JP2008280915A - Intake and exhaust valve control device of internal combustion engine - Google Patents

Intake and exhaust valve control device of internal combustion engine Download PDF

Info

Publication number
JP2008280915A
JP2008280915A JP2007125497A JP2007125497A JP2008280915A JP 2008280915 A JP2008280915 A JP 2008280915A JP 2007125497 A JP2007125497 A JP 2007125497A JP 2007125497 A JP2007125497 A JP 2007125497A JP 2008280915 A JP2008280915 A JP 2008280915A
Authority
JP
Japan
Prior art keywords
intake
exhaust valve
exhaust
opening timing
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007125497A
Other languages
Japanese (ja)
Inventor
Sunao Murase
直 村瀬
Takahiko Fujiwara
孝彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007125497A priority Critical patent/JP2008280915A/en
Publication of JP2008280915A publication Critical patent/JP2008280915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake and exhaust valve control device of an internal combustion engine reducing torque variations by suppressing output torque generated while stabilizing combustion in returning from fuel cut. <P>SOLUTION: The intake and exhaust valve control device is provided to perform control so that when fuel supply should be restarted from a fuel cut condition during engine operation and when there is no requirement for engine output torque, exhaust valve opening timing is advanced and intake valve open timing is retarded as compared with intake and exhaust valve opening timing in normal engine operation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は内燃機関の吸排気弁制御装置に関する。   The present invention relates to an intake / exhaust valve control device for an internal combustion engine.

例えば、減速運転時(スロットルバルブ全閉時)に予め定められた第1の回転数以上に機関回転数が上昇している場合に燃費の向上のために行われる燃料供給停止、いわゆるフューエルカット中において、予め定められた第2の回転数以下に機関回転数が低下した場合に、電子制御装置(ECU)によって燃料供給再開、すなわちフューエルカット復帰が行われる。フューエルカットは、上記以外にも、機関排気や触媒が高温になりすぎた場合等、機関保護が必要な場合にも行われる。このような場合には、それぞれフューエルカット条件が成立しなくなった場合にフューエルカットからの復帰が行われる。   For example, during a so-called fuel cut, fuel supply is stopped to improve fuel efficiency when the engine speed is higher than a predetermined first speed during deceleration operation (when the throttle valve is fully closed). When the engine speed decreases to a predetermined second speed or less, the electronic control unit (ECU) resumes fuel supply, that is, returns to fuel cut. In addition to the above, the fuel cut is also performed when engine protection is required, such as when the engine exhaust or the catalyst becomes too hot. In such a case, return from the fuel cut is performed when the fuel cut condition is not satisfied.

その復帰の際に発生するトルク変動が運転者に不快なショックとして体感されるが、そのトルク変動を軽減するために、点火時期を出力及び燃料消費率が最良となる点火時期(MBT)よりも遅角させることが一般的である。さらにこれと併せて排気弁開弁時期を、膨張行程の後期(BDC付近)から初期(TDC付近)の間に進角させ、加速運転時の排気弁開弁時期よりも早めることによって、発生するトルクを抑制することによって体感されるショックを軽減させることが公知である(特許文献1参照)。   The torque fluctuation generated at the time of return is felt as an unpleasant shock to the driver, but in order to reduce the torque fluctuation, the ignition timing is set to be higher than the ignition timing (MBT) at which the output and the fuel consumption rate are the best. It is common to retard the angle. In addition to this, the exhaust valve opening timing is advanced from the later stage (near BDC) to the initial stage (near TDC) of the expansion stroke, and is made earlier than the exhaust valve opening timing during acceleration operation. It is known to reduce a shock experienced by suppressing torque (see Patent Document 1).

特開2000−8931号公報JP 2000-8931 A

しかし、点火時期を遅角させると失火してしまうことがあり、又失火しなくとも圧縮上死点付近における燃焼の後で燃焼室内に残った未燃ガスが燃焼する、いわゆる後燃えによる燃焼変動が大きくなり、排出ガスが燃焼時の高温のまま排気されることによって触媒が高温となって劣化してしまうという問題がある。更に、排気弁開弁時期を進角させると膨脹期間が短くなり、そのため、後述するような燃焼変動による筒内圧変動が大きくなるという問題も発生する。これら大きな筒内圧変動の増加は結果としてトルク変動の増加となり、体感されるショックの増大となる。   However, if the ignition timing is retarded, misfire may occur, and even if there is no misfire, unburned gas remaining in the combustion chamber burns after combustion near the compression top dead center. However, there is a problem that the exhaust gas is exhausted at the high temperature at the time of combustion, so that the catalyst becomes high temperature and deteriorates. Furthermore, if the exhaust valve opening timing is advanced, the expansion period is shortened. Therefore, there arises a problem that the in-cylinder pressure fluctuation due to combustion fluctuation increases as described later. These large increases in the in-cylinder pressure fluctuation result in an increase in torque fluctuation, resulting in an increase in the shock felt.

本発明は上記問題に鑑み、フューエルカット復帰時において発生する出力トルクを抑制しつつ燃焼を安定化させてトルク変動を軽減させる内燃機関の吸排気弁制御装置を提供することを目的としている。   In view of the above problems, an object of the present invention is to provide an intake / exhaust valve control device for an internal combustion engine that stabilizes combustion and suppresses torque fluctuation while suppressing output torque generated at the time of fuel cut recovery.

請求項1に記載の発明によれば、機関運転中のフューエルカット状態から燃料供給を再開すべき場合であって機関出力トルク要求がない場合に、機関通常運転時の吸排気弁開弁時期に比べて排気弁開弁時期を進角させると共に吸気弁開弁時期を遅角させるように制御することを特徴とする吸排気弁制御装置が提供される。排気弁開弁時期を進角させることによって膨脹期間が短くなり、そのため仕事として回収されるエネルギーが減少し、結果として発生するトルクが軽減する。しかし、排気弁開弁時期の進角の影響として後述のように燃焼変動が大きくなり、そのためトルク変動が大きくなってしまう。従って、これと併せて吸気弁開弁時期を遅角させると、燃焼室内の負圧が増大した状態となるため、空気と燃料との混合が促進されることによって燃焼が安定化し、トルク変動も軽減される。   According to the first aspect of the present invention, when the fuel supply should be resumed from the fuel cut state during engine operation and there is no engine output torque request, the intake / exhaust valve opening timing during normal engine operation is In comparison, an intake / exhaust valve control device is provided that controls to advance the exhaust valve opening timing and retard the intake valve opening timing. By advancing the exhaust valve opening timing, the expansion period is shortened, so that the energy recovered as work is reduced and the resulting torque is reduced. However, as described later, combustion fluctuations increase as a result of the advance angle of the exhaust valve opening timing, and therefore torque fluctuations increase. Therefore, if the intake valve opening timing is retarded at the same time, the negative pressure in the combustion chamber is increased, so that the mixing of air and fuel is promoted, so that combustion is stabilized and torque fluctuations are also increased. It is reduced.

また、請求項2に記載の発明によれば請求項1に記載の発明において、機関出力トルク要求があった場合に吸排気弁ベースで制御することを特徴とする吸排気弁制御装置が提供される。機関出力トルク要求があった場合に、後述するような通常時の吸排気弁制御である吸排気弁ベースで吸排気弁を制御することによって、軽減された機関出力トルクが回復される。   According to a second aspect of the present invention, there is provided an intake / exhaust valve control device according to the first aspect of the present invention, wherein control is performed on an intake / exhaust valve base when an engine output torque is requested. The When the engine output torque is requested, the reduced engine output torque is recovered by controlling the intake / exhaust valve based on the intake / exhaust valve base which is the normal intake / exhaust valve control as described later.

各請求項に記載の発明によれば、フューエルカット復帰時において発生するトルクの出力を抑制しつつ燃焼を安定化させてトルク変動を軽減させるという効果を奏する。   According to the invention described in each claim, there is an effect of reducing the torque fluctuation by stabilizing the combustion while suppressing the output of the torque generated at the time of returning from the fuel cut.

図1を参照すると、1は例えば四つの気筒を備えた機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポート、10は点火栓をそれぞれ示す。吸気ポート7は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。吸気ダクト13内には吸入空気流量を検出するためのエアフローメータ15と、ステップモータ16により駆動されるスロットル弁17とが配置される。また、吸気ポート7内には吸気ポート7内に燃料を噴射する電気制御式の燃料噴射弁18が配置される。燃料噴射弁18は燃料蓄圧室すなわちデリバリパイプ19と、電子制御式の吐出量可変な燃料ポンプ20とを介して燃料タンク21に連結される。更に、吸気弁6及び排気弁8には、それらの開弁動作を変更する可変動弁機構22,23がそれぞれ設けられる。ここで、開弁動作は例えばリフト量、開弁期間(作用角)及び開弁開始時期のうち一つ又は複数によって定められ、本実施形態の機構は公知のいずれの機構も使用可能であるため詳述はしない。一方、排気ポート9は排気マニホルド30を介して小容量の補助触媒31に連結され、補助触媒31は排気管32を介して大容量の主触媒33に連結され、主触媒33は排気管34に連結される。排気管32には空燃比を検出するための空燃比センサ35が取り付けられ、排気管34には排気ガスの温度を検出することによって主触媒33の温度を検出する触媒温度センサ36が取り付けられる。機関本体1には機関冷却水温を検出するための水温センサ37が取り付けられている。   Referring to FIG. 1, for example, 1 is an engine body having four cylinders, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake port, and 8 is an exhaust. A valve, 9 is an exhaust port, and 10 is a spark plug. The intake port 7 is connected to a surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air cleaner 14 via an intake duct 13. An air flow meter 15 for detecting the intake air flow rate and a throttle valve 17 driven by a step motor 16 are arranged in the intake duct 13. An electrically controlled fuel injection valve 18 that injects fuel into the intake port 7 is disposed in the intake port 7. The fuel injection valve 18 is connected to a fuel tank 21 via a fuel accumulator chamber, i.e., a delivery pipe 19 and an electronically controlled fuel pump 20 with variable discharge amount. Furthermore, the intake valve 6 and the exhaust valve 8 are respectively provided with variable valve mechanisms 22 and 23 for changing their valve opening operations. Here, the valve opening operation is determined, for example, by one or more of the lift amount, the valve opening period (working angle), and the valve opening start timing, and any known mechanism can be used as the mechanism of this embodiment. It will not be described in detail. On the other hand, the exhaust port 9 is connected to a small capacity auxiliary catalyst 31 via an exhaust manifold 30, the auxiliary catalyst 31 is connected to a large capacity main catalyst 33 via an exhaust pipe 32, and the main catalyst 33 is connected to the exhaust pipe 34. Connected. An air-fuel ratio sensor 35 for detecting the air-fuel ratio is attached to the exhaust pipe 32, and a catalyst temperature sensor 36 for detecting the temperature of the main catalyst 33 by detecting the temperature of the exhaust gas is attached to the exhaust pipe 34. A water temperature sensor 37 for detecting the engine cooling water temperature is attached to the engine body 1.

電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45及び出力ポート46を具備する。アクセルペダル49にはアクセルペダル49の踏み込み量を検出するための負荷センサ50が接続される。ここで、アクセルペダル49の踏み込み量は要求負荷を表している。エアフローメータ15、空燃比センサ35、排気温センサ36、水温センサ37、及び負荷センサ50の出力信号はそれぞれ対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ51が接続される。CPU44ではクランク角センサ51の出力パルスに基づいて機関回転数が算出される。一方、出力ポート46は対応する駆動回路48を介して点火栓10、ステップモータ16、燃料噴射弁18、燃料ポンプ20及び可変動弁機構22,23にそれぞれ接続され、これらは電子制御ユニット40からの出力信号に基づいて制御される。   The electronic control unit 40 is composed of a digital computer, and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The accelerator pedal 49 is connected to a load sensor 50 for detecting the depression amount of the accelerator pedal 49. Here, the depression amount of the accelerator pedal 49 represents a required load. The output signals of the air flow meter 15, air-fuel ratio sensor 35, exhaust temperature sensor 36, water temperature sensor 37, and load sensor 50 are input to the input port 45 via the corresponding AD converters 47. Further, the input port 45 is connected to a crank angle sensor 51 that generates an output pulse every time the crankshaft rotates, for example, 30 °. The CPU 44 calculates the engine speed based on the output pulse of the crank angle sensor 51. On the other hand, the output port 46 is connected to the spark plug 10, the step motor 16, the fuel injection valve 18, the fuel pump 20, and the variable valve mechanisms 22 and 23 via corresponding drive circuits 48, which are connected from the electronic control unit 40. It is controlled based on the output signal.

図2は図1の内燃機関の燃料供給制御操作を示している。この操作はECUにより予め定められた設定時間毎の割り込みによって実行されるルーチンとして行われる。図2を参照すると、まずステップ100でフューエルカット中であるか否かが判定される。フューエルカット中ではないとき、すなわち燃料供給が行われているときにはステップ101に進み、フューエルカットを実施するための条件が成立しているか否かが判定される。フューエルカットの実施条件とは、例えば前述したように減速運転中であり且つ機関回転数が所定値以上の場合の他、機関排気温度や触媒温度が所定温度以上に上昇したため排気系や触媒を保護する必要がある場合、車速が所定速度を超えたためスピードリミッタが作動した場合等がある。フューエルカットの実施条件が成立しているときにはステップ103に進んでフューエルカットを行い、フューエルカットの実施条件が成立していないときには、ステップ102に進んで燃料供給を継続する。そしてルーチンを終了する。   FIG. 2 shows the fuel supply control operation of the internal combustion engine of FIG. This operation is performed as a routine executed by interruption every predetermined time set in advance by the ECU. Referring to FIG. 2, it is first determined in step 100 whether or not a fuel cut is in progress. When the fuel cut is not in progress, that is, when the fuel is being supplied, the routine proceeds to step 101, where it is determined whether or not a condition for performing the fuel cut is satisfied. The fuel cut execution conditions include, for example, when the engine is decelerating and the engine speed is equal to or higher than a predetermined value as described above, and the exhaust system and catalyst are protected because the engine exhaust temperature and the catalyst temperature have risen above the predetermined temperature. There is a case where the speed limiter is operated because the vehicle speed exceeds a predetermined speed. When the fuel cut execution condition is satisfied, the routine proceeds to step 103, where fuel cut is performed. When the fuel cut execution condition is not satisfied, the routine proceeds to step 102, where fuel supply is continued. Then the routine ends.

一方、ステップ100においてフューエルカットが既に行われているときにはステップ104に進み、フューエルカットを停止するための条件が成立しているか否かが判定される。フューエルカットの停止条件とは、前述の機関回転数の例でいうと、第1の回転数より低い予め定められた第2の回転数以下に機関回転数が低下した場合の他、例えば触媒温度が過度に低下した場合、前述の排気系保護やスピードリミッタ作動等の条件が解除された場合等である。フューエルカットの停止条件が成立していないときにはステップ103に進んでフューエルカットを継続し、フューエルカットの停止条件が成立しているときにはステップ105に進んで、後の吸排気弁制御操作において本願発明の吸排気弁制御を行うための判定に使用する吸排気弁制御フラグXCに1をセットした後、ステップ102に進んで燃料供給を再開する。そしてルーチンを終了する。   On the other hand, when the fuel cut has already been performed in step 100, the routine proceeds to step 104, where it is determined whether or not a condition for stopping the fuel cut is satisfied. In the example of the engine speed described above, the fuel cut stop condition refers to, for example, the catalyst temperature in addition to the case where the engine speed decreases to a predetermined second speed lower than the first speed. This is the case where the above-mentioned conditions such as exhaust system protection and speed limiter operation are released. When the fuel cut stop condition is not satisfied, the routine proceeds to step 103 and the fuel cut is continued, and when the fuel cut stop condition is satisfied, the routine proceeds to step 105, and the intake / exhaust valve control operation of the present invention is performed later. After setting 1 to the intake / exhaust valve control flag XC used for the determination for performing the intake / exhaust valve control, the routine proceeds to step 102 and the fuel supply is resumed. Then the routine ends.

図3は図1の内燃機関の吸排気弁制御操作を示している。この操作もECUにより予め定められた設定時間毎の割り込みによって実行されるルーチンとして行われる。図3を参照すると、まずステップ110で機関出力トルク要求があるか否か、すなわちアクセルが踏み込まれているか否かが判定される。機関出力トルク要求があるときには本願発明の吸排気弁制御を行うことはないためステップ111に進み、通常の吸排気弁制御である、後述するような吸排気弁ベースによって吸排気弁制御を行うべく、吸排気弁制御フラグXCに0をセットする。そしてルーチンを終了する。   FIG. 3 shows an intake / exhaust valve control operation of the internal combustion engine of FIG. This operation is also performed as a routine executed by interruption every predetermined time set in advance by the ECU. Referring to FIG. 3, first, at step 110, it is determined whether or not there is an engine output torque request, that is, whether or not the accelerator is depressed. When there is an engine output torque request, the intake / exhaust valve control of the present invention is not performed, so the routine proceeds to step 111 to perform intake / exhaust valve control by an intake / exhaust valve base as described later, which is normal intake / exhaust valve control. The intake / exhaust valve control flag XC is set to 0. Then the routine ends.

一方、ステップ110において機関出力トルク要求がないときにはステップ113に進み、前述のようにセットされた吸気排気弁制御フラグXCが1か否かが判定される。XC≠1のときにはステップ112に進み、吸排気弁ベースによって吸排気弁制御を行い、XC=1のときにはステップ114に進んで後述するような本発明による吸気弁遅開き且つ排気弁早開きによって吸排気弁制御を行う。そしてルーチンを終了する。   On the other hand, when there is no engine output torque request in step 110, the routine proceeds to step 113, where it is determined whether the intake / exhaust valve control flag XC set as described above is 1. When XC ≠ 1, the routine proceeds to step 112, and the intake / exhaust valve control is performed by the intake / exhaust valve base. When XC = 1, the routine proceeds to step 114, where the intake valve is slowly opened and the exhaust valve is opened early as described later. Perform exhaust valve control. Then the routine ends.

図4は図1の内燃機関において、トルク変動を軽減させるために出力及び燃料消費率が最良となる点火時期(MBT)よりも遅角させた点火時期で、同一諸元により機関を複数サイクル回転させたクランク角に対する筒内圧の挙動を重ねて示している。圧縮上死点付近で燃焼して最高筒内圧を示した後にPaで示される筒内圧のピークは後燃えによるものである。その筒内圧挙動と併せて、そのクランク角に対する吸気弁(IV)及び排気弁(EV)の開弁期間を直線によって開弁時期(○)及び閉弁時期(×)と共に示している。   FIG. 4 shows an ignition timing retarded from the ignition timing (MBT) at which the output and the fuel consumption rate are the best in order to reduce torque fluctuations in the internal combustion engine of FIG. The behavior of the in-cylinder pressure with respect to the crank angle is overlapped. The peak of the in-cylinder pressure indicated by Pa after burning near the compression top dead center and showing the maximum in-cylinder pressure is due to afterburning. Along with the in-cylinder pressure behavior, the valve opening periods of the intake valve (IV) and the exhaust valve (EV) with respect to the crank angle are shown by straight lines together with the valve opening timing (◯) and the valve closing timing (×).

(a)は、例えば、機関加速運転中等の通常時の吸排気弁開弁時期である吸排気弁ベースを示す。それに対して(b)は、本発明による実施形態の吸排気弁開弁時期を示す。吸排気弁ベースに比べて、可変動弁機構23によって排気弁8の開弁時期を進角させる(矢印EOm)と共に可変動弁機構22によって吸気弁6の開弁時期を遅角させている(矢印IOm)。   (A) shows the intake / exhaust valve base which is the intake / exhaust valve opening timing at the normal time such as during engine acceleration operation, for example. On the other hand, (b) shows the intake / exhaust valve opening timing of the embodiment according to the present invention. Compared to the intake / exhaust valve base, the valve opening timing of the exhaust valve 8 is advanced by the variable valve mechanism 23 (arrow EOm), and the valve opening timing of the intake valve 6 is delayed by the variable valve mechanism 22 ( Arrow IOm).

まず、排気弁8の開弁時期を進角させることによって、すなわち排気弁8を早開きすることによって膨脹期間が短くなり、そのため発生するトルクが軽減される。このときの筒内圧の挙動を見ると、(a)に示す吸排気弁ベースにおける排気弁8の開弁時期の筒内圧は、図4に示すような同一諸元により機関を複数サイクル回転させた場合におけるいずれの機関サイクルにおいてもP1と略一定となっており、筒内圧変動がほとんど見られない。これは後燃えが収束しているためである。   First, the expansion period is shortened by advancing the valve opening timing of the exhaust valve 8, that is, by opening the exhaust valve 8 quickly, so that the generated torque is reduced. Looking at the behavior of the in-cylinder pressure at this time, the in-cylinder pressure at the opening timing of the exhaust valve 8 in the intake / exhaust valve base shown in FIG. In any engine cycle in this case, it is substantially constant with P1, and the in-cylinder pressure fluctuation is hardly seen. This is because afterburning has converged.

一方、(b)に示すように排気弁8の開弁時期を進角させると(矢印EOm)、図4において筒内圧変動がP2からP3の範囲で大きくなっている。これは、開弁時期における後燃えの燃焼変動が増大していることを意味し、場合によっては失火してしまうことがある。そのため排気弁開弁時期までに仕事として回収されるエネルギーの変動が大きくなり、結果としてトルク変動が大きくなる。   On the other hand, when the valve opening timing of the exhaust valve 8 is advanced (arrow EOm) as shown in FIG. 4B, the in-cylinder pressure fluctuation increases in the range from P2 to P3 in FIG. This means that the combustion fluctuation of the afterburning at the valve opening timing is increasing, and in some cases, misfire may occur. Therefore, the fluctuation of energy recovered as work by the exhaust valve opening timing increases, and as a result, the torque fluctuation increases.

一方、この燃焼変動を解消するために吸気弁6の開弁時期を遅角させることによって、すなわち吸気弁6を遅開きすることによって燃焼室5内で負圧が増大し、その状態で吸気弁6が開弁されると吸気ポート7内の空気が一気に燃焼室5内に流入する。その結果、燃焼室5内に大きな乱れが形成され、燃焼室5内における空気と燃料との混合が促進されることによって燃焼が安定化する。すなわち、図2の筒内圧挙動においてΔで示されるように後燃えによる筒内圧のピークPaの分散が小さくなり、そのため開弁時期までに仕事として回収されるエネルギーの変動による筒内圧変動が軽減される。従ってトルク変動も軽減される結果となる。   On the other hand, the negative pressure increases in the combustion chamber 5 by retarding the valve opening timing of the intake valve 6 in order to eliminate this combustion fluctuation, that is, by slowly opening the intake valve 6, and in this state, the intake valve When 6 is opened, the air in the intake port 7 flows into the combustion chamber 5 at once. As a result, a large turbulence is formed in the combustion chamber 5, and the combustion is stabilized by promoting the mixing of air and fuel in the combustion chamber 5. That is, as shown by Δ in the in-cylinder pressure behavior of FIG. 2, the dispersion of the peak Pa of the in-cylinder pressure due to afterburning is reduced, so that the in-cylinder pressure fluctuation due to the fluctuation of energy recovered as work by the valve opening timing is reduced. The Accordingly, torque fluctuation is also reduced.

以上より、フューエルカット復帰時において、吸排気弁ベースに比べて排気弁の開弁時期を早め且つ吸気弁の開弁時期を遅くなるよう吸排気弁の制御を行うことによって、トルクの出力を抑制しつつ燃焼を安定化させてトルク変動を軽減させるという効果が実現できる。   As described above, when fuel cut is restored, the torque output is suppressed by controlling the intake and exhaust valves so that the opening timing of the exhaust valve is advanced and the opening timing of the intake valve is delayed compared to the intake and exhaust valve base. However, the effect of stabilizing the combustion and reducing the torque fluctuation can be realized.

なお、図4(b)を用いて説明した実施形態において、吸排気弁ベースに比べて排気弁の開弁期間を長くしたが、(c)に示すように、排気弁の閉弁時期も開弁時期の進角と同様に進角させ(矢印ECm)、吸排気弁の開弁期間が不変となるようにしてもよい。そのような場合には可変動弁機構がより簡略化できる。また、点火時期はいつでも良いが、前述した従来から行われているように、MBTより遅角させることが望ましい。   In the embodiment described with reference to FIG. 4B, the valve opening period of the exhaust valve is made longer than that of the intake / exhaust valve base. However, as shown in FIG. The valve timing may be advanced (arrow ECm) in the same manner as the valve timing advance so that the valve opening period of the intake / exhaust valve remains unchanged. In such a case, the variable valve mechanism can be further simplified. In addition, the ignition timing may be any time, but it is desirable that the ignition timing is retarded from the MBT as has been conventionally performed.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. 本発明による実施形態の燃料供給制御操作を示すフローチャートである。It is a flowchart which shows the fuel supply control operation of embodiment by this invention. 本発明による実施形態の吸排気弁制御操作を示すフローチャートである。It is a flowchart which shows the intake / exhaust valve control operation of embodiment by this invention. クランク角に対する筒内圧の挙動及び吸排気弁の開閉動作を説明する図である。It is a figure explaining the behavior of the cylinder pressure with respect to a crank angle, and the opening / closing operation | movement of an intake / exhaust valve.

符号の説明Explanation of symbols

1 機関本体
6 吸気弁
8 排気弁
22,23 可変動弁機構
1 Engine Body 6 Intake Valve 8 Exhaust Valve 22, 23 Variable Valve Mechanism

Claims (2)

機関運転中のフューエルカット状態から燃料供給を再開すべき場合であって機関出力トルク要求がない場合に、機関通常運転時の吸排気弁開弁時期に比べて排気弁開弁時期を進角させると共に吸気弁開弁時期を遅角させるように制御することを特徴とする吸排気弁制御装置。   When the fuel supply should be restarted from the fuel cut state during engine operation and there is no request for engine output torque, the exhaust valve opening timing is advanced compared to the intake and exhaust valve opening timing during normal engine operation And an intake / exhaust valve control device that controls to retard the intake valve opening timing. 機関出力トルク要求があった場合に吸排気弁ベースで制御することを特徴とする請求項1に記載の吸排気弁制御装置。   2. The intake / exhaust valve control device according to claim 1, wherein control is performed on an intake / exhaust valve base when an engine output torque is requested.
JP2007125497A 2007-05-10 2007-05-10 Intake and exhaust valve control device of internal combustion engine Pending JP2008280915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007125497A JP2008280915A (en) 2007-05-10 2007-05-10 Intake and exhaust valve control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007125497A JP2008280915A (en) 2007-05-10 2007-05-10 Intake and exhaust valve control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008280915A true JP2008280915A (en) 2008-11-20

Family

ID=40141949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007125497A Pending JP2008280915A (en) 2007-05-10 2007-05-10 Intake and exhaust valve control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008280915A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181623A (en) * 2013-03-19 2014-09-29 Hitachi Automotive Systems Ltd Control device for internal combustion engine
JP2017008891A (en) * 2015-06-25 2017-01-12 株式会社日本自動車部品総合研究所 Control device of internal combustion engine
CN110131053A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 Engine control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144685A (en) * 2004-11-22 2006-06-08 Toyota Motor Corp Control device for internal combustion engine
JP2006348789A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Controller of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006144685A (en) * 2004-11-22 2006-06-08 Toyota Motor Corp Control device for internal combustion engine
JP2006348789A (en) * 2005-06-14 2006-12-28 Toyota Motor Corp Controller of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181623A (en) * 2013-03-19 2014-09-29 Hitachi Automotive Systems Ltd Control device for internal combustion engine
JP2017008891A (en) * 2015-06-25 2017-01-12 株式会社日本自動車部品総合研究所 Control device of internal combustion engine
CN110131053A (en) * 2018-02-09 2019-08-16 丰田自动车株式会社 Engine control system

Similar Documents

Publication Publication Date Title
EP2357340B1 (en) Device and method for controlling timing at which ignition is stopped when internal combustion engine becomes stopped
JP2007297992A (en) Control device for internal combustion engine
JP2008163848A (en) Control device for internal combustion engine
JP6661593B2 (en) Control device for internal combustion engine
JP2017166353A (en) Control device for engine
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP2009041540A (en) Control device of gasoline engine
JP2008280915A (en) Intake and exhaust valve control device of internal combustion engine
JP4840240B2 (en) Internal combustion engine control system
JP2007182828A (en) Control device for internal combustion engine
JP4835589B2 (en) Ignition control system for internal combustion engine
JP2008267294A (en) Control system of internal combustion engine
JP2009216035A (en) Control device of internal combustion engine
JP5429148B2 (en) Premixed compression self-ignition engine
JP4502030B2 (en) Control device for internal combustion engine
JP2009275687A (en) Variable compression ratio internal combustion engine
JP2009191703A (en) Control device of internal combustion engine
JP2006132399A (en) Control device and control method for an engine with supercharger
JP6288130B2 (en) Engine control device
JP2007270788A (en) Control device of multicylinder 4-cycle engine
JP5787029B2 (en) Ignition timing control device for internal combustion engine
JP6432548B2 (en) Engine control device
JP6766500B2 (en) Engine control
JP6331230B2 (en) Control device for turbocharged engine
JP4661792B2 (en) Exhaust noise suppression device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306