JP2008279390A - Electrostatic coating apparatus - Google Patents

Electrostatic coating apparatus Download PDF

Info

Publication number
JP2008279390A
JP2008279390A JP2007126891A JP2007126891A JP2008279390A JP 2008279390 A JP2008279390 A JP 2008279390A JP 2007126891 A JP2007126891 A JP 2007126891A JP 2007126891 A JP2007126891 A JP 2007126891A JP 2008279390 A JP2008279390 A JP 2008279390A
Authority
JP
Japan
Prior art keywords
current
weighted average
result
value
acquisition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007126891A
Other languages
Japanese (ja)
Other versions
JP5152829B2 (en
Inventor
Tatsuya Nishio
達哉 西尾
Yoshitaka Suzuki
善貴 鈴木
Sayo Usada
紗代 羽佐田
Hiroshi Koketsu
博 纐纈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2007126891A priority Critical patent/JP5152829B2/en
Publication of JP2008279390A publication Critical patent/JP2008279390A/en
Application granted granted Critical
Publication of JP5152829B2 publication Critical patent/JP5152829B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably detect an abnormal approach of an electrode of a coating gun and a coating object to each other irrespective of the humidity and the surface shape of the object. <P>SOLUTION: An abnormal approach is detected by judging whether or not the current electric current value Inow is higher than the previous weighted average Iave plus an abnormality judgement value I3, where the weighted average Iave is updated by multiplying the current electric current value Inow by the first weight K1 (1/2,000), multiplying the previous weighted average Iave by the second weight (1,999/2,000) and adding the resultant products. Because the weighted average for the comparison with the electric current value is adjusted automatically so as to follow independently the shape of the surface of the to-be-coated object and the height of the humidity, an abnormal approach is stably detectable independent of the height of the humidity and the shape of the surface of the object. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は塗装ガンの電極に電圧を印加することに基づいて塗装ガンの電極と塗装対象物との間に静電界を形成し、塗装ガンから噴出する塗料を静電界の作用で塗装対象物に付着させる静電塗装装置に関する。   The present invention forms an electrostatic field between the electrode of the coating gun and the object to be coated based on applying a voltage to the electrode of the coating gun, and the paint sprayed from the coating gun is applied to the object to be painted by the action of the electrostatic field. The present invention relates to an electrostatic coating apparatus to be attached.

上記静電塗装装置には塗装ガンの電極と塗装対象物との間を流れる電流の大きさを一定の時間間隔で検出し、両者が相互に異常接近しようとしていることを電流値の検出結果に基づいて事前に検出する異常検出機能を備えた構成のものがある。この構成の場合、両者が異常接近しようとしていることが検出されたときには塗装ガンの電極に対する送電処理を停止し、両者の間でスパークが発生することを防止している。この異常検出機能には過電流異常検出機能および変化量異常検出機能の2種類が存在する。過電流異常検出機能は電流値の検出結果が予め決められた限度値を上回る場合に異常接近有りと判定する機能であり、例えば塗装対象物が塗装ガンの電極にゆっくりと異常接近した場合に作動する。変化量異常検出機能は電流値の検出結果に基づいて電流値の時間的な変化率を演算し、変化率の演算結果が予め決められた許容値を上回る場合に異常接近有りと判定する機能であり、例えば塗装対象物が塗装ガンの電極を急に横切った場合に作動する。   The electrostatic coating device detects the magnitude of the current flowing between the electrode of the coating gun and the object to be coated at regular time intervals, and the detection result of the current value indicates that they are about to approach each other abnormally. There is a configuration having an abnormality detection function for detecting in advance based on this. In the case of this configuration, when it is detected that both of them are approaching abnormally, the power transmission processing to the electrode of the paint gun is stopped, and a spark is prevented from occurring between the two. There are two types of abnormality detection functions: an overcurrent abnormality detection function and a change amount abnormality detection function. The overcurrent abnormality detection function is a function that determines that there is an abnormal approach when the detection result of the current value exceeds a predetermined limit value. For example, the overcurrent abnormality detection function is activated when the object to be painted slowly approaches the paint gun electrode. To do. The change amount abnormality detection function calculates the temporal change rate of the current value based on the detection result of the current value, and determines that there is an abnormal approach when the calculation result of the change rate exceeds a predetermined allowable value. Yes, for example, when a painting object suddenly crosses the electrode of the painting gun.

上記静電塗装装置の場合、塗装ガンの電極と塗装対象物との間を流れる電流の大きさが湿度の高低に応じて変動するので、過電流異常検出機能が湿度の影響で誤作動しないように過電流異常検出機能の限度値を高い値に設定する必要があった。また、塗装対象物の表面がでこぼこしている場合には塗装ガンの電極および塗装対象物の表面相互間の距離が安定せず、距離が安定しない影響で電流値の時間的な変化率が大きく変動するので、変化量異常検出機能の許容値を設定することができなかった。   In the case of the above electrostatic coating device, the magnitude of the current flowing between the electrode of the coating gun and the object to be coated fluctuates depending on the humidity level, so that the overcurrent abnormality detection function does not malfunction due to the humidity. In addition, it was necessary to set the limit value of the overcurrent abnormality detection function to a high value. Also, if the surface of the object to be painted is uneven, the distance between the electrode of the painting gun and the surface of the object to be painted is not stable, and the rate of change over time of the current value is large due to the unstable distance. Since it fluctuates, the allowable value of the variation abnormality detection function could not be set.

本発明は上記事情に鑑みてなされたものであり、その目的は、塗装ガンの電極および塗装対象物が相互に異常接近しようとしていることを湿度の高低および塗装対象物の表面形状のそれぞれに影響されることなく安定的に検出することが可能な静電塗装装置を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to influence the levels of humidity and the surface shape of the object to be painted that the electrode of the paint gun and the object to be painted are abnormally approaching each other. It is an object of the present invention to provide an electrostatic coating apparatus capable of stably detecting without being performed.

本発明の静電塗装装置は塗装ガンの電極に電圧を印加することに基づいて塗装ガンの電極と塗装対象物との間に静電界を形成し、塗装ガンから噴出する塗料を静電界の作用で塗装対象物に付着させるものにおいて、前記電極と前記塗装対象物との間を流れる電流の大きさを検出する電流検出回路と、前記電流検出回路の検出結果を調整不能または調整可能な一定の時間間隔で取得する取得手段と、前記取得手段が前記電流検出回路の検出結果を取得する毎に前記取得手段の取得結果に基づいて加重平均値を演算する演算手段と、前記取得手段が前記電流検出回路の検出結果を取得する毎に前記取得手段の今回の取得結果を前記演算手段の前回の演算結果と比較する比較手段と、前記取得手段の今回の取得結果が前記演算手段の前回の演算結果に比べて調整不能または調整可能な許容値を超えて大きい場合に予め決められた異常処理を行う異常処理手段を備え、前記演算手段は前記取得手段の今回の取得結果に調整不能または調整可能な第1の重みk1(0<k<1)を乗じた乗算値および前回の加重平均値の演算結果に第2の重みk2(1−k1)を乗じた乗算値を相互に加算することで今回の加重平均値を演算するところに特徴を有する。   The electrostatic coating apparatus of the present invention forms an electrostatic field between the coating gun electrode and the object to be coated based on applying a voltage to the electrode of the coating gun, and the paint sprayed from the coating gun acts on the action of the electrostatic field. The current detection circuit that detects the magnitude of the current flowing between the electrode and the coating object, and the detection result of the current detection circuit is not adjustable or can be adjusted. An acquisition unit that acquires at time intervals, a calculation unit that calculates a weighted average value based on an acquisition result of the acquisition unit every time the acquisition unit acquires a detection result of the current detection circuit, and the acquisition unit includes the current Comparison means for comparing the current acquisition result of the acquisition means with the previous calculation result of the calculation means each time the detection result of the detection circuit is acquired, and the current acquisition result of the acquisition means is the previous calculation of the calculation means result Comparing with an abnormality processing means that performs a predetermined abnormality processing when the adjustment value is not adjustable or larger than an adjustable allowable value, the arithmetic means is a non-adjustable or adjustable first value of the acquisition result of the acquisition means. The multiplication value obtained by multiplying the multiplication value obtained by multiplying the first weight k1 (0 <k <1) and the previous weighted average value by the multiplication value obtained by multiplying the second weight k2 (1-k1) is added to each other. It is characterized in that a weighted average value is calculated.

1.本発明の静電塗装装置の作用の説明
塗装ガンを使用して塗装対象物に静電塗装を施している運転中には塗装ガンの電極と塗装対象物との間を流れる電流値が一定の時間間隔で取得される。この電流値が取得される毎に今回の電流値の取得結果に基づいて加重平均値が演算され、電流値の今回の取得結果が加重平均値の前回の演算結果と比較される。この比較結果に基づいて「電流値の今回の取得結果>加重平均値の前回の演算結果+許容値」であることが検出された場合には塗装ガンの電極および塗装対象物が相互に異常接近しようとしていることが判定され、異常処理が行われる。
2.本発明の静電塗装装置の効果の説明
電流値の今回の取得結果に第1の重みk1(0<k<1)を乗じ、前回の加重平均値の演算結果に第2の重みk2(1−k1)を乗じ、両乗算値を相互に加算することで加重平均値を順に更新し、「電流値の今回の取得結果>加重平均値の前回の演算結果+許容値」であるか否かに基づいて塗装ガンの電極および塗装対象物相互間の異常接近の有無を判定している。このため、電流値の比較対象となる加重平均値が塗装対象物の表面形状および湿度の高低のそれぞれに追従して自動的に調整されるので、異常接近の有無が湿度の高低および塗装対象物の表面形状のそれぞれに影響されることなく安定的に検出されるようになる。
1. Description of the operation of the electrostatic coating apparatus of the present invention During operation in which a coating object is electrostatically coated using a coating gun, the value of the current flowing between the coating gun electrode and the coating object is constant. Obtained at time intervals. Each time this current value is acquired, the weighted average value is calculated based on the current current value acquisition result, and the current value acquisition result is compared with the previous calculation result of the weighted average value. Based on this comparison result, if it is detected that “current current value acquisition result> previous calculation result of weighted average value + allowable value”, the paint gun electrode and the painting object are abnormally close to each other. It is determined that an attempt is made and an abnormality process is performed.
2. Description of the effect of the electrostatic coating apparatus of the present invention The current weight result obtained this time is multiplied by the first weight k1 (0 <k <1), and the previous weighted average value calculation result is the second weight k2 (1 Multiply -k1) and add both multiplication values to each other to update the weighted average value in order, and whether or not "current value acquisition result> previous calculation result of weighted average value + allowable value" Based on the above, it is determined whether there is an abnormal approach between the electrode of the painting gun and the painting object. For this reason, the weighted average value to be compared with the current value is automatically adjusted to follow the surface shape of the object to be painted and the level of humidity. Thus, it can be detected stably without being affected by each of the surface shapes.

[実施例1]
塗装ガン1は、図1に示すように、アース接続された塗装対象物2に静電塗装を施すものであり、塗料バルブ3および空気バルブ4を有している。これら塗料バルブ3および空気バルブ4のそれぞれは開放状態および閉鎖状態相互間で切換わることが可能なものであり、塗料バルブ3は塗料ポンプ5を介して塗料タンク6に接続され、空気バルブ4はコンプレッサ7に接続されている。これら塗料バルブ3および空気バルブ4のそれぞれは引き金に連結されたものであり、引き金の非操作状態では塗料バルブ3および空気バルブ4のそれぞれが閉鎖状態に保持される。この引き金は塗装ガン1に装着されたものであり、塗料バルブ3および空気バルブ4のそれぞれは引き金の操作態で開放状態に保持される。この空気バルブ4の開放状態では圧縮空気がコンプレッサ7の吐出圧で塗装ガン1から前方へ噴出し、塗料タンク6内に貯留された塗料が塗料ポンプ5の吐出圧で塗装ガン1から前方へ噴出し、塗料が圧縮空気に乗ることで霧状化されて塗装対象物2に噴霧される。この塗装ガン1の引き金はロボットに連結されたものであり、ロボットは塗装ガン1の前方に塗装対象物2を自動的に搬送し、塗装ガン1の引き金を塗装対象物2の搬送タイミングに合せて自動的に操作する。
[Example 1]
As shown in FIG. 1, the coating gun 1 performs electrostatic coating on a coating object 2 connected to the ground, and has a paint valve 3 and an air valve 4. Each of the paint valve 3 and the air valve 4 can be switched between an open state and a closed state. The paint valve 3 is connected to a paint tank 6 via a paint pump 5, and the air valve 4 is It is connected to the compressor 7. Each of the paint valve 3 and the air valve 4 is connected to a trigger. When the trigger is not operated, each of the paint valve 3 and the air valve 4 is held in a closed state. This trigger is attached to the paint gun 1, and each of the paint valve 3 and the air valve 4 is held open in the trigger operation state. In the open state of the air valve 4, the compressed air is jetted forward from the coating gun 1 by the discharge pressure of the compressor 7, and the paint stored in the paint tank 6 is jetted forward from the paint gun 1 by the discharge pressure of the paint pump 5. Then, the paint is atomized by being put on the compressed air and sprayed on the object to be coated 2. The trigger of the painting gun 1 is connected to the robot, and the robot automatically conveys the painting object 2 in front of the painting gun 1, and the trigger of the painting gun 1 is matched to the conveyance timing of the painting object 2. Automatically.

塗装ガン1の内部には昇圧トランス8と高電圧発生回路9と電極10が収納されている。昇圧トランス8は交流電源を昇圧するものであり、高電圧発生回路9は昇圧トランス8が昇圧した交流電源を高圧直流電源に変換する。この高電圧発生回路9はコッククロフト型の多段整流器からなるものであり、高電圧発生回路9の正極は帰還ケーブル11を介してアース接続されている。電極10は高電圧発生回路9の負極に接続されたものである。この電極10は高電圧発生回路9から高電圧が印加されることに基づいて前方の塗装対象物2との間に静電界を形成するものであり、塗装ガン1から噴霧される塗料は静電界の作用で塗装対象物2に付着する。   Inside the painting gun 1 is housed a step-up transformer 8, a high voltage generation circuit 9 and an electrode 10. The step-up transformer 8 boosts the AC power source, and the high voltage generation circuit 9 converts the AC power source boosted by the step-up transformer 8 into a high-voltage DC power source. The high voltage generating circuit 9 is composed of a cockcroft type multi-stage rectifier, and the positive electrode of the high voltage generating circuit 9 is grounded via a feedback cable 11. The electrode 10 is connected to the negative electrode of the high voltage generation circuit 9. The electrode 10 forms an electrostatic field with the front object 2 based on the application of a high voltage from the high voltage generation circuit 9, and the paint sprayed from the coating gun 1 is an electrostatic field. It adheres to the coating object 2 by the action of.

コントロールボックス12は塗装ガン1を電気的にコントロールするものであり、コントロールボックス12の内部には電源回路13と高周波発振回路14と高周波トランス15が収納されている。電源回路13は直流電源を生成するものであり、高周波発振回路14は電源回路13から出力される直流電源を高周波交流電源に変換し、高周波トランス15は高周波発振回路14から出力される高周波交流電源を降圧する。この高周波トランス15は送電ケーブル16を介して昇圧トランス8に接続されており、昇圧トランス8には高周波トランス15から交流電源が送電される。   The control box 12 electrically controls the coating gun 1, and a power supply circuit 13, a high frequency oscillation circuit 14, and a high frequency transformer 15 are accommodated in the control box 12. The power supply circuit 13 generates a DC power supply, the high frequency oscillation circuit 14 converts the DC power output from the power supply circuit 13 into a high frequency AC power supply, and the high frequency transformer 15 outputs a high frequency AC power supply output from the high frequency oscillation circuit 14. Step down. The high-frequency transformer 15 is connected to the step-up transformer 8 via a power transmission cable 16, and AC power is transmitted from the high-frequency transformer 15 to the step-up transformer 8.

コントロールボックス12の内部には制御回路17が収納されている。この制御回路17はマイクロコンピュータを主体に構成されたものであり、CPU18とROM19とRAM20を有している。この制御回路17には電源回路13および高周波発振回路14のそれぞれが接続されており、制御回路17のCPU18は電源回路13および高周波発振回路14のそれぞれを制御することに基づいて降圧トランス15から昇圧トランス8に高周波交流電源を送電し、塗装対象物2および電極10相互間に静電界を形成する。   A control circuit 17 is accommodated in the control box 12. The control circuit 17 is mainly composed of a microcomputer and has a CPU 18, a ROM 19 and a RAM 20. The control circuit 17 is connected to each of the power supply circuit 13 and the high-frequency oscillation circuit 14, and the CPU 18 of the control circuit 17 boosts the voltage from the step-down transformer 15 based on controlling the power supply circuit 13 and the high-frequency oscillation circuit 14, respectively. A high frequency AC power is transmitted to the transformer 8 to form an electrostatic field between the object to be painted 2 and the electrode 10.

コントロールボックス12の内部には電流検出回路21およびA/D変換回路22が収納されており、電流検出回路21はA/D変換回路22を介して制御回路17に接続されている。この電流検出回路21は帰還ケーブル11に介在された電流検出抵抗を主体に構成されたものであり、制御回路17のCPU18は電流検出回路21の検出結果をA/D変換回路22を介して検出することに基づいて帰還ケーブル11を流れる戻り電流Iの大きさを検出する。この帰還ケーブル11の外周部にはシールド23が装着されており、シールド23は帰還ケーブル11を流れる戻り電流Iに外部からノイズが乗ることを防止する。このシールド23は送電ケーブル16の外周部に配置されたものであり、送電ケーブル16で発生する高周波ノイズを大地に放出することで高周波ノイズが外部に飛散することを防止する。   A current detection circuit 21 and an A / D conversion circuit 22 are housed inside the control box 12, and the current detection circuit 21 is connected to the control circuit 17 via the A / D conversion circuit 22. The current detection circuit 21 is mainly configured by a current detection resistor interposed in the feedback cable 11, and the CPU 18 of the control circuit 17 detects the detection result of the current detection circuit 21 via the A / D conversion circuit 22. Based on this, the magnitude of the return current I flowing through the feedback cable 11 is detected. A shield 23 is attached to the outer periphery of the feedback cable 11, and the shield 23 prevents noise from being applied to the return current I flowing through the feedback cable 11 from the outside. The shield 23 is disposed on the outer periphery of the power transmission cable 16 and prevents high-frequency noise from being scattered outside by releasing high-frequency noise generated in the power transmission cable 16 to the ground.

制御回路17には操作手段に相当するオペレーションスイッチ23が接続されている。このオペレーションスイッチ23はコントロールボックス12に操作可能に装着されたものであり、制御回路17はオペレーションスイッチ23が操作されることに基づいて起動する。この制御回路17にはタイマ24が接続されており、制御回路17のCPU18はタイマ24のカウント結果に基づいて一定の時間間隔で異常接近検出用のタイマ割込み処理を起動する。この処理は塗装ガン1の電極10および塗装対象物2相互間が異常接近しようとしているか否かを判定するものであり、異常接近とは塗装ガン1の電極10および塗装対象物2相互間でスパークが発生する直前の接近状態を称する。   An operation switch 23 corresponding to an operation means is connected to the control circuit 17. The operation switch 23 is operably attached to the control box 12, and the control circuit 17 is activated when the operation switch 23 is operated. A timer 24 is connected to the control circuit 17, and the CPU 18 of the control circuit 17 starts a timer interrupt process for detecting an abnormal approach at regular time intervals based on the count result of the timer 24. This process determines whether or not the electrode 10 of the painting gun 1 and the object to be painted 2 are about to be abnormally approached. The abnormal approach is a spark between the electrode 10 of the painting gun 1 and the object to be painted 2. This refers to the approaching state immediately before the occurrence.

制御回路17には過電流LED25と変化量LED26と加重平均LED27が接続されている。これら過電流LED25〜加重平均LED27のそれぞれはコントロールボックス12に外部から視認可能に固定された報知手段に相当するものであり、制御回路17は異常接近有りを判定したときには過電流LED25〜加重平均LED27のいずれかを点灯することに基づいて作業者に塗装ガン1の電極10および塗装対象物2相互間が異常接近していることを報知する。制御回路17には過電流リレー28と変化量リレー29と加重平均リレー30が接続されている。これら過電流リレー28〜加重平均リレー30のそれぞれはロボットに接続されたものであり、制御回路17は異常接近有りを判定したときには過電流リレー28〜加重平均リレー30のいずれかに信号を出力することに基づいてロボットを運転停止する。   An overcurrent LED 25, a change amount LED 26, and a weighted average LED 27 are connected to the control circuit 17. Each of the overcurrent LED 25 to the weighted average LED 27 corresponds to a notification means fixed to the control box 12 so as to be visible from the outside. When the control circuit 17 determines that there is an abnormal approach, the overcurrent LED 25 to the weighted average LED 27 The operator is informed that the electrode 10 of the painting gun 1 and the object to be painted 2 are abnormally close to each other based on lighting one of the above. An overcurrent relay 28, a change amount relay 29, and a weighted average relay 30 are connected to the control circuit 17. Each of the overcurrent relay 28 to the weighted average relay 30 is connected to the robot, and the control circuit 17 outputs a signal to any of the overcurrent relay 28 to the weighted average relay 30 when it is determined that there is an abnormal approach. Based on this, the robot is shut down.

図2〜図4のそれぞれは制御回路17のROM19に予め記録された制御プログラムを示すフローチャトであり、異常接近検出機能は制御回路17のCPU18が漏れ電流Iの検出結果を図2〜図4の制御プログラムに基づいて処理することで実現される。以下、図2〜図4の制御プログラムについて説明する。   Each of FIGS. 2 to 4 is a flowchart showing a control program pre-recorded in the ROM 19 of the control circuit 17, and the abnormal approach detection function is the CPU 18 of the control circuit 17 showing the detection result of the leakage current I in FIGS. This is realized by processing based on the control program. Hereinafter, the control program of FIGS. 2-4 is demonstrated.

図2はオペレーションスイッチ23が操作されることに基づいてCPU18が起動直後に実行するメイン処理の詳細を示すものであり、CPU18は図2のステップS1で割込み禁止を設定することに基づいて図3のタイマ割込み処理および図4のA/D変換完了割込み処理のそれぞれが起動することを禁止する。そして、ステップS2で電流値Ioldに「0」をセットすることで電流値Ioldを初期化し、ステップS3で電流値Inowに「0」をセットすることで電流値Inowを初期化する。電流値Ioldは漏れ電流Iの前回の検出結果を示すものであり、電流値Inowは漏れ電流Iの今回の検出結果を示すものであり、CPU18はステップS3で電流値Inowを初期化したときにはステップS4へ移行する。   FIG. 2 shows details of the main processing executed immediately after the CPU 18 is started based on the operation switch 23 being operated. The CPU 18 sets the interrupt inhibition in step S1 of FIG. The timer interrupt process of FIG. 4 and the A / D conversion completion interrupt process of FIG. 4 are prohibited from starting. In step S2, the current value Iold is initialized by setting “0” to the current value Iold, and in step S3, the current value Inow is initialized by setting “0” to the current value Inow. The current value Iold indicates the previous detection result of the leakage current I, the current value Inow indicates the current detection result of the leakage current I, and the CPU 18 initializes the current value Inow in step S3. The process proceeds to S4.

CPU18はステップS4へ移行すると、加重平均値Iaveに「0」をセットすることで加重平均値Iaveを初期化する。この加重平均値Iaveは前回の加重平均値の演算結果を示すものであり、CPU18はステップS4で加重平均値Iaveを初期化したときにはステップS5へ移行し、残り無効期間Tdに最大値Tmaxをセットすることで残り無効期間Tdを初期化する。この残り無効期間Tdは異常接近の有無を判定しない無効期間の終了タイミングを特定するためのものであり、CPU18はステップS5で残り無効期間Tdを初期化したときにはステップS6へ移行し、タイマ24を初期設定する。このタイマ24の設定処理は図3のタイマ割込み処理が1msec毎に発生するように行われるものであり、CPU18は図2のステップS6でタイマ24を初期設定したときにはステップS7へ移行する。このステップS7でA/D変換回路22を初期設定し、ステップS8で割込み禁止の設定を解除する。   When the CPU 18 proceeds to step S4, the weighted average value Iave is initialized by setting “0” to the weighted average value Iave. The weighted average value Iave indicates the previous calculation result of the weighted average value. When the CPU 18 initializes the weighted average value Iave in step S4, the process proceeds to step S5, and the maximum value Tmax is set in the remaining invalid period Td. As a result, the remaining invalid period Td is initialized. This remaining invalid period Td is for specifying the end timing of the invalid period in which the presence or absence of abnormal approach is not determined. When the remaining invalid period Td is initialized at step S5, the CPU 18 proceeds to step S6 and sets the timer 24. Initial setting. The timer 24 setting process is performed so that the timer interrupt process of FIG. 3 occurs every 1 msec. When the CPU 18 initializes the timer 24 in step S6 of FIG. 2, the process proceeds to step S7. In step S7, the A / D conversion circuit 22 is initialized, and in step S8, the interrupt prohibition setting is canceled.

図3のタイマ割込み処理はタイマ割込みフラグがオン状態にセットされることに基づいて起動するものである。このタイマ割込みフラグはタイマ24の計測結果に基づいてハードウェア的に1msec毎にオン状態にセットされるものであり、CPU18はタイマ割込みフラグのオン状態では図3のステップS11でタイマ割込みフラグをオフ状態にクリアし、ステップS12でA/D変換開始フラグをオン状態にセットする。A/D変換回路22はA/D変換開始フラグがオン状態にセットされることに基づいて漏れ電流Iのデジタル変換処理を開始するものであり、A/D変換開始フラグは漏れ電流Iのデジタル変換処理中にはオン状態にセットされ、漏れ電流Iのデジタル変換処理が完了することに基づいてハードウェア的にオフ状態にクリアされる。   The timer interrupt process of FIG. 3 is started based on the timer interrupt flag being set to the on state. This timer interrupt flag is set to the on state every 1 msec in terms of hardware based on the measurement result of the timer 24. When the timer interrupt flag is on, the CPU 18 turns off the timer interrupt flag in step S11 of FIG. In step S12, the A / D conversion start flag is set to the on state. The A / D conversion circuit 22 starts the digital conversion processing of the leakage current I based on the A / D conversion start flag being set to the ON state, and the A / D conversion start flag is a digital signal of the leakage current I. During the conversion process, it is set to the on state, and is cleared to the off state by hardware based on the completion of the digital conversion process of the leakage current I.

図4のA/D変換完了割込み処理はA/D完了フラグがオン状態にセットされることに基づいて起動するものである。このA/D完了フラグはA/D変換回路22が漏れ電流Iのデジタル変換処理を完了することに基づいてハードウェア的にオン状態にセットされるものであり、CPU18はA/D完了フラグのオン状態では図4のステップS21でA/D完了フラグをオフ状態にクリアし、ステップS22で漏れ電流Iのデジタル変換結果を電流値Inowにセットする。即ち、電流検出回路21の戻り電流Iの検出結果は調整不能な一定の時間間隔1msecで取得されるものであり、図4のステップS22は取得手段に相当する。   The A / D conversion completion interrupt process of FIG. 4 is activated based on the A / D completion flag being set to the on state. This A / D completion flag is set to the on state by hardware based on the completion of the digital conversion processing of the leakage current I by the A / D conversion circuit 22, and the CPU 18 sets the A / D completion flag. In the on state, the A / D completion flag is cleared to the off state in step S21 of FIG. 4, and the digital conversion result of the leakage current I is set to the current value Inow in step S22. That is, the detection result of the return current I of the current detection circuit 21 is acquired at a fixed time interval of 1 msec that cannot be adjusted, and step S22 in FIG. 4 corresponds to an acquisition unit.

CPU18はステップS22で戻り電流Iの検出結果を電流値Inowにセットすると、ステップS23で残り無効期間Tdを「0」と比較する。この残り無効期間Tdは図2のメイン処理で最大値Tmaxにセットされたものであり、CPU18は起動当初には図4のステップS23で「Td=0」ではないことを判断してステップS36へ移行する。   When the CPU 18 sets the detection result of the return current I to the current value Inow in step S22, the remaining invalid period Td is compared with “0” in step S23. The remaining invalid period Td is set to the maximum value Tmax in the main process of FIG. 2, and the CPU 18 determines that “Td = 0” is not satisfied in step S23 of FIG. Transition.

CPU18はステップS36へ移行すると、下記(1)式に基づいて加重平均値Iaveを演算する。この(1)式は制御回路17のROM19に予め記録されたものであり、電流値Inowは漏れ電流値Iの今回の検出結果であり、「1/2000」は第1の重みk1に相当する調整不能な固定値であり、「1999/2000」は第2の重みk2に相当する調整不能な固定値である。この加重平均値Iaveを演算するステップS36は演算手段に相当する。   When proceeding to step S36, the CPU 18 calculates a weighted average value Iave based on the following equation (1). This equation (1) is recorded in advance in the ROM 19 of the control circuit 17, the current value Inow is the current detection result of the leakage current value I, and “1/2000” corresponds to the first weight k1. It is a non-adjustable fixed value, and “1999/2000” is a non-adjustable fixed value corresponding to the second weight k2. Step S36 for calculating the weighted average value Iave corresponds to a calculation means.

Iave←Inow*1/2000+Iave*1999/2000 ・・・・(1)
CPU18はステップS36で加重平均値Iaveを演算すると、ステップS37で電流値Ioldに電流値Inowをセットする。この電流値Inowは今回の漏れ電流Iの検出結果であり、ステップS37では今回の漏れ電流Iの検出結果が前回の漏れ電流Iの検出結果として記録される。
Iave ← Inow * 1/2000 + Iave * 1999/2000 (1)
After calculating the weighted average value Iave in step S36, the CPU 18 sets the current value Inow to the current value Iold in step S37. This current value Inow is the detection result of the current leakage current I, and the detection result of the current leakage current I is recorded as the detection result of the previous leakage current I in step S37.

CPU18はステップS37で電流値Ioldに電流値Inowをセットすると、ステップS38で残り無効期間Tdを「0」と比較する。この残り無効期間Tdは図2のメイン処理で最大値Tmaxにセットされたものであり、CPU18は起動当初には図4のステップS38で「Td>0」であることを判断してステップS39へ移行し、残り無効期間TdからROM19に予め記録された単位時間ΔT(1msec)を減算する。即ち、「残り無効期間Td>0」である起動当初には一定の時間間隔1msecで漏れ電流Iの検出処理が行われ、漏れ電流Iの検出結果が電流値Inowにセットされる。この起動当初には今回の電流値Inowおよび前回の加重平均値Iaveに基づいて加重平均値Iaveの演算処理が一定の時間間隔1msecで行われ、今回の電流値Inowが前回の電流値Ioldにセットされる。   When the CPU 18 sets the current value Iow to the current value Iold in step S37, the remaining invalid period Td is compared with “0” in step S38. The remaining invalid period Td is set to the maximum value Tmax in the main process of FIG. 2, and the CPU 18 determines that “Td> 0” in step S38 of FIG. The unit time ΔT (1 msec) recorded in advance in the ROM 19 is subtracted from the remaining invalid period Td. That is, at the beginning of the start-up when “remaining invalid period Td> 0”, the leakage current I is detected at a fixed time interval of 1 msec, and the detection result of the leakage current I is set to the current value Inow. At the beginning of the start-up, the calculation processing of the weighted average value Iave is performed at a constant time interval of 1 msec based on the current value Inow of this time and the previous weighted average value Iave, and the current value Inow of this time is set to the previous current value Iold. Is done.

CPU18は残り無効期間Tdが「0」に減算された状態ではステップS23からステップS24へ移行し、今回の電流値Inowの検出結果をROM19に予め記録された異常判定値I1と比較する。この異常判定値I1は漏れ電流Iの絶対値がスパークを誘発するのに相当する過大なものであるか否かを判定するための境界値であり、例えば塗装対象物2が塗装ガン1の電極10にゆっくりと近付くことに基づいて両者が異常接近しようとしたときにはスパークの発生前に今回の電流値Inowが異常判定値I1を上回る。この場合にはCPU18はステップS24で「Inow>I1」を判断してステップS25へ移行し、高周波発振回路14を駆動停止することに基づいて電極10に対する送電処理を停止する。そして、ステップS26で過電流LED25に点灯信号を出力し、過電流LED25を択一的に点灯することに基づいて作業者に過電流異常が発生したことを報知する。次にステップS27で過電流リレー28に信号を出力し、ロボットを運転停止する。   In a state where the remaining invalid period Td is subtracted to “0”, the CPU 18 proceeds from step S23 to step S24, and compares the detection result of the current value Inow with the abnormality determination value I1 recorded in advance in the ROM 19. This abnormality determination value I1 is a boundary value for determining whether or not the absolute value of the leakage current I is an excessive value corresponding to inducing a spark. For example, the painting object 2 is an electrode of the painting gun 1. When both approach to abnormally approach based on approaching 10 slowly, the current value Inow of this time exceeds the abnormality determination value I1 before the occurrence of spark. In this case, the CPU 18 determines “Inow> I1” in step S24, proceeds to step S25, and stops the power transmission process for the electrode 10 based on stopping driving of the high-frequency oscillation circuit 14. In step S26, a lighting signal is output to the overcurrent LED 25 to notify the operator that an overcurrent abnormality has occurred based on alternatively lighting the overcurrent LED 25. Next, in step S27, a signal is output to the overcurrent relay 28, and the robot is stopped.

CPU18は過電流異常の非発生時にはステップS24で「Inow>I1」ではないことを判断し、ステップS28へ移行する。ここで前回の電流値IoldをROM19に予め記録された異常判定値I2に加算し、両者の加算結果を今回の電流値Inowと比較する。この異常判定値I2は漏れ電流Iの時間的な変化率がスパークを誘発するのに相当する過大なものであるか否かを判定するための境界値であり、例えば塗装対象物2が塗装ガン1の電極10の前方を急速に横切った場合にはスパークの発生前に今回の電流値Inowが前回の電流値Ioldおよび異常判定値I2相互の加算結果を上回る。この場合にはCPU18は「Inow>Iold+I2」を判断してステップS29へ移行し、高周波発振回路14を駆動停止することに基づいて電極10に対する送電処理を停止する。そして、ステップS30で変化量LED26に点灯信号を出力し、変化量LED26を択一的に点灯することに基づいて作業者に変化量異常が発生したことを報知する。次にステップS31で変化量リレー29に信号を出力し、ロボットを運転停止する。   When the overcurrent abnormality does not occur, the CPU 18 determines in step S24 that “Inow> I1” is not satisfied, and proceeds to step S28. Here, the previous current value Iold is added to the abnormality determination value I2 recorded in advance in the ROM 19, and the addition result of both is compared with the current value Inow. This abnormality determination value I2 is a boundary value for determining whether or not the temporal change rate of the leakage current I is excessive, which is equivalent to inducing a spark. When the front of one electrode 10 is rapidly traversed, the current value Inow of this time exceeds the result of mutual addition of the previous current value Iold and the abnormality determination value I2 before the occurrence of a spark. In this case, the CPU 18 determines “Inow> Iold + I2”, proceeds to step S29, and stops the power transmission process for the electrode 10 based on stopping the driving of the high-frequency oscillation circuit 14. In step S30, a lighting signal is output to the change amount LED 26 to notify the operator that the change amount abnormality has occurred based on alternatively turning on the change amount LED 26. Next, in step S31, a signal is output to the change amount relay 29, and the operation of the robot is stopped.

CPU18は変化量異常の非発生時にはステップS28で「Inow>Iold+I2」ではないことを判断し、ステップS32で前回の加重平均値IaveをROM19に予め記録された異常判定値I3に加算する。この異常判定値I3は漏れ電流Iの加重平均値がスパークを誘発するのに相当する過大なものであるか否かを判定するための許容値に相当するものであり、CPU18はステップS32で前回の加重平均値Iaveおよび異常判定値I3を相互に加算したときには両者の加算結果を今回の電流値Inowと比較する。この今回の電流値Iaveおよび前回の加重平均値Iaveを相互に比較するステップS32は比較手段に相当するものである。   When the change amount abnormality does not occur, the CPU 18 determines in step S28 that “Inow> Iold + I2” is not satisfied, and in step S32, adds the previous weighted average value Iave to the abnormality determination value I3 recorded in the ROM 19 in advance. This abnormality determination value I3 corresponds to an allowable value for determining whether or not the weighted average value of the leakage current I is excessively large to induce a spark. When the weighted average value Iave and the abnormality determination value I3 are added together, the addition result of both is compared with the current value Inow. Step S32 for comparing the current value Iave of this time with the previous weighted average value Iave corresponds to the comparison means.

CPU18はステップS32で「Inow>Iave+I3」ではないことを判断すると、ステップS36で電流値Inowおよび加重平均値Iaveに基づいて加重平均値Iaveを更新し、ステップS37で今回の電流値Inowを前回の電流値Ioldにセットする。   When the CPU 18 determines that “Inow> Iave + I3” is not satisfied in step S32, the weighted average value Iave is updated based on the current value Inow and the weighted average value Iave in step S36, and the current value Inow of this time is updated in step S37. Set to current value Iold.

CPU18はステップS32で「Inow>Iave+I3」であることを判断すると、ステップS33で高周波発振回路14を駆動停止することに基づいて電極10に対する送電処理を停止する。そして、ステップS34で加重平均LED27に点灯信号を出力し、加重平均LED27を択一的に点灯することに基づいて作業者に加重平均異常が発生したことを報知する。次にステップS35で加重平均リレー30に信号を出力し、ロボットを運転停止する。この異常報知を行うステップS34および異常停止を行うステップS33のそれぞれは異常処理手段に相当するものである。   When the CPU 18 determines that “Inow> Iave + I3” in step S32, the CPU 18 stops the power transmission process for the electrode 10 based on stopping driving the high-frequency oscillation circuit 14 in step S33. In step S34, a lighting signal is output to the weighted average LED 27 to notify the operator that a weighted average abnormality has occurred based on alternatively lighting the weighted average LED 27. In step S35, a signal is output to the weighted average relay 30, and the robot is stopped. Each of the step S34 for performing the abnormality notification and the step S33 for performing the abnormal stop corresponds to the abnormality processing means.

上記実施例1によれば次の効果を奏する。
漏れ電流値の今回の取得結果Inowに第1の重み「1/2000」を乗じ、前回の加重平均値の演算結果Iaveに第2の重みk2「1999/2000」を乗じ、両乗算値を相互に加算することで加重平均値Iaveを順に更新し、「電流値の今回の取得結果Inow>加重平均値の前回の演算結果Iave+異常判定値I3」であるか否かに基づいて塗装ガン1の電極10および塗装対象物2相互間の異常接近の有無を判定した。このため、電流値Inowの比較対象となる加重平均値Iaveが塗装対象物2の表面形状および湿度の高低のそれぞれに追従して自動的に調整されるので、異常接近の有無が湿度の高低および塗装対象物2の表面形状のそれぞれに影響されることなく安定的に検出されるようになる。図5は電流値Inowと加重平均値Iaveと相対限界値Iave+I3のそれぞれの時間的変化を示す実験結果の一例であり、計測初期段階の電流値Inowの変動では「Inow>Iave+I3」が判断されず、電流値Inowの突発的な大きな変動時P1およびP2のそれぞれで「Inow>Iave+I3」が判断されることに基づいて異常接近が検出される。
According to the said Example 1, there exists the following effect.
The current acquisition result Inow of the leakage current value is multiplied by the first weight “1/2000”, the previous weighted average value calculation result Iave is multiplied by the second weight k2 “1999/2000”, and both multiplication values are mutually obtained. Is added in order to update the weighted average value Iave in order, and based on whether or not “current value current acquisition result Inow> weighted average value previous calculation result Iave + abnormality determination value I3”. The presence or absence of abnormal approach between the electrode 10 and the object 2 to be painted was determined. For this reason, the weighted average value Iave to be compared with the current value Inow is automatically adjusted to follow the surface shape of the coating object 2 and the level of humidity, so the presence / absence of abnormal approach is determined by whether the humidity is high or low. It is detected stably without being affected by each of the surface shapes of the painting object 2. FIG. 5 is an example of experimental results showing temporal changes of the current value Inow, the weighted average value Iave, and the relative limit value Iave + I3, and “Inow> Iave + I3” is not determined by the fluctuation of the current value Inow in the initial measurement stage. An abnormal approach is detected based on the determination of “Inow> Iave + I3” at each of the sudden large fluctuations P1 and P2 of the current value Inow.

上記実施例1においては、タイマ割込みの発生間隔ΔTと異常判定値I1と異常判定値I2と異常判定値I3と第1の重みk1と第2の重みk2のそれぞれを作業者が調整できるように構成しても良い。この構成の場合、コントロールボックス12に調整対象となる定数の種類を指定するための第1のスイッチおよび数値を入力するための第2のスイッチのそれぞれを装着し、制御回路17のCPU18がタイマ割込みの発生間隔ΔTと異常判定値I1と異常判定値I2と異常判定値I3と第1の重みk1と第2の重みk2のうち第1のスイッチの操作内容に応じたものを第2のスイッチの操作内容に応じた値に設定すると良い。   In the first embodiment, the timer interrupt generation interval ΔT, the abnormality determination value I1, the abnormality determination value I2, the abnormality determination value I3, the first weight k1, and the second weight k2 can be adjusted by the operator. It may be configured. In this configuration, the control box 12 is provided with a first switch for designating the type of constant to be adjusted and a second switch for inputting a numerical value, and the CPU 18 of the control circuit 17 causes the timer interrupt. Generation interval ΔT, abnormality determination value I1, abnormality determination value I2, abnormality determination value I3, first weight k1 and second weight k2 according to the operation content of the first switch. It is good to set the value according to the operation content.

上記実施例1においては、過電流異常検出機能および変化量異常検出機能それぞれの残り無効期間Tdが「0」になるまでは加重平均値Iaveの演算処理を行わずに残り無効期間Tdが「0」になってから加重平均値Iaveの演算処理を開始しても良い。即ち、戻り電流値Iが不安定な制御プログラムの起動初期には加重平均値Iaveの演算処理を行わず、戻り電流値Iが安定することを待って加重平均値Iaveの演算処理を行っても良い。   In the first embodiment, the remaining invalid period Td is “0” without performing the calculation process of the weighted average value Iave until the remaining invalid period Td of each of the overcurrent abnormality detection function and the change amount abnormality detection function becomes “0”. The calculation processing of the weighted average value Iave may be started after In other words, the calculation process of the weighted average value Iave is not performed at the initial start of the control program in which the return current value I is unstable, and the calculation process of the weighted average value Iave is performed after the return current value I is stabilized. good.

上記実施例1においては、塗装ガン1として塗料バルブ3および空気バルブ4のそれぞれを電気的なアクチュエータで開閉操作する自動式のものを利用しても良い。
上記実施例1においては、塗装ガン1として作業者が引き金を手動操作する手動式のものを利用しても良い。
In the first embodiment, an automatic gun that opens and closes each of the paint valve 3 and the air valve 4 with an electric actuator may be used as the coating gun 1.
In the first embodiment, a manual gun in which the operator manually operates the trigger may be used as the coating gun 1.

実施例1を示す図(電気的構成を示すブロック図)The figure which shows Example 1 (block diagram which shows an electrical structure) 制御プログラムを説明するためのフローチャート(メイン処理)Flow chart for explaining the control program (main processing) 制御プログラムを説明するためのフローチャート(タイマ割込み処理)Flow chart for explaining the control program (timer interrupt processing) 制御プログラムを説明するためのフローチャート(A/D変換完了割込み処理)Flow chart for explaining the control program (A / D conversion completion interrupt process) 戻り電流の時間的な変化を示す図Diagram showing the change in return current over time

符号の説明Explanation of symbols

1は塗装ガン、10は電極、12は制御回路(取得手段,演算手段,比較手段,異常処理手段)、21は電流検出回路を示している。   Reference numeral 1 denotes a paint gun, 10 denotes an electrode, 12 denotes a control circuit (acquisition means, calculation means, comparison means, abnormality processing means), and 21 denotes a current detection circuit.

Claims (1)

塗装ガンの電極に電圧を印加することに基づいて塗装ガンの電極と塗装対象物との間に静電界を形成し、塗装ガンから噴出する塗料を静電界の作用で塗装対象物に付着させるものにおいて、
前記電極と前記塗装対象物との間を流れる電流の大きさを検出する電流検出回路と、
前記電流検出回路の検出結果を調整不能または調整可能な一定の時間間隔で取得する取得手段と、
前記取得手段が前記電流検出回路の検出結果を取得する毎に前記取得手段の取得結果に基づいて加重平均値を演算する演算手段と、
前記取得手段が前記電流検出回路の検出結果を取得する毎に前記取得手段の今回の取得結果を前記演算手段の前回の演算結果と比較する比較手段と、
前記取得手段の今回の取得結果が前記演算手段の前回の演算結果に比べて調整不能または調整可能な許容値を超えて大きい場合に予め決められた異常処理を行う異常処理手段を備え、
前記演算手段は、
前記取得手段の今回の取得結果に調整不能または調整可能な第1の重みk1(0<k1<1)を乗じた乗算値および前回の加重平均値の演算結果に第2の重みk2(1−k1)を乗じた乗算値を相互に加算することで今回の加重平均値を演算することを特徴とする静電塗装装置。



An electrostatic field is formed between the coating gun electrode and the object to be coated based on applying a voltage to the electrode of the painting gun, and the paint sprayed from the coating gun is attached to the object to be painted by the action of the electrostatic field. In
A current detection circuit for detecting a magnitude of a current flowing between the electrode and the coating object;
An acquisition means for acquiring the detection result of the current detection circuit at a fixed time interval that is not adjustable or adjustable;
A calculation means for calculating a weighted average value based on the acquisition result of the acquisition means every time the acquisition means acquires the detection result of the current detection circuit;
Comparison means for comparing the current acquisition result of the acquisition means with the previous calculation result of the calculation means each time the acquisition means acquires the detection result of the current detection circuit;
An abnormality processing means for performing a predetermined abnormality processing when the current acquisition result of the acquisition means is not adjustable or larger than an adjustable allowable value compared to the previous calculation result of the calculation means,
The computing means is
The calculation result of the multiplication value obtained by multiplying the current acquisition result of the acquisition unit by the first weight k1 (0 <k1 <1) that is not adjustable or adjustable, and the previous weighted average value are used as the second weight k2 (1− An electrostatic coating apparatus characterized in that a weighted average value of this time is calculated by mutually adding multiplication values multiplied by k1).



JP2007126891A 2007-05-11 2007-05-11 Electrostatic coating equipment Active JP5152829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007126891A JP5152829B2 (en) 2007-05-11 2007-05-11 Electrostatic coating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007126891A JP5152829B2 (en) 2007-05-11 2007-05-11 Electrostatic coating equipment

Publications (2)

Publication Number Publication Date
JP2008279390A true JP2008279390A (en) 2008-11-20
JP5152829B2 JP5152829B2 (en) 2013-02-27

Family

ID=40140671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007126891A Active JP5152829B2 (en) 2007-05-11 2007-05-11 Electrostatic coating equipment

Country Status (1)

Country Link
JP (1) JP5152829B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161757A (en) * 2011-02-08 2012-08-30 Asahi Sunac Corp Electrostatic coating apparatus
JP2012161756A (en) * 2011-02-08 2012-08-30 Asahi Sunac Corp Electrostatic coating apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398954U (en) * 1990-01-25 1991-10-15
JPH06134351A (en) * 1992-10-30 1994-05-17 Asahi Sanac Kk Current abnormality detector for electrostatic coater
JPH09262510A (en) * 1996-03-28 1997-10-07 Trinity Ind Corp Monitoring device for degree in dirt of electrostatic coating machine
JP2002186884A (en) * 2000-12-20 2002-07-02 Abb Kk Electrostatic coating apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398954U (en) * 1990-01-25 1991-10-15
JPH06134351A (en) * 1992-10-30 1994-05-17 Asahi Sanac Kk Current abnormality detector for electrostatic coater
JPH09262510A (en) * 1996-03-28 1997-10-07 Trinity Ind Corp Monitoring device for degree in dirt of electrostatic coating machine
JP2002186884A (en) * 2000-12-20 2002-07-02 Abb Kk Electrostatic coating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012161757A (en) * 2011-02-08 2012-08-30 Asahi Sunac Corp Electrostatic coating apparatus
JP2012161756A (en) * 2011-02-08 2012-08-30 Asahi Sunac Corp Electrostatic coating apparatus

Also Published As

Publication number Publication date
JP5152829B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
AU593567B2 (en) Electrostatic voltage control circuit
JP2829178B2 (en) Power supply for electrostatic coating machine for arc prevention
JP4388070B2 (en) Electrostatic coating equipment
WO2013111664A1 (en) Electrostatic spray coater
JP4678858B2 (en) Electrostatic coating equipment
US20150001940A1 (en) High voltage controller with improved monitoring and diagnostics
JP2007029920A (en) Electrostatic coating apparatus
JP5152829B2 (en) Electrostatic coating equipment
CN108714498B (en) Automatic control method for powder output of electrostatic powder spray gun control system
JP6367537B2 (en) Electrostatic coating equipment
US10315205B2 (en) Electrostatic coater and electrostatic coating method
JP5952058B2 (en) Electrostatic coating apparatus and coating method
JP5719026B2 (en) Electrostatic coating equipment
JP5731219B2 (en) Electrostatic coating equipment
JP2018525217A (en) Control circuit for protection against spark discharge
JP2010022933A (en) Control method enabling to avoid overcurrent anomaly in electrostatic coating
JP6442202B2 (en) Electrostatic coating device and program for electrostatic coating device
JP6856833B2 (en) High voltage controller
JP5731218B2 (en) Electrostatic coating equipment
WO2014128477A1 (en) Method and apparatus for controlling a powder coater
JP3335937B2 (en) High voltage control method for electrostatic coating
JPH07150348A (en) Power source for sputtering
JP4339603B2 (en) High voltage output control method for electrostatic coating machine
JPH11267552A (en) Electrostatic coating apparatus
JP2012161755A (en) Electrostatic coating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250