JP2008285458A - Method for producing polymeric tannin gel - Google Patents

Method for producing polymeric tannin gel Download PDF

Info

Publication number
JP2008285458A
JP2008285458A JP2007134407A JP2007134407A JP2008285458A JP 2008285458 A JP2008285458 A JP 2008285458A JP 2007134407 A JP2007134407 A JP 2007134407A JP 2007134407 A JP2007134407 A JP 2007134407A JP 2008285458 A JP2008285458 A JP 2008285458A
Authority
JP
Japan
Prior art keywords
tannin
gel
polymer
weight
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007134407A
Other languages
Japanese (ja)
Other versions
JP5344515B2 (en
Inventor
Junichi Kadokawa
淳一 門川
Tomoaki Matsuo
友明 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2007134407A priority Critical patent/JP5344515B2/en
Publication of JP2008285458A publication Critical patent/JP2008285458A/en
Application granted granted Critical
Publication of JP5344515B2 publication Critical patent/JP5344515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Unknown Constitution (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polymeric tannin gel, without using a large amount of an inorganic salt and a crosslinking agent. <P>SOLUTION: The method for producing a polymeric tannin gel comprises treating an aqueous solution of the polymeric tannin with hydrogen peroxide and a metal porphyrin complex. The gel produced by the above method is also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、酵素類似反応を用いる高分子タンニンゲルの製造方法に関する。   The present invention relates to a method for producing a polymer tannin gel using an enzyme-like reaction.

現在、プラスチック等の有機材料の多くは石油などの化石資源を原料に製造されているが、その供給量には限りがある。このため、化石資源に代わる有機資源として天然高分子の利用が期待されている。   Currently, many organic materials such as plastic are manufactured using fossil resources such as petroleum as raw materials, but their supply is limited. For this reason, use of natural polymers is expected as an organic resource to replace fossil resources.

タンニンは、植物の幹、皮、葉、実等から抽出される天然物であり、一般に皮なめし剤として用いられている環境に優しい物質である。タンニンには、ピロガロール系の加水分解型タンニンとカテコール系の縮合型タンニンがある。加水分解型タンニンは比較的低分子であることも手伝って、漢方薬など多くの植物材料から単離、同定が進み、基礎的な研究がほとんどこの型のタンニンだけを用いてなされていた。一方、縮合型タンニンは明確には同定されていなかった。縮合型タンニンは植物の樹皮や渋柿等に含まれ、抗酸化性やラジカル消去能を持ち、重金属と結合するなどの機能を有している。次式:   Tannin is a natural product extracted from plant trunks, skins, leaves, fruits, etc., and is an environmentally friendly substance generally used as a tanning agent. Tannin includes pyrogallol-based hydrolyzable tannin and catechol-based condensed tannin. Hydrolyzed tannins have been isolated and identified from many plant materials such as traditional Chinese medicine, helping to be relatively small molecules, and most basic research has been done using only this type of tannin. On the other hand, condensed tannin has not been clearly identified. Condensed tannins are contained in plant bark, astringents, etc., and have antioxidant properties, radical scavenging ability, and functions such as binding to heavy metals. The following formula:

Figure 2008285458
に例示するように縮合型タンニンは、ポリフェノールの一種であるカテキン類が互いにC−C結合で結ばれ、酸や酸素によってこの縮合が更に進行した高分子構造を有している。しかし、水への溶解性や強度のなさから用途が限られており、ほとんどが未利用資源となっている。このため、これを材料の素材として有効利用できれば、有用な資源となると考えられ、すでにホウ酸塩、リン酸塩等とアルカリ金属塩又はアルカリ土類金属塩とを用いたゲル化(特許文献1)、架橋剤を用いての化学的架橋によるゲル化(非特許文献1)が報告されている。しかし、この場合、ゲル化のために多量の無機塩や架橋剤を用いなければならず、他の架橋方法によるゲル化が望ましい。ここで高分子タンニンは一種のポリフェノールであるので、酸化還元酵素による架橋反応が可能と考えられるが、高分子タンニンは強力なタンパク質凝集作用を持つために酵素との反応を阻害してしまう(例えば、非特許文献2)。
Figure 2008285458
As exemplified in the above, condensed tannin has a polymer structure in which catechins, which are a kind of polyphenol, are connected to each other by a C—C bond, and this condensation further proceeds by acid or oxygen. However, its use is limited due to its solubility in water and lack of strength, and most are unused resources. For this reason, if this can be effectively used as a raw material of the material, it is considered to be a useful resource. Gelation using a borate, a phosphate, or the like and an alkali metal salt or an alkaline earth metal salt (Patent Document 1) ), Gelation by chemical crosslinking using a crosslinking agent (Non-patent Document 1) has been reported. However, in this case, a large amount of inorganic salt or crosslinking agent must be used for gelation, and gelation by other crosslinking methods is desirable. Here, the polymer tannin is a kind of polyphenol, and thus it is considered that a crosslinking reaction by an oxidoreductase is possible. However, the polymer tannin has a strong protein agglutinating action and thus inhibits the reaction with the enzyme (for example, Non-Patent Document 2).

金属ポルフィリン錯体は、従来より酸化反応触媒として用いられており、例えば特許文献2には、ヒドロキノン等のフェノール類を、金属ポルフィリン錯体の存在下、酸化剤で酸化してp−ベンゾキノン類を製造する方法が開示されている。また、鉄−プロトポルフィリン錯体は、過酸化水素存在下、酵素類似の酸化還元反応を触媒し、フェノール類の酸化重合などに用いられている(非特許文献3及び4)。   Metal porphyrin complexes have been conventionally used as oxidation reaction catalysts. For example, Patent Document 2 discloses that p-benzoquinones are produced by oxidizing phenols such as hydroquinone with an oxidizing agent in the presence of a metal porphyrin complex. A method is disclosed. Moreover, an iron-protoporphyrin complex catalyzes an enzyme-like oxidation-reduction reaction in the presence of hydrogen peroxide and is used for oxidative polymerization of phenols (Non-patent Documents 3 and 4).

しかしながら、金属ポルフィリン錯体を高分子タンニンの架橋反応の触媒に用いることは報告されていない。   However, it has not been reported that a metal porphyrin complex is used as a catalyst for a crosslinking reaction of a polymer tannin.

国際公開第2006/085541号パンフレットInternational Publication No. 2006/088551 Pamphlet 特開平9−176082号公報Japanese Patent Laid-Open No. 9-176082 Y. Nakano, K. Takeshita, T. Tsutsumi, Wat. Res., 2001, 35, 496-500Y. Nakano, K. Takeshita, T. Tsutsumi, Wat. Res., 2001, 35, 496-500 農業および園芸、第75巻、第1号(2000年)第3〜13頁、果実のタンニンと関連化合物の化学と利用[1]Agriculture and Horticulture, Vol. 75, No. 1 (2000), pp. 3-13, Chemistry and utilization of fruit tannins and related compounds [1] M. Akita, et al., Biotechnol. Lett., 2001, 23, 1827-1831M. Akita, et al., Biotechnol. Lett., 2001, 23, 1827-1831 J.A. Akkara et al., Macromolecules, 2000, 33, 2377-2382J.A.Akkara et al., Macromolecules, 2000, 33, 2377-2382

本発明の課題は、多量の無機塩や架橋剤を用いずに高分子タンニンゲルを製造する方法を提供することである。   An object of the present invention is to provide a method for producing a polymer tannin gel without using a large amount of an inorganic salt or a crosslinking agent.

前記課題に鑑み研究を重ねた結果、本発明者らは、高分子タンニンを、金属ポルフィリン錯体の存在下、過酸化水素と反応させることにより高分子タンニンのゲル化に成功し、本発明を完成した。   As a result of repeated research in view of the above problems, the present inventors have succeeded in gelation of a polymer tannin by reacting the polymer tannin with hydrogen peroxide in the presence of a metalloporphyrin complex, thereby completing the present invention. did.

即ち、本発明の要旨は以下のとおりである。
(1)高分子タンニン水溶液を過酸化水素及び金属ポルフィリン錯体で処理することを特徴とする高分子タンニンゲルの製造方法。
(2)高分子タンニンが縮合型タンニンである前記(1)に記載の方法。
(3)縮合型タンニンがカキタンニンである前記(2)に記載の方法。
(4)金属ポルフィリン錯体が鉄−プロトポルフィリン錯体である前記(1)〜(3)のいずれかに記載の方法。
(5)高分子タンニン水溶液中の高分子タンニン濃度が5〜50重量%である前記(1)〜(4)のいずれかに記載の方法。
(6)前記(1)〜(5)のいずれかに記載の方法によって得られるゲル。
That is, the gist of the present invention is as follows.
(1) A method for producing a polymer tannin gel, comprising treating a polymer tannin aqueous solution with hydrogen peroxide and a metalloporphyrin complex.
(2) The method according to (1), wherein the polymer tannin is condensed tannin.
(3) The method according to (2) above, wherein the condensed tannin is kakitannin.
(4) The method according to any one of (1) to (3), wherein the metalloporphyrin complex is an iron-protoporphyrin complex.
(5) The method according to any one of (1) to (4), wherein the polymer tannin concentration in the polymer tannin aqueous solution is 5 to 50% by weight.
(6) A gel obtained by the method according to any one of (1) to (5).

本発明によれば、多量の無機塩や架橋剤を用いずに高分子タンニンゲルを製造することができる。   According to the present invention, a polymer tannin gel can be produced without using a large amount of an inorganic salt or a crosslinking agent.

以下、本発明を詳細に説明する。
タンニンは、植物の幹、皮、葉、実等から抽出される天然物であり、環境に優しい物質である。タンニンには、ピロガロール系の加水分解型タンニンとカテコール系の縮合型タンニンがある。
Hereinafter, the present invention will be described in detail.
Tannins are natural products extracted from plant trunks, skins, leaves, fruits, etc., and are environmentally friendly substances. Tannin includes pyrogallol-based hydrolyzable tannin and catechol-based condensed tannin.

本発明に用いる高分子タンニンとは、植物の幹、皮、葉、実等から熱水やアルコール等で抽出されるポリフェノール重縮合体であり、渋みを呈し、多くのタンパク質と強く結合して沈殿を生じるものをいい、通常分子量は約2千〜約100万であり、好ましくは分子量1万以上のものを用いる。本発明においては、加水分解型及びカテコール系の縮合型のいずれの高分子タンニンを用いてもよいが、カテコール系の縮合型タンニンが好ましい。高分子タンニンとしては、例えばケブラチョタンニン、ミモザタンニン、ワットルタンニン等の心材や樹皮に含まれる高分子タンニン;バナナ、リンゴ、カキ等の未熟果実に含まれる高分子タンニン;キャロブ豆、ブドウ等の未熟なサヤや種子に含まれる高分子タンニンが挙げられる。   The polymer tannin used in the present invention is a polyphenol polycondensate extracted from plant trunk, skin, leaves, fruits, etc. with hot water, alcohol, etc., exhibits astringency, strongly binds to many proteins and precipitates. In general, the molecular weight is about 2,000 to about 1,000,000, preferably 10,000 or more. In the present invention, any of hydrolyzed and catechol-based condensed tannins may be used, but catechol-based condensed tannins are preferred. Examples of the high molecular tannin include high molecular tannin contained in heartwood and bark such as quebracho tannin, mimosa tannin and wattle tannin; high molecular tannin contained in immature fruits such as banana, apple and oyster; carob beans, grapes, etc. High-molecular-weight tannin contained in unripe pods and seeds.

一般に「タンニン」と呼ばれる緑茶や紅茶に含まれるカテキン等のポリフェノールは低分子であるため、皮の鞣し作用はほとんどなく、タンパク質との結合も弱く、分子量もカテキンが290で、大きなものでも400から500であり、本発明に用いる高分子タンニンとは異なる。   In general, polyphenols such as catechin and the like contained in green tea and black tea called “tannin” are low in molecular weight, have almost no skin tanning action, weakly bind to proteins, have a molecular weight of 290 catechins, and even large ones from 400 500, which is different from the polymeric tannin used in the present invention.

前記高分子タンニンは、原料から抽出後、通常は乾燥して粉末として用いられる。下記の実施例では、前記粉末の高分子タンニンを水に溶解したものを前記高分子タンニン水溶液として用いたが、原料からの抽出液をそのまま高分子タンニン水溶液として用いてもよい。   The polymer tannin is extracted from the raw material and then usually dried and used as a powder. In the following examples, the powdery polymer tannin dissolved in water was used as the polymer tannin aqueous solution, but an extract from the raw material may be used as it is as the polymer tannin aqueous solution.

高分子タンニンの原材料(例えば、カキタンニンでは柿渋)には、高分子タンニン以外に有機酸、アミノ酸等が含まれているため、必要に応じて精製して、これらの不純物を除去したものを用いてもよい。   The raw materials for high molecular tannin (for example, persimmon astringent for oyster tannin) contain organic acids, amino acids, etc. in addition to high molecular tannin. May be.

本発明において、高分子タンニン水溶液における高分子タンニン濃度は、通常1〜50重量%であり、力学的特性の点から、好ましくは5〜50重量%、更に好ましくは10〜50重量%、最も好ましくは30〜50重量%である。高分子タンニン濃度が低い場合には、流動性のあるゲルができ、高分子タンニン濃度10〜50重量%の範囲では、過酸化水素の添加量によって流動性のあるゲルや硬いゲルが得られる。   In the present invention, the polymer tannin concentration in the polymer tannin aqueous solution is usually 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 50% by weight, most preferably from the viewpoint of mechanical properties. Is 30 to 50% by weight. When the polymer tannin concentration is low, a fluid gel is formed. When the polymer tannin concentration is in the range of 10 to 50% by weight, a fluid gel or a hard gel is obtained depending on the amount of hydrogen peroxide added.

本発明においては、高分子タンニン水溶液を過酸化水素及び金属ポルフィリン錯体で処理することにより、高分子タンニンゲルを製造することができる。   In the present invention, a polymer tannin gel can be produced by treating a polymer tannin aqueous solution with hydrogen peroxide and a metalloporphyrin complex.

本発明に用いる金属ポルフィリン錯体としては、好ましくは、金属プロトポルフィリン錯体、金属デューテロポルフィリン錯体、金属ジアセチルデューテロポルフィリン錯体、金属メソポルフィリン錯体、金属ジホルミルポルフィリン錯体、金属テトラフェニルポルフィリン錯体、金属オクタエチルポルフィリンが挙げられる。また、中心金属は、鉄又はコバルト、特に鉄(III)が好ましい。   The metal porphyrin complex used in the present invention is preferably a metal protoporphyrin complex, a metal deuteroporphyrin complex, a metal diacetyl deuteroporphyrin complex, a metal mesoporphyrin complex, a metal diformyl porphyrin complex, a metal tetraphenyl porphyrin complex, or a metal octaphenyl porphyrin complex. An ethyl porphyrin is mentioned. The central metal is preferably iron or cobalt, particularly iron (III).

好ましい金属ポルフィリン錯体の具体例としては、
次式:

Figure 2008285458
で示されるヘミン及びヘマチンが挙げられる。 As a specific example of a preferable metal porphyrin complex,
The following formula:
Figure 2008285458
The hemin and hematin shown by these are mentioned.

過酸化水素は、通常10〜30w/v%水溶液として用いられる。過酸化水素の反応溶液中の濃度は、金属ポルフィリン錯体1mmol当たり、通常44〜220mmol、好ましくは132〜220mmolである。   Hydrogen peroxide is usually used as a 10-30 w / v% aqueous solution. The concentration of hydrogen peroxide in the reaction solution is usually 44 to 220 mmol, preferably 132 to 220 mmol, per 1 mmol of the metal porphyrin complex.

処理温度は、通常10〜30℃、好ましくは20〜25℃であり、処理時間は、通常8〜48時間、好ましくは12〜24時間である。   The treatment temperature is usually 10 to 30 ° C., preferably 20 to 25 ° C., and the treatment time is usually 8 to 48 hours, preferably 12 to 24 hours.

高分子タンニンの水溶液中の濃度や架橋の程度を調節することにより、目的に応じて、高分子タンニンの流動性のあるゲル又は硬いゲルを適宜製造することができる。   By adjusting the concentration of the polymer tannin in the aqueous solution and the degree of crosslinking, a fluid gel or a hard gel of the polymer tannin can be appropriately produced according to the purpose.

本発明には、必要に応じ本発明の効果を損なわない範囲で、各種添加剤を用いることができる。   Various additives can be used for this invention in the range which does not impair the effect of this invention as needed.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, the scope of the present invention is not limited to these Examples.

以下の実施例において、カキタンニンとしては丸善製薬株式会社(尾道、広島県)から入手した、精製したカキタンニン粉末を用いた。   In the following examples, purified oyster tannin powder obtained from Maruzen Pharmaceutical Co., Ltd. (Onomichi, Hiroshima Prefecture) was used as oyster tannin.

(実施例1)
水10mlに精製したカキタンニンを5〜50重量%溶解させた高分子タンニン水溶液にヘマチン(0.01g,0.016mmol)を加え、30w/v%過酸化水素水0.2〜0.5mlを滴下し、室温で12時間撹拌することにより反応させた(表1)。
Example 1
Hematin (0.01 g, 0.016 mmol) is added to a polymer tannin aqueous solution in which 5 to 50% by weight of purified kakitannin is dissolved in 10 ml of water, and 0.2 to 0.5 ml of 30 w / v% hydrogen peroxide water is added. It was made to react by dripping and stirring at room temperature for 12 hours (Table 1).

Figure 2008285458
Figure 2008285458

タンニンのモル濃度は典型的な構造に基づいて算出した。破断応力及び破断歪率の値は、小型卓上試験機((株)東京試験機、リトルセンスター)を用いた圧縮試験によって測定した。ゲルを直径25mm、高さ10mm程度の円柱状にカットしたサンプルを調製し、圧縮速度1mm/分で測定を行った。ゲルが破断したところで測定を終了した。   The molar concentration of tannin was calculated based on a typical structure. The values of the breaking stress and the breaking strain rate were measured by a compression test using a small desktop testing machine (Tokyo Testing Machine Co., Ltd., Little Senster). A sample was prepared by cutting the gel into a cylindrical shape with a diameter of 25 mm and a height of about 10 mm, and the measurement was performed at a compression rate of 1 mm / min. The measurement was terminated when the gel broke.

タンニン濃度が5重量%では流動性のあるゲルが得られ、それ未満の濃度ではゲル化しなかった。また、50重量%より高濃度ではタンニン水溶液自身の粘度が非常に高く、反応を行うことが困難であった。タンニン濃度10〜50重量%の範囲では、過酸化水素の添加量によって流動性を持つゲルや硬いゲルなどが得られたが、調製したゲルの中でも力学的特性に優れていると判断できたタンニン濃度30〜50重量%のゲルについて圧縮試験を行った(図1〜3)。   When the tannin concentration was 5% by weight, a fluid gel was obtained, and at a concentration lower than that, gelation did not occur. On the other hand, when the concentration is higher than 50% by weight, the viscosity of the tannin aqueous solution itself is very high, making it difficult to carry out the reaction. In the tannin concentration range of 10 to 50% by weight, fluid gels and hard gels were obtained depending on the amount of hydrogen peroxide added. Tannins that were judged to have excellent mechanical properties among the prepared gels. A compression test was performed on gels having a concentration of 30 to 50% by weight (FIGS. 1 to 3).

図1〜3に示したタンニン濃度30、40及び50重量%で圧縮試験を行った結果のとおり、それぞれの濃度において過酸化水素の使用量を変化させてもゲルの破断応力と破断歪率にそれほど変化はなかった。破断応力はタンニン濃度が高くなると大きくなった。破断歪率はタンニン濃度30重量%より40重量%では大きくなったが、50重量%ではほとんど変化がなかった。   As shown in the results of the compression test performed at tannin concentrations of 30, 40, and 50% by weight shown in FIGS. There was not much change. The breaking stress increased with increasing tannin concentration. The breaking strain increased at a tannin concentration of 30% by weight at 40% by weight, but at 50% by weight there was little change.

(実施例2)
水10mlに精製したカキタンニン5gを溶解させた高分子タンニン水溶液にヘマチン(0.01g,0.016mmol)を加え、30w/v%過酸化水素水0.2mlを滴下し、室温で1時間反応させた後、薄い容器に移し、更に12時間反応させて流動性のあるゲルを調製した。このゲルを自然乾燥することで、比較的強度のある材料が得られた。
(Example 2)
Hematin (0.01 g, 0.016 mmol) is added to a polymer tannin aqueous solution in which 5 g of purified oyster tannin is dissolved in 10 ml of water, and 0.2 ml of 30 w / v% hydrogen peroxide water is added dropwise and reacted at room temperature for 1 hour. Then, it was transferred to a thin container and reacted for another 12 hours to prepare a fluid gel. By relatively drying the gel, a relatively strong material was obtained.

本発明の方法によって得られるゲルは、抗菌性、抗酸化性、消臭性、抗ウイルス、抗ダニ性ゲルとして利用できる。   The gel obtained by the method of the present invention can be used as an antibacterial, antioxidant, deodorant, antiviral, and anti-mite gel.

タンニン濃度30重量%における高分子タンニンゲルの応力−歪曲線を示す図である。It is a figure which shows the stress-strain curve of the polymeric tannin gel in tannin density | concentration of 30 weight%. タンニン濃度40重量%における高分子タンニンゲルの応力−歪曲線を示す図である。It is a figure which shows the stress-strain curve of the polymeric tannin gel in tannin density | concentration of 40 weight%. タンニン濃度50重量%における高分子タンニンゲルの応力−歪曲線を示す図である。It is a figure which shows the stress-strain curve of the polymeric tannin gel in tannin density | concentration of 50 weight%.

Claims (6)

高分子タンニン水溶液を過酸化水素及び金属ポルフィリン錯体で処理することを特徴とする高分子タンニンゲルの製造方法。   A method for producing a polymer tannin gel, comprising treating a polymer tannin aqueous solution with hydrogen peroxide and a metalloporphyrin complex. 高分子タンニンが縮合型タンニンである請求項1記載の方法。   The method according to claim 1, wherein the high molecular weight tannin is condensed tannin. 縮合型タンニンがカキタンニンである請求項2記載の方法。   The method according to claim 2, wherein the condensed tannin is kakitannin. 金属ポルフィリン錯体が鉄−プロトポルフィリン錯体である請求項1〜3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the metalloporphyrin complex is an iron-protoporphyrin complex. 高分子タンニン水溶液中の高分子タンニン濃度が5〜50重量%である請求項1〜4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the polymer tannin concentration in the polymer tannin aqueous solution is 5 to 50 wt%. 請求項1〜5のいずれか1項に記載の方法によって得られるゲル。   The gel obtained by the method of any one of Claims 1-5.
JP2007134407A 2007-05-21 2007-05-21 Method for producing polymer tannin gel Expired - Fee Related JP5344515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007134407A JP5344515B2 (en) 2007-05-21 2007-05-21 Method for producing polymer tannin gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007134407A JP5344515B2 (en) 2007-05-21 2007-05-21 Method for producing polymer tannin gel

Publications (2)

Publication Number Publication Date
JP2008285458A true JP2008285458A (en) 2008-11-27
JP5344515B2 JP5344515B2 (en) 2013-11-20

Family

ID=40145535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007134407A Expired - Fee Related JP5344515B2 (en) 2007-05-21 2007-05-21 Method for producing polymer tannin gel

Country Status (1)

Country Link
JP (1) JP5344515B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184285A (en) * 2011-03-03 2012-09-27 Kagoshima Univ Methods for producing highly viscous solution and gel of high molecular weight tannin
EP2618856A1 (en) * 2010-09-24 2013-07-31 Takasago International Corporation Deodorant composition for sulfides

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176082A (en) * 1995-12-25 1997-07-08 Kemipuro Kasei Kk Production of p-benzoquinones
JP2002047375A (en) * 1995-09-18 2002-02-12 Internatl Business Mach Corp <Ibm> Method for manufacturing crosslinked bio-material
JP2004153086A (en) * 2002-10-31 2004-05-27 Showa Denko Kk Metal abrasive compound, metal film grinding method and substrate manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047375A (en) * 1995-09-18 2002-02-12 Internatl Business Mach Corp <Ibm> Method for manufacturing crosslinked bio-material
JPH09176082A (en) * 1995-12-25 1997-07-08 Kemipuro Kasei Kk Production of p-benzoquinones
JP2004153086A (en) * 2002-10-31 2004-05-27 Showa Denko Kk Metal abrasive compound, metal film grinding method and substrate manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012023741; 園芸学会雑誌 (2006) vol.75, 別冊2, p.433 *
JPN6012023743; Macromolecules (2000) vol.33, no.7, p.2377-2382 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2618856A1 (en) * 2010-09-24 2013-07-31 Takasago International Corporation Deodorant composition for sulfides
EP2618856A4 (en) * 2010-09-24 2014-03-12 Takasago Perfumery Co Ltd Deodorant composition for sulfides
JP2012184285A (en) * 2011-03-03 2012-09-27 Kagoshima Univ Methods for producing highly viscous solution and gel of high molecular weight tannin

Also Published As

Publication number Publication date
JP5344515B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Li et al. Facile fabrication of self-healable and antibacterial soy protein-based films with high mechanical strength
Forootanfar et al. Insights into laccase producing organisms, fermentation states, purification strategies, and biotechnological applications
Krogsgaard et al. Mussel‐inspired materials: self‐healing through coordination chemistry
Pezzella et al. How to enjoy laccases
Kaur et al. Sustainable lignin-based coatings doped with titanium dioxide nanocomposites exhibit synergistic microbicidal and UV-blocking performance toward personal protective equipment
Wanasinghe et al. Dynamic bonds: adaptable timescales for responsive materials
Kan et al. Effective and environmentally safe self-antimildew strategy to simultaneously improve the mildew and water resistances of soybean flour-based adhesives
JP4892727B2 (en) Enzymatic cross-linking reaction of macromolecular tannins
CN103403031B (en) Polyrotaxane composition
JP5785666B1 (en) Antibacterial floor
JP5344515B2 (en) Method for producing polymer tannin gel
Piscitelli et al. Last advances in synthesis of added value compounds and materials by laccasemediated biocatalysis
Zhao et al. Gallol‐Tethered Injectable AuNP Hydrogel with Desirable Self‐Healing and Catalytic Properties
CN102849859A (en) Method for preparing multifunctional water treatment agent derived from pomegranate bark extract
Shin et al. Ferritin Nanoshuttle for Long-Lasting Self-Healing of Phenolic Hydrogels
CN101747506A (en) Method for preparing molecularly imprinted polymer enriched with trace enrofloxacin
Ke et al. Aqueous biphasic systems containing customizable poly (ionic Liquid) s for highly efficient extractions
Zhen et al. Chemical derivatization of commercially available condensed and Hydrolyzable tannins
KR101300076B1 (en) Process for grafting functional polymers onto cellulose-based filter materials
JP5608903B2 (en) High viscosity solution of polymer tannin and method for producing gel
KR101757890B1 (en) Method for preparing polymer-porous inorganic carrier complex for controlled active materials release
CN101361982A (en) Preparation method of folacin coupled chitosan
Li et al. Laccase-catalyzed synthesis of added-value polymers from cork and grape extracts
Li et al. Enzyme cascade reaction involving lytic polysaccharide monooxygenase and dye-decolorizing peroxidase for chitosan functionalization
JP5115973B2 (en) Method for producing molded article made of natural material using cross-linking reaction of polymer tannin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees