JP2008287549A - 電圧生成装置およびそれを用いた直流試験装置 - Google Patents

電圧生成装置およびそれを用いた直流試験装置 Download PDF

Info

Publication number
JP2008287549A
JP2008287549A JP2007132586A JP2007132586A JP2008287549A JP 2008287549 A JP2008287549 A JP 2008287549A JP 2007132586 A JP2007132586 A JP 2007132586A JP 2007132586 A JP2007132586 A JP 2007132586A JP 2008287549 A JP2008287549 A JP 2008287549A
Authority
JP
Japan
Prior art keywords
voltage
output
input
operational amplifier
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007132586A
Other languages
English (en)
Inventor
Satoshi Kodera
悟司 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2007132586A priority Critical patent/JP2008287549A/ja
Priority to US12/122,642 priority patent/US20090015221A1/en
Publication of JP2008287549A publication Critical patent/JP2008287549A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • G01R31/2841Signal generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】負荷変動時に出力電圧が変動する。
【解決手段】電圧生成装置100は、入力電圧Vinにもとづいた出力電圧Voutを生成する。電圧生成部10は、入力電圧Vinと、出力電圧Voutに応じた帰還電圧Vfbと、を受ける第1演算増幅器12を含む。電圧生成部10は、第1演算増幅器12においてイマジナリショートが成り立つように、出力電圧Voutを安定化する。出力キャパシタC1は、電圧生成部10により生成された出力電圧Voutを平滑化する。検出信号生成部20は、出力キャパシタC1に流れる電流Icを検出し、検出した電流Icに応じた検出信号Vsを生成する。加減算回路30は、検出信号Vsを、第1演算増幅器12の入力または出力の少なくとも一方に重畳する。
【選択図】図1

Description

本発明は、安定化した電圧を生成する電圧生成技術に関する。
電子回路のさまざまな特性を測定するため、直流試験装置が利用される。直流試験装置はたとえば、被試験デバイス(Device Under Test;以下、DUTと称す)のある端子に対し、所望の安定した電圧を供給し、その端子に流れ込む電流をモニタする機能を備える。直流試験装置は、入力されたデジタル信号をアナログ電圧に変換するデジタルアナログコンバータ(以下、DAコンバータという)と、DAコンバータからのアナログ電圧を基準電圧として、安定した出力電圧を生成する電圧生成装置と、電圧生成装置からDUTに流れ込む電流をデジタル値に変換するアナログデジタルコンバータ(以下、ADコンバータという)を備えるのが一般的である(たとえば特許文献1の図5参照)。
電圧生成装置は、DAコンバータからのアナログ電圧と、出力電圧に応じた帰還電圧が、所定の関係を満たすように、フィードバックによって出力電圧を安定化する。電圧生成装置の出力端子には、出力電圧を平滑化するための出力キャパシタが設けられる。この出力キャパシタによって、負荷変動が発生した場合でも、出力電圧を安定に保つことができる。
特開2004−20256号公報
ところが、電圧生成装置におけるフィードバックループは有限の帯域を有する。フィードバックループの帯域は、電圧生成装置に使用される演算増幅器の帯域や、電圧生成装置の出力インピーダンスおよび出力キャパシタで構成されるフィルタなどによって制限される。特に、DUTに流れる電流をモニタするために、電圧生成装置からDUTに至る経路に検出用の抵抗を設けた場合、この検出用の抵抗によって電圧生成装置の実効的な出力インピーダンスが大きくなるため、フィードバックループの帯域が狭くなり、回路の応答速度が低下するという問題がある。これに起因して、負荷電流が急激に変化した場合、電圧生成装置による出力キャパシタの充放電が負荷電流の変動に追いつかず、出力電圧が変動してしまう。直流試験装置に限らず、こうした問題はさまざまな電圧生成装置において生じうる。
本発明はこうした課題に鑑みてなされたものであり、その目的は、負荷変動特性を改善した電圧生成装置の提供にある。
本発明のある態様は、入力電圧にもとづいた出力電圧を生成する電圧生成装置に関する。この電圧生成装置は、入力電圧と、出力電圧に応じた帰還電圧と、を受ける第1演算増幅器を含み、当該第1演算増幅器においてイマジナリショートが成り立つように、出力電圧を安定化して出力する電圧生成部と、電圧生成部により生成された出力電圧を平滑化する出力キャパシタと、出力キャパシタに流れる電流を検出し、検出した電流に応じた検出信号を生成する検出信号生成部と、検出信号を第1演算増幅器の入力または出力の少なくとも一方に重畳する加減算回路と、を備える。
出力キャパシタに流れる電流は、出力キャパシタを含む経路に流れる電流を意味し、たとえば出力電圧が現れる出力端子から出力キャパシタを経て固定電圧端子(接地端子)に至る経路に、順方向または逆方向に流れる電流をいう。
負荷電流が急激に変動した場合に、電圧生成部から負荷への電流供給が遅れると、不足した電流は出力キャパシタに蓄えられた電荷から供給される。したがって、出力キャパシタに流れる電流をモニタすることにより、負荷の変動に追従した検出信号を生成できる。この態様では、検出信号を第1演算増幅器の入力または出力と重畳することにより、出力電圧が所定の目標値に近づくように、フィードバック状態を強制的に補正することにより、出力電圧を安定化することができる。
電圧生成部は、一端に前記入力電圧を受け、他端が第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、一端に帰還電圧を受け、他端が第1演算増幅器の一方の入力端子に接続された第2入力抵抗と、をさらに含み、かつ第1演算増幅器の他方の入力端子に固定電圧が印加されてもよい。加減算回路は、検出信号を第1演算増幅器の出力に重畳してもよい。
この場合、第1演算増幅器の出力側に検出信号を重畳するため、第1演算増幅器の応答速度の影響を受けずに出力電圧を安定化できる。
加減算回路は、一方の入力端子に固定電圧が、他方の入力端子に、第1加算用抵抗を介して検出信号が、第2加算用抵抗を介して第1演算増幅器の出力電圧がそれぞれ入力された第2演算増幅器と、第2演算増幅器の出力端子と他方の入力端子との間に設けられた帰還抵抗と、を含んでもよい。
検出信号生成部は、出力キャパシタと固定電圧端子の間に設けられた検出抵抗と、検出抵抗の電圧降下を増幅して前記検出信号を生成する増幅器と、を含んでもよい。第1加算用抵抗の抵抗値をRa1、帰還抵抗の抵抗値をRfb、電圧生成部の直流出力抵抗(出力インピーダンス)をRz、検出抵抗の抵抗値をRs、増幅器の利得をG1とするとき、
Rs×G1×Rfb/Ra1=Rz
を満たすように構成されてもよい。この場合、出力電圧の変動を最小とすることができる。
加減算回路は、一方の入力端子に、第2加算用抵抗を介して第1演算増幅器の出力電圧が、他方の入力端子に、第4加算用抵抗を介して検出信号が、第5加算用抵抗を介して固定電圧がそれぞれ入力された第2演算増幅器と、第2演算増幅器の出力端子と一方の入力端子との間に設けられた帰還抵抗と、を含んでもよい。
この場合、検出信号を第2演算増幅器の他方の端子に入力される固定電圧に重畳することができる。
電圧生成部は、一端に入力電圧を受け、他端が第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、一端に帰還電圧を受け、他端が第1演算増幅器の一方の入力端子に接続された第2入力抵抗と、をさらに含み、かつ第1演算増幅器の他方の入力端子に固定電圧が印加されてもよい。この構成において、
(1)加減算回路は、検出信号を帰還電圧に重畳して、第1演算増幅器の一方の入力端子に印加してもよい。
(2)加減算回路は、検出信号を入力電圧に重畳して、第1演算増幅器の一方の入力端子に印加してもよい。
(3)加減算回路は、検出信号を固定電圧に重畳して、第1演算増幅器の他方の入力端子に印加してもよい。
(1)〜(3)の場合、検出信号を第1演算増幅器の入力側に重畳されるため、検出信号を第1演算増幅器の増幅率に応じて増幅して、出力電圧に反映することができる。
ある態様の電圧生成装置は、検出信号をフィルタリングして加減算回路に供給するフィルタをさらに備えてもよい。フィルタを設けることにより、出力キャパシタに流れる電流の周波数成分から、出力電圧を安定化するために好適な周波数成分を抽出できるため、出力電圧をさらに安定化できる。
フィルタはハイパスフィルタであることが望ましい。負荷変動によって出力キャパシタに流れる電流が急激に変化すると、検出信号は変動の直後において、高周波成分を有し、その後、周波成分は低くなっていく。したがって、ハイパスフィルタを設けることにより、変動直後のピーク電流を、出力電圧の補正に反映させることができる。
ある態様の電圧生成装置は、検出信号のピーク値を保持し、加減算回路に供給するピークホールド回路をさらに備えてもよい。ピークホールド回路の減衰の時定数を調節することにより、出力電圧の補正を調節できる。
本発明の別の態様も、入力電圧にもとづいた出力電圧を生成する電圧生成装置に関する。この電圧性生成装置は、入力電圧と、出力電圧に応じた帰還電圧との間に所定の関係が成り立つように、フィードバックにより出力電圧を安定化して出力する電圧生成部と、電圧生成部により生成された前記出力電圧を平滑化する出力キャパシタと、出力キャパシタに流れる電流を検出し、検出した電流に応じた検出信号を生成する検出信号生成部と、を備える。電圧生成部は、出力電圧に応じたフィードバックに、検出信号に応じたフィードバックを反映させる。
本発明の別の態様は、被試験デバイスに直流電圧を印加しつつ、被試験デバイスに流れる電流をモニタする直流試験装置に関する。この直流試験装置は、上述のいずれかの態様の電圧生成装置と、電圧生成装置の出力端子から負荷に流れる電流を測定する電流測定部と、を備える。
この態様によれば、被試験デバイスの電気的状態が急激に変化し、電流が変動した場合であっても、被試験デバイスに供給する直流電圧を安定化できるため、正確な試験が可能となる。
なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を、方法、装置などの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、負荷変動特性を改善できる。
以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。また、本明細書において、「部材Aと部材Bが接続」された状態とは、部材Aと部材Bが物理的に直接的に接続される場合や、部材Aと部材Bが、電気的な接続状態に実質的あるいは本質的な影響を及ぼさない他の部材を介して間接的に接続される場合も含む。
(第1の実施の形態)
図1は、第1の実施の形態に係る直流試験装置2の回路図である。直流試験装置2はDUT4を接続するための出力端子3を備える。直流試験装置2は、出力端子3を介してDUT4に直流電圧Voutを出力し、DUT4に直流電圧Voutを印加した状態でDUT4に流れる電流Ioutをモニタする。
直流試験装置2は、電圧生成装置100、電流測定部110、DAコンバータ42を含む。電圧生成装置100は、安定化した直流電圧(以下、出力電圧ともいう)Voutを出力する。DAコンバータ42には、ユーザにより設定されたデジタル値が入力されており、アナログ電圧に変換し出力する。電圧生成装置100は、DAコンバータ42の出力を、入力電圧Vinとして受ける。電圧生成装置100は、入力電圧Vinを基準として出力電圧Voutを生成する。直流試験装置2は、半導体試験装置に組み込まれていてもよい。
電圧生成装置100の出力部の電流Ioutの経路上には、電流測定抵抗Rmが設けられる。電流測定部110は、電圧生成装置100に設けられた電流測定抵抗Rmに発生する電圧降下を増幅する増幅器46と、増幅器46の出力をアナログ/デジタル変換するADコンバータ44を含む。ADコンバータ44の出力は所定の信号処理を経て、図示しないディスプレイに表示され、あるいは記憶手段に保存される。以上が直流試験装置2の全体構成である。
以下、本実施の形態に係る電圧生成装置100の構成を説明する。電圧生成装置100は、電圧生成部10、出力キャパシタC1、検出信号生成部20、加減算回路30、帰還バッファ40を備える。
電圧生成部10はフィードバックにより出力電圧Voutを安定化する。出力端子3の出力電圧Voutは、帰還バッファ40を介して入力側にフィードバックされる。帰還バッファ40は、演算増幅器を利用したボルテージフォロアである。帰還バッファ40は、電流が電圧生成部10の出力側から入力側にリークするのを防止している。帰還バッファ40の出力を帰還電圧Vfbという。図1の回路では、帰還電圧Vfbは出力電圧Voutと等しいが、帰還電圧Vfbは出力電圧Voutを分圧して生成してもよい。
電圧生成部10は、入力電圧Vinと出力電圧Voutに応じた帰還電圧Vfbを受け、2つの電圧の誤差を増幅する第1演算増幅器12を含む。第1演算増幅器12はフィードバック内に配置され、誤差増幅器として機能する。電圧生成部10は、第1演算増幅器12においてイマジナリショート、すなわち非反転入力端子と反転入力端子の電位が等しくなるように、出力電圧Voutを調節する。第1演算増幅器12の出力は、入力電圧Vinと出力電圧Voutの誤差に依存するため、以下、誤差電圧Verrともいう。
電圧生成部10は、本実施の形態で説明する反転増幅器の他、非反転増幅器であってもよい。あるいは、誤差増幅器を介したフィードバックを利用して出力電圧を安定化する、リニアレギュレータ(LDO)、スイッチングレギュレータなどであってもよい。
出力キャパシタC1は、出力端子3と固定電圧端子(接地端子)との間に設けられ、電圧生成部10により生成された出力電圧Voutを平滑化する。
検出信号生成部20は、出力キャパシタC1に流れる電流(以下、キャパシタ電流ともいう)Icを検出し、検出したキャパシタ電流Icに応じた検出信号Vsを生成する。電流の検出方法は特に限定されず、キャパシタ電流Icの経路上に設けられた抵抗に発生する電圧降下や、コイルに発生する誘起電圧を利用してもよい。
電圧生成部10は、第1演算増幅器12に加えて、第1入力抵抗Ri1、第2入力抵抗Ri2、出力バッファ14を含む。
第1入力抵抗Ri1は、一端に入力電圧Vinを受け、他端が第1演算増幅器12の一方の入力端子(反転入力端子)に接続される。第2入力抵抗Ri2は、一端に帰還電圧Vfbを受け、他端が第1演算増幅器12の一方の入力端子(反転入力端子)に接続される。第1演算増幅器12の他方の入力端子(非反転入力端子)には、固定電圧(接地電圧)が印加される。
第1演算増幅器12においてイマジナリショートが成り立つとき、出力電圧Vout(=Vfb)と入力電圧Vinとの間には、
Vout=−Ri2/Ri1×Vin …(1)
が成立する。言い換えれば、この関係が成り立つように、誤差電圧Verrが生成される。
出力バッファ14は、誤差電圧Verrを出力電圧Voutとして出力される。図中、Rz1、Rz2は、配線抵抗などに起因する電圧生成装置100の直流出力抵抗(インピーダンス)を示している。
図1の回路において、加減算回路30は電圧生成部10の一部として構成される。加減算回路30は、検出信号Vsを第1演算増幅器12の入力または出力の少なくとも一方に重畳する。加減算回路30は第1演算増幅器12の出力側に設けられており、検出信号Vsを第1演算増幅器12の出力である誤差電圧Verrに重畳する。加減算回路30の出力(以下、合成電圧V1という)は出力バッファ14に入力される。
図2は、図1の電圧生成装置100の具体的な構成例を示す回路図である。加減算回路30は、第2演算増幅器32、第1加算用抵抗Ra1、第2加算用抵抗Ra2、帰還抵抗Rfbを含む反転型の加算器として構成される。
第2演算増幅器32の一方の入力端子(非反転入力端子)には、固定電圧である接地電圧が入力される。第2演算増幅器32の他方の入力端子(反転入力端子)には、第1加算用抵抗Ra1を介して検出信号Vsが入力され、第2加算用抵抗Ra2を介して第1演算増幅器12の出力である誤差電圧Verrがそれぞれ入力される。帰還抵抗Rfbは、第2演算増幅器32の出力端子と他方の入力端子(反転入力端子)との間に設けられる。
合成電圧V1は、
V1=−Rfb(Vs/Ra1+Verr/Ra2) …(2)
を満たす。加減算回路30によって、検出信号Vsが誤差電圧Verrに重畳される。
なお、図2の第1演算増幅器12は、図1の第1演算増幅器12と反転、非反転入力が逆に示されている。これは、図2において、加減算回路30を反転型の加算器を利用して構成したことによる。
検出信号生成部20は、検出抵抗Rs、増幅器22、ハイパスフィルタ24、ピークホールド回路26を含む。
検出抵抗Rsは、出力キャパシタC1に流れる電流Icの経路上に設けられる。具体的には、出力キャパシタC1と固定電圧端子(接地端子)の間に設けられる。増幅器22は、検出抵抗Rsの電圧降下を増幅し、検出信号Vsを生成する。
第1加算用抵抗Ra1の抵抗値をRa1、帰還抵抗Rfbの抵抗値をRfb、電圧生成部10の直流出力抵抗をRz、検出抵抗Rsの抵抗値をRs、増幅器22の利得をG1とするとき、各抵抗値および利得は、
Rs×G1×Rfb/Ra1=Rz …(3)
を満たすように設定するのが好ましい。理由は後述する。ここでの増幅器22の利得G1は、ハイパスフィルタ24およびピークホールド回路26の利得を含み、実質的には検出信号生成部20全体の利得に相当する。微調節を可能とするため、少なくともひとつの抵抗を可変抵抗やトリミング可能な抵抗で構成することが好ましい。
ハイパスフィルタ24は、検出信号Vsをフィルタリングして高周波成分のみを抽出する。ピークホールド回路26は、ハイパスフィルタ24から出力される検出信号Vsのピーク値を保持し、加減算回路30に供給する。図2において、ハイパスフィルタ24はキャパシタC2と抵抗R2を含む1次フィルタとして構成される。
ピークホールド回路26は、演算増幅器27、28、ダイオードD1、D2、抵抗R3、R4、キャパシタC3、C4を含む。
演算増幅器27の非反転入力端子にはハイパスフィルタ24の出力が接続される。ダイオードD1は、演算増幅器27の反転入力端子と出力端子の間に、アノードが出力端子側となるように接続される。ダイオードD2のカソードは、演算増幅器27の出力端子に接続され、そのアノードは演算増幅器28の非反転入力端子に接続される。演算増幅器28の非反転入力端子と接地端子間には、抵抗R3とキャパシタC3が並列に設けられる。演算増幅器28はボルテージフォロア(バッファ)であり、演算増幅器28の出力信号は、並列に接続された抵抗R4、キャパシタC4を介して、演算増幅器27の反転入力端子にフィードバックされる。
ピークホールド回路26は、ハイパスフィルタ24の出力電圧のピーク値を保持し、抵抗R3、キャパシタC3に応じて定まる時定数にしたがって減衰する検出信号Vsを出力する。
以上のように構成された図1、図2の電圧生成装置100の動作を説明する。図3(a)、(b)は、図1、図2の電圧生成装置100の動作を示す波形図である。図3(a)は、図1、図2の回路動作を示し、図3(b)は、検出信号生成部20、加減算回路30を設けない場合の回路動作を示す。また、図3(a)、(b)は、それぞれ上から順に、出力電圧Vout(Vfb)および検出信号Vs、負荷電流Iout、出力キャパシタC1に流れる電流Ic、電圧生成部10の出力電流Ipを示す。本明細書において、波形図の縦軸および横軸は、理解を容易とするために適宜拡大、縮小したものであり、また示される各波形も、理解の容易のために簡略化されている。
はじめに、本実施の形態に係る電圧生成装置100の効果をより明確とするため、検出信号生成部20、加減算回路30を有さない従来回路の動作を、図3(b)を参照して説明する。
時刻t0以前に、負荷電流Ioutは一定値を保っており、出力電圧Voutは所定の値に安定化されている。負荷電流Iout、出力キャパシタC1に流れる電流Ic、電圧生成部10の出力電流Ipには、
Iout=Ip+Ic …(4)
の関係が成り立っており、時刻t0以前の定常状態において、Ic=0、Iout=Ipが成り立っている。
時刻t0に、DUT4の動作状態が変化し、負荷電流Ioutが急増する。電圧生成部10の帯域の制約によって、電圧生成部10の出力電流Ipの供給が遅れると、不足分が出力キャパシタC1に蓄えられた電荷から供給される。この際の放電電流が、出力キャパシタC1にキャパシタ電流Icとして流れる。出力キャパシタC1が放電すると、出力電圧Voutが低下する。その後、出力電圧Voutが入力電圧Vinに応じた所定の値に近づくようにフィードバックがかかり、時間とともにもとの値に近づいていく。
このように、従来の回路では、負荷電流Ioutの急激な変化によって出力電圧Voutが大きく変動するという問題があった。
次に、図3(a)を参照し、本実施の形態に係る電圧生成装置100の動作を説明する。時刻t0に、負荷電流Ioutが急増する。フィードバックの応答が遅れることにより、キャパシタ電流Icが増加する。キャパシタ電流Icは検出抵抗Rsおよび増幅器22によって検出信号Vsに変換される。検出信号Vsは、キャパシタ電流Icに比例したピーク値を有し、ピークホールド回路26に設定された時定数にしたがって緩やかに減衰していく。
このように生成された検出信号Vsが、加減算回路30によって、出力電圧Voutに応じたフィードバック成分(Vfb)に重畳されることにより、出力電圧Voutが増加する方向に誤差電圧Verrが補正され、合成電圧V1が上昇する。その結果、負荷電流Ioutの変動速度に対してフィードバックの帯域が狭い場合でも、図3(b)に比べて出力電圧Voutの減少量を減らすことができ、負荷変動特性を改善することができる。
また、回路が安定状態となれば、キャパシタ電流Icは0となるため、検出信号Vsも0となり、出力電圧Voutにもとづくフィードバックに対する寄与はなくなり、従来と同様に安定した出力電圧Voutを生成できる。
別の観点からみれば、電圧生成部10は、出力電圧Vout(Vfb)に応じたフィードバックに、検出信号Vsに応じたフィードバックを反映させる。その結果、出力電圧Voutの追従が遅れた場合であっても、検出信号Vsに応じたフィードバックがかかるため、出力電圧Voutの変動量を抑制し、あるいは出力電圧Voutが安定化する時間を短縮できる。
次に、式(3)が成り立つように抵抗値および利得を設定する理由を説明する。いま、時刻t0における負荷電流Ioutの変動量をΔIoutとし、図2における出力バッファ14の出力電圧をV2とする。このとき、時刻t0以前において、
V2=Vout+Rz×Iout …(5)
が成り立っており、時刻t0以降において、
V2’=Vout+Rz×(Iout+ΔIout) …(6)
が成り立つ。負荷変動の前後で出力電圧Voutを等しく保つためには、
V2’−V2=Rz×ΔIout …(7)
が成り立てばよい。ここで、変動量ΔIoutはキャパシタ電流Icと等しいと近似できるから、負荷変動後において、出力バッファ14の出力電圧V2を、
ΔV2=V2’−V2=Rz×Ic …(8)
だけ増加させればよい。ここでΔV2は、検出信号Vsに応じた加減算回路30による合成電圧V2の増加分に他ならない。ΔV2は、上記式(2)から、
ΔV2=Rfb(Vs/Ra1) …(9)
で与えられるから、
Rz×Ic=Rfb(Vs/Ra1) …(10)
を満たすとき、出力電圧Voutの変動を最小に抑えることができる。一方、検出信号Vsは、
Vs=Ic×Rs×G1 …(11)
で与えられる。式(10)、(11)を用いれば、上述した式(3)を得ることができる。
Rs×G1×Rfb/Ra1=Rz …(3)
つぎに、ハイパスフィルタ24の有無による効果の差異を検討する。図4は、出力電圧Voutのハイパスフィルタ24を設けない場合の波形図である。比較のために、ハイパスフィルタ24を設けた場合の出力電圧Voutを破線で示す。ハイパスフィルタ24を設けない場合、キャパシタ電流Icの低周波成分が出力電圧Voutの制御に寄与するため、出力電圧Voutの変動をさらに小さくすることができる。したがって、出力電圧Voutの変動量を小さくしたい場合、ハイパスフィルタ24を設けない構成とすることが望ましい。逆に、出力電圧Voutが所定値に収束するまでの時間を短くしたい場合、ハイパスフィルタ24を設ける構成が望ましい。つまりハイパスフィルタ24の有無は、アプリケーションに応じて決定すればよい。ハイパスフィルタ24のカットオフ周波数を低く設定すれば、中間的な特性を得ることができる。ハイパスフィルタに代えてバンドパスフィルタを利用してもよい。
第1の実施の形態に係る電圧生成装置100の変形例を説明する。図5は、第1の変形例に係る電圧生成装置100aの構成を示す回路図である。図1、図2の回路は、負荷電流Ioutが増加し、出力キャパシタC1から電流Icが負荷に向かって流れ出る場合を説明した。図5の変形例では、負荷電流Ioutが負荷から流れ込む場合に、出力電圧Voutを安定化する機能を備える。負荷から出力キャパシタC1に電流が流れ込む状況は、負荷電流Ioutが急減した場合や、リンギングによって電流Icが負方向にスイングする場合などに発生する。
図5の変形例に係る電圧生成装置100aは、図2の構成に加えて、ピークホールド回路26と並列に設けられた第2のピークホールド回路26aを備える。ピークホールド回路26aは、図2のピークホールド回路26において、ダイオードD1、D2のアノード、カソードを反転した構成となっている。
図5の電圧生成装置100aにおいて、加減算回路30aは、さらに第3加算用抵抗Ra3を備える。第2演算増幅器32の反転入力端子には、第3加算用抵抗Ra3を介して、ピークホールド回路26aの出力が印加される。
図5の電圧生成装置100aによれば、電流Icが正負いずれの方向に流れた場合にも出力電圧Voutを補正することができる。あるいは、出力電圧Voutが正電圧、負電圧のいずれの場合であっても、出力電圧Voutを安定化することができる。別の変形例としてピークホールド回路26aのみの構成としてもよい。
図6は、第2の変形例に係る電圧生成装置100bの構成を示す回路図である。加減算回路30bにおいて、第2演算増幅器32の一方の入力端子(反転入力端子)には、第2加算用抵抗Ra2を介して第1演算増幅器12の出力電圧Verrが入力される。また、第2演算増幅器32の他方の入力端子(非反転入力端子)には、第4加算用抵抗Ra4を介して検出信号Vsが、第5加算用抵抗Ra5を介して接地電圧がそれぞれ入力される。検出信号Vsは検出信号生成部20によって符号が反転して供給される。符号の反転は演算増幅器などを利用して行うことができる。
図6の変形例によっても、図2の回路と同様の効果を得ることができる。
(第2の実施の形態)
第1の実施の形態では、キャパシタ電流Icに応じた検出信号Vsを、第1演算増幅器12の出力に重畳する場合について説明した。これに対して、第2の実施の形態では、検出信号Vsを第1演算増幅器12の入力側に重畳する場合について説明する。
図7は、第2の実施の形態に係る電圧生成装置100cの構成を示す回路図である。電圧生成装置100cの3つの加減算回路30c〜30eは、検出信号Vsが重畳可能なポイントを示しており、いずれかひとつを設ければよい。
(1)加減算回路30cは、検出信号Vsを帰還電圧Vfb(Vout)に重畳する。この場合、検出信号Vsは反転して重畳する。帰還電圧Vfbに反転した検出信号Vsを重畳すれば、第1演算増幅器12は出力電圧Voutを低い状態と判断するため、出力電圧Voutを上昇させるように強いフィードバックがかかる。
(2)加減算回路30dは、検出信号Vsを入力電圧Vinに重畳する。第1演算増幅器12が反転型の増幅器であるため、検出信号Vsは反転して重畳される。
(3)加減算回路30eは、検出信号Vsを接地電圧に重畳して、第1演算増幅器12の他方の入力端子(反転入力端子)に印加する。検出信号Vsが増加すると、第1演算増幅器12の出力電圧Verrは増加するため、出力電圧Voutを高めることができる。
つまり、検出信号Vsの符号は、出力キャパシタC1に流れる電流が正方向に増加したときに、出力電圧Voutが増加する方向に補正がかかるように設定する。
第2の実施の形態によれば、検出信号Vsを第1演算増幅器12の入力側に重畳するため、第1の実施の形態の効果に加えて、以下の効果を得ることができる。すなわち、図7の回路において、検出信号Vsは重畳された後に、第1演算増幅器12によって増幅される。したがって、検出信号Vsにもとづく出力電圧Voutの補正を、第1演算増幅器12の利得に応じて設定することができる。
以上、実施の形態は例示に過ぎず、その構成や処理ステップにはいろいろな変形技術が考えられる。以下例示する。
実施の形態では、電圧生成部10が反転増幅器、あるいは非反転増幅器の場合について説明したが、本発明はこれに限定されない。たとえば、電圧生成部10はリニアレギュレータやスイッチングレギュレータなど、フィードバックにより出力電圧が基準電圧に近づくように制御する電圧生成技術を利用することができる。たとえばリニアレギュレータの場合、出力バッファ14は出力トランジスタに置換される。第1演算増幅器12の出力電圧Verrを出力トランジスタのゲート(ベース)に印加し、出力トランジスタの第1の端子に電源電圧を、第2の端子を出力端子3に接続する。電圧生成部10がスイッチングレギュレータの場合、第1演算増幅器12の出力電圧Verrにもとづいてパルス変調を行い、スイッチング素子を制御すればよい。
実施の形態では、出力キャパシタC1に流れる電流Icを電圧に変換し、検出信号Vsとしてフィードバックループに重畳したが、本発明はこれに限定されず、電流を加算または減算してもよい。
実施の形態では、電圧生成装置100の用途として直流試験装置2について説明したが、本発明はこれに限定されず、安定化した電圧が要求されるさまざまな用途に利用可能である。
実施の形態にもとづき、本発明を説明したが、実施の形態は、本発明の原理、応用を示しているにすぎず、実施の形態には、請求の範囲に規定された本発明の思想を離脱しない範囲において、多くの変形例や配置の変更が可能である。
第1の実施の形態に係る直流試験装置の回路図である。 図1の電圧生成装置の具体的な構成例を示す回路図である。 図3(a)、(b)は、図1、図2の電圧生成装置の動作を示す波形図である。 図2の電圧生成装置におけるハイパスフィルタを設けない場合の出力電圧の波形図である。 第1の変形例に係る電圧生成装置の構成を示す回路図である。 第2の変形例に係る電圧生成装置の構成を示す回路図である。 第2の実施の形態に係る電圧生成装置の構成を示す回路図である。
符号の説明
Ri1 第1入力抵抗、 Ra1 第1加算用抵抗、 C1 出力キャパシタ、 2 直流試験装置、 Ri2 第2入力抵抗、 Ra2 第2加算用抵抗、 3 出力端子、 Ra3 第3加算用抵抗、 4 DUT、 Rs 検出抵抗、 Ra4 第4加算用抵抗、 Ra5 第5加算用抵抗、 10 電圧生成部、 12 第1演算増幅器、 14 出力バッファ、 20 検出信号生成部、 22 増幅器、 24 ハイパスフィルタ、 26 ピークホールド回路、 30 加減算回路、 Rfb 帰還抵抗、 32 第2演算増幅器、 40 帰還バッファ、 42 DAコンバータ、 44 ADコンバータ、 46 増幅器、 100 電圧生成装置、 110 電流測定部。

Claims (12)

  1. 入力電圧にもとづいた出力電圧を生成する電圧生成装置であって、
    前記入力電圧と、前記出力電圧に応じた帰還電圧と、を受ける第1演算増幅器を含み、当該第1演算増幅器においてイマジナリショートが成り立つように、前記出力電圧を安定化して出力する電圧生成部と、
    前記電圧生成部により生成された前記出力電圧を平滑化する出力キャパシタと、
    前記出力キャパシタに流れる電流を検出し、検出した電流に応じた検出信号を生成する検出信号生成部と、
    前記検出信号を、前記第1演算増幅器の入力または出力の少なくとも一方に重畳する加減算回路と、
    を備えることを特徴とする電圧生成装置。
  2. 前記電圧生成部は、
    一端に前記入力電圧を受け、他端が前記第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、
    一端に前記帰還電圧を受け、他端が前記第1演算増幅器の前記一方の入力端子に接続された第2入力抵抗と、
    をさらに含み、かつ前記第1演算増幅器の他方の入力端子に固定電圧が印加されており、
    前記加減算回路は、前記検出信号を前記第1演算増幅器の出力に重畳することを特徴とする請求項1に記載の電圧生成装置。
  3. 前記加減算回路は、
    一方の入力端子に固定電圧が、他方の入力端子に、第1加算用抵抗を介して前記検出信号が、第2加算用抵抗を介して前記第1演算増幅器の出力電圧がそれぞれ入力された第2演算増幅器と、
    前記第2演算増幅器の出力端子と前記他方の入力端子との間に設けられた帰還抵抗と、
    を含むことを特徴とする請求項2に記載の電圧生成装置。
  4. 前記検出信号生成部は、
    前記出力キャパシタと固定電圧端子の間に設けられた検出抵抗と、
    前記検出抵抗の電圧降下を増幅して前記検出信号を生成する増幅器と、
    を含み、
    前記第1加算用抵抗の抵抗値をRa1、前記帰還抵抗の抵抗値をRfb、前記電圧生成部の直流出力抵抗をRz、前記検出抵抗の抵抗値をRs、前記増幅器の利得をG1とするとき、
    Rs×G1×Rfb/Ra1=Rz
    を満たすことを特徴とする請求項3に記載の電圧生成装置。
  5. 前記加減算回路は、
    一方の入力端子に、第2加算用抵抗を介して前記第1演算増幅器の出力電圧が、他方の入力端子に、第4加算用抵抗を介して前記検出信号が、第5加算用抵抗を介して固定電圧がそれぞれ入力された第2演算増幅器と、
    前記第2演算増幅器の出力端子と前記一方の入力端子との間に設けられた帰還抵抗と、
    を含むことを特徴とする請求項2に記載の電圧生成装置。
  6. 前記電圧生成部は、
    一端に前記入力電圧を受け、他端が前記第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、
    一端に前記帰還電圧を受け、他端が前記第1演算増幅器の前記一方の入力端子に接続された第2入力抵抗と、
    をさらに含み、かつ前記第1演算増幅器の他方の入力端子に固定電圧が印加されており、
    前記加減算回路は、前記検出信号を前記帰還電圧に重畳することを特徴とする請求項1に記載の電圧生成装置。
  7. 前記電圧生成部は、
    一端に前記入力電圧を受け、他端が前記第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、
    一端に前記帰還電圧を受け、他端が前記第1演算増幅器の前記一方の入力端子に接続された第2入力抵抗と、
    をさらに含み、かつ前記第1演算増幅器の他方の入力端子に固定電圧が印加されており、
    前記加減算回路は、前記検出信号を前記入力電圧に重畳することを特徴とする請求項1に記載の電圧生成装置。
  8. 前記電圧生成部は、
    一端に前記入力電圧を受け、他端が前記第1演算増幅器の一方の入力端子に接続された第1入力抵抗と、
    一端に前記帰還電圧を受け、他端が前記第1演算増幅器の前記一方の入力端子に接続された第2入力抵抗と、
    をさらに含み、かつ前記第1演算増幅器の他方の入力端子に固定電圧が印加されており、
    前記加減算回路は、前記検出信号を前記固定電圧に重畳することを特徴とする請求項1に記載の電圧生成装置。
  9. 前記検出信号をフィルタリングして前記加減算回路に供給するフィルタをさらに備えることを特徴とする請求項1から8のいずれかに記載の電圧生成装置。
  10. 前記検出信号のピーク値を保持し、前記加減算回路に供給するピークホールド回路をさらに備えることを特徴とする請求項1から8のいずれかに記載の電圧生成装置。
  11. 入力電圧にもとづいた出力電圧を生成する電圧生成装置であって、
    前記入力電圧と、前記出力電圧に応じた帰還電圧との間に所定の関係が成り立つように、フィードバックにより前記出力電圧を安定化して出力する電圧生成部と、
    前記電圧生成部により生成された前記出力電圧を平滑化する出力キャパシタと、
    前記出力キャパシタに流れる電流を検出し、検出した電流に応じた検出信号を生成する検出信号生成部と、
    を備え、
    前記電圧生成部は、前記出力電圧に応じたフィードバックに、前記検出信号に応じたフィードバックを反映させることを特徴とする電圧生成装置。
  12. 請求項1から11のいずれかに記載の電圧生成装置と、
    前記電圧生成装置の出力端子から負荷に流れる電流を測定する電流測定部と、
    を備えることを特徴とする直流試験装置。
JP2007132586A 2007-05-18 2007-05-18 電圧生成装置およびそれを用いた直流試験装置 Withdrawn JP2008287549A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007132586A JP2008287549A (ja) 2007-05-18 2007-05-18 電圧生成装置およびそれを用いた直流試験装置
US12/122,642 US20090015221A1 (en) 2007-05-18 2008-05-16 Voltage generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007132586A JP2008287549A (ja) 2007-05-18 2007-05-18 電圧生成装置およびそれを用いた直流試験装置

Publications (1)

Publication Number Publication Date
JP2008287549A true JP2008287549A (ja) 2008-11-27

Family

ID=40147202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007132586A Withdrawn JP2008287549A (ja) 2007-05-18 2007-05-18 電圧生成装置およびそれを用いた直流試験装置

Country Status (2)

Country Link
US (1) US20090015221A1 (ja)
JP (1) JP2008287549A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727123B (zh) * 2009-11-18 2011-10-12 苏州麦格芯微电子有限公司 集成电路芯片智能自适应驱动级控制***和方法
KR20120064627A (ko) * 2010-12-09 2012-06-19 가부시키가이샤 어드밴티스트 전원장치, 그 제어방법 및 이들을 이용한 시험장치

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903008B2 (en) * 2007-11-08 2011-03-08 National Instruments Corporation Source-measure unit based on digital control loop
JP2012052862A (ja) * 2010-08-31 2012-03-15 Advantest Corp 試験装置用の電源装置およびそれを用いた試験装置
US8604765B2 (en) 2011-06-06 2013-12-10 National Instruments Corporation Resistance simulation and common mode rejection for digital source-measure units
US8653840B2 (en) * 2011-06-06 2014-02-18 National Instruments Corporation Fast current saturation recovery for a digital source measure unit (SMU)
US8456338B2 (en) 2011-06-06 2013-06-04 National Instruments Corporation Compliance methods for source measure units operating with digital control loops
US8797025B2 (en) 2011-06-06 2014-08-05 National Instruments Corporation Compensation methods for digital source-measure-units (SMUs)
TWI435199B (zh) * 2011-07-29 2014-04-21 Realtek Semiconductor Corp 電源供應電路以及電源供應方法
US9933480B2 (en) * 2014-09-19 2018-04-03 Elevate Semiconductor, Inc. Parametric pin measurement unit high voltage extension

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104605A1 (ja) * 2003-05-21 2004-12-02 Advantest Corporation 電流測定装置及び試験装置
US7123493B2 (en) * 2004-08-10 2006-10-17 Advantest Corporation Power source apparatus
JP4599146B2 (ja) * 2004-11-30 2010-12-15 株式会社アドバンテスト 試験装置、及び電源回路
JP4627446B2 (ja) * 2005-02-25 2011-02-09 株式会社アドバンテスト 電流測定装置、試験装置、電流測定方法、および試験方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101727123B (zh) * 2009-11-18 2011-10-12 苏州麦格芯微电子有限公司 集成电路芯片智能自适应驱动级控制***和方法
KR20120064627A (ko) * 2010-12-09 2012-06-19 가부시키가이샤 어드밴티스트 전원장치, 그 제어방법 및 이들을 이용한 시험장치
KR101858258B1 (ko) * 2010-12-09 2018-06-28 가부시키가이샤 어드밴티스트 전원장치, 그 제어방법 및 이들을 이용한 시험장치

Also Published As

Publication number Publication date
US20090015221A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP2008287549A (ja) 電圧生成装置およびそれを用いた直流試験装置
KR102516935B1 (ko) 저-대역폭 2차 제어 루프를 사용한 피크-제어 부스트 변환기에서의 근 직류 에러들의 제거
JP5749483B2 (ja) ヒステリシス制御型スイッチングレギュレータの制御回路およびそれを利用したヒステリシス制御型スイッチングレギュレータ、電子機器
TWI451224B (zh) 動態電壓調整裝置及相關輸電系統
TWI410033B (zh) 穩定轉換脈波調變模式之電流式降壓轉換器
TWI506930B (zh) 功率轉換器控制器及控制輸出信號的方法
TWI429174B (zh) 主動式線端補償電路及其控制器
TW201618454A (zh) 多級放大器
TWI612408B (zh) Pmos功率電晶體線性降壓穩壓電路
JP4707608B2 (ja) 測定回路及び試験装置
KR20070113520A (ko) 혼합형 주파수 보상회로 및 이를 구비한 제어회로
US7446554B2 (en) Direct current measuring apparatus and limiting circuit
US20080074133A1 (en) Voltage generating apparatus, current generating apparatus, and test apparatus
CN107305399B (zh) Pmos功率电晶体线性降压稳压电路
CN109782053B (zh) 电源装置
US7675272B2 (en) Output impedance compensation for linear voltage regulators
US7535211B2 (en) Voltage regulator having current canceling compensation
JP2012016123A (ja) Dc−dcコンバータ
JP2012052862A (ja) 試験装置用の電源装置およびそれを用いた試験装置
CN107872150B (zh) 电源装置
JP4977829B2 (ja) Dc−dcコンバータ用の高精度レベルの改良されたウィンドウ・コンパレータ
JP5981723B2 (ja) 電源装置
US7652536B2 (en) Amplifier circuit with internal zeros
WO2023002744A1 (ja) 電源安定化回路
US20230010809A1 (en) Multi-converter power supply system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803