JP2008281696A - Method of correcting defect on color filter substrate with transparent conductive film and color filter substrate with transparent conductive film - Google Patents

Method of correcting defect on color filter substrate with transparent conductive film and color filter substrate with transparent conductive film Download PDF

Info

Publication number
JP2008281696A
JP2008281696A JP2007124670A JP2007124670A JP2008281696A JP 2008281696 A JP2008281696 A JP 2008281696A JP 2007124670 A JP2007124670 A JP 2007124670A JP 2007124670 A JP2007124670 A JP 2007124670A JP 2008281696 A JP2008281696 A JP 2008281696A
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
color filter
defect
filter substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007124670A
Other languages
Japanese (ja)
Other versions
JP4924192B2 (en
Inventor
Tsuneyoshi Shimizu
恒芳 清水
Koichi Asahi
晃一 旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2007124670A priority Critical patent/JP4924192B2/en
Publication of JP2008281696A publication Critical patent/JP2008281696A/en
Application granted granted Critical
Publication of JP4924192B2 publication Critical patent/JP4924192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of correcting defects which is advantageous in the view of productivity and by which the defects on a transparent conductive film and further the defects on a layer under the transparent conductive film are corrected in the color filter substrate with the transparent conductive layer which is a color filter forming substrate for a liquid crystal display element and is formed by laminating a color layer and the transparent conductive film at least on one surface of a base substrate or a substrate in this order in an intermediate process for forming the color filter forming substrate. <P>SOLUTION: The correction of each defect part is carried out by irradiating an area including the defect part with laser to remove each layer on the area to expose the surface of the base substrate in the area including the defect part to form as a white defect part spread over each layer and correcting the formed white defect part spread over each layer in every layers in the order of lamination. The correction of the white defect part in each layer is carried out by applying a correcting material and if need, by performing one or more of drying, curing and firing. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、ベース基板の一面に、少なくとも着色層、透明導電性膜をこの順に積層した、カラーフィルタ形成基板に対して、欠陥箇所を修正する、欠陥修正方法と、該欠陥修正方法により修正されたカラーフィルタ形成基板に関する。   The present invention is a defect correction method for correcting a defect portion on a color filter forming substrate in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of a base substrate, and the defect correction method corrects the defect portion. The present invention relates to a color filter forming substrate.

液晶表示素子は、通常、カラーフィルタが形成されて電極を有するカラーフィルタ形成基板と、薄膜トランジスタ(TFT)や複数の走査電極などを具備した電極基板との、電極を有する2枚の基板を対向させて、両基板間に液晶が狭持された構造とされている。 カラーフィルタ形成基板には、例えば、透明基板上に、順に、ブラックマトリクス、赤、緑、青の着色画素、オーバーコート、透明電極が形成されている。   In a liquid crystal display element, usually, a color filter forming substrate having a color filter formed thereon and an electrode and an electrode substrate having a thin film transistor (TFT), a plurality of scanning electrodes, and the like are opposed to each other. Thus, the liquid crystal is sandwiched between the substrates. In the color filter forming substrate, for example, a black matrix, red, green, and blue colored pixels, an overcoat, and a transparent electrode are sequentially formed on a transparent substrate.

近年では、より高品位表示の液晶表示素子として、更に、柱状スペーサを用いたセル構造とし、且つ、配向制御用突起を設け、配向分割垂直配向型(以下、MVAモードあるいは複数配向分割型とも言う)とするものが提案されている。
MVAモードは、広視野角、高速応答を実行するために極めて有望で、カラーフィルタ形成基板において、カラーフィルタ表面に配向制御用突起を設けることによって、配向の乱れによる光が漏れることをほぼ完全に防ぐことができる。
これに伴い、MVAモードの液晶表示素子作製のために、上記柱状スペーサーと配向制御用突起とを配したカラーフィルタ形成基板の作製が求められている。
このカラーフィルタ形成基板は、透明基板上に、順に、ブラックマトリクス、赤、緑、青の着色画素、オーバーコート、透明電極が形成され、更に、透明電極上に、柱状スペーサーと配向制御用突起とを配している。
例えば、図4(a)にその一部断面を示し、図4(b)にその平面図を示すように、透明基板111上に透明基板上にブラックマトリクス112、着色層113a〜113c、透明導電膜115、液晶間隔制御用の柱スペーサ117、液晶の配向を制御するための配向制御用突起116を、この順に、配設している。
尚、図4(b)は図4(a)のE1側からみた図で、図4(a)は図4(b)のE2−E3側における断面を示した図である。
図4中、114はオーバコート層で、113A、113B、113Cはそれぞれ、第1の着色層113aの領域、第2の着色層113bの領域、第3の着色層113cの領域を示すもので、太点線はこれらの領域の境界を示している。
そして、このようなカラーフィルタ形成基板を用いて、図5に示すような、MVAモードの液晶表示パネルが作製される。
また、図5中、250はカラーフィルタ形成基板、251は透明基板、252はブラックマトリクス、253a〜253cは着色層、254はオーバコート層、255は透明導電膜(ITO膜;SnO2 をドープしたIn2 3 からなる膜)、258は柱状スペーサ、259は配向制御用突起、262は液晶、262a、262bは配向材、270は対向基板、271は透明基板、272は透明電極、280は拡散板、281はバックライトである。
In recent years, as a liquid crystal display element of higher quality display, a cell structure using columnar spacers is provided, and an alignment control protrusion is provided, which is referred to as an alignment division vertical alignment type (hereinafter also referred to as MVA mode or multiple alignment division type). ) Has been proposed.
The MVA mode is extremely promising for executing a wide viewing angle and a high-speed response. By providing alignment control protrusions on the color filter surface on the color filter forming substrate, it is almost completely possible that light due to the disorder of alignment leaks. Can be prevented.
Accordingly, in order to manufacture an MVA mode liquid crystal display element, it is required to manufacture a color filter forming substrate in which the columnar spacer and the alignment control protrusion are arranged.
In this color filter forming substrate, a black matrix, red, green, and blue colored pixels, an overcoat, and a transparent electrode are sequentially formed on a transparent substrate. Further, a columnar spacer and an alignment control protrusion are formed on the transparent electrode. Is arranged.
For example, as shown in FIG. 4A and a plan view thereof in FIG. 4A, a black matrix 112 on the transparent substrate 111, colored layers 113a to 113c, transparent conductive material on the transparent substrate 111 are shown. The film 115, the column spacer 117 for controlling the liquid crystal interval, and the alignment control protrusion 116 for controlling the alignment of the liquid crystal are arranged in this order.
4B is a view as seen from the E1 side in FIG. 4A, and FIG. 4A is a view showing a cross section on the E2-E3 side in FIG. 4B.
In FIG. 4, 114 is an overcoat layer, 113A, 113B, and 113C respectively indicate the region of the first colored layer 113a, the region of the second colored layer 113b, and the region of the third colored layer 113c. The bold dotted line indicates the boundary between these regions.
Then, using such a color filter forming substrate, an MVA mode liquid crystal display panel as shown in FIG. 5 is manufactured.
In FIG. 5, 250 is a color filter forming substrate, 251 is a transparent substrate, 252 is a black matrix, 253a to 253c are colored layers, 254 is an overcoat layer, 255 is a transparent conductive film (ITO film; doped with SnO 2 ) in 2 O 3 consisting of film), 258 is a columnar spacer, 259 alignment control projection, 262 liquid crystal, 262a, 262b are oriented material, the opposing substrate 270, the transparent substrate 271, 272 a transparent electrode, 280 is diffused A plate 281 is a backlight.

このような、透明基板上に、順に、ブラックマトリクス、赤、緑、青の着色画素、オーバーコート、透明電極が形成されている、液晶表示素子用のカラーフィルタ形成基板あるいは該カラーフィルタ形成基板を作製するための中間工程の基板である、透明導電性膜付きカラーフィルタ基板においては、従来、ITO膜を簡単に修正できる方法はなく、修正せずに良品のみを液晶表示装置に提供していた。
その着色層の修正方法は、例えば、特開2003−279721号公報(特許文献1)等に開示されているが、このような、局所的なITO膜の欠損箇所を、簡単に、修復形成する方法は、従来は、なかった。
特開2003−279721号公報 しかし、最近、本願出願人による出願で、このような透明導電性膜付きカラーフィルタ基板におけるITO膜の修正方法が、特願2006−167374(特許文献2)にて提案されている。 特願2006−167374 この方法は、簡単には、前記ITO膜の欠損箇所に、固形の導電性材(導電性粒子)を溶剤中に分散させた混合溶液を、塗布する塗布工程を、必要に応じて1回以上行い、あるいは、更に、必要に応じて、前記塗布工程で配設された導電膜を局所過熱する焼成工程を行い、前記ITO膜の欠損箇所に、透明、且つ、導電性の導電膜を配設することを特徴とするもので、あくまで、ITO膜のみを修正する方法である。 このような中、液晶表示素子の更なる大量普及に対応できる効率的な修正方法が求められていた。
A color filter forming substrate for a liquid crystal display element or a color filter forming substrate in which a black matrix, colored pixels of red, green, and blue, an overcoat, and a transparent electrode are sequentially formed on such a transparent substrate. In the case of a color filter substrate with a transparent conductive film, which is an intermediate substrate for manufacturing, there has been no conventional method for easily correcting the ITO film, and only non-defective products have been provided to the liquid crystal display device without correction. .
A method for correcting the colored layer is disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-279721 (Patent Document 1) and the like, and such a defective portion of the ITO film is easily repaired and formed. There was no conventional method.
However, a method for correcting an ITO film in such a color filter substrate with a transparent conductive film was recently proposed by Japanese Patent Application No. 2006-167374 (Patent Document 2). Has been. Japanese Patent Application No. 2006-167374 This method simply requires a coating process in which a mixed solution in which a solid conductive material (conductive particles) is dispersed in a solvent is applied to a defective portion of the ITO film. Depending on necessity, a baking process for locally heating the conductive film disposed in the coating process is performed as necessary, and a transparent and conductive material is formed in the ITO film in a defective portion. A conductive film is provided, which is a method of correcting only the ITO film. Under such circumstances, there has been a demand for an efficient correction method that can cope with further mass spread of liquid crystal display elements.

上記のように、近年、より高品位表示の液晶表示素子として、柱状スペーサを用いたセル構造とし、且つ、配向制御用突起を設け、配向分割垂直配向型(以下、MVAモードとも言う)とするものが提案されており、これに用いられるカラーフィルタ形成基板については、そのITO膜の欠陥箇所について、導電性膜としての機能の面の他に、最近では、表示品質の面でも、より厳しくなってきたため、この対応が求められていた。
これに伴い、このような液晶表示素子に用いられるカラーフィルタ形成基板の作製においては、特に生産面からITO膜の欠陥修正は必要とされるようになってきた。
同時に、効率的な欠陥修正方法が生産性の面から求められている。
本発明はこれらに対応するもので、ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した、透明導電性膜付きカラーフィルタ基板に対して、透明導電性膜の欠陥を含め、その下層の欠陥をも修正することができる、欠陥修正方法を提供しようとするものであり、更には、生産性の面で有利な欠陥修正方法を提供しようとするものである。
As described above, in recent years, as a liquid crystal display element of higher quality display, a cell structure using columnar spacers is provided, and an alignment control protrusion is provided to provide an alignment division vertical alignment type (hereinafter also referred to as MVA mode). As for the color filter forming substrate used for this, the defective part of the ITO film has recently become more severe in terms of display quality in addition to the function as a conductive film. Therefore, this response was required.
Accordingly, in manufacturing a color filter forming substrate used in such a liquid crystal display element, it has become necessary to correct the defect of the ITO film particularly from the production aspect.
At the same time, an efficient defect correction method is required from the viewpoint of productivity.
The present invention corresponds to these, and includes defects in the transparent conductive film with respect to the color filter substrate with the transparent conductive film in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of the base substrate. An object of the present invention is to provide a defect correction method capable of correcting defects in the lower layer, and to provide a defect correction method that is advantageous in terms of productivity.

本発明の透明導電性膜付きカラーフィルタ基板の欠陥修正方法は、ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した積層した多層構造の膜を配設してなる、透明導電性膜付きカラーフィルタ基板に対して、その欠陥箇所を修正する、欠陥修正方法であって、各欠陥部についての修正は、それぞれ、欠陥部を含む領域にレーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板面まで除去し、全層に跨る白欠陥部として形成した後、形成された前記全層に跨る白欠陥部に対し、積層順に、各層の白欠陥部を修正するもので、且つ、各層の白欠陥部の修正は、修正用材料を塗布し、必要に応じて、乾燥処理、硬化処理、焼成処理の1以上を行うことを特徴とするものである。
そして、上記の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部のサイズを1以上の決められたサイズとして修正を行うことを特徴とするものである。
そしてまた、上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の着色層の白欠陥部の修正は、対応する色の着色材料を塗布するものであることを特徴とするものである。
尚、ここでの透明導電性膜付きカラーフィルタ基板は、液晶表示素子用のカラーフィルタ形成基板あるいは該カラーフィルタ形成基板を作製するための中間工程の基板を含むものである。
The defect correcting method for a color filter substrate with a transparent conductive film according to the present invention comprises a transparent film formed by laminating at least a colored layer and a transparent conductive film in this order on one surface of a base substrate. A defect correction method for correcting a defective portion of a color filter substrate with a conductive film, wherein each defect portion is corrected by irradiating a region including the defect portion with a laser beam. After removing each layer of the above, removing the region including the defect portion to the base substrate surface, and forming as a white defect portion straddling all layers, for the white defect portion straddling the all layers formed, in the stacking order, The white defect portion of each layer is corrected, and the white defect portion of each layer is corrected by applying a correction material and performing one or more of a drying process, a curing process, and a baking process as necessary. It is what.
And it is a defect correction method of said color filter substrate with a transparent conductive film, Comprising: It corrects by making the size of the white defect part ranging over the said all layers into one or more determined sizes. .
In addition, in any one of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, the white defect portion of the colored layer of the white defect portion over the entire layer is applied by applying a coloring material of a corresponding color. It is what is characterized by.
The color filter substrate with a transparent conductive film here includes a color filter forming substrate for a liquid crystal display element or an intermediate process substrate for producing the color filter forming substrate.

また、上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の透明導電性膜の白欠陥部の修正は、固形の導電性材を溶剤中に分散させた混合溶液を、塗布し、塗布された層を局所過熱する焼成工程を行うものであることを特徴とするものであり、前記固形の導電性材が固形ITO(SnO2 をドープしたIn2 3 )であることを特徴とするものである。
あるいは上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の透明導電性膜の白欠陥部の修正は、固形の導電性材(導電性粒子)を分散させたUV硬化型の樹脂を塗布し、塗布された樹脂をUV照射して硬化するものであることを特徴とするものである。
Further, in any one of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, the white defective portion of the transparent conductive film in the white defective portion straddling the entire layer is obtained by using a solid conductive material as a solvent. The mixed solution dispersed therein is applied, and a firing step is performed in which the applied layer is locally heated. The solid conductive material is doped with solid ITO (SnO 2) . In 2 O 3 ).
Alternatively, in any of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, the white defect portion of the transparent conductive film in the white defect portion over the entire layer may be corrected with a solid conductive material (conductive In this case, a UV curable resin in which particles are dispersed is applied, and the applied resin is cured by UV irradiation.

また、上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、各層の白欠陥部の修正における修正用材料の塗布は、塗布針あるいはディスペンサを用いた塗布方式、またはインクジェット塗布方式であることを特徴とするものである。   Also, in any one of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, the application of the correction material in the correction of the white defect portion of each layer is an application method using an application needle or a dispenser, or inkjet application It is a system.

また、上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記透明導電性膜がITOであることを特徴とするものである。   In addition, in any of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, the transparent conductive film is ITO.

また、上記いずれかの透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、透明導電性膜より下側の各層については、透明導電性膜形成前には各層の欠陥の修正を行わないで、透明導電性膜形成後に修正を行うことを特徴とするものである。   Also, in any of the above-described methods for correcting a defect in a color filter substrate with a transparent conductive film, each layer below the transparent conductive film is not corrected for defects before forming the transparent conductive film. Thus, correction is performed after the transparent conductive film is formed.

本発明の透明導電性膜付きカラーフィルタ基板は、ベース基板の一面に、少なくとも着色層、透明導電性膜をこの順に積層した多層構造の膜を配設してなる、透明導電性膜付きカラーフィルタ基板であって、請求項1ないし9のいずれか1項に記載のカラーフィルタ形成基板の欠陥修正方法により修正されたことを特徴とするものである。
そして、上記の透明導電性膜付きカラーフィルタ基板であって、透明導電性膜の修正個所の抵抗値が、1×104 〜5×107 Ω/cm□の範囲であることを特徴とするものである。
The color filter substrate with a transparent conductive film of the present invention is a color filter with a transparent conductive film, in which a multilayer structure film in which at least a colored layer and a transparent conductive film are laminated in this order is disposed on one surface of a base substrate. A substrate, which is corrected by the defect correction method for a color filter forming substrate according to any one of claims 1 to 9.
And it is said color filter substrate with a transparent conductive film, Comprising: The resistance value of the correction part of a transparent conductive film is the range of 1 * 10 < 4 > -5 * 10 < 7 > ohm / cm (square). Is.

(作用)
本発明の透明導電性膜付きカラーフィルタ基板の欠陥修正方法は、このような構成にすることにより、ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した、透明導電性膜付きカラーフィルタ基板に対して、透明導電性膜の欠陥を含め、その下層の欠陥をも修正することができる、欠陥修正方法の提供を可能としている。
更には、生産性の面で有利な欠陥修正方法の提供を可能としている。
尚、先にも述べたように、ここでの透明導電性膜付きカラーフィルタ基板は、液晶表示素子用のカラーフィルタ形成基板あるいは該カラーフィルタ形成基板を作製するための中間工程の基板を含むものである。
具体的には、各欠陥部についての修正は、それぞれ、欠陥部を含む領域にレーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板面まで除去し、全層に跨る白欠陥部として形成した後、形成された前記全層に跨る白欠陥部に対し、積層順に、各層の白欠陥部を修正するもので、且つ、各層の白欠陥部の修正は、修正用材料を塗布し、必要に応じて、乾燥処理、硬化処理、焼成処理の1以上を行うことにより、これを達成している。
詳しくは、欠陥部を含む領域にレーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板面まで除去し、全層に跨る白欠陥部として形成した後、形成された前記全層に跨る白欠陥部に対し、積層順に、各層の白欠陥部を修正するものであることより、透明導電性膜の欠陥を含め、その下層の欠陥をも修正することができるものとしている。
透明導電性膜より下側の各層については、透明導電性膜形成前には各層の欠陥の修正を行わないで、透明導電性膜形成後に修正を行う形態(請求項9の発明の形態)もとれ、その場合には、欠陥修正を透明導電性膜の欠陥を含め、その下層の欠陥をも、一緒の修正工程で修正することができ、生産性の面で効率的である。
特に、前記全層に跨る白欠陥部のサイズを1以上の決められたサイズとして修正を行う、請求項2の発明の形態とすることにより、同じサイズの各欠陥の修正作業を同じ条件にて行うことが可能で、作業を規格化でき、自動化をし易いものとしている。
(Function)
According to the defect correcting method for a color filter substrate with a transparent conductive film of the present invention, a transparent conductive film in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of the base substrate is configured as described above. It is possible to provide a defect correction method capable of correcting defects in the lower layer including defects of the transparent conductive film with respect to the attached color filter substrate.
Furthermore, it is possible to provide a defect correction method that is advantageous in terms of productivity.
As described above, the color filter substrate with a transparent conductive film here includes a color filter formation substrate for a liquid crystal display element or an intermediate process substrate for producing the color filter formation substrate. .
Specifically, each defect portion is corrected by irradiating the region including the defect portion with laser light, removing each layer in the region, and removing the region including the defect portion to the base substrate surface. Then, after forming the white defect portion over the entire layer, the white defect portion of each layer is corrected in the stacking order with respect to the formed white defect portion over the entire layer, and the white defect portion of each layer is corrected. This is achieved by applying a correction material and performing one or more of a drying process, a curing process, and a baking process as necessary.
Specifically, after irradiating the region including the defective portion with laser light, removing each layer in the region, removing the region including the defective portion up to the base substrate surface, and forming as a white defect portion across all layers In addition to correcting the white defect portion of each layer in the stacking order, the defect in the lower layer including the defect of the transparent conductive film is corrected with respect to the formed white defect portion over the entire layer. It is supposed to be possible.
For each layer below the transparent conductive film, the defect of each layer is not corrected before the formation of the transparent conductive film, but is corrected after the transparent conductive film is formed (the form of the invention of claim 9). In this case, the defect correction can be corrected by the correction process including the defect of the transparent conductive film including the defect of the transparent conductive film, which is efficient in terms of productivity.
In particular, correction is performed by setting the size of the white defect portion across all the layers as one or more predetermined sizes, so that the correction work for each defect of the same size can be performed under the same conditions. It can be done, the work can be standardized, and it is easy to automate.

また、前記全層に跨る白欠陥部の着色層の白欠陥部の修正としては、対応する色の着色材料を塗布する形態が挙げられる。
尚、着色材料としては、樹脂中に顔料や染料を分散させた硬化性の樹脂が、好ましく、用いられる。
Moreover, the form which apply | coats the coloring material of a corresponding color is mentioned as correction of the white defect part of the colored layer of the white defect part straddling the said all layers.
As the coloring material, a curable resin in which a pigment or a dye is dispersed in the resin is preferably used.

また、前記全層に跨る白欠陥部の透明導電性膜の白欠陥部の修正としては、固形の導電性材を溶剤中に分散させた混合溶液を、塗布し、塗布された層を局所過熱する焼成工程を行う、請求項4の発明の形態や、固形の導電性材(導電性粒子)を分散させたUV硬化型の樹脂を塗布し、塗布された樹脂をUV照射して硬化する、請求項6の発明の形態が挙げられる。
請求項4の発明の形態としては、前記固形の導電性材を固形ITOとした形態が挙げられる。
上記焼成工程における加熱としては、ハロゲンランプによる加熱、あるいは、CO2 レーザによる加熱が挙げられる。
また、塗布は必要に応じて1回以上行う。
固形の導電性材(導電性粒子)を溶剤中に分散させた混合溶液を用いることにより、局所的な塗布を比較的し易いものとし、また、必要に応じて、塗布工程で配設された導電膜を局所過熱する焼成工程を行うことにより、塗布膜の固着を強固にでき、場合によっては、焼成により塗布膜の特性(導電性、透明度等)をその使用に適するように変化することもできる。
具体的には、固形の導電性材としては、ITO(SnO2 をドープしたIn2 3 )が挙げられる。
例えば、0.003μm〜1μm程度の粒子径のITO粒子15wt%を残部である溶剤に分散したものが挙げられ、溶剤としては、PEGMEA等が挙げられる。
特に、ITOを固形の導電性材とした場合には、塗布膜からなるITOの酸化を促進し、その抵抗値を下げることを可能としている。
尚、透明導電性膜の欠陥部を補修する材料として、スパッタで成膜したITOと同程度の低抵抗を有するものがなかったが、微小エリアであれば、従来考えられていたよりも、高い抵抗値の補修材料でも、液晶表示素子を問題なく駆動できることが明らかになり、このような、修正材料を用いたこのような透明導電性膜の欠陥部の修正方法が適用可能であることが分かった。
In addition, as a correction of the white defect portion of the transparent conductive film of the white defect portion over the entire layer, a mixed solution in which a solid conductive material is dispersed in a solvent is applied, and the applied layer is locally heated. The form of the invention of claim 4 is performed, a UV curable resin in which a solid conductive material (conductive particles) is dispersed is applied, and the applied resin is cured by UV irradiation. The form of invention of Claim 6 is mentioned.
As a form of invention of Claim 4, the form which used the said solid electroconductive material as solid ITO is mentioned.
Examples of the heating in the firing step include heating with a halogen lamp or heating with a CO 2 laser.
The application is performed once or more as necessary.
By using a mixed solution in which a solid conductive material (conductive particles) is dispersed in a solvent, local application is relatively easy and, if necessary, disposed in the application process. By performing a baking process in which the conductive film is locally heated, the adhesion of the coating film can be strengthened. In some cases, the characteristics (conductivity, transparency, etc.) of the coating film can be changed to suit the use by baking. it can.
Specifically, ITO (In 2 O 3 doped with SnO 2 ) is an example of the solid conductive material.
For example, 15 wt% of ITO particles having a particle size of about 0.003 μm to 1 μm are dispersed in the remaining solvent, and examples of the solvent include PEGMEA.
In particular, when ITO is used as a solid conductive material, it is possible to promote the oxidation of ITO made of a coating film and lower its resistance value.
In addition, as a material for repairing the defective portion of the transparent conductive film, there was no material having a low resistance comparable to that of ITO formed by sputtering. However, if the area is small, the resistance is higher than previously considered. It became clear that the liquid crystal display element can be driven without any problem even with the repair material of the value, and it was found that such a method of correcting the defective portion of the transparent conductive film using the correction material can be applied. .

また、各層の白欠陥部の修正における修正用材料の塗布としては、塗布針あるいはディスペンサを用いた塗布方式、またはインクジェット塗布方式が挙げられる。
尚、塗布針によるものは、針の先端部に修正用材料(塗布液とも言う)を付着させた状態で欠陥箇所に運び、該塗布液を欠陥箇所に付けて塗布するものである。
ディスペンサを用いた塗布方式、またはインクジェット塗布方式の場合、塗布液を制御して白欠陥部の欠陥箇所に滴下することができることが前提となる。
Moreover, as application | coating of the correction material in correction | amendment of the white defect part of each layer, the application | coating system using an application needle or a dispenser, or the inkjet application | coating system is mentioned.
In addition, the thing by an application needle | hook is carried to a defect location in the state which made the correction material (it also calls application liquid) adhere to the front-end | tip part of a needle | hook, and applies this application liquid to a defect location.
In the case of a coating method using a dispenser or an inkjet coating method, it is premised that the coating liquid can be controlled and dropped onto a defective portion of a white defect portion.

前記透明導電性膜としては、ITOが汎用なものとして挙げられるが、電極としての機能を有するものであれば、これに限定はされない。
例えば、他には、ZnO系、SnO系などが挙げられる。
Examples of the transparent conductive film include ITO as a general-purpose film, but are not limited to this as long as it has a function as an electrode.
Other examples include ZnO-based and SnO-based.

本発明は、上記のように、ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した、液晶表示素子用のカラーフィルタ形成基板あるいは該カラーフィルタ形成基板を作製するための中間工程の基板である、透明導電性膜付きカラーフィルタ基板に対して、透明導電性膜の欠陥を含め、その下層の欠陥をも修正することができる、欠陥修正方法の提供を可能とした。
更には、生産性の面で有利な欠陥修正方法の提供を可能とした。
As described above, the present invention provides a color filter forming substrate for a liquid crystal display element in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of a base substrate, or an intermediate for producing the color filter forming substrate. With respect to the color filter substrate with a transparent conductive film, which is a substrate for the process, it is possible to provide a defect correction method capable of correcting defects in the lower layer including defects of the transparent conductive film.
Furthermore, it is possible to provide a defect correction method that is advantageous in terms of productivity.

本発明の実施の形態を図に基づいて説明する。
図1(a1)(図1(a2))〜図1(e)は本発明の透明導電性膜付きカラーフィルタ基板の欠陥修正方法の実施の形態の1例の処理工程を示した工程断面図で、図2(a)は塗布用の針を用いた塗布を示した概略図で、図2(b)はインクジェット方式の塗布を示した概略図で、図3はレーザ光の照射装置によるレーザ光照射の1例を示した概略図である。
尚、図1(a1)(図1(a2))〜図1(e)は、図4と同じ構造のカラーフィルタ形成基板の一部を示した図である。
図1〜図3中、10は透明導電性膜付きカラーフィルタ基板、11は透明基板(ここでは石英基板)、12は着色層、12Aは修正膜、12aは着色材層、13はOC層(保護層、あるいは平坦化層とも言う)、13Aは修正膜、14は透明導電性膜(ここではITO膜)、15は欠陥部、14Aは修正膜、15aは異物、16は欠陥部、16aは(透明導電膜の)欠損部、17はレーザ光(ここでは355nm波長のYAGレーザ)、18は(全層にわたる)白欠陥部、19Aは塗布針、19Aaは針部、19Bはインクジェットノズル部である。
Embodiments of the present invention will be described with reference to the drawings.
1 (a1) (FIG. 1 (a2)) to FIG. 1 (e) are process cross-sectional views showing an example of processing steps of an embodiment of a defect correcting method for a color filter substrate with a transparent conductive film of the present invention. 2 (a) is a schematic diagram showing application using a coating needle, FIG. 2 (b) is a schematic diagram showing ink-jet application, and FIG. 3 is a laser using a laser beam irradiation device. It is the schematic which showed one example of light irradiation.
1A1 (FIG. 1A2) to FIG. 1E are diagrams showing a part of a color filter forming substrate having the same structure as FIG.
1-3, 10 is a color filter substrate with a transparent conductive film, 11 is a transparent substrate (here, a quartz substrate), 12 is a colored layer, 12A is a correction film, 12a is a colorant layer, and 13 is an OC layer ( 13A is a correction film, 14 is a transparent conductive film (ITO film in this case), 15 is a defect portion, 14A is a correction film, 15a is a foreign substance, 16 is a defect portion, and 16a is a defect portion. The defect part (of the transparent conductive film), 17 is a laser beam (here, a 355 nm wavelength YAG laser), 18 is a white defect part (over all layers), 19A is a coating needle, 19Aa is a needle part, and 19B is an inkjet nozzle part. is there.

本発明の透明導電性膜付きカラーフィルタ基板の欠陥修正方法の実施の形態の1例を、図に基づいて説明する。
本例の透明導電性膜付きカラーフィルタ基板の欠陥修正方法は、図4に示すような、透明基板上にブラックマトリクス(ここでは黒色着色層からなる)、着色層、透明導電膜、液晶間隔制御用の柱状スペーサ、液晶の配向を制御するための配向制御用突起を、この順に、配設する、MVAモードの液晶表示パネル形成用のカラーフィルタ形成基板10(図1に示す10で、図4の110に相当)における、欠陥部、例えば、図1(a1)に示すような透明導電膜14より下の層に異物を有する欠陥部16を、あるいは、図1(a2)に示すような透明導電膜14に欠損部を有する欠陥部15、等を修正する方法である。
尚、ここでは、簡単のため、着色画素の着色層領域における修正を説明する。
各欠陥部の修正は、それぞれ、欠陥部を含む領域にレーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板面まで除去し、全層に跨る白欠陥部として形成した後、形成された前記全層に跨る白欠陥部に対し、積層順に、各層の白欠陥部を修正するものである。
そして、各層の白欠陥部の修正は、修正用材料を塗布し、必要に応じて、乾燥処理、硬化処理、焼成処理の1以上を行うものである。
ここでは、透明基板11として二酸化ケイ素100%の石英ガラスを用いているが、プラスチック基板、無アルカリガラスも用いられている。
着色画素の着色層12としては、ここでは、顔料分散法によりフォトリソ形成された着色層を用いているが、これに限定はされない。
透明導電膜14としては、スパッタ形成されたITO膜が用いられている。
また、ここでは、液晶間隔制御用の柱状スペーサ(図4の117に相当)、配向制御用突起(図4の116に相当)は、それぞれ、ネガ型の感光剤を製版して形成したものである。
One example of an embodiment of a defect correction method for a color filter substrate with a transparent conductive film of the present invention will be described with reference to the drawings.
As shown in FIG. 4, the defect correction method for the color filter substrate with a transparent conductive film of this example is a black matrix (consisting of a black colored layer here), a colored layer, a transparent conductive film, and a liquid crystal interval control on the transparent substrate. Columnar spacers and alignment control protrusions for controlling the alignment of the liquid crystal are arranged in this order in order to form a color filter forming substrate 10 for forming an MVA mode liquid crystal display panel (10 shown in FIG. 1), for example, a defective portion 16 having a foreign substance in a layer below the transparent conductive film 14 as shown in FIG. 1 (a1), or a transparent portion as shown in FIG. 1 (a2). This is a method for correcting a defect portion 15 having a defect portion in the conductive film 14.
Here, for the sake of simplicity, correction in the colored layer region of the colored pixels will be described.
Each defect is corrected by irradiating the region including the defect with laser light, removing each layer in the region, removing the region including the defect to the base substrate surface, and whitening over all layers. After forming as a defect part, the white defect part of each layer is corrected with respect to the formed white defect part over all the layers in the order of lamination.
And correction of the white defect part of each layer applies a correction material, and performs one or more of a drying process, a hardening process, and a baking process as needed.
Here, quartz glass of 100% silicon dioxide is used as the transparent substrate 11, but a plastic substrate and non-alkali glass are also used.
Here, a colored layer formed by photolithography by a pigment dispersion method is used as the colored layer 12 of the colored pixel, but the present invention is not limited to this.
As the transparent conductive film 14, a sputtered ITO film is used.
Further, here, the columnar spacers for controlling the liquid crystal spacing (corresponding to 117 in FIG. 4) and the alignment controlling protrusions (corresponding to 116 in FIG. 4) are formed by making a negative photosensitive agent. is there.

本例では、特に前記全層に跨る白欠陥部のサイズを、欠陥部15(16)の領域サイズによりクラス分けしたクラスに応じて決められたサイズとして、修正を行うもので、このようにすることにより、同じクラスの欠陥に対しては同じ条件で修正することができ、作業の単純化が可能で、自動化も容易となる。
尚、欠陥部の検出については、通常、所定の検査機あるいは検査器具により、予め、着色層12、OC層13、透明導電性膜14の各層を形成毎に、あるいは、これらの各層を形成した後に、行い、更に、柱状スペーサ(図4の117に相当)、配向制御用突起(図4の116に相当)を形成後に透明導電性膜14の欠陥を検出する。
In this example, in particular, the size of the white defect portion across all the layers is corrected as the size determined according to the class classified according to the region size of the defect portion 15 (16). Thus, defects of the same class can be corrected under the same conditions, the work can be simplified, and automation is facilitated.
In addition, about the detection of a defective part, it was normally formed each time each layer of the colored layer 12, OC layer 13, and the transparent conductive film 14 was previously formed with the predetermined | prescribed inspection machine or inspection instrument. Later, after the formation of columnar spacers (corresponding to 117 in FIG. 4) and alignment control protrusions (corresponding to 116 in FIG. 4), defects in the transparent conductive film 14 are detected.

更に、図1に基づいて、欠陥部の修正を説明する。
先ず、欠陥部(図1(a1)16、図1(a2)15参照)を含む各領域に対し、それぞれ、レーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板11の面まで除去し、全層に跨る白欠陥部18として形成する。(図1(b))
ここでは、レーザ光17として、YAGレーザの第3高調波(355nm)を用いているが、これに限定はされない。
波長が短かいレーザ光が、熱の面や、分解能の面から好ましく、例えば、KrFエキシマレーザ(248nm)、XeClエキシマレーザ(308nm)等が挙げられる。
例えば、図3に示すようにして、XYステージ30上にカラーフィルタ形成基板10を載置し、突起欠陥18をレーザ40にて照射して除去する。
図示していないが、レーザ照射手段50はレーザ光発生部、レーザ光の照射ショットを制御するシャッタ、フィルタ、ハーフミラー、全反射ミラー、レーザ光を成形するアパーチャ、対物レンズ51等を備えて、光学系を形成しており、成形されたレーザ光は対物レンズ51により集光され照射される。
Furthermore, the defect correction will be described with reference to FIG.
First, each region including a defective portion (see FIGS. 1 (a1) 16 and 1 (a2) 15) is irradiated with a laser beam to remove each layer in the region and include the defective portion. The region is removed up to the surface of the base substrate 11 to form a white defect portion 18 across all layers. (Fig. 1 (b))
Here, the third harmonic (355 nm) of the YAG laser is used as the laser beam 17, but is not limited to this.
A laser beam having a short wavelength is preferable from the viewpoint of heat and resolution, and examples thereof include a KrF excimer laser (248 nm) and a XeCl excimer laser (308 nm).
For example, as shown in FIG. 3, the color filter forming substrate 10 is placed on the XY stage 30, and the projection defects 18 are removed by irradiation with the laser 40.
Although not shown, the laser irradiation means 50 includes a laser light generator, a shutter for controlling the irradiation shot of the laser light, a filter, a half mirror, a total reflection mirror, an aperture for shaping the laser light, an objective lens 51, and the like. An optical system is formed, and the shaped laser light is condensed and irradiated by the objective lens 51.

次いで、前記全層に跨る白欠陥部18の着色層12の白欠陥部の修正は、対応する色の着色材料を塗布する。(図1(c))
例えば、図2(a)に示すように、塗布針19Aの先端の針部19Aaに塗布液12Aを付けて塗布を行う。
あるいは、図2(b)に示すように、インクジェットノズル部19Bから吐出して塗布を行う。
着色材料としては、樹脂中に顔料や染料を分散させた硬化性の樹脂が、好ましく、用いられる。
次いで、前記全層に跨る白欠陥部18のOC層13の白欠陥部の修正は、対応するOC層形成用の樹脂材料を、同様に、塗布用の針やインクジェットノズル部を用いて塗布する。(図1(d))
OC層形成用の樹脂材料としては、光又は熱硬化アクリル系樹脂、ウレタン系樹脂、ポリグリシジルメタクリレート系樹脂、エポキシ樹脂等が用いられる。
次いで、前記全層に跨る白欠陥部18の透明導電性膜(ITO層)14の白欠陥部に、固形のITOを溶剤中に分散させた混合溶液を、塗布して、更に、局所的に修正個所を加熱して焼成し、導電性のITO膜を形成する。(図1(e))
例えば、 0.003μm〜1μm程度の粒子径のITO粒子15wt%を残部である溶剤に分散したものが挙げられ、溶剤としては、PEGMEA等が挙げられる。
焼成における加熱としては、ハロゲンランプによる加熱、あるいは、CO2 レーザによる加熱が挙げられる。
尚、焼成のための加熱は、100℃〜300℃程度の範囲で、空気雰囲気中で行う。
また、塗布は必要に応じて1回以上行う。
局所過熱する焼成工程を行うことにより、塗布膜の固着を強固にでき、場合によっては、焼成により塗布膜の特性(導電性、透明度等)をその使用に適するように変化することができる。
本例のように、ITOを固形の導電性材とした場合には、塗布膜からなるITOの酸化を促進し、その抵抗値を下げることを可能としている。
尚、透明導電性膜の修正個所の抵抗値が、1×104 〜5×107 Ω/cm□の範囲であることが、液晶の配向制御の面からは好ましい。
このようにして、本例の透明導電性膜付きカラーフィルタ基板の欠陥修正方法は行われる。
Next, correction of the white defect portion of the colored layer 12 of the white defect portion 18 across the entire layer is performed by applying a coloring material of a corresponding color. (Fig. 1 (c))
For example, as shown in FIG. 2A, the application liquid 12A is applied to the needle portion 19Aa at the tip of the application needle 19A for application.
Or as shown in FIG.2 (b), it discharges from the inkjet nozzle part 19B and it apply | coats.
As the coloring material, a curable resin in which a pigment or a dye is dispersed in the resin is preferably used.
Next, correction of the white defect portion of the OC layer 13 of the white defect portion 18 across the entire layer is similarly performed by applying a corresponding resin material for forming the OC layer using a coating needle or an inkjet nozzle portion. . (Fig. 1 (d))
As the resin material for forming the OC layer, light or thermosetting acrylic resin, urethane resin, polyglycidyl methacrylate resin, epoxy resin, or the like is used.
Next, a mixed solution in which solid ITO is dispersed in a solvent is applied to the white defect portion of the transparent conductive film (ITO layer) 14 of the white defect portion 18 across the entire layer, and further locally. The corrected portion is heated and baked to form a conductive ITO film. (Fig. 1 (e))
For example, a dispersion in which 15 wt% of ITO particles having a particle size of about 0.003 μm to 1 μm are dispersed in the remaining solvent is exemplified, and examples of the solvent include PEGMEA.
Heating in the firing includes heating with a halogen lamp or heating with a CO 2 laser.
In addition, the heating for baking is performed in an air atmosphere in the range of about 100 ° C to 300 ° C.
The application is performed once or more as necessary.
By performing the baking process that locally heats, the adhesion of the coating film can be strengthened, and in some cases, the characteristics (conductivity, transparency, etc.) of the coating film can be changed to suit the use by baking.
When ITO is a solid conductive material as in this example, it is possible to promote oxidation of ITO made of a coating film and lower its resistance value.
In addition, it is preferable from the surface of the orientation control of a liquid crystal that the resistance value of the correction part of a transparent conductive film is the range of 1 * 10 < 4 > -5 * 10 < 7 > (omega | ohm) / cm (square).
In this manner, the defect correcting method for the color filter substrate with a transparent conductive film of this example is performed.

本例は1例で、本発明はこれに限定はされない。
また、本例では、図1(a1)に示すような透明導電性膜14より下の層に異物を有する欠陥部16を、あるいは、図1(a2)に示すような透明導電性膜14に欠損部を有する欠陥部15を主な欠陥として、説明したが、修正する欠陥部はこれらに限定されない。 例えば、着色層やOC層の欠損個所や、透明導電性膜14に、異物や、柱状スペーサ(図4の117に相当)、配向制御用突起(図4の116に相当)の形成材料が付着している欠陥部も修正対象となる。
本例ではベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した多層構造の膜を配設してなる液晶表示素子用のカラーフィルタ形成基板を修正の対象としたが、該カラーフィルタ形成基板を作製するための、ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した多層構造の膜を配設してなる中間工程の基板を修正対象としても良い。
また、本例では、透明導電性膜14の修正材料として、固形ITOを溶剤に分散させたものを用いたが、これに限定はされない。
同様の機能が持てるものであれば他の導電性材を溶剤に分散させて用いても良い。
また、透明導電性膜14の修正材料として、固形の導電性材(導電性粒子)を分散させたUV硬化型の樹脂を用いて、塗布を行い、塗布された樹脂をUV照射して硬化させて修正しても良い。
This example is one example, and the present invention is not limited to this.
Moreover, in this example, the defect part 16 which has a foreign material in the layer below the transparent conductive film 14 as shown in FIG. 1 (a1), or the transparent conductive film 14 as shown in FIG. 1 (a2). Although the defect portion 15 having the defect portion has been described as the main defect, the defect portion to be corrected is not limited to these. For example, foreign materials, columnar spacers (corresponding to 117 in FIG. 4), or orientation control protrusions (corresponding to 116 in FIG. 4) adhere to the defective portions of the colored layer or OC layer or the transparent conductive film 14. The defective part is also subject to correction.
In this example, a color filter forming substrate for a liquid crystal display element in which a multilayer structure film in which at least a colored layer and a transparent conductive film are laminated in this order is disposed on one surface of a base substrate is targeted for correction. A substrate in an intermediate process in which a multilayer structure film in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of a base substrate for producing a color filter forming substrate may be used as a correction target.
In this example, the correction material for the transparent conductive film 14 is a material in which solid ITO is dispersed in a solvent. However, the present invention is not limited to this.
Other conductive materials may be dispersed in a solvent as long as they have the same function.
Further, as a correction material for the transparent conductive film 14, application is performed using a UV curable resin in which a solid conductive material (conductive particles) is dispersed, and the applied resin is cured by UV irradiation. May be corrected.

図1(a1)(図1(a2))〜図1(e)は本発明の透明導電性膜付きカラーフィルタ基板の欠陥修正方法の実施の形態の1例の処理工程を示した工程断面図である。1 (a1) (FIG. 1 (a2)) to FIG. 1 (e) are process cross-sectional views showing an example of processing steps of an embodiment of a defect correction method for a color filter substrate with a transparent conductive film of the present invention. It is. 図2(a)は塗布用の針を用いた塗布を示した概略図で、図2(b)はインクジェット方式の塗布を示した概略図である。FIG. 2A is a schematic diagram illustrating application using a coating needle, and FIG. 2B is a schematic diagram illustrating inkjet application. レーザ光の照射装置によるレーザ光照射の1例を示した概略図である。It is the schematic which showed one example of the laser beam irradiation by the laser beam irradiation apparatus. 図4(a)はカラーフイルタ形成基板の1例の一部断面を示し、図4(b)は図4(a)のE1側からみた図である。4A shows a partial cross section of an example of a color filter forming substrate, and FIG. 4B is a view as seen from the E1 side in FIG. 4A. 図4に示すカラーフイルタ形成基板を用いたMVAモードの液晶表示パネルの断面図である。FIG. 5 is a cross-sectional view of an MVA mode liquid crystal display panel using the color filter forming substrate shown in FIG. 4.

符号の説明Explanation of symbols

10 透明導電性膜付きカラーフィルタ基板
11 透明基板(ここでは石英基板)
12 着色層
12A 修正膜
12a 着色材層
13 OC層(保護層、あるいは平坦化層とも言う)
13A 修正膜
14 透明導電性膜(ここではITO膜)
14A 修正膜
15 欠陥部
15a 異物
16 欠陥部
16a (透明導電膜の)欠損部
17 レーザ光(ここでは355nm波長のYAGレーザ)
18 (全層にわたる)白欠陥部
19A 塗布針
19Aa 針部
19B インクジェットノズル部
20 基板ホルダー
30 XYステージ
40 レーザ光(ここでは355nm波長のYAGレーザ)
50 レーザ照射手段
51 対物レンズ
60 Z方向移動用ガイドレール
10 Color filter substrate with transparent conductive film 11 Transparent substrate (here quartz substrate)
12 Colored layer 12A Correction film 12a Colorant layer 13 OC layer (also referred to as protective layer or planarizing layer)
13A Correction film 14 Transparent conductive film (ITO film here)
14A Correction film 15 Defect 15a Foreign object 16 Defect 16a Defect 17 (of transparent conductive film) Defect 17 Laser light (YAG laser of 355 nm wavelength here)
18 White defect part 19A (over all layers) Coating needle 19Aa Needle part 19B Inkjet nozzle part 20 Substrate holder 30 XY stage 40 Laser light (here, 355 nm wavelength YAG laser)
50 Laser irradiation means 51 Objective lens 60 Guide rail for Z-direction movement

Claims (11)

ベース基板の一面に少なくとも着色層と透明導電性膜とをこの順に積層した多層構造の膜を配設してなる、透明導電性膜付きカラーフィルタ基板に対して、その欠陥部を修正する、欠陥修正方法であって、各欠陥部についての修正は、それぞれ、欠陥部を含む領域にレーザ光を照射して、該領域の各層を除去して、該欠陥部を含む領域をベース基板面まで除去し、全層に跨る白欠陥部として形成した後、形成された前記全層に跨る白欠陥部に対し、積層順に、各層の白欠陥部を修正するもので、且つ、各層の白欠陥部の修正は、修正用材料を塗布し、必要に応じて、乾燥処理、硬化処理、焼成処理の1以上を行うことを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   A defect that corrects a defective portion of a color filter substrate with a transparent conductive film, in which a multilayer structure film in which at least a colored layer and a transparent conductive film are laminated in this order is disposed on one surface of the base substrate. In this correction method, each defect portion is corrected by irradiating the region including the defect portion with laser light, removing each layer in the region, and removing the region including the defect portion to the base substrate surface. Then, after forming as a white defect portion straddling all the layers, for the white defect portion straddling all the layers formed, the white defect portion of each layer is corrected in the stacking order, and the white defect portion of each layer The correction is a defect correction method for a color filter substrate with a transparent conductive film, wherein a correction material is applied and, if necessary, one or more of a drying process, a curing process, and a baking process are performed. 請求項1に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記各層に跨る白欠陥部のサイズを1以上の決められたサイズとして修正を行うことを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   2. The defect correction method for a color filter substrate with a transparent conductive film according to claim 1, wherein the correction is performed with the size of the white defect portion straddling each layer as one or more predetermined sizes. For correcting defects in a color filter substrate with a conductive film. 請求項1ないし2のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の着色層の白欠陥部の修正は、対応する色の着色材料を塗布するものであることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   It is a defect correction method of the color filter substrate with a transparent conductive film of any one of Claim 1 thru | or 2, Comprising: Correction of the white defect part of the colored layer of the white defect part over the said all layers respond | corresponds A method for correcting a defect in a color filter substrate with a transparent conductive film, characterized by applying a colored material. 請求項1ないし3のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の透明導電性膜の白欠陥部の修正は、固形の導電性材を溶剤中に分散させた混合溶液を、塗布し、塗布された層を局所過熱する焼成工程を行うものであることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   It is a defect correction method of the color filter substrate with a transparent conductive film according to any one of claims 1 to 3, wherein the correction of the white defect portion of the transparent conductive film of the white defect portion across the entire layer is, Defect correction of a color filter substrate with a transparent conductive film, characterized in that a mixed solution in which a solid conductive material is dispersed in a solvent is applied, and a baking process is performed in which the applied layer is locally heated. Method. 請求項4に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記固形の導電性材が固形ITOであることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   5. The defect correcting method for a color filter substrate with a transparent conductive film according to claim 4, wherein the solid conductive material is solid ITO. . 請求項1ないし3のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記全層に跨る白欠陥部の透明導電性膜の白欠陥部の修正は、固形の導電性材を分散させたUV硬化型の樹脂を塗布し、塗布された樹脂をUV照射して硬化するものであることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   It is a defect correction method of the color filter substrate with a transparent conductive film according to any one of claims 1 to 3, wherein the correction of the white defect portion of the transparent conductive film of the white defect portion across the entire layer is, A defect correction method for a color filter substrate with a transparent conductive film, characterized in that a UV curable resin in which a solid conductive material is dispersed is applied, and the applied resin is cured by UV irradiation. 請求項1ないし6のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、各層の白欠陥部の修正における修正用材料の塗布は、塗布針あるいはディスペンサを用いた塗布方式、またはインクジェット塗布方式であることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   The defect correction method for a color filter substrate with a transparent conductive film according to any one of claims 1 to 6, wherein a correction material is applied in correcting a white defect portion of each layer by using an application needle or a dispenser. A method for correcting a defect in a color filter substrate with a transparent conductive film, which is a coating method or an inkjet coating method. 請求項1ないし7のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、前記透明導電性膜がITOであることを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   8. The method for correcting a defect in a color filter substrate with a transparent conductive film according to claim 1, wherein the transparent conductive film is ITO. Substrate defect correction method. 請求項1ないし8のいずれか1項に記載の透明導電性膜付きカラーフィルタ基板の欠陥修正方法であって、透明導電性膜より下側の各層については、透明導電性膜形成前には各層の欠陥の修正を行わないで、透明導電性膜形成後に修正を行うことを特徴とする透明導電性膜付きカラーフィルタ基板の欠陥修正方法。   The defect correction method for a color filter substrate with a transparent conductive film according to any one of claims 1 to 8, wherein each layer below the transparent conductive film is formed before each transparent conductive film is formed. A defect correction method for a color filter substrate with a transparent conductive film, wherein the defect is corrected after the transparent conductive film is formed without correcting the defect. ベース基板の一面に、少なくとも着色層、透明導電性膜をこの順に積層した多層構造の膜を配設してなる、透明導電性膜付きカラーフィルタ基板であって、請求項1ないし9のいずれか1項に記載のカラーフィルタ形成基板の欠陥修正方法により修正されたことを特徴とする透明導電性膜付きカラーフィルタ基板。   10. A color filter substrate with a transparent conductive film, comprising a multi-layered film in which at least a colored layer and a transparent conductive film are laminated in this order on one surface of a base substrate. A color filter substrate with a transparent conductive film, which is corrected by the defect correction method for a color filter forming substrate according to item 1. 請求項10に記載の透明導電性膜付きカラーフィルタ基板であって、透明導電性膜の修正個所の抵抗値が、1×104 〜5×107 Ω/cm□の範囲であることを特徴とする透明導電性膜付きカラーフィルタ基板。 It is a color filter substrate with a transparent conductive film of Claim 10, Comprising: The resistance value of the correction part of a transparent conductive film is the range of 1 * 10 < 4 > -5 * 10 < 7 > (omega | ohm) / cm (square). A color filter substrate with a transparent conductive film.
JP2007124670A 2007-05-09 2007-05-09 Defect correcting method for color filter substrate with transparent conductive film and color filter substrate with transparent conductive film Expired - Fee Related JP4924192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124670A JP4924192B2 (en) 2007-05-09 2007-05-09 Defect correcting method for color filter substrate with transparent conductive film and color filter substrate with transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124670A JP4924192B2 (en) 2007-05-09 2007-05-09 Defect correcting method for color filter substrate with transparent conductive film and color filter substrate with transparent conductive film

Publications (2)

Publication Number Publication Date
JP2008281696A true JP2008281696A (en) 2008-11-20
JP4924192B2 JP4924192B2 (en) 2012-04-25

Family

ID=40142578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124670A Expired - Fee Related JP4924192B2 (en) 2007-05-09 2007-05-09 Defect correcting method for color filter substrate with transparent conductive film and color filter substrate with transparent conductive film

Country Status (1)

Country Link
JP (1) JP4924192B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175912A (en) * 2009-01-30 2010-08-12 Toppan Printing Co Ltd Correction method for color filter substrate
JP2010282149A (en) * 2009-06-08 2010-12-16 Dainippon Printing Co Ltd Design method and production method of ink for correcting defect of color filter
JP2011102835A (en) * 2009-11-10 2011-05-26 Toppan Printing Co Ltd Method of correcting color filter, and color filter
US20110278603A1 (en) * 2009-02-10 2011-11-17 Panasonic Corporation Organic el display and method for manufacturing same
JP2012108291A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Method for correcting defect on color filter substrate, and color filter substrate
JP2012118444A (en) * 2010-12-03 2012-06-21 Toppan Printing Co Ltd Defect correction method of color filter substrate, and color filter substrate
WO2013129366A1 (en) * 2012-02-28 2013-09-06 シャープ株式会社 Substrate for display device, display device, and method for manufacturing display device
CN107526191A (en) * 2016-11-09 2017-12-29 惠科股份有限公司 The method for repairing and mending of liquid crystal panel, liquid crystal display and liquid crystal panel

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572528A (en) * 1991-09-17 1993-03-26 Dainippon Printing Co Ltd Method for modifying color filter
JPH07318724A (en) * 1994-03-31 1995-12-08 Canon Inc Correcting method of color filter, correcting device therefor, color filter, liquid crystal display device, and device equipped with this liquid crystal display device
JPH08292442A (en) * 1995-04-24 1996-11-05 Ntn Corp Defect correcting method and defect correcting device for liquid crystal substrate
JPH09307217A (en) * 1996-05-13 1997-11-28 Ntn Corp Defect correcting method and device of continuous pattern
JPH10268122A (en) * 1997-03-25 1998-10-09 Ntn Corp Defect correcting method for color filter
JPH11271752A (en) * 1998-03-18 1999-10-08 Seiko Epson Corp Method for correcting color filter and manufacture of color filter
JP2002040674A (en) * 2000-07-31 2002-02-06 Ntn Corp Pattern correcting device
JP2004106511A (en) * 2002-07-08 2004-04-08 Canon Inc Liquid discharging device and method, device and method for manufacturing panel for display unit
JP2005063725A (en) * 2003-08-08 2005-03-10 Fujitsu Hitachi Plasma Display Ltd Method for manufacturing flat panel display
JP2006139041A (en) * 2004-11-12 2006-06-01 Dainippon Printing Co Ltd Method of correcting defect of color filter substrate and color filter substrate
JP2006154398A (en) * 2004-11-30 2006-06-15 Toppan Printing Co Ltd Correction method of color filter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572528A (en) * 1991-09-17 1993-03-26 Dainippon Printing Co Ltd Method for modifying color filter
JPH07318724A (en) * 1994-03-31 1995-12-08 Canon Inc Correcting method of color filter, correcting device therefor, color filter, liquid crystal display device, and device equipped with this liquid crystal display device
JPH08292442A (en) * 1995-04-24 1996-11-05 Ntn Corp Defect correcting method and defect correcting device for liquid crystal substrate
JPH09307217A (en) * 1996-05-13 1997-11-28 Ntn Corp Defect correcting method and device of continuous pattern
JPH10268122A (en) * 1997-03-25 1998-10-09 Ntn Corp Defect correcting method for color filter
JPH11271752A (en) * 1998-03-18 1999-10-08 Seiko Epson Corp Method for correcting color filter and manufacture of color filter
JP2002040674A (en) * 2000-07-31 2002-02-06 Ntn Corp Pattern correcting device
JP2004106511A (en) * 2002-07-08 2004-04-08 Canon Inc Liquid discharging device and method, device and method for manufacturing panel for display unit
JP2005063725A (en) * 2003-08-08 2005-03-10 Fujitsu Hitachi Plasma Display Ltd Method for manufacturing flat panel display
JP2006139041A (en) * 2004-11-12 2006-06-01 Dainippon Printing Co Ltd Method of correcting defect of color filter substrate and color filter substrate
JP2006154398A (en) * 2004-11-30 2006-06-15 Toppan Printing Co Ltd Correction method of color filter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010175912A (en) * 2009-01-30 2010-08-12 Toppan Printing Co Ltd Correction method for color filter substrate
US20110278603A1 (en) * 2009-02-10 2011-11-17 Panasonic Corporation Organic el display and method for manufacturing same
US8772052B2 (en) * 2009-02-10 2014-07-08 Panasonic Corporation Repaired organic EL display and method for manufacturing same including repairing process
JP2010282149A (en) * 2009-06-08 2010-12-16 Dainippon Printing Co Ltd Design method and production method of ink for correcting defect of color filter
JP2011102835A (en) * 2009-11-10 2011-05-26 Toppan Printing Co Ltd Method of correcting color filter, and color filter
JP2012108291A (en) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd Method for correcting defect on color filter substrate, and color filter substrate
JP2012118444A (en) * 2010-12-03 2012-06-21 Toppan Printing Co Ltd Defect correction method of color filter substrate, and color filter substrate
WO2013129366A1 (en) * 2012-02-28 2013-09-06 シャープ株式会社 Substrate for display device, display device, and method for manufacturing display device
JPWO2013129366A1 (en) * 2012-02-28 2015-07-30 シャープ株式会社 Display device substrate, display device and display device manufacturing method
CN107526191A (en) * 2016-11-09 2017-12-29 惠科股份有限公司 The method for repairing and mending of liquid crystal panel, liquid crystal display and liquid crystal panel
WO2018086322A1 (en) * 2016-11-09 2018-05-17 惠科股份有限公司 Display panel and repairing method thereof
US10761353B2 (en) 2016-11-09 2020-09-01 HKC Corporation Limited Display panel and repairing method thereof

Also Published As

Publication number Publication date
JP4924192B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4924192B2 (en) Defect correcting method for color filter substrate with transparent conductive film and color filter substrate with transparent conductive film
US6828069B1 (en) Method for correcting defects on color filter
WO2016086452A1 (en) Method for manufacturing colour filter, colour filter and liquid crystal panel
JP2004053971A (en) Method for manufacturing color filter and apparatus for correcting color filter
JP4978072B2 (en) Method for correcting protrusion defect of alignment control protrusion
CN103304148A (en) Pattern correcting method and pattern correcting device
JP4893286B2 (en) How to re-correct the color filter
JP2009015131A (en) Method for manufacturing display device, and display device
JP2010015072A (en) Correcting method of color filter substrate, and its device
JP5668439B2 (en) Color filter substrate defect correcting method and color filter substrate
JP5212681B2 (en) Defect correction method for color filter forming substrate
JPH04369604A (en) Defect part correcting method for color filter
JP5261938B2 (en) Defect correction method using laser light
JP4872673B2 (en) Defect correction method for color filter forming substrate and color filter forming substrate
JP4924118B2 (en) How to re-correct the color filter
JP2007333972A (en) Defect correction method and device using laser beam
JP6204185B2 (en) Display device and defect correcting method for display device
JP4923787B2 (en) Defect correction method using laser light
JP5182126B2 (en) Color filter substrate correction method
JP4905055B2 (en) How to correct the color filter
JP5488170B2 (en) Color filter correction method and color filter
JP2010097068A (en) Pattern correction method and pattern correction device
JP2006337946A (en) Method for removing defect in liquid crystal color filter and liquid crystal panel with defect removed
JP2001183668A (en) Manufacturing method of liquid crystal display device
JP5263861B2 (en) Defect correction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4924192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees