JP2008290448A - Apparatus for cooling molding dies - Google Patents

Apparatus for cooling molding dies Download PDF

Info

Publication number
JP2008290448A
JP2008290448A JP2008111607A JP2008111607A JP2008290448A JP 2008290448 A JP2008290448 A JP 2008290448A JP 2008111607 A JP2008111607 A JP 2008111607A JP 2008111607 A JP2008111607 A JP 2008111607A JP 2008290448 A JP2008290448 A JP 2008290448A
Authority
JP
Japan
Prior art keywords
carbon dioxide
mold
nozzle
dioxide gas
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008111607A
Other languages
Japanese (ja)
Other versions
JP5024175B2 (en
Inventor
Makoto Suzuki
信 鈴木
Takahisa Niimi
貴久 新美
Yuji Ozaka
裕司 尾坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008111607A priority Critical patent/JP5024175B2/en
Publication of JP2008290448A publication Critical patent/JP2008290448A/en
Application granted granted Critical
Publication of JP5024175B2 publication Critical patent/JP5024175B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for cooling molding dies avoiding supercooling and excellent in cooling efficiency. <P>SOLUTION: In the apparatus for cooling the molding dies of a molding system for injecting a molten resin into cavities 22, 23 formed on molding dies 1, 2 to harden, the apparatus for cooling the molding dies is characterized by including a nozzle room 14 provided at the back of the faces of the cavities 22, 23, an outside connecting path 8 communicating with the nozzle room 14 and connected to the outside, a nozzle 10 disposed in the nozzle room 14 for ejecting carbon dioxide toward a cavity face side 24 of the nozzle room 14, and a carbon dioxide supplying path 4 for supplying the carbon dioxide to the nozzle 10 from a carbon dioxide supplying means, and ejecting the carbon dioxide for a predetermined time after beginning to inject the molten resin into the cavities 22, 23 for one shot to mold one molded article. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プラスチック成形金型及び金属鋳造金型等に使用される金型冷却装置に関する。   The present invention relates to a mold cooling apparatus used for a plastic mold, a metal casting mold, and the like.

この種のプラスチック成形又は金属鋳造の成形金型を使用した成形は、一般的に冷却水管に通水することにより金型の温度制御を実施しているが、近年、成形品の薄肉化及び表面仕上がりの品質向上が要求されている。これらの要求により、溶融材料の流動性確保等のため、成形時の金型温度は高温化する傾向にあり、溶融材料を冷却固化させるための時間が長くなり、生産性を悪化させるという問題点があった。   In this type of molding using plastic molding or metal casting, the temperature of the mold is generally controlled by passing water through a cooling water pipe. There is a demand for improved quality. Due to these requirements, the mold temperature at the time of molding tends to be high in order to ensure the fluidity of the molten material, etc., and the time for cooling and solidifying the molten material becomes longer, which deteriorates productivity. was there.

特に、製品の凹形状を形成するためのピン形状の金型入れ子は、主型または温調水への流出熱量に対して、樹脂からの受熱量が過大となるため、その温度が上昇し、他の成形品部位と比較して長い冷却時間が必要であり、生産性を悪化させていた。   In particular, the pin-shaped mold insert for forming the concave shape of the product has an excessive amount of heat received from the resin with respect to the heat flow out to the main mold or the temperature-controlled water. Compared with other molded article parts, a long cooling time is required, which deteriorates productivity.

例えば、特許文献1には、冷却水噴射を気化させて金型を冷却する金型装置が提案されている。また、特許文献2には、高圧炭酸ガスを断熱膨張させて金型を冷却する金型冷却装置が提案されている。   For example, Patent Document 1 proposes a mold apparatus that cools a mold by vaporizing cooling water injection. Patent Document 2 proposes a mold cooling device that cools a mold by adiabatic expansion of high-pressure carbon dioxide gas.

特開2000−15421号公報JP 2000-15421 A 独国10256036号公報Germany 10256036

しかしながら、特許文献1に記載の冷却水噴射方式では、冷却効率が悪く生産性の向上も不十分であった。一方、特許文献2に記載の高圧炭酸ガス噴射方式では、高圧炭酸ガスを断熱膨張させてドライアイスを発生させるため、過冷却となり大きな温度変化をもたらし、樹脂が急激に固化されるため、樹脂がキャビティ内に完全に充填されないうちに固化が完了する等の問題があった。   However, the cooling water injection method described in Patent Document 1 has poor cooling efficiency and insufficient improvement in productivity. On the other hand, in the high-pressure carbon dioxide injection method described in Patent Document 2, since the high-pressure carbon dioxide gas is adiabatically expanded to generate dry ice, it is supercooled, causing a large temperature change, and the resin is rapidly solidified. There was a problem that solidification was completed before the cavity was completely filled.

本発明はかかる問題点に鑑みてなされたものであって、過冷却を避けた冷却効率の良い金型冷却装置を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a mold cooling apparatus with good cooling efficiency that avoids overcooling.

本発明は、前記課題を解決するための手段として、特許請求の範囲の各請求項に記載の金型冷却装置を提供する。
請求項1に記載の発明によれば、本発明に係る金型冷却装置は、金型1、2のキャビティ面22、23の背後に設けられたノズル室14と、ノズル室14に連通し外部に接続された外部接続通路8と、ノズル室14に配設され炭酸ガスをノズル室14のキャビティ面側24へ向けて噴射するノズル10と、炭酸ガス供給手段からノズル10へ炭酸ガスを供給する炭酸ガス供給通路4と、を有し、一つの成形品を成形する1ショットにおいて、溶融樹脂がキャビティ22、23へ注入され始めた後に、炭酸ガスを所定時間、噴射することを特徴とする。
The present invention provides a mold cooling apparatus according to each of the claims as means for solving the above-mentioned problems.
According to the first aspect of the present invention, the mold cooling apparatus according to the present invention includes the nozzle chamber 14 provided behind the cavity surfaces 22 and 23 of the molds 1 and 2, and the nozzle chamber 14 that communicates with the outside. The external connection passage 8 connected to the nozzle chamber 14, the nozzle 10 disposed in the nozzle chamber 14 for injecting carbon dioxide gas toward the cavity surface 24 of the nozzle chamber 14, and the carbon dioxide gas from the carbon dioxide supply means to the nozzle 10. The carbon dioxide gas supply passage 4 is provided, and in one shot of molding one molded product, after the molten resin starts to be injected into the cavities 22 and 23, the carbon dioxide gas is injected for a predetermined time.

溶融樹脂がキャビティ22、23へ注入され始めた後に、炭酸ガスを所定時間、噴射する。これにより、過冷却を避けた冷却効率の良い金型冷却装置を提供することが可能となる。   After the molten resin starts to be injected into the cavities 22 and 23, carbon dioxide gas is injected for a predetermined time. This makes it possible to provide a mold cooling device with good cooling efficiency that avoids overcooling.

請求項2に記載の発明によれば、本発明に係る金型冷却装置は、金型1、2の所定部位24の温度が所定温度以上になったとき、炭酸ガスを噴射し始めることを特徴とする。例えば、蓄熱し易い箇所24に温度センサ31を配置して、その箇所24の温度が所定温度以上になったとき、炭酸ガスを噴射し始める。これにより、冷却効率の良い金型冷却装置を提供することが可能となる。   According to the second aspect of the present invention, the mold cooling apparatus according to the present invention starts to inject carbon dioxide gas when the temperature of the predetermined portion 24 of the molds 1 and 2 becomes equal to or higher than the predetermined temperature. And For example, when the temperature sensor 31 is disposed at a location 24 where heat is easily stored and the temperature at the location 24 is equal to or higher than a predetermined temperature, carbon dioxide gas is started to be injected. This makes it possible to provide a mold cooling device with good cooling efficiency.

請求項3に記載の発明によれば、本発明に係る金型冷却装置は、炭酸ガスの噴射圧力が、5〜8MPaであることを特徴とする。   According to the invention described in claim 3, the mold cooling device according to the present invention is characterized in that the injection pressure of carbon dioxide gas is 5 to 8 MPa.

請求項4に記載の発明によれば、本発明に係る金型冷却装置は、キャビティ面22、23側へ向けて噴射するノズル10と、炭酸ガス供給手段から前記ノズル10へ炭酸ガスを供給する炭酸ガス供給通路4と、を有し、金型1、2が開いているときに、前記炭酸ガスを所定時間、噴射することを特徴とする。蓄熱し易い箇所、例えば入れ子ピンを冷却することが可能となる。   According to the fourth aspect of the present invention, the mold cooling apparatus according to the present invention supplies the nozzle 10 that injects toward the cavity surfaces 22 and 23 side, and supplies carbon dioxide to the nozzle 10 from the carbon dioxide supply means. And carbon dioxide gas supply passage 4, and when the molds 1 and 2 are open, the carbon dioxide gas is injected for a predetermined time. It is possible to cool a portion that easily stores heat, for example, a nested pin.

なお、上記各手段の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol of said each means shows a corresponding relationship with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について添付の図面を参照して具体的に説明する。図1は本発明の第1実施形態に係る金型冷却装置を説明する金型断面図である。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view of a mold illustrating a mold cooling apparatus according to the first embodiment of the present invention.

第1実施形態の金型は、可動側金型1及び固定側金型2からなり、可動側金型1は分割金型1aと分割金型1bとに分割されている。金型1及び金型2には、各金型の温度制御のために、冷却水管12が設けられており、この金型1と金型2とを重ねることにより、両者間にキャビティが形成される。このキャビティは製品部23と、ランナー部22と、両者間のゲートとからなる。固定金型2には、このランナー部22に対して、溶融樹脂を供給するスプルー21が設けられている。   The mold according to the first embodiment includes a movable mold 1 and a fixed mold 2. The movable mold 1 is divided into a divided mold 1a and a divided mold 1b. The mold 1 and the mold 2 are provided with cooling water pipes 12 for temperature control of the respective molds. By overlapping the mold 1 and the mold 2, a cavity is formed between them. The This cavity consists of a product part 23, a runner part 22, and a gate between them. The fixed mold 2 is provided with a sprue 21 for supplying molten resin to the runner portion 22.

一方、金型1には、金型蓄熱部26の背後に、密閉空間のノズル室14が設けられており、このノズル室14に連通する外部接続通路8が金型1に形成されている。この外部接続通路8は外部の大気に連通されている。金型蓄熱部26は、凸形状をしているため溶融樹脂からの受熱量が大きく蓄熱し易い性質を持つ。   On the other hand, the mold 1 is provided with a nozzle chamber 14 in a sealed space behind the mold heat storage section 26, and an external connection passage 8 communicating with the nozzle chamber 14 is formed in the mold 1. The external connection passage 8 communicates with the external atmosphere. Since the mold heat storage part 26 has a convex shape, the mold heat storage part 26 has a large amount of heat received from the molten resin and has a property of easily storing heat.

また、ノズル室14内には、ノズル室14における金型蓄熱部26の背後の面である噴射ターゲット24に高圧炭酸ガスを噴射する噴射ノズル10が配置されている。このノズル10はノズル支持管9に連通して支持されており、このノズル支持管9は金型1に設けた高圧炭酸ガス供給通路3に連通しており、この高圧炭酸ガス供給通路3は外部の配管4を介して高圧炭酸ガスの供給源に接続されている。この配管4にはバルブ5が介装されており、このバルブ5を調節することにより、ノズル10から噴出する高圧炭酸ガスの量を調整できるようになっている。   In the nozzle chamber 14, an injection nozzle 10 that injects high-pressure carbon dioxide gas to an injection target 24 that is a surface behind the mold heat storage unit 26 in the nozzle chamber 14 is disposed. The nozzle 10 is connected to and supported by a nozzle support tube 9, and the nozzle support tube 9 is connected to a high-pressure carbon dioxide gas supply passage 3 provided in the mold 1. Is connected to a supply source of high-pressure carbon dioxide gas through a pipe 4. The pipe 4 is provided with a valve 5, and by adjusting the valve 5, the amount of high-pressure carbon dioxide gas ejected from the nozzle 10 can be adjusted.

次に、上述の如く構成された金型冷却装置の動作について説明する。まず、熱可塑性樹脂射出成形の場合の動作ついて説明する。成形工程は、大きく分けて熱可塑性樹脂の溶融工程、射出充填工程、冷却工程、製品取出工程の4つの工程に分けられる。射出充填工程についてさらに詳細に述べると、金型内の空隙に溶融樹脂を注入することであるが、溶融樹脂はスプルー21より充填が開始され、ランナー部22を経由して、製品部23に至り、空隙末端まで樹脂が充填するまで注入される。このとき、充填工程中は、溶融樹脂の流動性を確保するために、その流動路の温度は高い方が望ましい。また、製品部23における金型表面の転写性など、製品の品質向上のためにも、金型温度は高い方が有利である。   Next, the operation of the mold cooling apparatus configured as described above will be described. First, the operation in the case of thermoplastic resin injection molding will be described. The molding process is roughly divided into four processes: a thermoplastic resin melting process, an injection filling process, a cooling process, and a product taking process. The injection filling process will be described in more detail. The molten resin is injected into the voids in the mold. The molten resin starts filling from the sprue 21 and reaches the product part 23 via the runner part 22. Until the end of the gap is filled with the resin. At this time, in order to ensure the fluidity of the molten resin during the filling process, it is desirable that the temperature of the flow path is high. Further, it is advantageous that the mold temperature is high in order to improve the quality of the product such as the transferability of the mold surface in the product portion 23.

しかしながら、充填完了後の冷却工程においては、金型温度は低い方が冷却固化までの時間すなわち取り出し可能になるまでの時間が短縮されるため、生産性が高くなる。しかも、殆どの場合、ランナー部は製品に比べ肉厚が大きく、冷却されにくいため、冷却時間とはランナー部の冷却に依存する部分が極めて大きい。そこで、溶融樹脂の流動中は金型全体の温度調整を冷却管12に冷却水を流すことで行い、制御バルブ5は閉じたままで、高圧炭酸ガスのノズル室14内への噴射は停止しておく。   However, in the cooling step after the completion of filling, the lower the mold temperature, the shorter the time until solidification by cooling, that is, the time until it can be taken out. Moreover, in most cases, the runner portion is thicker than the product and is difficult to cool, so the cooling time is extremely dependent on the cooling of the runner portion. Therefore, while the molten resin is flowing, the temperature of the entire mold is adjusted by flowing cooling water through the cooling pipe 12, and the injection of the high-pressure carbon dioxide into the nozzle chamber 14 is stopped while the control valve 5 is closed. deep.

溶融樹脂が充填完了となったところで、制御バルブ5を開き、ノズル室14内の噴射ターゲット24に高圧炭酸ガスを所定時間(約5秒間)噴射する。この炭酸ガスの噴射圧力は、5〜8MPaである。なお、溶融樹脂が充填完了する前に噴射を開始しても良い。そして、この所定時間は、金型の一部の過熱、樹脂充填不良および樹脂離型不良などの不具合が発生しない最適な時間を採用することが必要である。   When the filling of the molten resin is completed, the control valve 5 is opened, and high-pressure carbon dioxide gas is injected to the injection target 24 in the nozzle chamber 14 for a predetermined time (about 5 seconds). The carbon dioxide injection pressure is 5 to 8 MPa. Note that the injection may be started before the filling of the molten resin is completed. And it is necessary to employ | adopt the optimal time as this predetermined time does not generate | occur | produce malfunctions, such as partial overheating of a metal mold | die, resin filling defect, and resin mold release defect.

ノズル室14内は、外部接続通路8によりノズル室に連通し外部(外気)に接続されている。このため、噴射ノズル10から噴射された高圧炭酸ガスは断熱膨張してドライアイスとなり効率的な冷却効果を発揮する。噴射ターゲット24以外の部分は断熱材11によって遮断しているため、周囲の不要な部分への冷却効果の波及は妨げられる。製品形成部23に充填された溶融樹脂は、金型1,2により熱を奪われて冷却固化する。金型全体の冷却は冷却水管12に冷却水などの熱媒体を流すことによりなされる。   The inside of the nozzle chamber 14 communicates with the nozzle chamber through the external connection passage 8 and is connected to the outside (outside air). For this reason, the high-pressure carbon dioxide gas injected from the injection nozzle 10 adiabatically expands to become dry ice and exhibits an efficient cooling effect. Since the portions other than the injection target 24 are blocked by the heat insulating material 11, the cooling effect is prevented from spreading to surrounding unnecessary portions. The molten resin filled in the product forming part 23 is deprived of heat by the molds 1 and 2 and solidifies by cooling. The entire mold is cooled by flowing a heat medium such as cooling water through the cooling water pipe 12.

所定の冷却工程が終了した後、金型1,2を開いて固化した製品を取り出す。この段階では、制御バルブ5は既に閉じられて、高圧炭酸ガスの噴射は止められている。そして、ノズル室14のドライアイスは気化して、外部に自然排出されている。   After the predetermined cooling process is completed, the molds 1 and 2 are opened and the solidified product is taken out. At this stage, the control valve 5 is already closed and the injection of high-pressure carbon dioxide gas is stopped. And the dry ice of the nozzle chamber 14 is vaporized and discharged | emitted naturally outside.

その後、次の溶融樹脂充填工程へ移行するために、金型1,2を閉じる。以上の複数の工程が、一つの成形品を成形する1ショットである。第1実施形態において、1ショットは約30秒間である。あとは、これらの各工程が繰り返されていく。   Thereafter, the molds 1 and 2 are closed in order to shift to the next molten resin filling step. The plurality of steps described above is one shot for forming one molded product. In the first embodiment, one shot is about 30 seconds. After that, each of these steps is repeated.

本実施形態においては、溶融樹脂流動中は、冷却装置停止状態で、金型温度は冷却水管12により制御され、樹脂充填後に冷却装置の稼働により製品形成部23に影響を与えず、金型蓄熱部26を限定して急冷することにより、製品の品質低下をもたらすことなく、生産性を向上させることができる。   In the present embodiment, during the molten resin flow, the mold temperature is controlled by the cooling water pipe 12 while the cooling apparatus is stopped, and the mold forming heat storage is not affected by the operation of the cooling apparatus after the resin is filled. By limiting the part 26 and quenching, the productivity can be improved without deteriorating the quality of the product.

(第2実施形態)
図2は本発明の第2実施形態に係る金型冷却装置を示す。第2実施形態は、図1に示す第1実施形態と基本的構成は同一であり、同一部材には同一符号を付してその詳細な説明を省略する。第2実施形態においては、高圧炭酸ガス噴射タイミングの制御方法を改善したものである。なお、図2は金型冷却装置の部分を抜き出している。この図2に示すように、本実施形態においては、ノズル室14内の噴射ターゲット24に温度センサー31を取り付けてある。
(Second Embodiment)
FIG. 2 shows a mold cooling apparatus according to a second embodiment of the present invention. The basic configuration of the second embodiment is the same as that of the first embodiment shown in FIG. 1, and the same members are denoted by the same reference numerals, and detailed description thereof is omitted. In the second embodiment, the method for controlling the high-pressure carbon dioxide injection timing is improved. In FIG. 2, a part of the mold cooling device is extracted. As shown in FIG. 2, in this embodiment, a temperature sensor 31 is attached to the injection target 24 in the nozzle chamber 14.

これにより、噴射ターゲット24、即ち局部冷却を要する部分が所定温度以上になった場合に、制御バルブ5を開き、該当部分を冷却し、所定温度以下になった場合に高圧炭酸ガスの供給を停止することによって、該当部分を一定温度に制御することができる。   As a result, when the injection target 24, that is, the portion that requires local cooling becomes higher than a predetermined temperature, the control valve 5 is opened, the corresponding portion is cooled, and when the temperature is lower than the predetermined temperature, the supply of high-pressure carbon dioxide gas is stopped. By doing so, the relevant part can be controlled to a constant temperature.

(第3実施形態)
図3は本発明の第3実施形態に係る金型冷却装置を示す。第3実施形態は、第1実施形態の変形例であり、同一部材には同一符号を付してその詳細な説明を省略する。第3実施形態は、炭酸ガス噴射ノズルによる噴射ターゲットおよび噴射タイミングを変更したものである。
(Third embodiment)
FIG. 3 shows a mold cooling apparatus according to a third embodiment of the present invention. The third embodiment is a modification of the first embodiment, and the same members are denoted by the same reference numerals and detailed description thereof is omitted. In the third embodiment, the injection target and the injection timing by the carbon dioxide injection nozzle are changed.

製品取出工程では、金型1,2を開いて成形品を金型より取り出す。成形品取り出し後、金型1,2が開いているときに、ノズル9を金型外部より金型内部へ移動させる。そして、ノズル9がキャビティ面22側の噴射ターゲットへ向けられてセットされた後、バルブ5を開いて高圧炭酸ガスをキャビティ面22側の噴射ターゲットへ向けて噴射する。これにより、溶融樹脂により加熱されたキャビティや蓄熱部位を急激に冷却することが可能となり、生産効率を高めることが可能となる。この蓄熱部位とは、例えば金型の一部である入れ子ピンなどである。入れ子ピンは、樹脂から奪う熱量に比べて、冷却水へ排出する熱量が極端に小さいことから、温度が過大に上昇する蓄熱現象が発生し易い。   In the product removal process, the molds 1 and 2 are opened and the molded product is removed from the mold. After taking out the molded product, when the molds 1 and 2 are open, the nozzle 9 is moved from the outside of the mold to the inside of the mold. After the nozzle 9 is set to be directed toward the injection target on the cavity surface 22 side, the valve 5 is opened to inject high-pressure carbon dioxide gas toward the injection target on the cavity surface 22 side. Thereby, it becomes possible to rapidly cool the cavity and the heat storage part heated by the molten resin, and it becomes possible to increase the production efficiency. This heat storage part is, for example, a nested pin that is a part of a mold. Since the amount of heat discharged to the cooling water is extremely small compared to the amount of heat taken away from the resin, the nested pin is likely to generate a heat storage phenomenon in which the temperature rises excessively.

(第4実施形態)
図4は本発明の第4実施形態に係る金型冷却装置を示す。第4実施形態は、図1に示す第1実施形態と基本的構成は同一であり、同一部材には同一符号を付してその詳細な説明を省略する。第4実施形態は、第1実施形態においてターゲット24の冷却方法を改善したものであり、炭酸ガスを噴射するノズル10に近接してドライアイス飛散防止用の部材41を設置している。
(Fourth embodiment)
FIG. 4 shows a mold cooling apparatus according to a fourth embodiment of the present invention. The basic configuration of the fourth embodiment is the same as that of the first embodiment shown in FIG. 1, and the same members are denoted by the same reference numerals and detailed description thereof is omitted. The fourth embodiment is an improvement of the method for cooling the target 24 in the first embodiment, and a member 41 for preventing dry ice scattering is installed in the vicinity of the nozzle 10 for injecting carbon dioxide gas.

このドライアイス飛散防止手段41は、ノズル室14と連通する袋小路となった孔13の内壁13aと噴射ノズル支持管9との間に配置される。この手段41により、噴射された炭酸ガスの断熱膨張によって発生したドライアイスがノズル室14側へ飛散することが防止可能となり、効率よく蓄熱部26を冷却することができる。この手段41は、例えばエラストマから製作されたOリングシールであっても良い。   The dry ice scattering prevention means 41 is disposed between the inner wall 13a of the hole 13 and the spray nozzle support tube 9 which are a bag path communicating with the nozzle chamber 14. By this means 41, it becomes possible to prevent the dry ice generated by the adiabatic expansion of the injected carbon dioxide gas from scattering toward the nozzle chamber 14, and the heat storage section 26 can be efficiently cooled. The means 41 may be, for example, an O-ring seal made from an elastomer.

図4においては、ノズル10に近接して飛散防止用部材41を設置しているが、ドライアイスの飛散防止をできるものであれば良く、金型のノズル室側に溝加工を行なうなどしても良い。   In FIG. 4, the scattering prevention member 41 is installed in the vicinity of the nozzle 10. However, any member that can prevent the scattering of dry ice may be used, and groove processing is performed on the nozzle chamber side of the mold. Also good.

(第5実施形態)
図5は本発明の第5実施形態に係る金型冷却装置を示す。第5実施形態は、図1に示す第1実施形態と基本的構成は同一であり、同一部材には同一符号を付してその詳細な説明を省略する。第5実施形態は、第1実施形態においてターゲット24の冷却方法を改善したものである。第5実施形態においては、蓄熱が生じ易い部位26に高熱伝導部材42(例えばヒートパイプ)を挿入してあり、そのターゲット24とは別の箇所42aに向けて炭酸ガスを噴射するノズル10を設置している。
(Fifth embodiment)
FIG. 5 shows a mold cooling apparatus according to a fifth embodiment of the present invention. The basic configuration of the fifth embodiment is the same as that of the first embodiment shown in FIG. 1, and the same members are denoted by the same reference numerals, and detailed description thereof is omitted. The fifth embodiment is an improvement of the method for cooling the target 24 in the first embodiment. In the fifth embodiment, a high heat conductive member 42 (for example, a heat pipe) is inserted in a portion 26 where heat storage is likely to occur, and a nozzle 10 that injects carbon dioxide gas toward a portion 42 a different from the target 24 is installed. is doing.

この形態により、噴射された炭酸ガスの冷却能力を伝達して、蓄熱部を冷却することができる。またノズルが対面している部位だけではなく、高熱伝導部材の当接する範囲を効率よく均一に冷却することができる。   With this configuration, the cooling capacity of the injected carbon dioxide gas can be transmitted to cool the heat storage unit. Moreover, not only the part which the nozzle has faced but the range which the high heat conductive member contacts can be cooled efficiently and uniformly.

高熱伝導部材はヒートパイプに限らず、水、オイルのように冷却能力を伝達できるものであれば用いることができる。   The high heat conductive member is not limited to a heat pipe, and any member that can transmit a cooling capacity such as water or oil can be used.

以上説明したように、上記実施形態によれば、溶融樹脂の流動中は金型の冷却をせずに、充填完了後に入れ子ピン等の局部的に急冷が必要な部分のみを冷却することができる。一方、溶融樹脂がキャビティ内へ注入され始めると、キャビティ近傍の金型温度が急激に上昇する。これに鑑みて、溶融樹脂が前記キャビティに注入され始めた後、溶融樹脂の流動中に炭酸ガスを噴射して冷却することも本発明の範囲内である。さらに、上記実施形態では、熱可塑性樹脂を対象としているが、熱硬化性樹脂やダイキャスト用金属を対象とすることもできる。   As described above, according to the above-described embodiment, it is possible to cool only a portion such as a nesting pin that requires local quenching after completion of filling without cooling the mold during the flow of the molten resin. . On the other hand, when molten resin begins to be injected into the cavity, the mold temperature in the vicinity of the cavity rises rapidly. In view of this, it is also within the scope of the present invention to cool by injecting carbon dioxide gas during the flow of the molten resin after the molten resin starts to be injected into the cavity. Furthermore, in the said embodiment, although thermoplastic resin is made into object, thermosetting resin and the metal for die-casting can also be made into object.

また、本発明においては、金型冷却のための炭酸ガス量を制御バルブによって任意のタイミングで調節することが可能である。   In the present invention, the amount of carbon dioxide for cooling the mold can be adjusted at an arbitrary timing by the control valve.

従って、本発明の金型冷却装置を使用することによって、金型温度を通常より高くして、製品品質の向上を図りながら、冷却時間を短縮でき、生産性の向上を図ることができる。   Therefore, by using the mold cooling apparatus of the present invention, it is possible to shorten the cooling time and improve productivity while improving the product quality by increasing the mold temperature from the normal temperature.

本発明の第1実施形態に係る金型冷却装置の断面図である。It is sectional drawing of the metal mold cooling device which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る金型冷却装置の断面図である。It is sectional drawing of the metal mold cooling apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る金型冷却装置の断面図である。It is sectional drawing of the metal mold cooling device which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る金型冷却装置の断面図である。It is sectional drawing of the metal mold cooling device which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る金型冷却装置の断面図である。It is sectional drawing of the metal mold cooling device which concerns on 5th Embodiment of this invention.

符号の説明Explanation of symbols

1 可動側金型
2 固定側金型
3 炭酸ガス供給通路
4 配管
5 制御バルブ
8 外部接続通路
9 噴射ノズル支持管
10 噴射ノズル
12 冷却水管
14 ノズル室
21 スプルー
22 ランナー部
23 製品形成部
24 噴射ターゲット
26 金型蓄熱部
DESCRIPTION OF SYMBOLS 1 Movable side metal mold 2 Fixed side metal mold 3 Carbon dioxide supply passage 4 Piping 5 Control valve 8 External connection passage
DESCRIPTION OF SYMBOLS 9 Injection nozzle support pipe 10 Injection nozzle 12 Cooling water pipe 14 Nozzle chamber 21 Sprue 22 Runner part 23 Product formation part 24 Injection target 26 Mold heat storage part

Claims (4)

金型(1、2)に形成されるキャビティ(22、23)に溶融した樹脂を注入して固化させる成形装置の金型冷却装置において、
前記金型(1、2)の前記キャビティ面(22、23)の背後に設けられたノズル室(14)と、該ノズル室(14)に連通し外部に接続された外部接続通路(8)と、前記ノズル室(14)に配設され炭酸ガスを前記ノズル室(14)の前記キャビティ面側(24)へ向けて噴射するノズル(10)と、炭酸ガス供給手段から前記ノズル(10)へ炭酸ガスを供給する炭酸ガス供給通路(4)と、を有し、
一つの成形品を成形する1ショットにおいて、溶融樹脂が前記キャビティ(22、23)へ注入され始めた後に、前記炭酸ガスを所定時間、噴射することを特徴とする金型冷却装置。
In a mold cooling device of a molding apparatus for injecting and solidifying molten resin into cavities (22, 23) formed in the mold (1, 2),
A nozzle chamber (14) provided behind the cavity surfaces (22, 23) of the molds (1, 2), and an external connection passage (8) communicating with the nozzle chamber (14) and connected to the outside A nozzle (10) disposed in the nozzle chamber (14) for injecting carbon dioxide gas toward the cavity surface side (24) of the nozzle chamber (14), and from a carbon dioxide supply means to the nozzle (10) A carbon dioxide gas supply passage (4) for supplying carbon dioxide gas to
The mold cooling apparatus characterized by injecting the carbon dioxide gas for a predetermined time after molten resin starts to be injected into the cavities (22, 23) in one shot of molding one molded product.
前記金型(1、2)の所定部位(24)の温度が所定温度以上になったとき、前記炭酸ガスを噴射し始めることを特徴とする請求項1に記載の金型冷却装置。   2. The mold cooling apparatus according to claim 1, wherein when the temperature of the predetermined portion (24) of the molds (1, 2) exceeds a predetermined temperature, the carbon dioxide gas starts to be injected. 前記炭酸ガスの噴射圧力が、5〜8MPaであることを特徴とする請求項1又は2に記載の金型冷却装置。   The mold cooling apparatus according to claim 1 or 2, wherein an injection pressure of the carbon dioxide gas is 5 to 8 MPa. 金型(1、2)に形成されるキャビティ(22、23)に溶融した樹脂を注入して固化させる成形装置の金型冷却装置において、
前記キャビティ面(22、23)側へ向けて噴射するノズル(10)と、炭酸ガス供給手段から前記ノズル(10)へ炭酸ガスを供給する炭酸ガス供給通路(4)と、を有し、
前記金型(1、2)が開いているときに、前記炭酸ガスを所定時間、噴射することを特徴とする金型冷却装置。
In a mold cooling device of a molding apparatus for injecting and solidifying molten resin into cavities (22, 23) formed in the mold (1, 2),
A nozzle (10) for spraying toward the cavity surface (22, 23) side, and a carbon dioxide gas supply passage (4) for supplying carbon dioxide gas from a carbon dioxide supply means to the nozzle (10),
A mold cooling apparatus for injecting the carbon dioxide gas for a predetermined time when the molds (1, 2) are open.
JP2008111607A 2007-04-24 2008-04-22 Mold cooling system Expired - Fee Related JP5024175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008111607A JP5024175B2 (en) 2007-04-24 2008-04-22 Mold cooling system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007114450 2007-04-24
JP2007114450 2007-04-24
JP2008111607A JP5024175B2 (en) 2007-04-24 2008-04-22 Mold cooling system

Publications (2)

Publication Number Publication Date
JP2008290448A true JP2008290448A (en) 2008-12-04
JP5024175B2 JP5024175B2 (en) 2012-09-12

Family

ID=40165661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008111607A Expired - Fee Related JP5024175B2 (en) 2007-04-24 2008-04-22 Mold cooling system

Country Status (1)

Country Link
JP (1) JP5024175B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090557A (en) * 2007-10-09 2009-04-30 Denso Corp Molding process of thermoplastic resin foam, and molding system
JP2011245521A (en) * 2010-05-27 2011-12-08 Toyota Motor Corp Die casting method
JP2012131114A (en) * 2010-12-21 2012-07-12 Hokushin Mold Engineering Co Ltd Method of cooling molding die and molding die
JP2015110348A (en) * 2015-03-19 2015-06-18 株式会社北辰金型工業所 Molding die
JP2020142258A (en) * 2019-03-05 2020-09-10 ジヤトコ株式会社 Cooling structure of valve device
JP7458936B2 (en) 2020-08-27 2024-04-01 三菱重工業株式会社 Heat exchange devices, molds, reflecting mirrors, gas-liquid heat exchangers, finned heat transfer tubes, nozzles, and turbine blades

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110405174A (en) * 2019-08-15 2019-11-05 安徽旭隆精工科技有限公司 A kind of novel cold-chamber die casting machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087848A (en) * 1999-09-24 2001-04-03 Hanano Shoji Kk Cooling method of die and die cooling mechanism
JP2002321221A (en) * 2001-04-25 2002-11-05 Tokai Rika Co Ltd Thermoregulator
DE10256036A1 (en) * 2002-11-30 2004-06-17 Messer Griesheim Gmbh Tool cooling technique, e.g. for injection molds, comprises locating the tool on a cooling unit and then cooling it with gas
JP2005288762A (en) * 2004-03-31 2005-10-20 Icomes Labo:Kk Method and device for controlling temperature of mold in injection molding machine
JP2006137063A (en) * 2004-11-11 2006-06-01 Michio Komatsu Manufacturing method of heat-resistant food container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001087848A (en) * 1999-09-24 2001-04-03 Hanano Shoji Kk Cooling method of die and die cooling mechanism
JP2002321221A (en) * 2001-04-25 2002-11-05 Tokai Rika Co Ltd Thermoregulator
DE10256036A1 (en) * 2002-11-30 2004-06-17 Messer Griesheim Gmbh Tool cooling technique, e.g. for injection molds, comprises locating the tool on a cooling unit and then cooling it with gas
JP2005288762A (en) * 2004-03-31 2005-10-20 Icomes Labo:Kk Method and device for controlling temperature of mold in injection molding machine
JP2006137063A (en) * 2004-11-11 2006-06-01 Michio Komatsu Manufacturing method of heat-resistant food container

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090557A (en) * 2007-10-09 2009-04-30 Denso Corp Molding process of thermoplastic resin foam, and molding system
JP2011245521A (en) * 2010-05-27 2011-12-08 Toyota Motor Corp Die casting method
JP2012131114A (en) * 2010-12-21 2012-07-12 Hokushin Mold Engineering Co Ltd Method of cooling molding die and molding die
JP2015110348A (en) * 2015-03-19 2015-06-18 株式会社北辰金型工業所 Molding die
JP2020142258A (en) * 2019-03-05 2020-09-10 ジヤトコ株式会社 Cooling structure of valve device
JP7286242B2 (en) 2019-03-05 2023-06-05 ジヤトコ株式会社 Cooling structure of valve device
JP7458936B2 (en) 2020-08-27 2024-04-01 三菱重工業株式会社 Heat exchange devices, molds, reflecting mirrors, gas-liquid heat exchangers, finned heat transfer tubes, nozzles, and turbine blades

Also Published As

Publication number Publication date
JP5024175B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5024175B2 (en) Mold cooling system
JP5242519B2 (en) Manufacturing method of pipe with branch
JP2009101557A (en) Method of injection molding and device thereof
KR102181414B1 (en) Core comprising multilayer filling material for manufacturing hollow product and Manufacturing method of hollow product using the same
JP2008137022A (en) Die flow divider and cooling mechanism therefor
JP2009255118A (en) Rough material cooling apparatus and method
WO2017212907A1 (en) Injection compression molding mold and injection compression molding method
JP5719166B2 (en) Mold for molding
JP2003231165A (en) Mold
KR101242991B1 (en) Injection molding method and injection molding equipment
JP4801987B2 (en) Molding method and molding apparatus
JP2008142764A (en) Casting/molding method for cast/molded article having cylindrical part, and casting/molding device therefor
JP2008137275A (en) Mold apparatus and method for manufacturing molded article
JP4637609B2 (en) Chill vent nesting
KR100891953B1 (en) Die casting method
CN112775407A (en) Vacuum die casting method and die for vacuum die casting
JP2008260258A (en) Mold
JP5246939B2 (en) Low pressure casting mold
KR20190033470A (en) Die casting machine
JP2008149578A (en) Molding method molding mold device
JP2007152655A (en) Injection molding machine, in-mold nozzle and mold used in injection molding machine
JP3478390B2 (en) Gas injection mold
JP5923638B2 (en) Mold for molding
JP5419379B2 (en) Injection molding method
JP2024024714A (en) Hollow casting apparatus and hollow casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees