は、複合シート(金属薄板/マイカシート/発熱素子/マイカシート/金属薄板)の片方の金属薄板の外側に断熱材を設けた後、複合シートとともに一体成形するか、あるいは複合シート(金属薄板/マイカシート/発熱素子/マイカシート/金属薄板)を一体成形した後、片方の金属薄板の表面に断熱材を接着することにより製造することができる。   As shown in FIG. 3 (4), the planar heating element according to the first embodiment of the present invention further has heat insulation having flexibility on the outer side of one metal thin plate (the metal thin plate on the side opposite to the object to be heated). Materials can also be provided. Such a sheet heating element is formed integrally with the composite sheet after providing a heat insulating material on the outer side of one of the metal sheets of the composite sheet (metal sheet / mica sheet / heating element / mica sheet / metal sheet), Alternatively, the composite sheet (metal thin plate / mica sheet / heat generating element / mica sheet / metal thin plate) can be integrally formed and then bonded to the surface of one metal thin plate.

本発明の第二の形態の面状発熱体は、さらに可撓性を有する断熱材の外側に金属薄板を設けることもできる。このような構成にした場合、図4(4)に示すように、可撓性を有する断熱材をシート状にしてもよいが、図4(5)に示すように、空隙部(空気層)5を有するものとすることができる。このような構成とすることにより、優れた可撓性、断熱性を容易に付与することができるとともに、金属薄板が熱反射板として効果を発揮し、ヒータからの熱が外部に拡散し難く、エネルギー効率よく被加熱物を加熱することができる。また、空隙部の割合を大きくした場合は、断熱材に要求される可撓性の条件が緩和され、種々の耐熱性材料から断熱材を選定することができるようになる。   The planar heating element according to the second embodiment of the present invention can further be provided with a thin metal plate outside the flexible heat insulating material. In such a configuration, as shown in FIG. 4 (4), the heat insulating material having flexibility may be formed into a sheet shape, but as shown in FIG. 4 (5), the gap (air layer) 5 may be included. By adopting such a configuration, excellent flexibility and heat insulation can be easily imparted, and the metal thin plate exhibits an effect as a heat reflecting plate, and heat from the heater is difficult to diffuse to the outside. An object to be heated can be heated with energy efficiency. Further, when the proportion of the gap is increased, the flexibility condition required for the heat insulating material is relaxed, and it becomes possible to select the heat insulating material from various heat resistant materials.

前記のような面状発熱体は、複合シート(金属薄板/マイカシート/発熱素子/マイカシート/断熱材)の断熱材の外側に金属薄板を設けた後、複合シートとともに一体成形するか、あるいは複合シート(金属薄板/マイカシート/発熱素子/マイカシート/断熱材)を一体成形した後、断熱材の表面に金属薄板を接着することにより製造することができる。   The planar heating element as described above may be formed integrally with the composite sheet after the metal thin plate is provided outside the heat insulating material of the composite sheet (metal thin plate / mica sheet / heating element / mica sheet / heat insulating material), or After the composite sheet (metal thin plate / mica sheet / heating element / mica sheet / heat insulating material) is integrally formed, it can be produced by adhering the metal thin plate to the surface of the heat insulating material.

本発明の面状発熱体に用いられる可撓性を有する発熱素子は、所望のパターンに成形した金属箔抵抗体、金属線抵抗体(図1、図2)、または、グラフトカーボン、カーボン粉末、金属粉末、金属酸化物粉末から選ばれる少なくとも1種を合成樹脂に分散させた導電性樹脂を、ガラス繊維基材またはセラミック繊維基材(アルミナ繊維基材、シリカ繊維基材、セラミック複合繊維基材等)に含浸させた抵抗体である。発熱素子の厚みは、通常は0.01〜0.5mm、好ましくは0.05〜0.3mmである。厚みが0.01mm未満の場合は強度が弱く、0.5mmを超えると可撓性、柔軟性が失われる虞が生じる。   The flexible heating element used for the planar heating element of the present invention includes a metal foil resistor, a metal wire resistor (FIGS. 1 and 2) molded into a desired pattern, graft carbon, carbon powder, A conductive resin in which at least one selected from metal powder and metal oxide powder is dispersed in a synthetic resin, glass fiber base or ceramic fiber base (alumina fiber base, silica fiber base, ceramic composite fiber base) Etc.). The thickness of the heating element is usually 0.01 to 0.5 mm, preferably 0.05 to 0.3 mm. If the thickness is less than 0.01 mm, the strength is weak, and if it exceeds 0.5 mm, flexibility and softness may be lost.

尚、前記のガラス繊維基材またはセラミック繊維基材は、低温度で熱分解するバインダーを含まないようにするか、予め加熱処理してバインダーを熱分解しておくか、あるいはバインダーを使用しないようにすることが好ましい。低温度で熱分解するバインダーが含まれる場合、発熱素子が高温になるとバインダーが熱分解し、面状発熱体が劣化する不都合が生じる。ガラス繊維基材を使用する場合は、通常はガラスクロスとされる。また、ガラス繊維及びセラミック繊維を混合した基材を用いることもできる。さらに、強度及び耐熱性を向上させるために、炭素繊維等を含ませてもよいが、これらの含有量が大きくなると可撓性、柔軟性が失われる虞があるので、これらを含ませる場合は、基材全量に対して30wt%以下であることが好ましい。   The glass fiber base or ceramic fiber base does not contain a binder that thermally decomposes at a low temperature, heat-treats the binder in advance, or does not use a binder. It is preferable to make it. When a binder that thermally decomposes at a low temperature is included, the binder is thermally decomposed when the temperature of the heating element becomes high, resulting in a disadvantage that the planar heating element deteriorates. When a glass fiber substrate is used, it is usually a glass cloth. Moreover, the base material which mixed glass fiber and ceramic fiber can also be used. Furthermore, in order to improve the strength and heat resistance, carbon fibers or the like may be included. However, if these contents increase, flexibility and flexibility may be lost. It is preferable that it is 30 wt% or less with respect to the total amount of the substrate.

本発明の面状発熱体は、例えば、発熱素子の両面にマイカシートを重ね合わせ、さらにその外側に2枚の金属薄板または金属薄板と断熱材を重ね合わせた複合シートを、2個以上の治具、金型等の間に挟み加熱加圧することにより、マイカシートまたはマイカシートとセラミック塗料を硬化させるとともに複合シートを一体成形して製造される。あるいは、円柱等の曲面を有する型の表面に、金属薄板、マイカシートまたはマイカテープ、発熱素子、マイカシートまたはマイカテープ、金属薄板または断熱材をこの順番で重ねて巻いて形成した複合シートを加熱することにより、マイカシート、マイカテープ、またはセラミック塗料を硬化させるとともに複合シートを一体成形し、その後、型を取り外して製造される。尚、一体成形の際の加圧は、治具、金型等のほか、シートまたはテープによる締め付けにより行なうこともできる。   The planar heating element of the present invention includes, for example, two or more sheets of heat treatment elements that are laminated with mica sheets and two metal sheets or a composite sheet in which a metal sheet and a heat insulating material are stacked on the outside. A mica sheet or a mica sheet and a ceramic paint are cured by sandwiching between tools, molds and the like, and a composite sheet is integrally formed. Alternatively, a composite sheet formed by winding a metal sheet, mica sheet or mica tape, heating element, mica sheet or mica tape, metal sheet or heat insulating material in this order on the surface of a mold having a curved surface such as a cylinder is heated. By doing so, the mica sheet, mica tape, or ceramic paint is cured, and the composite sheet is integrally formed, and then the mold is removed to produce the composite sheet. In addition, the pressurization at the time of integral molding can be performed by fastening with a sheet or tape in addition to a jig, a mold, or the like.

硬化及び一体成形の際には、予めマイカシートと発熱素子の間隙、マイカシート同士の間隙に、接着剤を介在させることもできる。このような接着剤としては、セラミックス系接着剤等の耐熱性に優れた無機系接着剤が好ましいが、シリコン系樹脂、エポキシ系樹脂、フェノール系樹脂、アルキッド系樹脂、ポリイミド系樹脂等の有機系接着剤を用いることもできる。尚、本発明に使用されるセラミックス系接着剤としては、ポリカルボシラン樹脂、ポリシラスチレン樹脂、ポリチタノカルボシラン樹脂、ポリシラザン樹脂、ポリボロシロキサン樹脂等、加熱によって分解し、セラミックス化するものを含む。
また、発熱素子として金属箔抵抗体または金属線抵抗体を用いた場合、これらの抵抗体同士の間隙にマイカ紛、シリコン粉等の充填剤を充填してもよい。硬化及び一体成形の際の温度は、通常は140℃〜800℃であり、加圧は、通常は0.1MPa〜5MPa(相対圧力)である。
In the case of curing and integral molding, an adhesive may be previously interposed in the gap between the mica sheet and the heating element, or the gap between the mica sheets. As such an adhesive, an inorganic adhesive excellent in heat resistance such as a ceramic adhesive is preferable, but an organic resin such as a silicon resin, an epoxy resin, a phenol resin, an alkyd resin, a polyimide resin, etc. An adhesive can also be used. As the ceramic adhesive used in the present invention, polycarbosilane resin, polysilastyrene resin, polytitanocarbosilane resin, polysilazane resin, polyborosiloxane resin, etc., which decomposes by heating and become ceramics. including.
Further, when a metal foil resistor or a metal wire resistor is used as the heating element, a filler such as mica powder or silicon powder may be filled in the gap between these resistors. The temperature during curing and integral molding is usually 140 ° C. to 800 ° C., and the pressure is usually 0.1 MPa to 5 MPa (relative pressure).

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(複合シートの製作)
合成樹脂フィルムからなる基材の表面に、エッチングにより縦11cm、横18cmの範囲内で形成した蛇行状の金属箔抵抗体(線幅1.5mm、厚さ0.05mm)を、合成マイカを粉砕し接着剤を添加した後、抄造して成形した集成マイカシートの表面に、基材である合成樹脂フィルムを剥がしながら転移させた。また、金属箔抵抗体の端部に電極端子を接続した。次に、前記の集成マイカシートと同様のマイカシートを用いて、発熱素子の両面に各々2枚のマイカシートを重ね合せた。尚、集成マイカシートは、縦12cm、横19cm、厚さ0.5mmであった。さらにその外側表面の一方に、0.3mmのアルミ箔を重ね合せ、他の一方に、セラミック塗料を塗布し乾燥して断熱材(厚さ1mm)とし複合シートを製作した。
(Production of composite sheet)
A meandering metal foil resistor (line width 1.5 mm, thickness 0.05 mm) formed within a range of 11 cm in length and 18 cm in width by etching on the surface of a base material made of synthetic resin film, and pulverizing synthetic mica After the adhesive was added, the substrate was transferred to the surface of the laminated mica sheet formed and formed while peeling the synthetic resin film as the base material. Moreover, the electrode terminal was connected to the edge part of a metal foil resistor. Next, two mica sheets were superposed on both sides of the heating element using the same mica sheet as the above-mentioned laminated mica sheet. The laminated mica sheet had a length of 12 cm, a width of 19 cm, and a thickness of 0.5 mm. Furthermore, 0.3 mm of aluminum foil was superposed on one of the outer surfaces, and the other one was coated with a ceramic paint and dried to form a heat insulating material (thickness 1 mm) to produce a composite sheet.

(面状発熱体の製作)
前記の複合シートを一体成形するための金型として、直径7.7cm、高さ30cmの円柱を切断面が中心軸と平行方向となるように2分割した形状の半円柱金型、及びこの半円柱金型の曲面部に対応する内径を有する半円筒金型を製作した。これらの金型を160℃(通常150〜200℃)に加熱した後、前記の複合シートをこれらの金型の間に断熱材が半円筒側となるように挟み、約0.5MPaの圧力で10分間加圧して、マイカシート及びセラミック塗料を硬化させるとともに複合シートを一体成形して図1に示すような半円筒の面状発熱体を得た。
(Manufacture of sheet heating elements)
As a mold for integrally molding the composite sheet, a semi-cylindrical mold having a shape of a cylinder having a diameter of 7.7 cm and a height of 30 cm divided into two so that the cut surface is parallel to the central axis, and this half A semi-cylindrical mold having an inner diameter corresponding to the curved surface portion of the cylindrical mold was manufactured. After these molds are heated to 160 ° C. (usually 150 to 200 ° C.), the composite sheet is sandwiched between these molds so that the heat insulating material is on the semi-cylindrical side, and the pressure is about 0.5 MPa. Pressurized for 10 minutes to cure the mica sheet and the ceramic paint and integrally form the composite sheet to obtain a semi-cylindrical planar heating element as shown in FIG.

(面状発熱体の検査)
以上のようにして得られた面状発熱体5枚について、200Vの交流電圧を通電し、発熱体の表面温度が400℃となるように温度調節しながら60分間通電後、60分間室温下で放置する加熱サイクルを繰り返し、面状発熱体の耐久性を観察した。また、600℃、800℃における検査も同様に実施した。その結果、繰り返し回数500回後において、いずれの面状発熱体も、抵抗値の変化、マイカシート、断熱材の剥がれ、及び変形は認められなかった。
(Inspection of sheet heating element)
The five sheet heating elements obtained as described above were energized with an AC voltage of 200 V and the current was adjusted so that the surface temperature of the heating element became 400 ° C. for 60 minutes, and then at room temperature for 60 minutes. The heating cycle was repeated, and the durability of the planar heating element was observed. Moreover, the inspection at 600 ° C. and 800 ° C. was performed in the same manner. As a result, after 500 repetitions, no change in resistance value, no peeling of the mica sheet or heat insulating material, and no deformation were observed in any of the planar heating elements.

(複合シートの製作)
カーボンブラックとビニル系のモノマーを混合しグラフト重合させて得られたグラフトカーボン(登録商標、菱有工業(株)製)を、合成樹脂液に分散させて導電性の塗液を調製した。この塗液を縦10cm、横18cm、厚さ0.1mmの耐熱性ガラスクロスに均一に含浸させた後、乾燥、加熱処理して発熱素子を製作した。この発熱素子の対向する二辺に銅箔を重ねて電極とした後、発熱素子の両面に各々2枚の実施例1と同様の集成マイカシート、さらにその外側表面に実施例1と同様のアルミ箔、実施例1と同様の断熱材を配置して複合シートを製作した。
(Production of composite sheet)
Graft carbon (registered trademark, manufactured by Ryoyu Kogyo Co., Ltd.) obtained by mixing carbon black and vinyl monomer and graft polymerization was dispersed in a synthetic resin liquid to prepare a conductive coating liquid. The coating solution was uniformly impregnated into a heat-resistant glass cloth having a length of 10 cm, a width of 18 cm, and a thickness of 0.1 mm, followed by drying and heat treatment to produce a heating element. After making copper electrodes on two opposite sides of the heating element to form an electrode, two laminated mica sheets similar to those in Example 1 are provided on both sides of the heating element, and the same aluminum as in Example 1 is provided on the outer surface thereof. A foil and the same heat insulating material as Example 1 were arrange | positioned, and the composite sheet was manufactured.

(面状発熱体の製作及び検査)
前記の複合シート及び実施例1と同様の金型を用いて、実施例1と同様にして半円筒の面状発熱体を製作した。この面状発熱体5枚について、200Vの交流電圧を通電し、発熱体の表面温度が250℃となるように温度調節しながら60分間通電後、60分間室温下で放置する加熱サイクルを繰り返し、面状発熱体の耐久性を観察した。また、300℃における検査も同様に実施した。その結果、繰り返し回数1000回後において、いずれの面状発熱体も、抵抗値の変化、マイカシート、断熱材の剥がれ、及び変形は認められなかった。
(Manufacture and inspection of planar heating elements)
Using the composite sheet and the same mold as in Example 1, a semi-cylindrical planar heating element was manufactured in the same manner as in Example 1. With respect to the five sheet heating elements, an AC voltage of 200V was applied, and the heating cycle was repeated for 60 minutes while adjusting the temperature so that the surface temperature of the heating element was 250 ° C., and then allowed to stand at room temperature for 60 minutes. The durability of the planar heating element was observed. Moreover, the inspection at 300 ° C. was performed in the same manner. As a result, after 1000 repetitions, no change in resistance value, no peeling of the mica sheet, heat insulating material, and deformation were observed in any of the planar heating elements.

以上のように、本発明の実施例の面状発熱体は、250℃〜1000℃の高温の領域を含む広い温度領域で使用することが可能で、しかも所望の曲面形状及び大きさで容易に製造することができる。   As described above, the planar heating element according to the embodiment of the present invention can be used in a wide temperature range including a high temperature range of 250 ° C. to 1000 ° C., and easily with a desired curved shape and size. Can be manufactured.

本発明の第一の形態の面状発熱体(曲面状)の一例を示す斜視図The perspective view which shows an example of the planar heating element (curved surface shape) of the 1st form of this invention 本発明の第二の形態の面状発熱体(曲面状)の一例を示す斜視図The perspective view which shows an example of the planar heating element (curved surface shape) of the 2nd form of this invention 本発明の第一の形態の面状発熱体(平面状)の例を示す断面図Sectional drawing which shows the example of the planar heating element (planar shape) of the 1st form of this invention 本発明の第二の形態の面状発熱体(平面状)の例を示す断面図Sectional drawing which shows the example of the planar heating element (planar shape) of the 2nd form of this invention

符号の説明Explanation of symbols

1 発熱素子
2 マイカ
3 金属薄板
4 断熱材
5 空隙部
6 電源コード
DESCRIPTION OF SYMBOLS 1 Heating element 2 Mica 3 Metal thin plate 4 Heat insulating material 5 Cavity 6 Power cord

Claims (20)

2枚の金属薄板の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形してなることを特徴とする面状発熱体。   A composite sheet in which a plurality of mica sheets are sandwiched between two thin metal plates and a flexible heating element is sandwiched between any of the plurality of mica sheets is formed into a flat or curved surface. A planar heating element obtained by curing a mica sheet by heating in a held state and integrally molding the composite sheet. 金属薄板と可撓性を有する断熱材の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形してなることを特徴とする面状発熱体。   A composite sheet in which a plurality of mica sheets are sandwiched between a thin metal plate and a flexible heat insulating material, and a flexible heating element is sandwiched in any gap between the plurality of mica sheets, A sheet heating element, wherein the mica sheet is cured by heating while being held in a shape or curved surface, and the composite sheet is integrally formed. さらに片方の金属薄板の外側に、可撓性を有する断熱材が設けられた請求項1に記載の面状発熱体。   Furthermore, the planar heating element of Claim 1 with which the heat insulating material which has flexibility was provided in the outer side of one metal thin plate. さらに可撓性を有する断熱材の外側に、金属薄板が設けられた請求項2に記載の面状発熱体。   Furthermore, the planar heating element of Claim 2 with which the metal thin plate was provided in the outer side of the heat insulating material which has flexibility. 可撓性を有する断熱材が、空隙部を有するものである請求項4に記載の面状発熱体。   The planar heating element according to claim 4, wherein the heat insulating material having flexibility has a gap. 可撓性を有する断熱材が、セラミック塗料材である請求項2に記載の面状発熱体。   The planar heating element according to claim 2, wherein the heat insulating material having flexibility is a ceramic coating material. マイカシートが、天然マイカまたは合成マイカを粉砕し、該粉砕されたマイカを抄造して成形した集成マイカシートである請求項1または請求項2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the mica sheet is a laminated mica sheet obtained by pulverizing natural mica or synthetic mica and paper-making the pulverized mica. 発熱素子の両面に、各々複数枚のマイカシートを重ねて一体成形した請求項1または請求項2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein a plurality of mica sheets are laminated and integrally formed on both surfaces of the heating element. 曲面状が、円筒形、または円筒を切断面が中心軸と平行方向となるように分割した形状である請求項1または請求項2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the curved surface has a cylindrical shape or a shape obtained by dividing the cylinder so that the cut surface is parallel to the central axis. 曲面状が、楕円筒形、または楕円筒を切断面が中心軸と平行方向となるように分割した形状である請求項1または請求項2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the curved surface has an elliptic cylinder shape or a shape obtained by dividing the elliptic cylinder so that the cut surface is parallel to the central axis. 曲面状が、球面または楕球面の一部の形状である請求項1または請求項2に記載の面状発熱体。   The planar heating element according to claim 1 or 2, wherein the curved surface is a part of a spherical surface or an elliptical surface. 可撓性を有する発熱素子が、金属箔抵抗体、金属線抵抗体、または、グラフトカーボン、カーボン粉末、金属粉末、金属酸化物粉末から選ばれる少なくとも1種をガラス繊維基材またはセラミック繊維基材に含ませた抵抗体である請求項1または請求項2に記載の面状発熱体。   The flexible heating element is made of a metal foil resistor, a metal wire resistor, or at least one selected from graft carbon, carbon powder, metal powder, and metal oxide powder. The planar heating element according to claim 1, wherein the heating element is a resistor included in the sheet. 2枚の金属薄板の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形することを特徴とする面状発熱体の製造方法。   A composite sheet in which a plurality of mica sheets are sandwiched between two thin metal plates and a flexible heating element is sandwiched between any of the plurality of mica sheets is formed into a flat or curved surface. A method for producing a planar heating element, wherein the mica sheet is cured by heating in a held state and the composite sheet is integrally formed. 金属薄板と可撓性を有する断熱材の間に複数枚のマイカシートが挟持され、該複数枚のマイカシートのいずれかの間隙に可撓性を有する発熱素子が挟持された複合シートを、平面状または曲面状に保持された状態で加熱することにより、マイカシートを硬化させるとともに該複合シートを一体成形することを特徴とする面状発熱体の製造方法。   A composite sheet in which a plurality of mica sheets are sandwiched between a thin metal plate and a flexible heat insulating material, and a flexible heating element is sandwiched in any gap between the plurality of mica sheets, A method of manufacturing a planar heating element, wherein the mica sheet is cured by heating in a state of being held in a shape or a curved surface, and the composite sheet is integrally formed. さらに片方の金属薄板の外側に可撓性を有する断熱材を設け、複合シートとともに一体成形する請求項13に記載の面状発熱体の製造方法。   Furthermore, the manufacturing method of the planar heating element of Claim 13 which provides the heat insulating material which has flexibility in the outer side of one metal thin plate, and is integrally molded with a composite sheet. 複合シートの一体成形後、さらに片方の金属薄板の表面に可撓性を有する断熱材を接着する請求項13に記載の面状発熱体の製造方法   The method for manufacturing a planar heating element according to claim 13, wherein after the composite sheet is integrally formed, a flexible heat insulating material is further bonded to the surface of one of the metal thin plates. さらに可撓性を有する断熱材の外側に金属薄板を設け、複合シートとともに一体成形する請求項14に記載の面状発熱体の製造方法。   Furthermore, the manufacturing method of the planar heating element of Claim 14 which provides a metal thin plate in the outer side of a heat insulating material which has flexibility, and integrally forms with a composite sheet. 複合シートの一体成形後、さらに断熱材の表面に金属薄板を接着する請求項14に記載の面状発熱体の製造方法   The method for producing a planar heating element according to claim 14, wherein a thin metal plate is further bonded to the surface of the heat insulating material after integral molding of the composite sheet. マイカシートに接着剤を予め含侵させて、一体成形を行なう請求項13または請求項14に記載の面状発熱体の製造方法。   The method for manufacturing a planar heating element according to claim 13 or 14, wherein the mica sheet is impregnated with an adhesive in advance to perform integral molding. マイカシートと発熱素子の間隙及び/またはマイカシート同士の間隙に接着剤を介在させて、一体成形を行なう請求項13または請求項14に記載の面状発熱体の製造方法。   The method for manufacturing a planar heating element according to claim 13 or 14, wherein an adhesive is interposed in the gap between the mica sheet and the heating element and / or the gap between the mica sheets.
JP2007139989A 2007-05-28 2007-05-28 Planar heating element and manufacturing method therefor Pending JP2008293870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007139989A JP2008293870A (en) 2007-05-28 2007-05-28 Planar heating element and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007139989A JP2008293870A (en) 2007-05-28 2007-05-28 Planar heating element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2008293870A true JP2008293870A (en) 2008-12-04

Family

ID=40168382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007139989A Pending JP2008293870A (en) 2007-05-28 2007-05-28 Planar heating element and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2008293870A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661342A (en) * 2015-02-10 2015-05-27 上海欧展电器有限公司 Mica heater and manufacturing process thereof
KR20170136824A (en) * 2016-06-02 2017-12-12 이승수 Heating unit manufacturing method and beauty equipment having the same
WO2018115555A1 (en) * 2016-12-19 2018-06-28 Oriol Garrido Jaime Portable dish-warming device
US10667331B2 (en) 2013-09-30 2020-05-26 Nichias Corporation Heating tape
CN111418906A (en) * 2020-03-19 2020-07-17 云南中烟工业有限责任公司 Flexible heating element, preparation method and application thereof
JP7445972B2 (en) 2020-09-18 2024-03-08 株式会社オーシン Heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591094U (en) * 1978-12-18 1980-06-24
JPS5593990U (en) * 1978-12-22 1980-06-28
JP2007323910A (en) * 2006-05-31 2007-12-13 Japan Pionics Co Ltd Planar heating element, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591094U (en) * 1978-12-18 1980-06-24
JPS5593990U (en) * 1978-12-22 1980-06-28
JP2007323910A (en) * 2006-05-31 2007-12-13 Japan Pionics Co Ltd Planar heating element, and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10667331B2 (en) 2013-09-30 2020-05-26 Nichias Corporation Heating tape
CN104661342A (en) * 2015-02-10 2015-05-27 上海欧展电器有限公司 Mica heater and manufacturing process thereof
KR20170136824A (en) * 2016-06-02 2017-12-12 이승수 Heating unit manufacturing method and beauty equipment having the same
KR102579111B1 (en) * 2016-06-02 2023-09-15 이승수 Heating unit manufacturing method and beauty equipment having the same
WO2018115555A1 (en) * 2016-12-19 2018-06-28 Oriol Garrido Jaime Portable dish-warming device
CN111418906A (en) * 2020-03-19 2020-07-17 云南中烟工业有限责任公司 Flexible heating element, preparation method and application thereof
JP7445972B2 (en) 2020-09-18 2024-03-08 株式会社オーシン Heater

Similar Documents

Publication Publication Date Title
KR100749886B1 (en) Heating element using Carbon Nano tube
JP2008293870A (en) Planar heating element and manufacturing method therefor
JP2007323910A (en) Planar heating element, and its manufacturing method
JP2009009835A (en) Planar heating element
JP2008053527A (en) Dielectric rubber laminate, and its manufacturing method
CN1152275A (en) Film having excellent corona resisting characteristics, and insulated electric wire, coil and motor using the same film as insulating material
JP5537279B2 (en) Piping heating equipment
JP2019071360A (en) Filler and heat transfer member
JP5461244B2 (en) Piping heating equipment
US20110044736A1 (en) Heat generating unit and heating apparatus
KR100722316B1 (en) Ceramic heater
KR20130046104A (en) Method for producing flat heater having heat transfer plate
JP2006344532A (en) Heating roller
CN202534398U (en) Corona-resistant polyimide film-sintered enameled rectangular copper wire
TWI778383B (en) Semiconductor manufacturing equipment component and method of making the same
CN103579493A (en) Piezoelectric element
JP2511953Y2 (en) Electric field device for ion source
JP3812846B1 (en) Manufacturing method of ceramic heating element and snowmelt roof tile
US1286043A (en) Composite insulating material and process of making the same.
CN107979882A (en) A kind of novel electric heating film
KR101653208B1 (en) Method of manufacturing ceramic heating element
CN110628101B (en) Bionic shell-shaped graphene/styrene butadiene rubber composite electric heating material and preparation method thereof
KR101574720B1 (en) Thin plate mica heater and the manufacturing method
JP2000100548A (en) Electric heating body, manufacture thereof, electric heating body manufacturing transfer paper and electric heating apparatus
JP2010073659A (en) Heating element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120618