JP2008285719A - Vacuum deposition method - Google Patents

Vacuum deposition method Download PDF

Info

Publication number
JP2008285719A
JP2008285719A JP2007131164A JP2007131164A JP2008285719A JP 2008285719 A JP2008285719 A JP 2008285719A JP 2007131164 A JP2007131164 A JP 2007131164A JP 2007131164 A JP2007131164 A JP 2007131164A JP 2008285719 A JP2008285719 A JP 2008285719A
Authority
JP
Japan
Prior art keywords
substrate
heating element
vacuum
forming material
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007131164A
Other languages
Japanese (ja)
Inventor
Yukihisa Noguchi
恭久 野口
Makoto Kashiwatani
誠 柏谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007131164A priority Critical patent/JP2008285719A/en
Priority to US12/121,455 priority patent/US20080286461A1/en
Publication of JP2008285719A publication Critical patent/JP2008285719A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum deposition method where, when an alkali halide based phosphor layer is vacuum-deposited, deterioration in a substrate and the phosphor layer can be prevented, and also, the utilizing efficiency of a film deposition material is high. <P>SOLUTION: The space between an evaporation source and a substrate is provided with a heating element for reflecting the vapor of a film deposition material. Also, the temperature of the heating element is controlled to less than the melting point of the film deposition material and also to (the melting point of the film deposition material-200°C) or above. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、真空蒸着を利用して蛍光体層を形成する放射線画像変換パネル等の製造において、成膜材料の利用効率を向上できる真空蒸着方法に関する。   The present invention relates to a vacuum deposition method capable of improving the utilization efficiency of a film forming material in the production of a radiation image conversion panel or the like that forms a phosphor layer using vacuum deposition.

放射線(X線、α線、β線、γ線、電子線、紫外線等)の照射を受けると、この放射線エネルギの一部を蓄積し、その後、可視光等の励起光の照射を受けると、蓄積されたエネルギに応じた輝尽発光を示す蛍光体が知られている。この蛍光体は、輝尽性蛍光体(蓄積性蛍光体)と呼ばれ、医療用途などの各種の用途に利用されている。   When irradiated with radiation (X-rays, α-rays, β-rays, γ-rays, electron beams, ultraviolet rays, etc.), a part of this radiation energy is accumulated, and then irradiated with excitation light such as visible light, Phosphors that exhibit stimulated emission according to the stored energy are known. This phosphor is called a stimulable phosphor (accumulating phosphor) and is used for various applications such as medical applications.

一例として、この輝尽性蛍光体の膜(輝尽性蛍光体層 以下、蛍光体層とする)を有する放射線画像変換パネル(以下、変換パネルとする(輝尽性蛍光体パネル(シート)とも呼ばれている))を利用する、放射線画像情報記録再生システムが知られており、例えば、富士フイルム社製のFCR(Fuji Computed Radiography)として実用化されている。
このシステムでは、人体などの被写体を介してX線等を照射することにより、変換パネル(蛍光体層)に被写体の放射線画像情報を記録する。記録後に、変換パネルを励起光で2次元的に走査して輝尽発光を生ぜしめ、この輝尽発光光を光電的に読み取って画像信号を得、この画像信号に基づいて再生した画像を、CRTなどの表示装置や、写真感光材料などの記録材料等に、被写体の放射線画像として出力する。
As an example, a radiation image conversion panel (hereinafter referred to as a conversion panel (stimulable phosphor panel (sheet)) having the photostimulable phosphor film (stimulable phosphor layer). The radiation image information recording / reproducing system using the above-mentioned)) is known, and is put into practical use, for example, as FCR (Fuji Computed Radiography) manufactured by Fuji Film.
In this system, radiation image information of a subject is recorded on a conversion panel (phosphor layer) by irradiating X-rays or the like through a subject such as a human body. After recording, the conversion panel is scanned two-dimensionally with excitation light to generate stimulated emission, and this stimulated emission light is photoelectrically read to obtain an image signal, and an image reproduced based on this image signal is A radiographic image of the subject is output to a display device such as a CRT or a recording material such as a photographic photosensitive material.

変換パネルは、通常、輝尽性蛍光体の粉末をバインダ等を含む溶媒に分散してなる塗料を調製して、この塗料をガラスや樹脂製のパネル状の支持体(基板)に塗布し、乾燥することによって、作成される。
これに対し、特許文献1に示されるように、真空蒸着やスパッタリング等の気相堆積法(真空成膜法)によって、基板に蛍光体層を形成してなる変換パネルも知られている。気相堆積法による蛍光体層は、真空中で形成されるので不純物が少なく、また、輝尽性蛍光体以外のバインダなどの成分が殆ど含まれないので、性能のバラツキが少なく、しかも発光効率が非常に良好であるという、優れた特性を有している。
The conversion panel is usually prepared by dispersing a stimulable phosphor powder in a solvent containing a binder, and applying the paint to a glass or resin panel-like support (substrate). Created by drying.
On the other hand, as shown in Patent Document 1, there is also known a conversion panel in which a phosphor layer is formed on a substrate by a vapor deposition method (vacuum film forming method) such as vacuum evaporation or sputtering. Phosphor layers by vapor deposition are formed in a vacuum, so there are few impurities, and since there are almost no components such as binders other than stimulable phosphors, there is little variation in performance and luminous efficiency. Has excellent properties of being very good.

ここで、変換パネルに形成される蛍光体の成膜材料、特に、輝尽性蛍光体の成膜材料は、高価である場合が多い。従って、成膜材料の利用効率を上げることは、生産コストを低減するためにも、非常に、重要なことである。
気相堆積法による成膜においては、成膜材料(蒸発材料)の利用効率を向上する方法として、特許文献2や特許文献3などに示されるように、発熱体を用いる方法が知られている。
Here, the phosphor film-forming material formed on the conversion panel, particularly the stimulable phosphor film-forming material, is often expensive. Therefore, increasing the utilization efficiency of the film forming material is very important for reducing the production cost.
In the film formation by the vapor deposition method, as a method for improving the utilization efficiency of the film formation material (evaporation material), a method using a heating element is known as shown in Patent Document 2, Patent Document 3, and the like. .

特許文献2に開示される方法は、真空蒸着であれば、一例として、成膜材料を加熱/溶融する蒸発源(ルツボ)と、基板との間に、基板以外に向かう成膜材料蒸気の拡散を遮蔽するように、対面して2枚の板状の発熱体を設け、この発熱体を成膜材料の融点以上に発熱させた状態で、真空蒸着によって成膜を行なう。
また、特許文献3に開示される方法は、0.1〜1Paの真空度で真空蒸着によって蛍光体層を形成する(放射線像)変換パネルの製造において、同じく蒸発源と基板との間に、基板以外に向かう成膜材料蒸気の拡散を遮蔽する発熱体(拡散防止壁部材)を設け、この発熱体を基板の温度超、蒸発源の温度未満の温度に維持しつつ、基板に蛍光体層を形成する。
このような発熱体を設けることにより、基板以外の方向に向かって拡散しようとする成膜材料の蒸気を、発熱している発熱体によって反射することができ、蒸発源から、直接、基板に向かう成膜材料の蒸気と、反射された成膜材料の蒸気との両者で基板に成膜を行なうことができるので、成膜材料の利用効率を向上することができる。
If the method disclosed in Patent Document 2 is vacuum deposition, as an example, the diffusion of the deposition material vapor toward other than the substrate between the evaporation source (crucible) for heating / melting the deposition material and the substrate Two plate-like heating elements are provided so as to face each other, and film formation is performed by vacuum deposition in a state where the heating elements generate heat above the melting point of the film forming material.
Moreover, in the method disclosed in Patent Document 3, in the production of a (radiation image) conversion panel in which a phosphor layer is formed by vacuum deposition at a vacuum degree of 0.1 to 1 Pa, between the evaporation source and the substrate, Provided with a heating element (diffusion prevention wall member) that shields the diffusion of film forming material vapor to other than the substrate, and maintaining this heating element at a temperature above the substrate temperature and below the evaporation source temperature, a phosphor layer on the substrate Form.
By providing such a heating element, the vapor of the film forming material to be diffused in the direction other than the substrate can be reflected by the heating element that generates heat, and directly from the evaporation source to the substrate. Since the film can be formed on the substrate using both the vapor of the film forming material and the vapor of the reflected film forming material, the utilization efficiency of the film forming material can be improved.

特開2002−181997号公報JP 2002-181997 A 特開平8−53763号公報JP-A-8-53763 特開2007−70646号公報JP 2007-70646 A

ところが、特許文献2のように高温に発熱体を発熱させつつ成膜を行なう方法を、変換パネルにおける蛍光体層の形成に利用すると、発熱体からの輻射熱によって基板温度、および形成される蛍光体の温度が上昇して、変質してしまう場合が有り、その結果、目的とする特性を有する変換パネルが得られない場合が有る。また、基板の温度上昇を考慮すると、樹脂等の有機材料を基板として用いることが出来なくなってしまう。
さらに、融点以上の温度に発熱する発熱体に入射した成膜材料は、再蒸発されたような状態になってしまい、その結果、成膜材料の蒸気流(蒸発流)が拡散してしまい、成膜材料の利用効率の向上効果が十分に得られない場合も有る。
他方、特許文献3に開示される方法によれば、蛍光体の温度が上昇して変質することは防止でき、目的とする特性を有する変換パネルを製造することはできるが、成膜材料の利用効率という点では、十分ではない。
However, when the method of forming a film while heating the heating element to a high temperature as in Patent Document 2 is used for forming the phosphor layer in the conversion panel, the substrate temperature and the phosphor to be formed by the radiant heat from the heating element As a result, the conversion panel having the desired characteristics may not be obtained. Moreover, when the temperature rise of a board | substrate is considered, it will become impossible to use organic materials, such as resin, as a board | substrate.
Furthermore, the film forming material incident on the heating element that generates heat at a temperature equal to or higher than the melting point becomes re-evaporated, and as a result, the vapor flow (evaporated flow) of the film forming material diffuses. In some cases, the effect of improving the use efficiency of the film forming material cannot be obtained sufficiently.
On the other hand, according to the method disclosed in Patent Document 3, it is possible to prevent the temperature of the phosphor from rising and deteriorating, and a conversion panel having the desired characteristics can be manufactured. In terms of efficiency, it is not enough.

本発明の目的は、前記従来技術の問題点を解決することにあり、真空蒸着によってアルカリハライド系蛍光体からなる蛍光体層を形成する放射線画像変換パネルの製造において、発熱体を有することによって、蛍光体層を形成する成膜材料の利用効率をより向上することができ、さらに、基板や形成する蛍光体層が発熱体の熱による悪影響を受けることも防止できる真空蒸着方法を提供することにある。   An object of the present invention is to solve the problems of the prior art described above, and in the production of a radiation image conversion panel for forming a phosphor layer made of an alkali halide phosphor by vacuum deposition, by having a heating element, To provide a vacuum vapor deposition method capable of further improving the utilization efficiency of a film forming material for forming a phosphor layer, and further preventing the substrate and the phosphor layer to be formed from being adversely affected by the heat of the heating element. is there.

前記目的を達成するために、本発明の真空蒸着方法は、基板の表面に、真空蒸着によってアルカリハライド系の蛍光体からなる蛍光体層を形成するに際し、成膜材料の蒸発源と基板との間に発熱体を設置し、この発熱体を、下記式(1)を満たす温度t[℃]に発熱させつつ、前記真空蒸着による蛍光体層の形成を行なうことを特徴とする真空蒸着方法を提供する。
T−200≦t<T (1)
(上記式(1)において、Tは成膜材料の沸点[℃])
In order to achieve the above object, the vacuum vapor deposition method of the present invention, when forming a phosphor layer made of an alkali halide phosphor by vacuum vapor deposition on the surface of the substrate, A vacuum vapor deposition method comprising: forming a phosphor layer by vacuum vapor deposition, with a heat generating element interposed therebetween, and generating heat at a temperature t [° C.] satisfying the following formula (1): provide.
T−200 ≦ t <T (1)
(In the above formula (1), T is the boiling point of the film forming material [° C.])

このような本発明の真空蒸着方法において、前記発熱体が、上面から見た際に前記蒸発源からの成膜材料蒸気の排出口を挟んで対面する板状体であるのが好ましく、また、前記発熱体が、上面から見た際に前記蒸発源からの成膜材料蒸気の排出口を囲む筒状体であるのが好ましく、また、前記アルカリハライド系の蛍光体が、臭化セシウムを含むのが好ましく、特に、前記アルカリハライド系の蛍光体が、さらに、ユーロピウムを含むのが好ましい。   In such a vacuum vapor deposition method of the present invention, the heating element is preferably a plate-like body facing the film formation material vapor discharge port from the evaporation source when viewed from above, The heating element is preferably a cylindrical body that surrounds a film formation material vapor discharge port from the evaporation source when viewed from above, and the alkali halide phosphor contains cesium bromide. In particular, it is preferable that the alkali halide phosphor further contains europium.

上記構成を有する本発明によれば、真空蒸着によって、基板にアルカリハライド系の蛍光体層を形成するに際し、蒸発源と基板との間に、成膜材料の利用効率を向上するための発熱体を有すると共に、この発熱体の温度(発熱温度)を、通常に比して低くすることにより、発熱体の熱による基板温度の上昇や形成した蛍光体の温度上昇を防ぐことができ、温度上昇に起因する基板や蛍光体層の変質を防止できる。
また、発熱体の温度を従来よりも低く、かつ、アルカリハライド蛍光体に応じた適正な温度範囲とすることにより、成膜材料蒸気の流れ(蒸発流)を不要に拡散することがなく、かつ、基板に向かわずに拡散しようとする蒸気を、より好適に反射することができ、成膜材料の利用効率を、より向上することができる。
According to the present invention having the above-described configuration, when an alkali halide phosphor layer is formed on a substrate by vacuum deposition, a heating element for improving the utilization efficiency of a film forming material between the evaporation source and the substrate. And lowering the temperature of the heating element (heating temperature) as compared with normal temperature can prevent an increase in the substrate temperature due to the heat of the heating element and an increase in the temperature of the formed phosphor. It is possible to prevent the substrate and the phosphor layer from being deteriorated due to the above.
Further, by making the temperature of the heating element lower than that of the prior art and in an appropriate temperature range corresponding to the alkali halide phosphor, the flow (evaporation flow) of the film forming material is not unnecessarily diffused, and Further, the vapor that is to diffuse without going to the substrate can be more suitably reflected, and the utilization efficiency of the film forming material can be further improved.

以下、本発明の真空蒸着方法について、添付の図面に示される好適実施例を基に詳細に説明する。   Hereinafter, the vacuum deposition method of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.

図1(A)に、本発明の真空蒸着方法を実施する真空蒸着装置の一例の概念図を示す。
図1(A)に示す真空蒸着装置10(以下、蒸着装置10とする)は、基板Sの表面に、真空蒸着によってアルカリハライド系蛍光体の蛍光体層を形成して、放射線画像変換パネル(以下、変換パネルとする)を作製するものであり、基本的に、真空チャンバ12と、基板保持手段14と、基板回転手段16と、蒸発源であるルツボ18と、発熱体20と、発熱体20の発熱を制御する発熱制御手段24とを有して構成される。
なお、蒸着装置10は、図示した部材以外にも、ルツボ18からの蒸気を遮蔽するシャッタ等、公知の真空蒸着装置が有する各種の部材を有してもよいのは、もちろんである。
FIG. 1A shows a conceptual diagram of an example of a vacuum vapor deposition apparatus for carrying out the vacuum vapor deposition method of the present invention.
A vacuum vapor deposition apparatus 10 (hereinafter, referred to as a vapor deposition apparatus 10) shown in FIG. 1A forms a phosphor layer of an alkali halide phosphor on a surface of a substrate S by vacuum vapor deposition, so that a radiation image conversion panel ( (Hereinafter referred to as a conversion panel). Basically, the vacuum chamber 12, the substrate holding means 14, the substrate rotating means 16, the crucible 18 as an evaporation source, the heating element 20, and the heating element. And heat generation control means 24 for controlling the heat generation of 20.
Of course, the vapor deposition apparatus 10 may include various members of a known vacuum vapor deposition apparatus such as a shutter that shields vapor from the crucible 18 in addition to the illustrated members.

本発明において、基板Sには、特に限定はなく、公知の放射線画像変換パネルで用いられている各種のものが利用可能である。
一例として、セルロースアセテート、ポリエステル、ポリエチレンテレフタレート、ポリアミド、ポリイミド、トリアセテート、ポリカーボネートなどから形成されるプラスチック板やプラスチックシート(フィルム); 石英ガラス、無アルカリガラス、ソーダガラス、耐熱ガラス(パイレックスTM等)などから形成されるガラス板やガラスシート; アルミニウム、鉄、銅、クロムなどの金属類から形成される金属板や金属シート; このような金属板等の表面に金属酸化物層等の被覆層を形成してなる板やシート; 等が例示される。
また、基板Sは、必要に応じて、表面(蛍光体層の形成面)に、アルミニウム板等の基板Sの基材を保護するための保護層、輝尽発光光の反射層、この反射層の保護層等を有してもよい。この場合には、蛍光体層は、これらの層の上に形成される。
In the present invention, the substrate S is not particularly limited, and various substrates used in known radiation image conversion panels can be used.
Examples include plastic plates and plastic sheets (films) formed from cellulose acetate, polyester, polyethylene terephthalate, polyamide, polyimide, triacetate, polycarbonate, etc .; quartz glass, alkali-free glass, soda glass, heat-resistant glass (Pyrex ™, etc.), etc. Glass plates and glass sheets formed from: metal plates and metal sheets formed from metals such as aluminum, iron, copper, and chromium; a coating layer such as a metal oxide layer is formed on the surface of such metal plates Examples of such a plate or sheet are as follows.
Further, the substrate S has a protective layer for protecting the base material of the substrate S such as an aluminum plate on the surface (phosphor layer forming surface), a reflective layer for stimulated emission light, and this reflective layer, as necessary. The protective layer may be provided. In this case, the phosphor layer is formed on these layers.

一方、本発明において、このような基板Sに形成(成膜)する蛍光体層は、アルカリハライド系の蛍光体(アルカリ金属ハロゲン化物系蛍光体)である。
アルカリハライド系の蛍光体としては、各種のものが利用可能であるが、中でも特に、本発明の効果が発現し易く、かつ、良好な輝尽発光特性が得られる等の点で、好ましい一例として、特開昭61−72087号公報に開示される、一般式「MIX・aMIIX’2・bMIIIX''3:cA」で示されるアルカリハライド系輝尽性蛍光体が好適に例示される。
(上記式において、MI は、Li,Na,K,RbおよびCsからなる群より選択される少なくとも一種であり、MIIは、Be,Mg,Ca,Sr,Ba,Zn,Cd,CuおよびNiからなる群より選択される少なくとも一種の二価の金属であり、MIIIは、Sc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Al,GaおよびInからなる群より選択される少なくとも一種の三価の金属であり、X、X’およびX''は、F,Cl,BrおよびIからなる群より選択される少なくとも一種であり、Aは、Eu,Tb,Ce,Tm,Dy,Pr,Ho,Nd,Yb,Er,Gd,Lu,Sm,Y,Tl,Na,Ag,Cu,BiおよびMgからなる群より選択される少なくとも一種である。また、0≦a<0.5であり、0≦b<0.5であり、0<c≦0.2である。)
その中でも、優れた輝尽発光特性を有し、かつ、本発明の効果が特に良好に得られる等の点で、MIが、少なくともCsを含み、Xが、少なくともBrを含み、さらに、Aが、EuまたはBiであるアルカリハライド系輝尽性蛍光体は好ましく、その中でも特に、一般式「CsBr:Eu」で示される輝尽性蛍光体が好ましい。
On the other hand, in the present invention, the phosphor layer formed (deposited) on the substrate S is an alkali halide phosphor (alkali metal halide phosphor).
Various alkali halide phosphors can be used. Among them, a preferable example is that, in particular, the effects of the present invention are easily exhibited and good photostimulated luminescence characteristics can be obtained. An alkali halide-based stimulable phosphor represented by the general formula “M I X · aM II X ′ 2 · bM III X ″ 3 : cA” disclosed in JP-A-61-72087 is preferred. Illustrated.
(In the above formula, M I is at least one selected from the group consisting of Li, Na, K, Rb and Cs, and M II is Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu and at least one trivalent metal selected from the group consisting of Ni, M III is, Sc, Y, La, Ce , Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, At least one trivalent metal selected from the group consisting of Tm, Yb, Lu, Al, Ga and In, and X, X ′ and X ″ are selected from the group consisting of F, Cl, Br and I A is from Eu, Tb, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, Bi, and Mg. At least one selected from the group consisting of . Also, a 0 ≦ a <0.5, a 0 ≦ b <0.5, it is 0 <c ≦ 0.2.)
Among them, M I contains at least Cs, X contains at least Br, and has excellent photostimulated luminescence properties and the effects of the present invention can be obtained particularly well. However, an alkali halide photostimulable phosphor that is Eu or Bi is preferred, and among these, photostimulable phosphors represented by the general formula “CsBr: Eu” are particularly preferred.

本発明は、このような輝尽性蛍光体からなる(輝尽性)蛍光体層を有し、被写体の放射線画像を、一旦、蓄積記録して、励起光の入射によって記録した放射線画像に応じた輝尽発光光を発する、輝尽性(蓄積性)蛍光体パネル(いわゆる、IP(Imaging Plate)における蛍光体層の形成には限定されず、アルカリハライド系の蛍光体であれば、シンチレータパネル等に利用される、放射線の入射によって発光(蛍光)する蛍光体からなる蛍光体層の形成であってもよい。   The present invention has a (stimulable) phosphor layer composed of such a stimulable phosphor, and once accumulates and records a radiographic image of a subject and responds to the radiographic image recorded by the incidence of excitation light. A stimulable (accumulative) phosphor panel (so-called IP (Imaging Plate)) is not limited to the formation of a phosphor layer, and any scintillator panel can be used as long as it is an alkali halide phosphor. For example, a phosphor layer made of a phosphor that emits light (fluoresces) upon incidence of radiation may be used.

このような蛍光体も、アルカリハライド系の蛍光体であれば、各種のものが利用可能であるが、同様に、本発明の効果が発現し易く、かつ、良好な蛍光特性が得られる等の点で、下記の一般式:
IX・aMIIX’2・bMIIIX”3:zA
で示されるアルカリハライド系の蛍光体が好ましく例示される。
(上記式において、MIはLi、Na、K、Rb及びCsからなる群より選択される少なくとも一種のアルカリ金属を表し、MIIはBe、Mg、Ca、Sr、Ba、Ni、Cu、Zn及びCdからなる群より選択される少なくとも一種のアルカリ土類金属又は二価金属を表し、MIIIはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInからなる群より選択される少なくとも一種の希土類元素又は三価金属を表わす。また、X、X’およびX”はそれぞれ、F、Cl、Br及びIからなる群より選択される少なくとも一種のハロゲンを表わし、Aは、Y、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Na、Mg、Cu、Ag、Tl及びBiからなる群より選択される少なくとも一種の希土類元素又は金属を表す。また、a、bおよびzはそれぞれ、0≦a<0.5、0≦b<0.5、0<z<1.0の範囲内の数値を表わす。)
特に、前記一般式のMIとしてCsを含んでいるのが好ましく、XとしてIを含んでいることが好ましく、AとしてTlまたはNaを含んでいるのが好ましく、また、zは、1×10-4≦z≦0.1の範囲内の数値であるの好ましい。中でも特に、式「CsI:Tl」で示されるアルカリ金属ハロゲン化物系蛍光体は、好ましく用いられる。
Various phosphors can be used as long as the phosphor is an alkali halide phosphor. Similarly, the effect of the present invention is easily exhibited and good fluorescence characteristics can be obtained. In terms of the general formula:
M I X · aM II X ′ 2 · bM III X ″ 3 : zA
An alkali halide phosphor represented by the formula is preferably exemplified.
(In the above formula, M I represents at least one alkali metal selected from the group consisting of Li, Na, K, Rb and Cs, and M II represents Be, Mg, Ca, Sr, Ba, Ni, Cu, Zn. And at least one alkaline earth metal or divalent metal selected from the group consisting of Cd, and M III is Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, It represents at least one rare earth element or trivalent metal selected from the group consisting of Ho, Er, Tm, Yb, Lu, Al, Ga and In. X, X ′ and X ″ are F, Cl, Represents at least one halogen selected from the group consisting of Br and I, and A represents Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Na, Mg, Cu, Ag Represents at least one rare earth element or metal selected from the group consisting of Tl, Bi, and a, b and z are 0 ≦ a <0.5, 0 ≦ b <0.5 and 0 <z, respectively. <Represents a numerical value within the range of 1.0.)
In particular, it is preferred that Cs is contained as M I in the general formula, I is preferably contained as X, T1 or Na is preferably contained as A, and z is 1 × 10 -4 ≦ z ≦ 0.1 is preferable. Among these, alkali metal halide phosphors represented by the formula “CsI: Tl” are preferably used.

成膜装置10において、真空チャンバ12は、鉄、ステンレス、アルミニウム等で形成される、真空蒸着装置で利用される公知の真空チャンバ(ベルジャー、真空槽)である。
また、図示は省略するが、真空チャンバ12には、真空チャンバ内を排気するための、メイン排気バルブやバイパス経路等を有する排気経路、および、真空ポンプが接続されている。真空ポンプには、特に限定はなく、ロータリーポンプ、油拡散ポンプ、クライオポンプ、ターボモレキュラポンプ等や、これらの組み合わせなどの公知の真空ポンプが、各種、利用可能である。さらに、補助として、クライオコイル等を併用してもよい。
また、真空チャンバ12には、真空度調整用のアルゴンガスの導入などを行なうための、ガス導入手段22が設けられる。ガス導入手段22も、ボンベ等との接続手段やガス流量の調整手段等を有する(もしくは、これらに接続される)、真空蒸着装置やスパッタリング装置等で用いられる、公知のガス導入手段である。
In the film forming apparatus 10, the vacuum chamber 12 is a known vacuum chamber (bell jar, vacuum chamber) formed of iron, stainless steel, aluminum, or the like and used in a vacuum deposition apparatus.
Although not shown, the vacuum chamber 12 is connected to an exhaust path having a main exhaust valve, a bypass path, and the like for exhausting the inside of the vacuum chamber, and a vacuum pump. The vacuum pump is not particularly limited, and various known vacuum pumps such as a rotary pump, an oil diffusion pump, a cryopump, a turbo molecular pump, and a combination thereof can be used. Furthermore, a cryocoil or the like may be used in combination as an auxiliary.
The vacuum chamber 12 is provided with gas introduction means 22 for introducing argon gas for adjusting the degree of vacuum. The gas introduction means 22 is also a known gas introduction means used in a vacuum vapor deposition apparatus, a sputtering apparatus, etc., having a connection means with a cylinder or the like, a gas flow rate adjusting means, or the like (or connected thereto).

基板保持手段14は、基板ホルダ30と、ホルダ装着部32と、回転軸34とから構成される。
基板ホルダ30は、基板Sにおける成膜領域をルツボ18に向けて開放した状態で、基板Sを収容/保持するものである。基板ホルダ30としては、基板Sの四辺を保持する枠体、成膜領域に対応する部分が開放する基板Sを収容する筐体等、真空蒸着装置等の真空成膜装置で利用されている各種の基板ホルダが全て利用可能である。また、基板ホルダ30が、基板Sの成膜面における成膜領域を規制するマスクを兼ねてもよく、あるいは、別途、マスクを設けてもよい。
The substrate holding means 14 includes a substrate holder 30, a holder mounting portion 32, and a rotation shaft 34.
The substrate holder 30 accommodates / holds the substrate S in a state where the film formation region on the substrate S is opened toward the crucible 18. As the substrate holder 30, various types used in vacuum film forming apparatuses such as a vacuum vapor deposition apparatus, such as a frame body that holds the four sides of the substrate S, a housing that houses the substrate S that is open at a portion corresponding to the film forming region, and the like. All substrate holders are available. Further, the substrate holder 30 may also serve as a mask that regulates a film formation region on the film formation surface of the substrate S, or a mask may be provided separately.

図示例において、基板ホルダ30は、嵌合や係合部材を用いる方法等、公知の手段で、ホルダ装着部32の所定の位置に着脱可能にされる。また、ホルダ装着部32は、円盤状の部材で、裏面側において円筒状の回転軸34の下端に固定されている。さらに、この回転軸34は、回転・昇降手段16によって軸支されている。
すなわち、図示例の成膜装置10において、基板Sは、基板ホルダ30に収容されて、この基板ホルダ30がホルダ装着部32に装着されることにより、成膜装置10の所定位置に装填され、真空蒸着による成膜に供される。
In the illustrated example, the substrate holder 30 is made detachable at a predetermined position of the holder mounting portion 32 by a known means such as a method using a fitting or an engaging member. The holder mounting portion 32 is a disk-like member and is fixed to the lower end of the cylindrical rotating shaft 34 on the back surface side. Further, the rotating shaft 34 is supported by the rotating / lifting means 16.
That is, in the illustrated film forming apparatus 10, the substrate S is accommodated in the substrate holder 30, and the substrate holder 30 is mounted on the holder mounting portion 32, whereby the substrate S is loaded at a predetermined position. It is used for film formation by vacuum deposition.

成膜装置10において、ホルダ装着部32の下面には、基板ホルダ30に収容した基板Sを加熱するための加熱手段や、加熱手段による熱をムラなく均一に基板Sに伝えるための熱伝導性シート等が設けられてもよい。
さらに、基板ホルダ30の内面にも、基板Sの裏面(成膜面の逆面)に密着して、ホルダ装着部32が有する加熱手段による熱をムラなく均一に基板Sに伝えるための熱伝導性シート等が設けられてもよい。
In the film forming apparatus 10, on the lower surface of the holder mounting portion 32, heating means for heating the substrate S accommodated in the substrate holder 30, and heat conductivity for uniformly transferring heat from the heating means to the substrate S without unevenness. A sheet or the like may be provided.
Further, heat conduction is performed so that heat from the heating means of the holder mounting portion 32 is uniformly and uniformly transmitted to the substrate S evenly in contact with the inner surface of the substrate holder 30 and the back surface (reverse surface of the film formation surface) of the substrate S. A sheet or the like may be provided.

前述のように、ホルダ装着部32は、裏面において回転軸34に固定され、この回転軸34は、回転手段16に軸支されている。
回転手段16は、回転軸34すなわちホルダ装着部32を、所定の速度(回転速度)で回転する。従って、ホルダ装着部32に固定される基板ホルダ30に収容される基板Sは、この回転手段16によって所定の速度で回転される。
As described above, the holder mounting portion 32 is fixed to the rotating shaft 34 on the back surface, and the rotating shaft 34 is pivotally supported by the rotating means 16.
The rotating means 16 rotates the rotating shaft 34, that is, the holder mounting portion 32, at a predetermined speed (rotational speed). Therefore, the substrate S accommodated in the substrate holder 30 fixed to the holder mounting portion 32 is rotated at a predetermined speed by the rotating means 16.

なお、本発明の真空蒸着方法は、基板Sを回転しつつ真空蒸着によって蛍光体層を形成するのに限定はされず、基板Sを固定した状態で真空蒸着によって蛍光体層を形成してもよく、あるいは、後述するように、基板Sを直線状に往復搬送しつつ、真空蒸着によって蛍光体層を形成してもよい。   The vacuum deposition method of the present invention is not limited to forming the phosphor layer by vacuum deposition while rotating the substrate S. Even if the phosphor layer is formed by vacuum deposition with the substrate S fixed. Alternatively, as will be described later, the phosphor layer may be formed by vacuum deposition while reciprocating the substrate S linearly.

図示例の蒸着装置10において、蒸発源であるルツボ18は、抵抗加熱用のルツボである。すなわち、蒸着装置10は、抵抗加熱によって成膜材料を加熱蒸発させる。なお、ルツボ18は、公知の手段で真空チャンバ12内の所定位置に設置されている。
図示例のルツボ18は、長方形状の蒸気排出口を有する中空円筒状のルツボ本体18aと、この蒸気排出口を囲んでルツボ本体18aから突出する、四角筒状(四角の煙突状)のチムニー18bとを有する(図3および図4も参照)。なお、蒸気排出口は、円筒の中心線方向に延在する、長尺な長方形である。
また、図示は省略するが、当然、ルツボ18(ルツボ本体18a)には、抵抗加熱用の電源が接続され、さらに、熱電対などの成膜材料(ルツボ18)の温度測定手段が配置されてもよい。
In the illustrated vapor deposition apparatus 10, the crucible 18 as an evaporation source is a crucible for resistance heating. That is, the vapor deposition apparatus 10 heats and evaporates the film forming material by resistance heating. The crucible 18 is installed at a predetermined position in the vacuum chamber 12 by a known means.
The illustrated crucible 18 includes a hollow cylindrical crucible body 18a having a rectangular steam outlet, and a square cylindrical (square chimney-shaped) chimney 18b that surrounds the steam outlet and protrudes from the crucible body 18a. (See also FIGS. 3 and 4). The steam discharge port is a long rectangle extending in the direction of the center line of the cylinder.
Although illustration is omitted, as a matter of course, a resistance heating power source is connected to the crucible 18 (the crucible body 18a), and a temperature measuring means for a film forming material (the crucible 18) such as a thermocouple is arranged. Also good.

なお、本発明において、蒸発源であるルツボは、上記構成のものに限定はされず、いわゆるボート型のルツボや、上端面が開放する円筒形などのカップ型のルツボなど、各種のルツボが全て利用可能である。
また、蒸発源および加熱手段は、抵抗加熱用のルツボ18に限定はされず、誘導加熱や電子線(EB)加熱等、蒸着時の真空度などの成膜条件等に応じて利用可能であれば、真空蒸着で利用される各種の蒸発源が、全て利用可能である。
In the present invention, the crucible as the evaporation source is not limited to the one having the above-described configuration, and all kinds of crucibles such as a so-called boat-type crucible and a cup-type crucible having an open upper end surface are all included. Is available.
Further, the evaporation source and the heating means are not limited to the resistance heating crucible 18 and may be used according to film forming conditions such as the degree of vacuum during vapor deposition, such as induction heating or electron beam (EB) heating. For example, all the various evaporation sources used in vacuum deposition can be used.

ルツボ18の上には、発熱体20が配置される。図示例において、発熱体10は、タングステン、タンタル、モリブデン、炭素等の通電によって発熱する材料からなるものであり、通電して発熱体20を発熱させる、発熱制御手段24に接続される。
発熱体18は、所定の温度に発熱することによって、ルツボ18からの成膜材料の蒸気のうち、基板S以外に向かう蒸気(蒸気の流れ(蒸気流))を反射して、基板Sに向かうようにすることで、成膜材料の利用効率を向上するものである。
A heating element 20 is disposed on the crucible 18. In the illustrated example, the heating element 10 is made of a material that generates heat when energized, such as tungsten, tantalum, molybdenum, or carbon. The heating element 10 is connected to a heat generation control unit 24 that energizes the heating element 20 to generate heat.
The heat generating body 18 generates heat to a predetermined temperature, thereby reflecting the vapor (vapor flow (vapor flow)) directed to other than the substrate S out of the vapor of the film forming material from the crucible 18, and directed toward the substrate S. By doing so, the utilization efficiency of the film forming material is improved.

前述のように、発熱体20は、発熱制御手段24によって通電されて、発熱する。
ここで、本発明においては、成膜材料としてアルカリハライド系の蛍光体を用い、下記式(1)を満たす温度t[℃]に発熱体20を発熱させる。
T−200≦t<T (1)
(上記式(1)において、Tは成膜材料の沸点[℃])
すなわち、本発明においては、成膜材料としてアルカリハライド系の蛍光体を用い、成膜材料の融点未満で、かつ、成膜材料の融点−200℃以上の温度範囲(すなわち、成膜材料の融点未満で、かつ、成膜材料の融点〜成膜材料の融点−200℃の温度範囲)で、発熱体20を発熱させる。
As described above, the heating element 20 is energized by the heat generation control unit 24 and generates heat.
Here, in the present invention, an alkali halide phosphor is used as a film forming material, and the heating element 20 is caused to generate heat at a temperature t [° C.] that satisfies the following formula (1).
T−200 ≦ t <T (1)
(In the above formula (1), T is the boiling point of the film forming material [° C.])
That is, in the present invention, an alkali halide phosphor is used as a film forming material, and a temperature range lower than the melting point of the film forming material and higher than the melting point of the film forming material −200 ° C. (that is, the melting point of the film forming material). The heating element 20 is caused to generate heat within a temperature range of less than the melting point of the film forming material to the melting point of the film forming material−200 ° C.

真空蒸着においては、蒸発源と基板との間に発熱体(ホットウォール)を設けることにより、基板以外に向かう蒸気の流れを発熱体によって反射して基板に向かわせることにより、成膜材料の利用効率を向上することが知られている。ここで、このような発熱体を利用する従来の真空蒸着においては、特許文献2にも示されるように、発熱体の温度を成膜材料の融点以上とする。これにより、発熱体によって、基板以外に向かう蒸気を基板に向けて反射することで、成膜材料の利用効率が向上できると考えられていた。
しかしながら、本発明者の検討によれば、アルカリハライド系の蛍光体からなる蛍光体層を形成する場合には、このような温度で発熱体を発熱させると、発熱体からの輻射熱によって基板や蛍光体の温度が上昇してしまい、変質してしまう場合が有る。さらに、高温になるが故に、樹脂材料等の耐熱性の低いものを基板として用いることができない。
また、従来は、発熱体の温度を成膜材料の融点以上とすることにより、発熱体によって確実に蒸気を反射して成膜材料の利用効率を向上できると考えられていた。しかしながら、本発明者の検討によれば、発熱体の温度を成膜材料の融点以上とすると、成膜材料が再蒸発したような状態になってしまい、その結果、蒸気の流れが拡散して、十分な成膜材料の利用効率向上効果が得られず、逆に、基板に至る蒸気が減少し、成膜材料の利用効率が減少してしまう場合が有る。
一方、特許文献3に開示されるように、発熱体(拡散防止壁部材)の温度を、基板の温度超、蒸発源の温度未満の温度に維持しつつ、基板に蛍光体層を形成することにより、蛍光体層や基板の変質は防止できるものの、この条件では、発熱体への成膜材料の付着等を生じてしまい、成膜材料の利用効率という点では、十分な効果を得ることができない。
In vacuum deposition, by using a heating element (hot wall) between the evaporation source and the substrate, the flow of vapor that is directed to other than the substrate is reflected by the heating element and directed toward the substrate. It is known to improve efficiency. Here, in the conventional vacuum vapor deposition using such a heating element, as shown in Patent Document 2, the temperature of the heating element is set to be equal to or higher than the melting point of the film forming material. Thereby, it was thought that the utilization efficiency of the film-forming material can be improved by reflecting the vapor | steam which goes outside a board | substrate toward a board | substrate with a heat generating body.
However, according to the study of the present inventor, when forming a phosphor layer made of an alkali halide phosphor, if the heating element is heated at such a temperature, the substrate and the fluorescent light are radiated from the heating element. The temperature of the body rises and may be altered. Further, since the temperature is high, a resin material having low heat resistance cannot be used as the substrate.
Conventionally, it has been considered that by making the temperature of the heating element equal to or higher than the melting point of the film forming material, it is possible to reliably reflect the vapor by the heating element and improve the utilization efficiency of the film forming material. However, according to the study of the present inventor, when the temperature of the heating element is equal to or higher than the melting point of the film forming material, the film forming material is re-evaporated, and as a result, the flow of vapor is diffused. However, there is a case where a sufficient effect of improving the use efficiency of the film forming material cannot be obtained, and conversely, the vapor reaching the substrate is reduced and the use efficiency of the film forming material is reduced.
On the other hand, as disclosed in Patent Document 3, the phosphor layer is formed on the substrate while maintaining the temperature of the heating element (diffusion prevention wall member) above the temperature of the substrate and below the temperature of the evaporation source. Therefore, the phosphor layer and the substrate can be prevented from being deteriorated. However, under these conditions, the deposition material adheres to the heating element, and a sufficient effect can be obtained in terms of the utilization efficiency of the deposition material. Can not.

これに対し、本発明においては、真空蒸着によってアルカリハライド系の蛍光体層を形成する際に、温度が、成膜材料の融点未満で、かつ、成膜材料の融点−200℃以上となるように、発熱体20を発熱させる。すなわち、通常の真空蒸着よりも低温であり、かつ、成膜材料の融点に応じた適正な温度に、発熱体20を発熱させる。
このような構成を有することにより、発熱体20の輻射熱によって基板Sや蛍光体層が加熱されて変質してしまうことを防止できると共に、基板Sとして樹脂材料等の耐熱性の低い材料のものを利用することが可能となる。また、この温度範囲であれば、成膜材料であるアルカリハライド系蛍光体の蒸気を発熱体20で好適に反射して、かつ、再蒸発が生じることもないので、成膜材料の利用効率を、より好適に向上することができる。
In contrast, in the present invention, when an alkali halide phosphor layer is formed by vacuum vapor deposition, the temperature is lower than the melting point of the film forming material and the melting point of the film forming material is −200 ° C. or higher. Then, the heating element 20 is caused to generate heat. That is, the heating element 20 generates heat at a temperature lower than that of normal vacuum deposition and at an appropriate temperature according to the melting point of the film forming material.
By having such a configuration, it is possible to prevent the substrate S and the phosphor layer from being heated and denatured by the radiant heat of the heating element 20, and the substrate S is made of a material having low heat resistance such as a resin material. It can be used. Also, within this temperature range, the vapor of the alkali halide phosphor, which is the film forming material, is suitably reflected by the heating element 20 and re-evaporation does not occur. Thus, it can be improved more suitably.

本発明において、発熱体20の温度が成膜材料の融点以上では、蛍光体層の変質などの従来の発熱体を高温にする真空蒸着と同様の不都合が生じる。また、発熱体20の温度を融点−200℃よりも低くすると、発熱体に成膜材料が付着してしまい、逆に、成膜材料の利用効率が低下して、また、発熱体から落下するパーティクル等が蒸発源に入ってしまい、これに起因して、突沸や蛍光体の特性劣化等を招く可能性も生じる。
本発明においては、発熱体20の発熱温度は、好ましくは、成膜材料の融点−200℃〜成膜材料の融点−30℃である。発熱体20の温度を上記範囲とすることにより、前記発熱体20の発熱による悪影響を、より確実に回避し、さらに、発熱体20による成膜材料蒸気の反射を、より好適にして、成膜材料の利用効率をより向上できる。
In the present invention, when the temperature of the heating element 20 is equal to or higher than the melting point of the film forming material, the same disadvantages as the vacuum vapor deposition for raising the temperature of the conventional heating element, such as alteration of the phosphor layer, occur. On the other hand, if the temperature of the heating element 20 is lower than the melting point of −200 ° C., the film forming material adheres to the heating element, and conversely, the utilization efficiency of the film forming material decreases and falls from the heating element. Particles and the like enter the evaporation source, and this may cause bumping and deterioration of the phosphor characteristics.
In the present invention, the heating temperature of the heating element 20 is preferably a melting point of the film forming material of −200 ° C. to a melting point of the film forming material of −30 ° C. By setting the temperature of the heating element 20 within the above range, the adverse effect due to the heat generation of the heating element 20 can be avoided more reliably, and the film forming material vapor reflection by the heating element 20 can be more favorably performed. The material utilization efficiency can be further improved.

発熱制御手段24による、発熱体20の発熱温度の制御方法には特に限定はなく、公知の各種の方法が利用可能である。
例えば、熱電対や放射温度計(輻射温度計)等の公知の温度測定手段を用いて発熱体20の温度を測定し、この温度測定結果に応じて、発熱体20の温度を制御するフィードバック制御を利用すればよい。あるいは、発熱体20への通電量と、発熱体20の温度との関係を、予め実験やシミュレーションによって知見しておき、この関係に応じて、発熱体20の温度を制御してもよい。
なお、本発明においては、発熱体20の温度は、一定である必要はなく、上記範囲であれば、変動してもよい。
There is no particular limitation on the method of controlling the heat generation temperature of the heating element 20 by the heat generation control means 24, and various known methods can be used.
For example, feedback control that measures the temperature of the heating element 20 using a known temperature measuring means such as a thermocouple or a radiation thermometer (radiation thermometer) and controls the temperature of the heating element 20 according to the temperature measurement result. Can be used. Alternatively, the relationship between the energization amount to the heating element 20 and the temperature of the heating element 20 may be known in advance through experiments or simulations, and the temperature of the heating element 20 may be controlled according to this relationship.
In the present invention, the temperature of the heating element 20 does not need to be constant, and may vary within the above range.

図示例の蒸着装置10においては、図1(A)および(B)に示すように、発熱体20は上下面が開放する円筒状の物であり、好ましい態様として、上面(鉛直方向の上方)から見た際に、下面がルツボ18のチムニ18b(成膜材料の蒸気排出口)を囲むように、チムニー18bの直上に配置される。
このような構成とすることにより、基板S以外に向かう蒸気を、より確実に発熱体20で反射して、成膜材料の利用効率を、より好適に向上できる。
なお、本発明において、発熱体20は、円筒状に限定はされず、楕円筒状であってもよく、また、角筒状であってもよい。さらに、径の変わらない直管状にも限定はされず、例えば、図2に示す逆円錐(台)状のように、基板Sに向かう蒸気の拡散に応じて、基板S(上方)に向かって、拡径(広がる)するような形状であってもよい。
In the vapor deposition apparatus 10 of the illustrated example, as shown in FIGS. 1A and 1B, the heating element 20 is a cylindrical object whose upper and lower surfaces are open, and as a preferred embodiment, the upper surface (upward in the vertical direction). When viewed from above, the lower surface is disposed directly above the chimney 18b so as to surround the chimney 18b of the crucible 18 (vapor discharge port for the film forming material).
By setting it as such a structure, the vapor | steam which goes to other than the board | substrate S can be more reliably reflected by the heat generating body 20, and the utilization efficiency of film-forming material can be improved more suitably.
In the present invention, the heating element 20 is not limited to a cylindrical shape, and may be an elliptical cylindrical shape or a rectangular cylindrical shape. Further, the shape is not limited to a straight tube whose diameter does not change, and, for example, toward the substrate S (upward) according to the diffusion of the vapor toward the substrate S, such as an inverted cone (table) shape shown in FIG. It may be a shape that expands (expands).

また、発熱体20は、筒状にも限定はされない。
例えば、発熱体を、上方から見た際に蒸発源の蒸気排出口を囲む様に配置される、複数枚の板状物(平面でも曲面でも可)としてもよい。あるいは、蒸気排出口を囲むのではなく、基板以外の方向に向かう蒸気の拡散を防ぐように配置される、上方から見た際に蒸発源の蒸気排出口を挟んで対面する、一対の板状物(同前)を発熱体として用いてもよい。さらに、蒸気の流れによっては、発熱体を1枚の板状物(同前)のみとしても、成膜材料の利用効率を向上できる。
Further, the heating element 20 is not limited to a cylindrical shape.
For example, the heating element may be a plurality of plate-like objects (which may be flat or curved) arranged so as to surround the vapor outlet of the evaporation source when viewed from above. Alternatively, a pair of plate-like shapes that are arranged not to surround the vapor discharge port but to prevent the diffusion of vapor toward the direction other than the substrate, facing the vapor discharge port of the evaporation source when viewed from above An object (same as above) may be used as a heating element. Furthermore, depending on the flow of the vapor, the utilization efficiency of the film forming material can be improved even if the heating element is only one plate-like object (same as above).

図示例においては、発熱体20は、タングステン等の通電によって自身が発熱する材料で形成されるものであったが、本発明は、これに限定はされず、目的とする温度に発熱あるいは加熱可能なものであれば、各種の構成が利用可能である。
例えば、自身が発熱しなくても、壁内部にヒータ等の加熱手段を内蔵する筒体や板状物を発熱体として用いてもよく、成膜材料の蒸気と接触しない面にヒータ等が当接している筒体や板状物を発熱体として用いてもよい。
In the illustrated example, the heating element 20 is formed of a material that generates heat when energized, such as tungsten. However, the present invention is not limited to this, and can generate heat or be heated to a target temperature. Various configurations can be used as long as they are appropriate.
For example, even if it does not generate heat, a cylinder or a plate with a heating means such as a heater built in the wall may be used as the heating element. You may use the cylindrical body and plate-shaped object which are in contact as a heat generating body.

すなわち、発熱体20の形状やサイズ、配置位置等には、特に限定はなく、基板S以外に向かう蒸気を遮蔽するような、各種のものが利用可能であり、蒸発源の蒸気排出口の大きさ、基板Sのサイズ、蒸発源と基板Sとの距離等に応じて、適宜、決定すればよい。
中でも、上面から見た際に、発熱体の下端が蒸発源の蒸気排出口を挟むように対面しているのが好ましく、特に、上面から見た際に、発熱体の下端が蒸発源の蒸気排出口を内包する筒状であるのが好ましい。
また、発熱体の下端は、蒸発源の蒸気排出口の直ぐ上であるのが好ましい。あるいは、蒸発源の蒸気排出口を発熱体が内包するように、発熱体の下端が、蒸発源の蒸気排出口よりも下方に位置するのも好ましい。
In other words, the shape, size, arrangement position, etc. of the heating element 20 are not particularly limited, and various types can be used, such as shielding steam that is not directed to the substrate S, and the size of the vapor outlet of the evaporation source is large. The size may be appropriately determined according to the size of the substrate S, the distance between the evaporation source and the substrate S, and the like.
In particular, it is preferable that the lower end of the heating element faces the vapor outlet of the evaporation source when viewed from above, and particularly the lower end of the heating element is the vapor of the evaporation source when viewed from above. A cylindrical shape including the discharge port is preferred.
Moreover, it is preferable that the lower end of a heat generating body is right above the vapor | steam discharge port of an evaporation source. Alternatively, it is also preferable that the lower end of the heating element is positioned below the vapor outlet of the evaporation source so that the heating element contains the vapor outlet of the evaporation source.

図示例の蒸着装置10は、ルツボ18を1個のみ有する(配置される)ものであるが、本発明は、これに限定はされず、複数の蒸発源(ルツボ)を有するものであってもよい。
また、複数の蒸発源を用いる場合には、全ての蒸発源に同じ成膜材料を充填する一元の真空蒸着でも、複数の成膜材料を異なる蒸発源に投入する多元の真空蒸着でもよい。
The vapor deposition apparatus 10 in the illustrated example has (arranges) only one crucible 18, but the present invention is not limited to this, and may have a plurality of evaporation sources (crucibles). Good.
In the case where a plurality of evaporation sources are used, a single vacuum deposition in which all the evaporation sources are filled with the same film forming material or a multi-source vacuum evaporation in which a plurality of film forming materials are charged into different evaporation sources may be used.

本発明の真空蒸着方法は、このように複数の蒸発源を用いる真空蒸着に利用する場合には、個々の蒸発源毎に発熱体を設けてもよく、適宜設定した複数個の蒸発源に対して1個の発熱体を設けてもよく、全ての蒸発源に対して1個の発熱体を設けてもよい。   When the vacuum vapor deposition method of the present invention is used for vacuum vapor deposition using a plurality of evaporation sources as described above, a heating element may be provided for each evaporation source. One heating element may be provided, or one heating element may be provided for all evaporation sources.

前述のように、本発明は、基板Sを回転しながら真空蒸着によって蛍光体層を形成するのに限定はされず、基板Sを固定した状態で蛍光体層を形成してもよく、あるいは、基板Sを往復搬送しながら蛍光体層を形成してもよい。   As described above, the present invention is not limited to forming the phosphor layer by vacuum deposition while rotating the substrate S, and the phosphor layer may be formed with the substrate S fixed, or The phosphor layer may be formed while reciprocating the substrate S.

図3に、基板Sを往復搬送しながら、本発明の真空蒸着方法によって基板Sに蛍光体層を形成する真空蒸着装置の一例の概念図を示す。
図3において、(A)は正面図(後述する基板Sの搬送方向(矢印x方向)と直交する方向から見た図)で、(B)は側面図(後述する基板Sの搬送方向に見た図)である。
なお、この真空蒸着装置50(以下、蒸着装置50とする)は、前述の蒸着装置10と同じ部材を利用しているので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行なう。
FIG. 3 shows a conceptual diagram of an example of a vacuum deposition apparatus for forming a phosphor layer on the substrate S by the vacuum deposition method of the present invention while reciprocating the substrate S.
3A is a front view (a view seen from a direction perpendicular to a transport direction (arrow x direction) of a substrate S described later), and FIG. 3B is a side view (a view viewed in a transport direction of a substrate S described later). Figure).
In addition, since this vacuum vapor deposition apparatus 50 (hereinafter referred to as the vapor deposition apparatus 50) uses the same members as the above-described vapor deposition apparatus 10, the same members are denoted by the same reference numerals, and the following description is different parts. To do mainly.

この真空蒸着装置50(以下、蒸着装置50とする)も、基板Sの表面に真空蒸着によって蛍光体層を形成するものであり、図3に示すように、基本的に、真空チャンバ52と、基板搬送機構54と、加熱蒸発部56と、ガス導入手段22とを有して構成される。
図4に、加熱蒸発部56の上面図(平面図)を示すが、図3および図4に示すように、加熱蒸発部56には、上下面が開放する四角筒状の発熱体60が配置され、この発熱体60には、先と同様の発熱制御手段24(図3(A)以外は図示省略)が接続される。
なお、蒸着装置50も、図示した部材以外にも、蒸発源からの蒸気を遮蔽するシャッタ等、公知の真空蒸着装置が有する各種の部材を有してもよいのは、もちろんである。
This vacuum vapor deposition apparatus 50 (hereinafter referred to as vapor deposition apparatus 50) also forms a phosphor layer on the surface of the substrate S by vacuum vapor deposition, and basically, as shown in FIG. The substrate transport mechanism 54, the heating evaporation unit 56, and the gas introduction unit 22 are configured.
FIG. 4 shows a top view (plan view) of the heating evaporation unit 56. As shown in FIGS. 3 and 4, the heating evaporation unit 56 is provided with a rectangular cylindrical heating element 60 whose upper and lower surfaces are open. The heating element 60 is connected to the same heating control means 24 (not shown except for FIG. 3A).
Of course, the vapor deposition apparatus 50 may also include various members of a known vacuum vapor deposition apparatus, such as a shutter that shields vapor from the evaporation source, in addition to the illustrated members.

図示例の蒸着装置50は、基板Sを直線状に往復搬送しつつ、好ましい態様として、蛍光体(母体)の成膜材料と、付活剤(賦活剤:activator)の成膜材料とを別々に蒸発する、二元の真空蒸着によって基板Sの表面に(輝尽性)蛍光体層を形成して、変換パネルを製造する。
例えば、先に好ましい輝尽性蛍光体として例示したCsBr:Euであれば、蛍光体の成膜材料として臭化セシウム(CsBr)を、付活剤成分の成膜材料として臭化ユーロピウム(EuBrx(xは、通常、2〜3だが2が好ましい))を、それぞれ用い、両者を異なる蒸発源に投入して独立して加熱蒸発する二元の真空蒸着によって、CsBr:Euで示される蛍光体層を形成する。
The vapor deposition apparatus 50 in the illustrated example, while transporting the substrate S back and forth in a straight line, as a preferred embodiment, separates the phosphor (matrix) film forming material and the activator film forming material. A conversion panel is manufactured by forming a (stimulable) phosphor layer on the surface of the substrate S by binary vacuum vaporization.
For example, in the case of CsBr: Eu exemplified as a preferable stimulable phosphor, cesium bromide (CsBr) is used as a film forming material for the phosphor, and europium bromide (EuBr x ) is used as a film forming material for the activator component. (X is usually 2 to 3 but 2 is preferred)), and phosphors represented by CsBr: Eu are obtained by binary vacuum deposition in which both are put into different evaporation sources and heated and evaporated independently. Form a layer.

蒸着装置50において、真空チャンバ52は、前記真空チャンバ12と同様の公知の真空チャンバであり、ガス導入手段22は、先の例と同様のものである。   In the vapor deposition apparatus 50, the vacuum chamber 52 is a known vacuum chamber similar to the vacuum chamber 12, and the gas introducing means 22 is the same as the previous example.

基板搬送機構54は、基板Sを保持して直線状の搬送経路で往復搬送するものであり、基板保持手段62と搬送手段64とを有して構成される。   The substrate transport mechanism 54 holds the substrate S and transports it back and forth along a linear transport path, and includes a substrate holding means 62 and a transport means 64.

搬送手段64は、ガイドレール68と、ガイドレール68に係合してガイド(案内)される係合部材70とを有するリニアモータガイド、ネジ軸72およびナット74からなるボールネジ、ネジ軸72の回転駆動源76等を有する、ネジ伝動を利用する公知の直線状の移動機構である。回転駆動源76は、正逆転が可能なものである。   The conveying means 64 includes a linear motor guide having a guide rail 68 and an engaging member 70 that is engaged with and guided by the guide rail 68, a ball screw including a screw shaft 72 and a nut 74, and rotation of the screw shaft 72. This is a known linear moving mechanism using a screw transmission having a drive source 76 and the like. The rotation drive source 76 is capable of forward / reverse rotation.

他方、基板保持手段62は、基台80と、保持部材82とを有する。
基台80は、上面に前記搬送手段64のナット74および係合部材70を固定する、矩形の板状部材である。また、保持部材82は、四隅から垂下するように基台80に固定され、下端部に基板Sを保持する。なお、保持部材82による基板Sの保持方法には、特に限定はなく、公知の板状部材の保持方法が、全て利用可能である。
基板保持手段62は、搬送手段64によって、所定の方向(図3(A)および図4では矢印x方向、図3(B)では紙面に垂直方向)に直線移動される。
On the other hand, the substrate holding means 62 includes a base 80 and a holding member 82.
The base 80 is a rectangular plate-like member that fixes the nut 74 and the engaging member 70 of the conveying means 64 to the upper surface. The holding member 82 is fixed to the base 80 so as to hang from the four corners, and holds the substrate S at the lower end. Note that the method for holding the substrate S by the holding member 82 is not particularly limited, and any known plate-like member holding method can be used.
The substrate holding means 62 is linearly moved by the conveying means 64 in a predetermined direction (the arrow x direction in FIGS. 3A and 4 and the direction perpendicular to the paper surface in FIG. 3B).

図示例の蒸着装置50においては、基板保持手段62によって基板Sを保持した状態で、回転駆動源76を駆動してネジ軸72を回転することにより、搬送手段64によって基板保持手段62を搬送手段64によって搬送して、基板Sを直線状に往復搬送する。後述するが、図示例においては、このように基板Sの搬送を直線状とし、かつ、複数の蒸発源を搬送方向と直交する方向に配列することにより、膜厚分布均一性の高い蛍光体層の形成を実現している。
往復搬送の回数は、蛍光体層の層厚(膜厚)や基板Sの搬送速度等に応じて、適宜、決定すればよい。また、基板Sの搬送速度も、装置の有する搬送速度限界、往復動の回数、目的とする蛍光体層の厚さ等に応じて、適宜、決定すればよい。
In the vapor deposition apparatus 50 of the illustrated example, the substrate holding means 62 is transported by the transport means 64 by driving the rotation drive source 76 and rotating the screw shaft 72 while holding the substrate S by the substrate holding means 62. 64, the substrate S is reciprocated linearly. As will be described later, in the illustrated example, the transport of the substrate S is made linear, and a plurality of evaporation sources are arranged in a direction orthogonal to the transport direction, whereby a phosphor layer with high uniformity of film thickness distribution is obtained. The formation of is realized.
The number of reciprocal conveyances may be determined as appropriate according to the layer thickness (film thickness) of the phosphor layer, the conveyance speed of the substrate S, and the like. Further, the transport speed of the substrate S may be appropriately determined according to the transport speed limit of the apparatus, the number of reciprocations, the thickness of the target phosphor layer, and the like.

なお、本発明において、基板保持手段62は、上記構成に限定はされず、公知の板状物の直線状の往復搬送手段が、全て利用可能である。   In the present invention, the substrate holding means 62 is not limited to the above-described configuration, and all known plate-like linear reciprocating conveyance means can be used.

真空チャンバ12内の下方には、加熱蒸発部56が配置される。
加熱蒸発部56も、一例として、蒸発源として抵抗加熱用のルツボを用い、抵抗加熱によって成膜材料を加熱蒸発させるものである。
A heating evaporation unit 56 is disposed below the vacuum chamber 12.
As an example, the heating evaporation unit 56 also uses a resistance heating crucible as an evaporation source, and heats and evaporates the film forming material by resistance heating.

前述のように、図示例の蒸着装置50は、輝尽性蛍光体の蛍光体の成膜材料と付活剤の成膜材料とを独立して加熱/蒸発する、二元の真空蒸着により蛍光体層を形成するものであり、これに応じて、加熱蒸発部56は、蛍光体の成膜材料用の蒸発源であるルツボ18と、付活剤の成膜材料用の蒸発源であるルツボ86との、2種類のルツボを有する。   As described above, the vapor deposition apparatus 50 in the illustrated example performs fluorescence by binary vacuum vapor deposition, in which the film forming material of the phosphor of the stimulable phosphor and the film forming material of the activator are heated / evaporated independently. In response to this, the heating and evaporation unit 56, the crucible 18 as the evaporation source for the phosphor film-forming material, and the crucible as the evaporation source for the film-forming material of the activator 86 and two types of crucibles.

蛍光体用の蒸着源18は、ルツボ本体18aとチムニー18bとからなる、先と同様のものである。他方、付活剤用のルツボ86は、通常のボート型の上面を長方形の蒸気排出口を有する蓋体で閉塞し、この蒸気排出口を囲んで、同様の上下面が開放する四角筒型のチムニーを設けたものである。
なお、輝尽性蛍光体において、付活剤と蛍光体とは、例えばモル濃度比で0.0005/1〜0.01/1程度と、蛍光体層の大部分が蛍光体である。そのため、付活剤用のルツボ86は、蛍光体用の蒸着源18よりも大幅に小型でよい。
The vapor deposition source 18 for the phosphor is the same as the above, which is composed of the crucible body 18a and the chimney 18b. On the other hand, the crucible 86 for the activator is a rectangular tube type in which the upper surface of a normal boat type is closed with a lid body having a rectangular steam discharge port, and the upper and lower surfaces are similarly opened surrounding the steam discharge port. A chimney is provided.
In the stimulable phosphor, the activator and the phosphor are, for example, about 0.0005 / 1 to 0.01 / 1 in molar concentration ratio, and most of the phosphor layer is the phosphor. Therefore, the crucible 86 for activator may be much smaller than the vapor deposition source 18 for phosphor.

図1(A)および図2の概略平面図に示すように、ルツボ18とルツボ86とは、基板Sの往復搬送方向に並んで、互いに1個ずつで対を成して配置される。なお、各ルツボは、離間や絶縁材の挿入等によって、互いに絶縁状態に有る。
ルツボ18およびルツボ86(ルツボの対)は、基板Sの往復搬送方向とに直交する方向に6個が配列されている。蒸着装置50は、この往復搬送方向と直交する方向(以下、便宜的に配列方向とする)のルツボの対の列を、往復搬送方向に並んで2つ有する。さらに、この2つのルツボの対の列は、互いのルツボの対が配列方向に互い違いに配置されて配列方向の互いの間隙を埋めており、これにより、配列方向に、より均一な成膜材料の蒸気の排出を可能にしている。
As shown in the schematic plan views of FIGS. 1A and 2, the crucible 18 and the crucible 86 are arranged side by side in the reciprocating conveyance direction of the substrate S, one by one. Note that the crucibles are insulated from each other due to separation, insertion of an insulating material, or the like.
Six crucibles 18 and crucibles 86 (a pair of crucibles) are arranged in a direction orthogonal to the reciprocating conveyance direction of the substrate S. The vapor deposition apparatus 50 has two rows of crucible pairs in a direction orthogonal to the reciprocating conveyance direction (hereinafter referred to as an arrangement direction for convenience) arranged in the reciprocating conveyance direction. Further, the two crucible pairs are arranged in such a manner that the crucible pairs are alternately arranged in the arrangement direction to fill the gaps in the arrangement direction, thereby forming a more uniform film forming material in the arrangement direction. It is possible to discharge steam.

図示例の蒸着装置50においては、基板Sを直線条に往復搬送しつつ真空蒸着を行なうことにより、表面(被成膜面)の線速を基板Sの全面で均一にできる。また、往復搬送方向と直交する配列方向に複数のルツボ(蒸発源)を配列することにより、この配列方向における基板Sへの蒸発の暴露量も均一化できる。そのため、極めて簡易な蒸発源の配置で、基板Sの全面的に均一に成膜材料の蒸気を暴露することができ、膜厚分布均一性の高い蛍光体層を形成できる。特に、後述する中真空での真空蒸着では、アルゴン等のガス粒子と蒸発した成膜材料との衝突があるため、通常の高真空での蒸着に比して、基板とルツボとの間隔を狭くする必要が有るため、成膜材料が系内に拡散する前に基板Sに至ってしまうため、その効果は大きい。
しかも、このような構成を有することにより、蛍光体層の面方向および厚さ方向共に、輝尽性蛍光体層中に付活剤成分を高度に均一に分散することができ、これにより、輝尽発光特性および感度等の均一性に優れた変換パネルを得ることができる。
In the vapor deposition apparatus 50 of the illustrated example, the linear velocity of the surface (deposition surface) can be made uniform over the entire surface of the substrate S by performing vacuum vapor deposition while reciprocating the substrate S in a straight line. Further, by arranging a plurality of crucibles (evaporation sources) in the arrangement direction orthogonal to the reciprocating conveyance direction, the exposure amount of evaporation to the substrate S in the arrangement direction can be made uniform. Therefore, the vapor of the film forming material can be uniformly exposed on the entire surface of the substrate S with a very simple arrangement of the evaporation source, and a phosphor layer with high film thickness distribution uniformity can be formed. In particular, in vacuum evaporation at medium vacuum, which will be described later, there is a collision between gas particles such as argon and evaporated film forming material, so that the distance between the substrate and the crucible is narrower than in normal high vacuum evaporation. Therefore, since the film forming material reaches the substrate S before diffusing into the system, the effect is great.
In addition, by having such a configuration, the activator component can be dispersed highly uniformly in the stimulable phosphor layer in both the surface direction and the thickness direction of the phosphor layer. A conversion panel excellent in uniformity such as exhaust light emission characteristics and sensitivity can be obtained.

加熱蒸発部16には、発熱体60が配置される。
図示例において、発熱体60は、全ての蒸発源(ルツボ18およびルツボ86)に対応して、上面から見た際に全ルツボのチムニー(全蒸発源の蒸気排出口)を囲む、上下面が開放する四角筒状のものである。なお、発熱体60は、先の蒸着装置10の発熱体20と同様のものを用いればよい。
この発熱体60は、前記発熱体20と同様に、発熱制御手段24によって、下記式(1)を満たす温度t[℃]に発熱される。
T−200≦t<T (1)
(上記式(1)において、Tは成膜材料の沸点[℃])
すなわち、この発熱体60は、成膜材料の融点未満で、かつ、前記成膜材料の融点−200℃以上の温度範囲で発熱される。
A heating element 60 is disposed in the heating evaporator 16.
In the illustrated example, the heating element 60 corresponds to all the evaporation sources (the crucible 18 and the crucible 86) and has upper and lower surfaces surrounding the chimneys of all the crucibles (steam outlets of all the evaporation sources) when viewed from above. It is a rectangular tube that opens. The heating element 60 may be the same as the heating element 20 of the previous vapor deposition apparatus 10.
The heating element 60 generates heat at a temperature t [° C.] that satisfies the following formula (1) by the heating control means 24, similarly to the heating element 20.
T−200 ≦ t <T (1)
(In the above formula (1), T is the boiling point of the film forming material [° C.])
That is, the heating element 60 generates heat in a temperature range below the melting point of the film forming material and at a melting point of the film forming material of −200 ° C. or higher.

先の例と同様に、このような発熱体60を有することにより、成膜材料の利用効率を向上できると共に、発熱体60を利用して成膜材料の利用効率を向上しているも関わらず、基板Sや形成した蛍光体層の加熱による変質も防止できる。
また、往復搬送による真空蒸着では、膜厚の均一な蛍光体層を形成可能であるが、より膜厚均一性の高い蛍光体層を形成するためには、基板Sの搬送方向の成膜材料蒸気の拡散を防止するのが好ましいが、図示例のように、配列方向に延在して、搬送方向に拡散する蒸気を遮蔽するような壁部を有する発熱体を用いることにより、この搬送方向への蒸気の拡散を好適に防止して、より膜厚の均一性の高い蛍光体層を形成できる。
Similar to the previous example, by using such a heating element 60, the use efficiency of the film forming material can be improved, and the use efficiency of the film forming material is improved by using the heating element 60. In addition, alteration of the substrate S and the formed phosphor layer due to heating can be prevented.
Further, in vacuum vapor deposition by reciprocating conveyance, a phosphor layer having a uniform film thickness can be formed. However, in order to form a phosphor layer having a higher film thickness uniformity, a film forming material in the conveyance direction of the substrate S is used. Although it is preferable to prevent the diffusion of the vapor, as shown in the illustrated example, this heating direction is achieved by using a heating element having a wall portion extending in the arrangement direction and shielding the vapor diffusing in the conveyance direction. It is possible to suitably prevent the diffusion of vapor into the phosphor layer and to form a phosphor layer with a higher uniformity of film thickness.

ここで、図示例の蒸着装置50は、蛍光体の成膜材料と、付活剤の成膜材料とを独立して加熱蒸発する、二元の真空蒸着を行なうものであり、全ての蒸発源に、1つの発熱体60が対応している。
このように、複数の成膜材料(多元の真空蒸着、および、複数の成膜材料を混合して成膜材料を調整した場合)の蒸発源に対して、1つの発熱体を対応させる場合には、各成膜材料の融点での、融点未満、かつ、融点−200℃以上(T−200≦t<T)の温度領域において、全て(もしくは、多くの量比を占める複数種)の成膜材料で共通の温度領域を検出して、この共通の温度領域で、発熱体60で発熱させればよい。
あるいは、蛍光体層における量の最も多い成膜材料(蛍光体層において蒸着量の最も多い成膜材料)の融点に対応して、発熱体の温度を設定してもよい。例えば、前述のように、輝尽性蛍光体では、前述のように、蛍光体層の大部分が蛍光体であるので、発熱体60の発熱は、蛍光体成分の成膜材料の融点に応じて設定すればよい。すなわち、前記臭化セシウムと臭化ユーロピウムを用いたCsBr:Euからなる蛍光体層の形成であれば、蛍光体成分の成膜材料である臭化セシウムの融点(636℃)に応じて、発熱体の温度を設定すればよい。
Here, the vapor deposition apparatus 50 in the illustrated example performs binary vacuum vapor deposition in which the phosphor film-forming material and the activator film-forming material are independently heated and evaporated. In addition, one heating element 60 corresponds.
As described above, when one heating element is made to correspond to an evaporation source of a plurality of film forming materials (multiple vacuum depositions and a case where a film forming material is adjusted by mixing a plurality of film forming materials) Are all (or a plurality of types occupying a large quantity ratio) in the temperature range below the melting point of each film forming material and in the temperature range of the melting point −200 ° C. or higher (T−200 ≦ t <T). A common temperature region may be detected by the film material, and the heating element 60 may generate heat in this common temperature region.
Or you may set the temperature of a heat generating body corresponding to melting | fusing point of the film-forming material with the largest quantity in a fluorescent substance layer (film-forming material with the largest vapor deposition amount in a fluorescent substance layer). For example, as described above, in the stimulable phosphor, since most of the phosphor layer is a phosphor as described above, the heat generation of the heating element 60 depends on the melting point of the film forming material of the phosphor component. Can be set. That is, in the case of forming a phosphor layer made of CsBr: Eu using the cesium bromide and europium bromide, heat is generated according to the melting point (636 ° C.) of cesium bromide that is a film forming material of the phosphor component. You just need to set your body temperature.

なお、本発明の蒸着方法においては、複数の蒸発源を有する場合には、全ての蒸発源に対して、1個の発熱体を対応させるのに限定されないのは、前述のとおりである。
従って、図示例の蒸着装置50においては、例えば、ルツボ18およびルツボ86の個々に対応して、合計で24個の発熱体を設けてもよく、あるいは、前記対を成すルツボ18およびルツボ86に対応して1個の発熱体を設けて、合計で12個の発熱体を設けてもよく、あるいは、配列方向の蒸着源列に対応して1個の発熱体を設けて、合計で2個の発熱体を設けてもよい。
In the vapor deposition method of the present invention, when there are a plurality of evaporation sources, it is not limited to one heating element corresponding to all the evaporation sources as described above.
Therefore, in the illustrated vapor deposition apparatus 50, for example, a total of 24 heating elements may be provided corresponding to each of the crucible 18 and the crucible 86, or the crucible 18 and the crucible 86 constituting the pair may be provided. Correspondingly, one heating element may be provided and a total of 12 heating elements may be provided. Alternatively, one heating element may be provided corresponding to the vapor deposition source array in the arrangement direction, and a total of two heating elements may be provided. A heating element may be provided.

また、前述のように、基板を往復搬送させながら蒸着を行なう場合には、配列方向への蒸気の拡散よりも、搬送方向(矢印x方向)への蒸気の拡散を押さえるのが好ましい。
従って、図示例においては、搬送方向に離間して、上面から見た際に蒸気排出口を挟むように2枚の板状の発熱体を設けても、好適に、成膜材料の利用効率を向上できる。
Further, as described above, when vapor deposition is performed while reciprocating the substrate, it is preferable to suppress the diffusion of the vapor in the conveyance direction (arrow x direction) rather than the diffusion of the vapor in the arrangement direction.
Therefore, in the illustrated example, even when two plate-like heating elements are provided so as to sandwich the vapor discharge port when viewed from the top surface apart from each other in the transport direction, the use efficiency of the film forming material is preferably improved. It can be improved.

以下、図1に示す蒸着装置10の作用を説明することにより、本発明の真空蒸着方法について、より詳細に説明する。   Hereinafter, the vacuum vapor deposition method of the present invention will be described in more detail by explaining the operation of the vapor deposition apparatus 10 shown in FIG.

まず、基板Sを収容する基板ホルダ30をホルダ装着部32の所定位置に装着すると共に、ルツボ18に所定量の成膜材料を充填する。
次いで、真空チャンバ12を閉塞して、真空ポンプによって排気して、所定の真空度まで排気する。
ここで、アルカリハライド系の蛍光体、特に、アルカリハライド系の輝尽性蛍光体、中でも特に、CsBr:Euで示される輝尽性蛍光体からなる蛍光体層を形成する場合には、一旦、系内を高い真空度に排気した後、アルゴンガスや窒素ガス等を系内に導入して、0.01〜3Pa程度の真空度(以下、便宜的に中真空とする)とし、この中真空下で抵抗加熱等によって成膜材料を加熱して真空蒸着を行うのが好ましい。
真空蒸着によって形成した輝尽性蛍光体からなる蛍光体層は、多くの場合、柱状結晶構造を有するが、このような中真空下で形成して得られる蛍光体層、中でも、前記CsBr:Eu等のアルカリハライド系の蛍光体層は、特に良好な柱状の結晶構造を有し、輝尽発光特性や画像の鮮鋭性等の点で好ましい。
First, the substrate holder 30 that accommodates the substrate S is mounted at a predetermined position of the holder mounting portion 32 and the crucible 18 is filled with a predetermined amount of film forming material.
Next, the vacuum chamber 12 is closed and evacuated by a vacuum pump to evacuate to a predetermined degree of vacuum.
Here, when forming a phosphor layer composed of an alkali halide phosphor, particularly an alkali halide photostimulable phosphor, particularly a stimulable phosphor represented by CsBr: Eu, After evacuating the system to a high degree of vacuum, argon gas, nitrogen gas or the like is introduced into the system to obtain a degree of vacuum of about 0.01 to 3 Pa (hereinafter referred to as a medium vacuum for convenience). It is preferable to perform vacuum deposition by heating the film forming material by resistance heating or the like.
A phosphor layer made of a photostimulable phosphor formed by vacuum deposition has a columnar crystal structure in many cases. The phosphor layer obtained by forming under such a medium vacuum, particularly the CsBr: Eu The alkali halide phosphor layer such as has a particularly good columnar crystal structure, and is preferable in terms of photostimulable light emission characteristics and image sharpness.

真空チャンバ12内の真空度が所定の真空度になった時点で、ルツボ18(前述のように、抵抗加熱用のルツボ)に通電して成膜材料の加熱を開始し、かつ、必要に応じて、回転手段16によって基板Sを回転する。
成膜材料(ルツボ18)の温度が所定の温度になった時点で、シャッタを開放して、基板Sへの蛍光体層の形成を開始する。
When the degree of vacuum in the vacuum chamber 12 reaches a predetermined degree, the crucible 18 (the resistance heating crucible as described above) is energized to start heating the film forming material, and if necessary Thus, the substrate S is rotated by the rotating means 16.
When the temperature of the film forming material (the crucible 18) reaches a predetermined temperature, the shutter is opened and the formation of the phosphor layer on the substrate S is started.

ここで、本発明の蒸着方法を実施する蒸着装置10においては、基板Sへの蛍光体層の蒸着を開始するに先立ち、発熱制御手段24によって発熱体20に通電して、下記式(1)を満たす温度t[℃]に発熱させつつ、基板Sへの蛍光体層の形成を行なう。
T−200≦t<T (1)
(上記式(1)において、Tは成膜材料の沸点[℃])
すなわち、発熱体20を、成膜材料の融点未満で、かつ、成膜材料の融点−200℃以上の温度に発熱させて、発熱体20を、この温度に発熱させつつ、基板Sへの蛍光体層の形成を行なう。
そのため、基板S以外に向かう成膜材料蒸気を発熱体20で反射して、基板Sに向けることで、成膜材料の利用効率を向上できると共に、発熱体20によって成膜材料の利用効率を向上しているにも関わらず、加熱によって、基板Sや蛍光体層が変質することもない。従って、適正な蛍光体層を、良好な成膜材料利用効率で形成することができる。
Here, in the vapor deposition apparatus 10 that carries out the vapor deposition method of the present invention, before starting the vapor deposition of the phosphor layer on the substrate S, the heat generating control means 24 energizes the heat generating element 20 to obtain the following formula (1). The phosphor layer is formed on the substrate S while generating heat at a temperature t [° C.] that satisfies the above.
T−200 ≦ t <T (1)
(In the above formula (1), T is the boiling point of the film forming material [° C.])
That is, the heating element 20 generates heat at a temperature lower than the melting point of the film forming material and at a melting point of the film forming material of −200 ° C. or more, and the heating element 20 generates heat to this temperature, and the fluorescence to the substrate S is generated. The body layer is formed.
Therefore, by reflecting the film-forming material vapor directed to other than the substrate S by the heating element 20 and directing it toward the substrate S, the use efficiency of the film-forming material can be improved, and the use efficiency of the film-forming material is improved by the heating element 20. Nevertheless, the substrate S and the phosphor layer are not altered by heating. Accordingly, an appropriate phosphor layer can be formed with good film forming material utilization efficiency.

なお、発熱体20を発熱させるタイミングには、特に限定はないが、ルツボ18(蒸発源)による成膜材料の加熱を開始する前に、発熱体20を発熱させて、発熱体20の温度(発熱)が所望の温度に安定した後に、この発熱体20の発熱を維持した状態で、ルツボ18による成膜材料の加熱を開始するのが好ましい。
この方法によれば、発熱体20の発熱温度を適正に把握して、制御することができる。
The timing for generating heat from the heating element 20 is not particularly limited, but before the heating of the film forming material by the crucible 18 (evaporation source) is started, the heating element 20 is caused to generate heat and the temperature of the heating element 20 ( After the heat generation is stabilized at a desired temperature, it is preferable to start heating the film forming material with the crucible 18 in a state where the heat generation of the heat generating element 20 is maintained.
According to this method, the heat generation temperature of the heat generator 20 can be properly grasped and controlled.

所定の層厚の蛍光体層を形成したら、蒸発源20の加熱を停止し、また、発熱体60の発熱を停止し、基板Sを回転している場合には回転を停止して、真空チャンバ12内を大気圧に戻して、真空チャンバ12を開放して、蛍光体層を形成した基板S(すなわち変換パネル)を取り出す。
なお、蛍光体層の層厚(膜厚)は、予め知見した加熱条件に応じた成膜レートによって制御してもよく、変位計党を用いて層厚を直接測定して制御してもよく、水晶振動子等を用いる蒸発量計等によって制御してもよい。
When the phosphor layer having a predetermined layer thickness is formed, the heating of the evaporation source 20 is stopped, the heat generation of the heating element 60 is stopped, and when the substrate S is rotated, the rotation is stopped and the vacuum chamber is stopped. The inside of 12 is returned to atmospheric pressure, the vacuum chamber 12 is opened, and the substrate S (that is, the conversion panel) on which the phosphor layer is formed is taken out.
In addition, the layer thickness (film thickness) of the phosphor layer may be controlled by a film formation rate according to a previously known heating condition, or may be controlled by directly measuring the layer thickness using a displacement meter party. Alternatively, it may be controlled by an evaporation meter using a crystal resonator or the like.

以上、本発明の真空蒸着方法について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   The vacuum deposition method of the present invention has been described in detail above, but the present invention is not limited to the above-described examples, and various improvements and modifications may be made without departing from the scope of the present invention. Of course.

[実施例1]
図1に示す蒸着装置10を用いて、基板Sに蛍光体層を形成した。
ルツボ18は、タンタル製の抵抗加熱用であり、ルツボ18内に、R型(白金−ロジウム)熱電対を挿入/固定した。なお、チムニー18aの上面(すなわち、蒸気排出口)は、8×60mmの長方形である。
このルツボ18内(ルツボ本体18a)に、臭化セシウム(CsBr 融点636℃)の粉末を600g充填した。
[Example 1]
A phosphor layer was formed on the substrate S using the vapor deposition apparatus 10 shown in FIG.
The crucible 18 is for tantalum resistance heating, and an R-type (platinum-rhodium) thermocouple was inserted / fixed in the crucible 18. The upper surface (that is, the steam outlet) of the chimney 18a is an 8 × 60 mm rectangle.
In this crucible 18 (crucible body 18a), 600 g of powder of cesium bromide (CsBr melting point 636 ° C.) was filled.

このルツボ18(チムニー18a上端)の直上0mmの位置(チムニー18a上端と発熱体20の下端が水平となる位置)に、外径80mm、高さ60mm、板厚0.2mmのタングステン製の円筒(上下面は開放)を発熱体20として固定した。発熱体20は、図1(B)に示すように、上面から見た際に、チムニー18aを囲むように配置した。
さらに、発熱体20の両端部(直径方向の両端部)には、抵抗加熱用の電源を接続し、また、外壁面にR型熱電対を当接して、バネで押圧/固定した。
A tungsten cylinder (outer diameter 80 mm, height 60 mm, plate thickness 0.2 mm) at a position 0 mm directly above the crucible 18 (the upper end of the chimney 18 a) (a position where the upper end of the chimney 18 a and the lower end of the heating element 20 are horizontal) The upper and lower surfaces were fixed as heating elements 20. As shown in FIG. 1B, the heating element 20 was disposed so as to surround the chimney 18a when viewed from above.
Further, a resistance heating power source was connected to both ends (diameter ends) of the heating element 20, and an R-type thermocouple was brought into contact with the outer wall surface and pressed / fixed with a spring.

さらに、基板ホルダ30に200×200mmで厚さ1.8mmのガラス製の基板Sを収容し、基板ホルダ30をホルダ装着部32に装着した。
なお、基板Sは蒸着源18(チムニー18a)の鉛直上で、基板Sとルツボ18との間隔は150mmとした。
Further, a glass substrate S of 200 × 200 mm and a thickness of 1.8 mm was accommodated in the substrate holder 30, and the substrate holder 30 was mounted on the holder mounting portion 32.
The substrate S was vertically above the vapor deposition source 18 (chimney 18a), and the distance between the substrate S and the crucible 18 was 150 mm.

その後、真空チャンバ12を閉塞して、メイン排気バルブを開いて、真空チャンバ12内を排気した。真空ポンプ(真空排気装置)は、ロータリーポンプ、メカニカルブースターポンプ、および、ディフュージョンポンプの組み合わせを用い、さらに、水分排気用のクライオポンプも併用した。
真空チャンバ12内が、2×10-3Paの真空度となった時点で、排気をメイン排気バルブからバイパスに切り換え、ガス導入手段22を用いて、真空チャンバ12内にアルゴンガスを導入して、真空チャンバ内の真空度を1Paとした。
Thereafter, the vacuum chamber 12 was closed, the main exhaust valve was opened, and the inside of the vacuum chamber 12 was exhausted. As the vacuum pump (evacuation apparatus), a combination of a rotary pump, a mechanical booster pump, and a diffusion pump was used, and a cryopump for exhausting moisture was also used.
When the inside of the vacuum chamber 12 reaches a vacuum degree of 2 × 10 −3 Pa, the exhaust is switched from the main exhaust valve to the bypass, and the gas introduction means 22 is used to introduce argon gas into the vacuum chamber 12. The degree of vacuum in the vacuum chamber was 1 Pa.

次いで、発熱体20に280Aの電流を供給して、当接したR型熱電対の温度測定結果から、発熱体20の温度が一定になったことを確認した後、ルツボ18に通電して、内部に挿入したR型熱電対の温度測定結果を用いて、ルツボ18内の温度が670℃の一定温度となるようにフィードバック制御した。
なお、発熱体20の温度は、469℃であった。
Next, a current of 280 A was supplied to the heating element 20, and after confirming that the temperature of the heating element 20 became constant from the temperature measurement result of the abutted R-type thermocouple, the crucible 18 was energized, Using the temperature measurement result of the R-type thermocouple inserted inside, feedback control was performed so that the temperature in the crucible 18 became a constant temperature of 670 ° C.
The temperature of the heating element 20 was 469 ° C.

ルツボ18内の温度が670℃で安定した時点で、シャッタ(図示省略)を開放して、基板Sへの蛍光体層(臭化セシウム層)の形成を開始した。
臭化セシウム層の形成を開始した後、90分が経過した時点で、ルツボ18への通電を停止し、次いで、発熱体20への通電を停止して、さらに、アルゴンガスの導入を停止した。
When the temperature in the crucible 18 was stabilized at 670 ° C., the shutter (not shown) was opened, and formation of the phosphor layer (cesium bromide layer) on the substrate S was started.
When 90 minutes passed after starting the formation of the cesium bromide layer, the energization to the crucible 18 was stopped, the energization to the heating element 20 was then stopped, and the introduction of argon gas was further stopped. .

その後、真空チャンバ12内を待機開放して、蛍光体層を形成した基板S、および、ルツボ18を真空チャンバ12から取り出した。
基板Sに成膜した蛍光体層の量すなわち基板Sに付着した臭化セシウムの量(重量)、および、ルツボ18内に残っていた臭化セシウムの量(重量)を測定し、その結果およびルツボ18への臭化セシウムの充填量(600g)から、原料利用効率(基板S付着量/(600−ルツボ内残量))を算出した。
その結果、原料利用効率は、59.8%であった。
Thereafter, the inside of the vacuum chamber 12 was opened for standby, and the substrate S on which the phosphor layer was formed and the crucible 18 were taken out of the vacuum chamber 12.
The amount of the phosphor layer formed on the substrate S, that is, the amount (weight) of cesium bromide adhering to the substrate S, and the amount (weight) of cesium bromide remaining in the crucible 18 were measured. From the filling amount (600 g) of cesium bromide into the crucible 18, the raw material utilization efficiency (the amount of substrate S attached / (600−remaining amount in the crucible)) was calculated.
As a result, the raw material utilization efficiency was 59.8%.

[実施例2および実施例3]
発熱体20への通電量を250Aとして、発熱体20の温度を443.5℃とした以外(実施例2); および、発熱体20への通電量を380Aとして、発熱体20の温度を568℃とした以外(実施例3); は、前記実施例1と全く同様にして、基板Sに蛍光体層(臭化セシウム層)を形成し、さらに、原料利用効率を算出した。
その結果、両者共に、原料利用効率は57.2%であった。
[Example 2 and Example 3]
Except for setting the energization amount to the heating element 20 to 250A and the temperature of the heating element 20 to 443.5 ° C. (Example 2); and setting the energization amount to the heating element 20 to 380A, the temperature of the heating element 20 is set to 568. Except that the temperature was set to 0 ° C. (Example 3); In the same manner as in Example 1, a phosphor layer (cesium bromide layer) was formed on the substrate S, and the raw material utilization efficiency was calculated.
As a result, in both cases, the raw material utilization efficiency was 57.2%.

[比較例1〜比較例4、および、比較例5]
発熱体20への通電量を80Aとして、発熱体20の温度を218.7℃とした以外(比較例1); 発熱体20への通電量を150Aとして、発熱体20の温度を323.4℃とした以外(比較例2); 発熱体20への通電量を215Aとして、発熱体20の温度を359.4℃とした以外(比較例3); および、発熱体20への通電量を230Aとして、発熱体20の温度を409.2℃とした以外(比較例4); ならびに、発熱体20への通電量を450Aとして、発熱体20の温度を734.8℃とした以外(比較例5); は、前記実施例1と全く同様にして、基板Sに蛍光体層(臭化セシウム層)を形成し、さらに、原料利用効率を算出した。
その結果、原料利用効率は、比較例1は26.4%、比較例2は24.9%、比較例3は34.3%、比較例4は49.9%、比較例5は、46.9%であった。
[Comparative Examples 1 to 4 and Comparative Example 5]
Except that the energization amount to the heating element 20 is 80A and the temperature of the heating element 20 is 218.7 ° C. (Comparative Example 1); The energization amount to the heating element 20 is 150A and the temperature of the heating element 20 is 323.4. (Comparative Example 2): Except for setting the energization amount to the heating element 20 to 215A and the temperature of the heating element 20 to 359.4 ° C (Comparative Example 3); 230A, except that the temperature of the heating element 20 is 409.2 ° C. (Comparative Example 4); and the amount of current supplied to the heating element 20 is 450 A, and the temperature of the heating element 20 is 734.8 ° C. (comparison) Example 5); In exactly the same manner as in Example 1, a phosphor layer (cesium bromide layer) was formed on the substrate S, and the raw material utilization efficiency was calculated.
As a result, the raw material utilization efficiency was 26.4% in Comparative Example 1, 24.9% in Comparative Example 2, 34.3% in Comparative Example 3, 49.9% in Comparative Example 4, and 46 in Comparative Example 5. 9%.

[比較例6]
発熱体20を設けなかった以外は、前記実施例1と全く同様にして、基板Sに蛍光体層(臭化セシウム層)を形成し、さらに、原料利用効率を算出した。
その結果、原料利用効率は、50%であった。
[Comparative Example 6]
Except that the heating element 20 was not provided, the phosphor layer (cesium bromide layer) was formed on the substrate S in the same manner as in Example 1, and the raw material utilization efficiency was calculated.
As a result, the raw material utilization efficiency was 50%.

発熱体の温度と原料利用効率との関係を、下記表1および図5に示す。

Figure 2008285719
The relationship between the temperature of the heating element and the raw material utilization efficiency is shown in Table 1 below and FIG.
Figure 2008285719

表1および図5に示すように、従来の真空蒸着方法である比較例は、いずれも、原料利用効率がいずれも50%以下であるのに対し、ルツボ18の上に発熱体20を設け、その温度を、成膜材料(臭化セシウム)の融点(636℃)未満で、かつ、融点−200℃以上(436℃以上)とした本発明によれば、いずれも、60%近い原料利用効率を得ることができており、従来の真空蒸着方法に比して、良好な原料利用効率を得られる。
以上の結果より、本発明の効果は明らかである。
As shown in Table 1 and FIG. 5, all of the comparative examples that are conventional vacuum deposition methods have a heating element 20 on the crucible 18 while the raw material utilization efficiency is 50% or less. According to the present invention, the temperature is lower than the melting point (636 ° C.) of the film forming material (cesium bromide) and the melting point is −200 ° C. or higher (436 ° C. or higher). As compared with the conventional vacuum vapor deposition method, good raw material utilization efficiency can be obtained.
From the above results, the effects of the present invention are clear.

本発明の真空蒸着方法を実施する真空蒸着装置の一例の概念図である。It is a conceptual diagram of an example of the vacuum evaporation system which enforces the vacuum evaporation method of this invention. 本発明の真空蒸着方法に利用可能な発熱体の別の例の概念図である。It is a conceptual diagram of another example of the heat generating body which can be used for the vacuum evaporation method of this invention. 本発明の真空蒸着方法を実施する真空蒸着装置の別の例の概念図で、(A)は略正面図、(B)は側面図である。It is a conceptual diagram of another example of the vacuum evaporation system which implements the vacuum evaporation method of this invention, (A) is a schematic front view, (B) is a side view. 図3に示す真空蒸着装置の加熱蒸発部の概略平面図である。It is a schematic plan view of the heating evaporation part of the vacuum evaporation system shown in FIG. 本発明の実施例の結果を示すグラフである。It is a graph which shows the result of the Example of this invention.

符号の説明Explanation of symbols

10 真空蒸着装置
12,52真空チャンバ
14 基板保持手段
16 基板回転手段
18,86 ルツボ
20 発熱体
22 ガス導入手段
24 発熱制御手段
30 基板ホルダ
32 ホルダ装着部
34 回転軸
54 基板搬送手段
56 加熱蒸発部
62 基板保持手段
64 搬送手段
68 ガイドレール
70 係合部材
72 ネジ軸
74 ナット部
76 回転駆動源
80 基台
82 保持部材
DESCRIPTION OF SYMBOLS 10 Vacuum evaporation apparatus 12,52 Vacuum chamber 14 Substrate holding means 16 Substrate rotation means 18,86 Crucible 20 Heating element 22 Gas introduction means 24 Heat generation control means 30 Substrate holder 32 Holder mounting part 34 Rotating shaft 54 Substrate transport means 56 Heating evaporation part 62 Substrate holding means 64 Conveying means 68 Guide rail 70 Engaging member 72 Screw shaft 74 Nut portion 76 Rotation drive source 80 Base 82 Holding member

Claims (5)

基板の表面に、真空蒸着によってアルカリハライド系の蛍光体からなる蛍光体層を形成するに際し、
成膜材料の蒸発源と基板との間に発熱体を設置し、この発熱体を、下記式(1)を満たす温度t[℃]に発熱させつつ、前記真空蒸着による蛍光体層の形成を行なうことを特徴とする真空蒸着方法。
T−200≦t<T (1)
(上記式(1)において、Tは成膜材料の沸点[℃])
When forming a phosphor layer made of an alkali halide phosphor by vacuum deposition on the surface of the substrate,
A heating element is installed between the evaporation source of the film forming material and the substrate, and the phosphor layer is formed by the vacuum deposition while the heating element generates heat at a temperature t [° C.] that satisfies the following formula (1). A vacuum vapor deposition method characterized by being performed.
T−200 ≦ t <T (1)
(In the above formula (1), T is the boiling point of the film forming material [° C.])
前記発熱体が、上面から見た際に前記蒸発源からの成膜材料蒸気の排出口を挟んで対面する板状体である請求項1に記載の真空蒸着方法。   The vacuum evaporation method according to claim 1, wherein the heating element is a plate-like body facing the film-forming material vapor discharge port from the evaporation source when viewed from above. 前記発熱体が、上面から見た際に前記蒸発源からの成膜材料蒸気の排出口を囲む筒状体である請求項1または2に記載の真空蒸着方法。   The vacuum deposition method according to claim 1, wherein the heating element is a cylindrical body that surrounds a film formation material vapor discharge port from the evaporation source when viewed from above. 前記アルカリハライド系の蛍光体が、臭化セシウムを含む請求項1〜3のいずれかに記載の真空蒸着方法。   The vacuum vapor deposition method according to claim 1, wherein the alkali halide phosphor contains cesium bromide. 前記アルカリハライド系の蛍光体が、さらに、ユーロピウムを含む請求項4に記載の真空蒸着方法。   The vacuum deposition method according to claim 4, wherein the alkali halide phosphor further contains europium.
JP2007131164A 2007-05-17 2007-05-17 Vacuum deposition method Withdrawn JP2008285719A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007131164A JP2008285719A (en) 2007-05-17 2007-05-17 Vacuum deposition method
US12/121,455 US20080286461A1 (en) 2007-05-17 2008-05-15 Vacuum evaporation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007131164A JP2008285719A (en) 2007-05-17 2007-05-17 Vacuum deposition method

Publications (1)

Publication Number Publication Date
JP2008285719A true JP2008285719A (en) 2008-11-27

Family

ID=40027776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007131164A Withdrawn JP2008285719A (en) 2007-05-17 2007-05-17 Vacuum deposition method

Country Status (2)

Country Link
US (1) US20080286461A1 (en)
JP (1) JP2008285719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168974A1 (en) * 2011-06-08 2012-12-13 パナソニック株式会社 Light-emitting panel, manufacturing method for light-emitting panel, and film deposition system
JP2020204070A (en) * 2019-06-17 2020-12-24 株式会社アルバック Vacuum evaporation system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5328726B2 (en) 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101084184B1 (en) 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
US9090967B1 (en) 2010-03-10 2015-07-28 Radiation Monitoring Devices, Inc. Microcolumnar lanthanum halide scintillator, devices and methods
US8674311B1 (en) * 2010-03-10 2014-03-18 Radiation Monitoring Devices, Inc. Polycrystalline lanthanum halide scintillator, devices and methods
US8084742B1 (en) * 2010-03-10 2011-12-27 Radiation Monitoring Devices, Inc. Positron emission tomography with phoswich detector, systems and methods
US8405035B1 (en) * 2010-03-10 2013-03-26 Radiation Monitoring Devices, Inc. Continuously variable phoswich detectors and methods
KR101156441B1 (en) 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) * 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101678056B1 (en) 2010-09-16 2016-11-22 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
US8829445B1 (en) 2011-04-28 2014-09-09 Radiation Monitoring Devices, Inc. Hot wall scintillator fabrication of strontium halide, calcium halide, cerium halide, and cesium barium halide scintillators
US8957386B1 (en) 2011-04-28 2015-02-17 Radiation Monitoring Devices, Inc. Doped cesium barium halide scintillator films
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR20130004830A (en) 2011-07-04 2013-01-14 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
KR102108361B1 (en) 2013-06-24 2020-05-11 삼성디스플레이 주식회사 Apparatus for monitoring deposition rate, apparatus for organic layer deposition using the same, method for monitoring deposition rate, and method for manufacturing of organic light emitting display apparatus using the same
CN103757591B (en) * 2013-12-31 2016-03-30 深圳市华星光电技术有限公司 A kind of Crucible equipment and the application in liquid crystal panel is produced thereof
CN107250422B (en) * 2015-03-11 2019-09-06 依视路国际公司 Hot vaporizer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853763A (en) * 1994-06-06 1996-02-27 Matsushita Electric Ind Co Ltd Production of thin film
US6237529B1 (en) * 2000-03-03 2001-05-29 Eastman Kodak Company Source for thermal physical vapor deposition of organic electroluminescent layers
JP2002181997A (en) * 2000-12-14 2002-06-26 Fuji Photo Film Co Ltd Radiation image conversion panel and method of reading radiation image information
US20030034458A1 (en) * 2001-03-30 2003-02-20 Fuji Photo Film Co., Ltd. Radiation image storage panel
JP2007070646A (en) * 2005-09-02 2007-03-22 Fujifilm Corp Method and apparatus for manufacturing radiation image conversion panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168974A1 (en) * 2011-06-08 2012-12-13 パナソニック株式会社 Light-emitting panel, manufacturing method for light-emitting panel, and film deposition system
US8952365B2 (en) 2011-06-08 2015-02-10 Panasonic Corporation Light-emitting panel, manufacturing method of light-emitting panel, and film forming system
JPWO2012168974A1 (en) * 2011-06-08 2015-02-23 パナソニック株式会社 Light emitting panel, light emitting panel manufacturing method, and film forming system
US9246138B2 (en) 2011-06-08 2016-01-26 Joled Inc. Light-emitting panel, manufacturing method of light-emitting panel, and film forming system
JP2020204070A (en) * 2019-06-17 2020-12-24 株式会社アルバック Vacuum evaporation system
JP7240963B2 (en) 2019-06-17 2023-03-16 株式会社アルバック Vacuum deposition equipment

Also Published As

Publication number Publication date
US20080286461A1 (en) 2008-11-20

Similar Documents

Publication Publication Date Title
JP2008285719A (en) Vacuum deposition method
US20070003718A1 (en) Reflector, heating crucible equipped with reflector and process for preparation of radiation image storage panel
US7439523B2 (en) Method for preparing radiation image storage panel
JP2005091345A (en) Method and device for producing vapor-deposition type phosphor sheet, and vapor deposition type phosphor sheet
US20050103273A1 (en) Vacuum evaporation crucible and phosphor sheet manufacturing apparatus using the same
JP2008088531A (en) Method for forming phosphor layer
US20070243313A1 (en) Method of manufacturing radiographic image conversion panel
US20050279285A1 (en) Phosphor sheet manufacturing apparatus
JP2010014469A (en) Manufacturing method of radiographic image conversion panel
JP2007297695A (en) Crucible for vacuum deposition and vacuum deposition system
JP2005126821A (en) Vacuum deposition apparatus and pretreatment method for vacuum deposition
JP2008082872A (en) Manufacturing method for radiation detector
JP2007270297A (en) Vacuum vapor deposition apparatus
JP2006219516A (en) Manufacturing method of radiation image-converting panel
JP2006271700A (en) Radiographic image conversion panel and radiographic diagnostic imaging system
JP2005350731A (en) Vacuum deposition system
US20050066901A1 (en) Vacuum deposition method and vacuum deposition device
JP2007126698A (en) Vacuum vapor deposition method
JP2006274308A (en) Phosphor sheet manufacturing apparatus
JP2006152395A (en) Vacuum vapor deposition method and vacuum vapor deposition system
JP3995038B2 (en) Phosphor sheet manufacturing equipment
JP2008014853A (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP2005351756A (en) Device for manufacturing phosphor sheet
JP2008139156A (en) Method of manufacturing planar radiation image detector
JP2005351762A (en) Device for manufacturing phosphor sheet

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100803