JP2008277495A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2008277495A
JP2008277495A JP2007118407A JP2007118407A JP2008277495A JP 2008277495 A JP2008277495 A JP 2008277495A JP 2007118407 A JP2007118407 A JP 2007118407A JP 2007118407 A JP2007118407 A JP 2007118407A JP 2008277495 A JP2008277495 A JP 2008277495A
Authority
JP
Japan
Prior art keywords
polishing
film
polished
polishing process
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007118407A
Other languages
Japanese (ja)
Inventor
Noritaka Kamikubo
徳貴 上久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2007118407A priority Critical patent/JP2008277495A/en
Priority to PCT/JP2008/056857 priority patent/WO2008136240A1/en
Priority to TW97113542A priority patent/TW200908120A/en
Publication of JP2008277495A publication Critical patent/JP2008277495A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planarization method which suppresses defects on a surface of a polished film and can control a thickness of the polished film, and to provide a manufacturing method of a semiconductor device using such the planarization method. <P>SOLUTION: An interlayer insulating film 3 is formed on a semiconductor substrate 1 formed with a semiconductor element 2. When this takes place, a projected part 4 having a higher position than a periphery and a non-projected part 5 having a lower position than the projected part 4 exist on a surface of the formed interlayer insulating film 3. For such the interlayer insulating film 3, first, a first polishing processing is conducted by use of abrasive grains having non-Prestonian characteristics to planarize the projected part 4. Thereafter, a second polishing processing in which a polishing pressure is set to 1.5 times or more is executed on the surface of the interlayer insulating film 3. Thus, the number of defects remaining on the surface of the interlayer insulating film 3 after polishing can be suppressed, and further a control of a film thickness of the interlayer insulating film 3 which is desired to remain is facilitated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体装置の製造方法であって、特に成膜後に表面を平坦化するための平坦化方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a planarization method for planarizing a surface after film formation.

半導体集積回路装置の高集積化に伴い、その製造過程において、微細なパターンを高精度に形成するために基板表面を均一に平坦化する平坦化技術が重要となっている。このような平坦化技術としては、従来、研磨液(スラリー)を用いて基板を研磨布(パッド)へ押し付けて摩擦研磨するCMP(Chemical Mechanical Polishing :化学機械研磨)法が広く用いられている。   Along with the high integration of semiconductor integrated circuit devices, in the manufacturing process, in order to form a fine pattern with high accuracy, a flattening technique for uniformly flattening the substrate surface has become important. As such a planarization technique, a CMP (Chemical Mechanical Polishing) method in which a substrate is pressed against a polishing cloth (pad) using a polishing liquid (slurry) and friction-polished is widely used.

このCMP法による平坦化を行うに際し、特に高い平坦性が要求されるような場合、例えば、STI(Shallow Trench Isolation)法によって素子分離領域を形成するに際し当該方法により形成されるトレンチ内の埋め込み絶縁膜の余剰分を研磨除去するような場合には、下記特許文献1に記載のように、酸化セリウム(「セリア」とも称される)を砥粒としたスラリーが広く用いられている。   When performing planarization by this CMP method, particularly when high planarity is required, for example, when forming an element isolation region by STI (Shallow Trench Isolation) method, buried insulation in a trench formed by this method is used. In the case where the excess of the film is removed by polishing, as described in Patent Document 1 below, a slurry using cerium oxide (also referred to as “ceria”) as abrasive grains is widely used.

これは、酸化セリウムを砥粒とし、適切な有機化合物を添加剤としたスラリーを用いることにより、従来一般に用いられてきた酸化シリコン(シリカ)を砥粒としたスラリーを用いた場合と比較して、より高いシリコン酸化膜の研磨速度と、研磨ストッパー膜として用いられる窒化ケイ素膜に対するより高い研磨速度選択性が得られることによるものである。また、酸化セリウムが、研磨圧力が一定値より低い場合に研磨速度が小さくなる、いわゆる非プレストニアン特性を有しているため、研磨ストッパー膜が露出した段階で、素子分離領域のシリコン酸化膜が余剰に研磨されるのを抑制することが可能となる。これにより、パターン依存性の少ない、高平坦性を有する研磨を実現することができる。   Compared to the case of using a slurry of silicon oxide (silica), which has been conventionally used, by using a slurry containing cerium oxide as an abrasive and an appropriate organic compound as an additive. This is because higher polishing rate of the silicon oxide film and higher polishing rate selectivity with respect to the silicon nitride film used as the polishing stopper film can be obtained. In addition, since cerium oxide has a so-called non-Prestonian characteristic in which the polishing rate decreases when the polishing pressure is lower than a certain value, the silicon oxide film in the element isolation region is exposed at the stage where the polishing stopper film is exposed. It is possible to suppress excessive polishing. As a result, it is possible to realize polishing having high flatness with little pattern dependency.

さらに近年では、下記特許文献2に示されるように、研磨圧力(研磨時の押し付け圧力)が一定値より低い場合の研磨速度が毎分20〜50nm程度の、非プレストニアン特性の強い研磨材が提供されている。このような研磨材を用いて凸部を有する形状の被研磨膜表面を研磨する場合、凸部が存在する状況下においては、毎分100〜1000nm程度の研磨速度で研磨が行われていたのに対し、凸部が平坦化されて被研磨膜表面がほぼ平坦となった段階で、研磨速度は毎分50nm程度以下に急激に低下し、通常に用いられる研磨速度に比してほとんど研磨が進行しなくなる。   Further, in recent years, as shown in Patent Document 2 below, an abrasive having a strong non-Prestonian property with a polishing rate of about 20 to 50 nm per minute when the polishing pressure (pressing pressure at the time of polishing) is lower than a certain value has been developed. Is provided. When polishing the surface of a film to be polished having a convex portion using such an abrasive, polishing was performed at a polishing rate of about 100 to 1000 nm per minute in the situation where the convex portion exists. On the other hand, at the stage where the convex portion is flattened and the surface of the film to be polished is almost flat, the polishing rate rapidly decreases to about 50 nm or less per minute, and the polishing is almost less than the polishing rate normally used. It will not progress.

すなわち、このような非プレストニアン特性の強い砥粒(研磨材)を用いることで、半導体素子や金属配線形成後に成膜された凸部を有する層間絶縁膜等のように、被研磨膜と異なる材料の研磨ストッパー膜が存在しない場合においても、凸部が平坦化された段階で自動的に研磨速度が急激に低下する(ほとんど進行しない、オートストップ)ため、このような層間絶縁膜に対しても高平坦性を有する研磨処理を実現することができる。   In other words, by using such abrasive grains (abrasive material) having strong non-Prestonian characteristics, it is different from a film to be polished, such as an interlayer insulating film having a convex portion formed after forming a semiconductor element or a metal wiring. Even in the absence of a material polishing stopper film, the polishing rate automatically decreases sharply when the projections are flattened (almost no progress, auto-stop). A polishing process having high flatness can be realized.

特開2001−310256号公報JP 2001-310256 A 特開2006−279050号公報JP 2006-279050 A

しかしながら、上記のような非プレストニアン特性の強い砥粒を用いて凸部を有する被研磨膜に対する平坦化処理(研磨処理)を実行した場合、凸部が平坦化されることで被研磨膜表面がほぼ平坦化されると、自動的に研磨がほとんど進行しなくなる。このため、被研磨膜表面に生じたスクラッチ等の欠陥が存在していても、当該欠陥が除去されること無くそのまま残存してしまうので、平坦化処理後の被研磨膜表面の欠陥密度が非常に大きくなるという問題が生ずる。また、凸部の平坦化後は研磨速度が非常に遅いため、予め測定したCMP処理の前段階での成膜量に応じて、CMP処理時の研磨量を処理ロット毎に制御することが困難であるという問題が生ずる。   However, when a flattening process (polishing process) is performed on a film to be polished having a convex part using abrasive grains having a strong non-Prestonian characteristic as described above, the surface of the film to be polished is caused by the flattening of the convex part. When the film is almost flattened, the polishing hardly proceeds automatically. For this reason, even if there are defects such as scratches generated on the surface of the film to be polished, the defects remain as they are without being removed. Therefore, the defect density on the surface of the film to be polished after the planarization process is extremely high. The problem of becoming large arises. In addition, since the polishing rate is very slow after the flattening of the projections, it is difficult to control the polishing amount at the time of CMP processing for each processing lot according to the film formation amount at the previous stage of the CMP processing measured in advance. The problem arises.

本発明は、上記の問題点に鑑み、成膜された被研磨膜の表面を非プレストニアン特性の強い材料を砥粒として平坦化するに際し、当該被研磨膜表面に存する欠陥を抑制するとともに、被研磨膜厚を制御可能な平坦化方法を提供し、かかる平坦化方法を用いた半導体装置の製造方法を提供することを目的とする。   In view of the above problems, the present invention suppresses defects existing on the surface of the film to be polished when the surface of the film to be polished is flattened with abrasive material having a strong non-Prestonian property, An object of the present invention is to provide a planarization method capable of controlling the film thickness to be polished, and to provide a method for manufacturing a semiconductor device using the planarization method.

上記目的を達成するための本発明に係る半導体装置の製造方法は、半導体基板上に絶縁膜または導電膜で構成される被研磨膜を成膜する成膜工程と、前記成膜工程終了後、前記被研磨膜の成膜表面を平坦化する平坦化工程と、を有する半導体装置の製造方法であって、前記平坦化工程が、非プレストニアン特性を有する砥粒を用いて前記被研磨膜の表面に対して研磨処理を行う第1研磨処理と、前記第1研磨処理を終了後、前記第1研磨処理と比較して1.5倍以上の研磨圧力の下で前記被研磨膜の表面に対して研磨処理を行う第2研磨処理と、を有し、前記第1研磨処理が、前記被研磨膜の成膜表面を、少なくとも前記半導体基板面に垂直な方向の高さまたは深さが100nm以上の凸部または凹部が存在しない第1表面状態に変化させた段階で終了することを第1の特徴とする。   In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention includes: a film forming process for forming a film to be polished formed of an insulating film or a conductive film on a semiconductor substrate; A planarization step of planarizing a film-forming surface of the film to be polished, wherein the planarization step is performed using abrasive grains having non-Prestonian characteristics. A first polishing process for polishing the surface, and after finishing the first polishing process, the surface of the film to be polished is subjected to a polishing pressure of 1.5 times or more compared to the first polishing process. A second polishing process for performing a polishing process on the surface of the film to be polished, the height or depth of the film to be polished being at least perpendicular to the semiconductor substrate surface is 100 nm. It was changed to the first surface state where the above convex part or concave part does not exist. The first, characterized in that ends at floor.

本発明に係る半導体装置の製造方法の上記第1の特徴によれば、研磨圧力が相対的に小さい第1研磨処理によって、被研磨膜表面に存する凸部または凹部を平坦化するとともに、研磨圧力が相対的に大きい第2研磨処理によって、第1研磨処理後に被研磨膜表面に発生した欠陥が存在する領域を研磨することで、研磨後の表面に損する欠陥数を削減することができる。これにより、成膜された被研磨膜を過剰に研磨することなく、当該被研磨膜表面に対する平坦化処理が行えるとともに、研磨後の被研磨膜内に存する欠陥量を従来よりも大きく減少することができる。   According to the first feature of the method of manufacturing a semiconductor device according to the present invention, the first polishing process with a relatively low polishing pressure flattens the convex portion or the concave portion existing on the surface of the film to be polished, and the polishing pressure. By polishing the region where defects generated on the surface of the film to be polished exist after the first polishing process by the relatively large second polishing process, the number of defects lost on the polished surface can be reduced. As a result, the surface of the film to be polished can be flattened without excessively polishing the film to be polished, and the amount of defects existing in the film to be polished after polishing can be greatly reduced as compared with the prior art. Can do.

さらに、第1研磨処理の後で行われる第2研磨処理は、第1研磨処理と比較して研磨圧力が大きいため、第1表面状態の被研磨膜表面に対しても監視可能な速度で研磨を行うことができる。これにより、あらかじめ定められた膜厚だけ研磨した時点で第2研磨処理を終了させる制御が可能となり、残存させたい被研磨膜の膜厚の調整を容易に行うことができる。   Furthermore, since the second polishing process performed after the first polishing process has a higher polishing pressure than the first polishing process, the surface of the film to be polished in the first surface state is polished at a speed that can be monitored. It can be performed. This makes it possible to control the second polishing process to end when the predetermined film thickness is polished, and to easily adjust the film thickness of the film to be polished.

また、本発明に係る半導体装置の製造方法は、上記第1の特徴に加えて、前記第1研磨処理において、前記第1表面状態を示す成膜表面に対する研磨速度が、開始直後の研磨速度の1/4以下であることを第2の特徴とする。   The semiconductor device manufacturing method according to the present invention, in addition to the first feature, in the first polishing process, the polishing rate for the film-forming surface showing the first surface state is the polishing rate immediately after the start. The second characteristic is that it is 1/4 or less.

本発明に係る半導体装置の製造方法の上記第2の特徴によれば、第1研磨処理によって凸部または凹部に対して平坦化が施され、被研磨膜表面が第1表面状態となった段階で、研磨速度が大きく減少するため、第1研磨処理の終了タイミングを容易に認識することができる。また、第1表面状態となった被研磨膜表面に対する研磨速度が十分遅いため、凸部または凹部に対する平坦化処理が完了した後、過剰に被研磨膜を研磨するということがない。   According to the second feature of the method for manufacturing a semiconductor device according to the present invention, the surface of the film to be polished is brought into the first surface state by planarizing the convex portion or the concave portion by the first polishing process. Since the polishing rate is greatly reduced, the end timing of the first polishing process can be easily recognized. Further, since the polishing rate for the surface of the film to be polished in the first surface state is sufficiently slow, the film to be polished is not excessively polished after the planarization process for the convex portion or the concave portion is completed.

また、本発明に係る半導体装置の製造方法は、上記第1または第2の特徴に加えて、前記第2研磨処理が、前記第1表面状態を示す成膜表面に対して毎分200nm以上の研磨が可能な研磨条件で行われることを第3の特徴とする。   In addition to the first or second feature, the method for manufacturing a semiconductor device according to the present invention may be configured such that the second polishing process is performed at a rate of 200 nm or more per minute with respect to the film formation surface indicating the first surface state. The third feature is that the polishing is performed under polishing conditions.

本発明に係る半導体装置の製造方法の上記第3の特徴によれば、第1研磨処理後に被研磨膜表面に存する欠陥が含まれる成膜領域を、第1研磨処理と比較して研磨後に残存する欠陥数を減少させながら研磨することができる。また、第1表面状態の被研磨膜表面に対しても監視可能な研磨速度で研磨することができるため、研磨膜厚の制御が容易化される。これによって、第1研磨処理後に発生した欠陥が多く含まれる成膜領域のみを研磨した後第2研磨処理を終了させる制御を行うことで、過剰に研磨することなく研磨後の被研磨膜に残存する欠陥数を抑制することができる。   According to the third feature of the method for manufacturing a semiconductor device according to the present invention, a film formation region including defects present on the surface of the film to be polished after the first polishing process is left after polishing compared to the first polishing process. Polishing can be performed while reducing the number of defects. Further, since the surface of the film to be polished in the first surface state can be polished at a polishing rate that can be monitored, the control of the polishing film thickness is facilitated. As a result, the second polishing process is controlled after polishing only the film formation region containing many defects generated after the first polishing process, so that it remains in the polished film without being excessively polished. The number of defects to be suppressed can be suppressed.

また、本発明に係る半導体装置の製造方法は、上記第1〜第3のいずれか一の特徴に加えて、前記第1研磨処理が、前記第1表面状態を示す成膜表面に対して毎分50nm以下の研磨が可能な研磨条件で行われることを第4の特徴とする。   Further, in addition to any one of the first to third features, the method for manufacturing a semiconductor device according to the present invention performs the first polishing process every time on the film formation surface showing the first surface state. A fourth feature is that the polishing is performed under polishing conditions that allow polishing of 50 nm or less.

本発明に係る半導体装置の製造方法の上記第4の特徴によれば、第1表面状態となった被研磨膜表面に対する研磨速度が十分遅いため、凸部または凹部に対する平坦化処理が完了した後に、過剰に被研磨膜を研磨することがない。これにより、第1研磨処理で過剰に研磨することなく第2研磨処理に移行することができる。   According to the fourth feature of the method of manufacturing a semiconductor device according to the present invention, the polishing rate for the surface of the film to be polished that is in the first surface state is sufficiently slow, so that the planarization process for the convex portion or the concave portion is completed. The film to be polished is not excessively polished. Thereby, it can transfer to a 2nd grinding | polishing process, without grind | polishing excessively by a 1st grinding | polishing process.

また、本発明に係る半導体装置の製造方法は、上記第1〜第4のいずれか一の特徴に加えて、前記第2研磨処理が、前記被研磨膜に対して膜厚30nm以上研磨を施して終了することを第5の特徴とする。   In the semiconductor device manufacturing method according to the present invention, in addition to any one of the first to fourth features, the second polishing treatment polishes the polishing target film with a film thickness of 30 nm or more. This is the fifth feature.

本発明に係る半導体装置の製造方法の上記第5の特徴によれば、第2研磨処理後の被研磨膜に残存する欠陥数を、その後の製造工程に支障のない範囲内に抑制することができる。   According to the fifth feature of the method for manufacturing a semiconductor device according to the present invention, the number of defects remaining in the film to be polished after the second polishing process is suppressed within a range that does not hinder subsequent manufacturing processes. it can.

また、本発明に係る半導体装置の製造方法は、上記第1〜第5のいずれか一の特徴に加えて、前記被研磨膜が、HDP(High-Density Plasma:高密度プラズマ)法により成膜されたシリコン酸化膜であることを第6の特徴とする。   Further, in the semiconductor device manufacturing method according to the present invention, in addition to any one of the first to fifth features, the film to be polished is formed by an HDP (High-Density Plasma) method. A sixth feature is that the silicon oxide film is formed.

本発明に係る半導体装置の製造方法の上記第6の特徴によれば、第1研磨処理において、第1表面状態となった被研磨膜に対する研磨速度を十分遅くすることができ、これによって過剰に被研磨膜が研磨されるのを抑制することができる。   According to the sixth feature of the method for manufacturing a semiconductor device according to the present invention, the polishing rate for the film to be polished in the first surface state can be sufficiently slowed in the first polishing process. Polishing of the film to be polished can be suppressed.

本発明の構成によれば、平坦化後の被研磨膜表面に存する欠陥数を削減することができるとともに、平坦化後の被研磨膜の残存膜厚の制御が容易化される。   According to the configuration of the present invention, the number of defects existing on the surface of the film to be polished after planarization can be reduced, and the remaining film thickness of the film to be polished after planarization can be easily controlled.

以下において、本発明に係る半導体装置の製造方法(以下、適宜「本発明方法」と称する)の実施形態について、以下の図1〜図3の各図を参照して説明する。   In the following, an embodiment of a method for manufacturing a semiconductor device according to the present invention (hereinafter referred to as “the method of the present invention” as appropriate) will be described with reference to the following FIGS.

図1は、本発明方法の各工程における概略断面構造図を模式的に示したものであり、工程毎に図1(a)〜(d)に分けて図示している。また、図2は、本発明方法の製造工程をフローチャートにしたものであり、以下の文中の各ステップは図2に示されるフローチャートの各ステップを表すものとする。なお、図1に示される概略断面構造図は、あくまで模式的に図示されたものであり、実際の構造の寸法の縮尺と図面の縮尺とは必ずしも一致するものではない。   FIG. 1 schematically shows a schematic cross-sectional structure diagram in each step of the method of the present invention, which is divided into FIGS. 1A to 1D for each step. FIG. 2 is a flowchart of the manufacturing process of the method of the present invention, and each step in the following sentence represents each step of the flowchart shown in FIG. Note that the schematic cross-sectional structure diagram shown in FIG. 1 is merely schematically illustrated, and the scale of the actual structure does not necessarily match the scale of the drawing.

まず、図1(a)に示すように、半導体基板1上に半導体素子あるいは金属配線層(以下、単に「半導体素子2」と記載)を形成し、その上面に層間絶縁膜3を堆積する(ステップ#1)。層間絶縁膜3としては、プラズマシリコン酸化膜(P−SiO膜)を、HDP(High-Density Plasma:高密度プラズマ)法によって、成膜温度200〜700℃程度、圧力0.01〜10Pa程度の下で膜厚100〜2000nm程度堆積する。なお、層間絶縁膜3を堆積する膜厚は、少なくとも前記半導体素子2の高さより大きいものとする。   First, as shown in FIG. 1A, a semiconductor element or a metal wiring layer (hereinafter simply referred to as “semiconductor element 2”) is formed on a semiconductor substrate 1, and an interlayer insulating film 3 is deposited on the upper surface thereof (see FIG. 1A). Step # 1). As the interlayer insulating film 3, a plasma silicon oxide film (P-SiO film) is formed at a film formation temperature of about 200 to 700 ° C. and a pressure of about 0.01 to 10 Pa by HDP (High-Density Plasma) method. A film thickness of about 100 to 2000 nm is deposited below. The film thickness for depositing the interlayer insulating film 3 is at least larger than the height of the semiconductor element 2.

このステップ#1に係る層間絶縁膜3の堆積によって、図1(a)に示すように、半導体素子2が形成されている領域の上部と、それ以外の領域の上部との間で、表面に一定の凹凸が生じる。以下では、これらの凹凸部を、それぞれ「凸部4」、「非凸部5」と称する。   By depositing the interlayer insulating film 3 according to Step # 1, as shown in FIG. 1A, the surface is formed between the upper portion of the region where the semiconductor element 2 is formed and the upper portion of the other region. Certain irregularities occur. Hereinafter, these uneven portions are referred to as “convex portion 4” and “non-convex portion 5”, respectively.

なお、ここで想定している凹凸部とは、層間絶縁膜の成膜表面において、半導体基板1の基板面に垂直な方向に100nm以上高さ位置が相違する領域を指すものとする。すなわち、前記凸部4は、最上面の高さ位置が、隣接する非凸部5の最上面の高さ位置よりも100nm以上高いものとする。   In addition, the uneven | corrugated | grooved part assumed here shall refer to the area | region where the height position differs 100 nm or more in the direction perpendicular | vertical to the substrate surface of the semiconductor substrate 1 in the film-forming surface of an interlayer insulation film. That is, the convex part 4 has a height position of 100 nm or more higher than the height position of the uppermost surface of the adjacent non-convex part 5.

次に、図1(b)及び(c)に示すように、CMP法により、酸化セリウムを砥粒として含む研磨材を用いた研磨処理(以下、「第1研磨処理」と称する)を基板面に対して行う(ステップ#2)。これにより、層間絶縁膜3の上面に形成されている凸部4の平坦化を行う。なお、図1(b)は第1研磨処理を実行途中の断面図、図1(c)は第1研磨処理の完了時の断面図をそれぞれ示している。図1(c)に示されるように、第1研磨処理が完了した時点では、層間絶縁膜3の表面は、凸部4が存在しない状態(以下、適宜「第1表面状態」と称する)となっている。   Next, as shown in FIGS. 1B and 1C, a polishing process using a polishing material containing cerium oxide as abrasive grains (hereinafter referred to as “first polishing process”) is performed by CMP. (Step # 2). Thereby, the convex part 4 formed on the upper surface of the interlayer insulating film 3 is flattened. 1B is a cross-sectional view in the middle of executing the first polishing process, and FIG. 1C is a cross-sectional view when the first polishing process is completed. As shown in FIG. 1C, when the first polishing process is completed, the surface of the interlayer insulating film 3 is in a state in which the convex portion 4 does not exist (hereinafter referred to as “first surface state” as appropriate). It has become.

当該ステップ#2に係る第1研磨処理工程では、一般的に行なわれる酸化セリウムを砥粒として含む研磨材によるCMP法のように、凸部4に対し高い研磨速度を持ち、第1表面状態(図1(c)の状態)において、研磨速度が自動的に低下してオートストップが生じるような条件下で研磨処理を行う。   In the first polishing process according to Step # 2, the first surface state (which has a high polishing rate with respect to the convex portion 4 as in the CMP method using a polishing material generally containing cerium oxide as abrasive grains, is performed. In the state shown in FIG. 1 (c), the polishing process is performed under conditions such that the polishing rate automatically decreases and auto-stop occurs.

本ステップ#1における、より具体的な研磨条件としては、例えば、旭硝子株式会社製の酸化セリウム砥粒を含む研磨材CES−333−2.0を毎分約200ml滴下し、研磨時の押し付け圧力(以下、単に「研磨圧力」と称する)を約3psi(重量ポンド毎平方インチ、およそ21kPa)程度、基板(ヘッド)の回転速度を約120rpm、研磨布(プラテン)の回転速度を約130rpmとして研磨処理を行う。図3は、半導体素子2の厚みを約180nmとし、層間絶縁膜3としてP−SiO膜をHDP法で膜厚約1000nm程度成膜したサンプルに対し、前記の研磨条件の下で第1研磨処理を実行した場合の、凸部4及び非凸部5の半導体基板1の上面からの高さ位置の変化を示したものである。高さ位置の測定は、分光エリプソメトリ法もしくは分光干渉反射率法による層間絶縁膜3の光学的膜厚測定法と、原子間力顕微鏡法による層間絶縁膜3表面の段差測定法により算出したものであり、直径約200mmの半導体基板(ウェハ)上の面内における異なる9点の測定値の平均を示している。なお、各点の誤差棒は、上記面内9点の測定値の上限から下限に至るバラツキを示すものである。   As more specific polishing conditions in Step # 1, for example, approximately 200 ml of abrasive CES-333-2.0 containing cerium oxide abrasive grains manufactured by Asahi Glass Co., Ltd. is dropped every minute, and the pressing pressure during polishing (Hereinafter simply referred to as “polishing pressure”) is about 3 psi (weight pound per square inch, about 21 kPa), substrate (head) rotation speed is about 120 rpm, and polishing cloth (platen) rotation speed is about 130 rpm. Process. FIG. 3 shows a first polishing process under the above-described polishing conditions for a sample in which the thickness of the semiconductor element 2 is about 180 nm and a P-SiO film is formed as the interlayer insulating film 3 by the HDP method to a thickness of about 1000 nm. 7 shows changes in the height position of the convex portion 4 and the non-convex portion 5 from the upper surface of the semiconductor substrate 1 when the above is executed. The height position was measured by an optical film thickness measurement method of the interlayer insulating film 3 by a spectroscopic ellipsometry method or a spectral interference reflectance method, and a step measurement method of the surface of the interlayer insulating film 3 by an atomic force microscope method. It shows the average of the measured values at nine different points in the plane on the semiconductor substrate (wafer) having a diameter of about 200 mm. Note that the error bars at each point indicate variations from the upper limit to the lower limit of the measured values at the nine points in the plane.

ここで、実際には、10秒以上の第1研磨処理を施した段階で、層間絶縁膜3の表面状態は前記第1表面状態となっており、すでに凸部4は存在しない状態であるが、以下の説明では、第1研磨処理開始前に存在していた凸部4と非凸部5の高さ位置が、第1研磨処理の実行によってどのように変化していくかについての説明を行う都合上、第1研磨処理の開始前に凸部4が形成されていた領域を「凸部4」と記載し、第1研磨処理の開始前に非凸部5が形成されていた領域を「非凸部5」と記載している。   Here, in practice, the surface state of the interlayer insulating film 3 is the first surface state when the first polishing process is performed for 10 seconds or more, and the convex portion 4 is not already present. In the following description, it will be described how the height positions of the convex portions 4 and the non-convex portions 5 that existed before the start of the first polishing process are changed by the execution of the first polishing process. For convenience, the region where the convex portion 4 was formed before the start of the first polishing process is referred to as “convex portion 4”, and the region where the non-convex portion 5 was formed before the start of the first polishing process is described. "Non-convex part 5" is described.

図3において、黒塗りの四角でプロットされた点は、凸部4の高さ位置を示しており、変化の状態を実線11で示している。一方、白抜きの丸でプロットされた点は、非凸部5の高さ位置を示しており、変化の状態を破線12で示している。また、各プロット位置において上下方向に示されている矢印は、複数のサンプルに対して同一の条件下で第1研磨処理を実行した際のサンプル間の高さ位置のバラツキを示しており、実線の矢印が凸部4の高さ位置のバラツキを、破線の矢印が非凸部5の高さ位置のバラツキをそれぞれ示している。   In FIG. 3, the points plotted with black squares indicate the height positions of the convex portions 4, and the state of change is indicated by the solid line 11. On the other hand, the points plotted with white circles indicate the height positions of the non-convex portions 5, and the state of change is indicated by a broken line 12. In addition, the arrows shown in the vertical direction at each plot position indicate variations in the height position between samples when the first polishing process is performed on a plurality of samples under the same conditions. The arrows indicate the variations in the height position of the convex portion 4, and the broken arrows indicate the variations in the height position of the non-convex portion 5.

まず、第1研磨処理開始時(研磨時間0秒)において、凸部4の高さ位置と非凸部5の高さ位置の差は、半導体素子2の厚みにほぼ等しく、図3のグラフでは約180nmを示している。   First, at the start of the first polishing process (polishing time 0 second), the difference between the height position of the convex portion 4 and the height position of the non-convex portion 5 is substantially equal to the thickness of the semiconductor element 2, and in the graph of FIG. About 180 nm is shown.

次に、約10秒間第1研磨処理を実行することで、非凸部5に比べて凸部4に対して多くの研磨処理が施され、これによって凸部4の上面位置が徐々に非凸部5の上面位置に近付いている。そして、凸部4と非凸部5の上面位置がほぼ等しくなって以後、第1研磨処理を行っても両領域の上面位置はほとんど変化をしておらず、このことは、研磨が進行していないことを示唆している。すなわち、前記のオートストップが発生していると考えられ、凸部4に対する平坦化が完了(すなわち図1(c)の状態)し、層間絶縁膜4の表面が前記第1表面状態となったことを示唆していると言える。   Next, by executing the first polishing process for about 10 seconds, a larger amount of polishing processing is performed on the convex portion 4 than on the non-convex portion 5, whereby the upper surface position of the convex portion 4 is gradually non-convex. It approaches the upper surface position of the part 5. After the top surface positions of the convex portions 4 and the non-convex portions 5 become substantially equal, even if the first polishing process is performed, the top surface positions of both regions hardly change, which means that the polishing progresses. Suggests not. That is, it is considered that the auto-stop has occurred, the flattening of the convex portion 4 is completed (that is, the state of FIG. 1C), and the surface of the interlayer insulating film 4 is in the first surface state. It can be said that it suggests.

なお、第1表面状態(研磨時間10秒が経過した後)での層間絶縁膜3の表面における研磨速度はおよそ毎分23nmであり、第1研磨処理を開始してからの約10秒間に凸部4が約180nm研磨されているのに比して、十分遅い研磨速度であると言うことができる。   Note that the polishing rate on the surface of the interlayer insulating film 3 in the first surface state (after the polishing time of 10 seconds elapses) is approximately 23 nm per minute, and protrudes about 10 seconds after the first polishing process is started. It can be said that the polishing rate is sufficiently slow as compared with the portion 4 being polished by about 180 nm.

上述したように、この第1研磨処理は、研磨材として酸化セリウム砥粒を利用しており、研磨圧力が一定値より低い場合には研磨速度が遅くなる、いわゆる非プレストニアン特性を有している。そして、このような性質を利用することで、平坦化が完了した後においても、過剰に研磨されることがないという特徴を有する。従って、かかる特徴を利用するためには、凸部4が存在している状況下における研磨速度を、凸部4に対する平坦化が完了した後の研磨速度と比較して十分大きくすることが好ましく、このような条件下で第1研磨処理を行うことで、層間絶縁膜3を過剰に研磨することなく表面の平坦化を行うことができる。   As described above, this first polishing process uses cerium oxide abrasive grains as an abrasive, and has a so-called non-Prestonian characteristic in which the polishing rate becomes slow when the polishing pressure is lower than a certain value. Yes. And by utilizing such a property, even after the planarization is completed, there is a feature that excessive polishing is not performed. Therefore, in order to utilize such a feature, it is preferable that the polishing rate in the situation where the convex portion 4 exists is sufficiently larger than the polishing rate after the flattening of the convex portion 4 is completed, By performing the first polishing process under such conditions, the surface can be planarized without excessively polishing the interlayer insulating film 3.

すなわち、第1研磨処理が、所定の閾値を上回る研磨圧力の下では研磨速度が速く、当該閾値を下回る研磨圧力の下では研磨速度が十分遅くなるという特徴を有しているため、かかる特徴を十分に発揮させるためには、凸部4が存在している成膜表面に対しては研磨圧力が前記閾値を上回り、逆に、凸部4が存しなくなった第1表面状態の成膜表面に対しては研磨圧力が前記閾値を下回るように、研磨条件を調整することが必要である。具体的には、平坦化処理が完了した後の第1表面状態の層間絶縁膜3の表面に対する研磨速度は毎分50nm以下であり、平坦化処理前の凸部4が存在する状況下ではその4倍以上の研磨速度で層間絶縁膜3の表面に対して研磨処理が行われることが好ましい。   That is, the first polishing process has a feature that the polishing rate is high under a polishing pressure exceeding a predetermined threshold, and the polishing rate is sufficiently low under a polishing pressure below the threshold. In order to fully exhibit, the film-forming surface in which the convex portion 4 is present has a polishing pressure higher than the threshold value, and conversely, the film-forming surface in the first surface state in which the convex portion 4 no longer exists. In contrast, it is necessary to adjust the polishing conditions so that the polishing pressure falls below the threshold value. Specifically, the polishing rate for the surface of the interlayer insulating film 3 in the first surface state after the planarization process is completed is 50 nm or less per minute, and in the situation where the convex part 4 before the planarization process exists, It is preferable that the polishing process is performed on the surface of the interlayer insulating film 3 at a polishing rate of 4 times or more.

ところで、凸部4に対する平坦化処理が完了した後の層間絶縁膜3に対する研磨速度は、砥粒として利用される材料の他、被研磨対象となる層間絶縁膜3の膜種によっても変化する。例えば、PE−CVD(プラズマCVD)法によって形成したP−TEOS膜である場合、平坦化処理後の研磨速度は毎分31nm程度であり、上述したHDP法で成膜したP−SiO膜が示す毎分23nmの研磨速度よりは高速であるものの、毎分50nm以下の十分遅い研磨速度であるため、かかる材料を層間絶縁膜3として利用することで、過剰に研磨されることなく凸部4に対する平坦化が可能であると言える。一方、熱CVD法によって成膜したB及びPをドープしたBPSG膜においては、平坦化処理後の研磨速度が毎分450nm以上となるため、第1研磨処理の被研磨対象としては適さないと言える。   By the way, the polishing rate for the interlayer insulating film 3 after the flattening process for the convex part 4 is completed varies depending on the film type of the interlayer insulating film 3 to be polished as well as the material used as the abrasive grains. For example, in the case of a P-TEOS film formed by the PE-CVD (plasma CVD) method, the polishing rate after the planarization process is about 31 nm per minute, and the P-SiO film formed by the HDP method described above shows Although the polishing rate is higher than the polishing rate of 23 nm per minute, it is a sufficiently slow polishing rate of 50 nm or less per minute. Therefore, by using such a material as the interlayer insulating film 3, the protrusion 4 is not polished excessively. It can be said that flattening is possible. On the other hand, in the BPSG film doped with B and P formed by the thermal CVD method, the polishing rate after the flattening process is 450 nm or more per minute, so it can be said that it is not suitable as the object to be polished in the first polishing process. .

このように、第1研磨処理において、凸部4が存在する状況下での研磨速度に対して、凸部4に対する平坦化が完了した後の研磨速度が十分遅い場合には、例えば、一般的に用いられるように、基板(ヘッド)回転トルクまたは研磨布(プラテン)回転トルクの経時変化を連続的に監視することにより、平坦化が完了したことを知ることができる。このようにして平坦化の完了を確認した時点で、第1研磨処理を終了することにより、過剰な研磨をすることなく凸部4に対する平坦化を実行することができる。   As described above, in the first polishing process, when the polishing rate after the flattening of the convex portion 4 is sufficiently slow with respect to the polishing rate in the situation where the convex portion 4 exists, for example, As described above, it is possible to know that the planarization has been completed by continuously monitoring the change with time of the substrate (head) rotation torque or the polishing cloth (platen) rotation torque. When the completion of the planarization is confirmed in this way, the first polishing process is terminated, whereby the planarization of the convex portion 4 can be performed without excessive polishing.

しかしながら、平坦化が完了した後の第1研磨処理の研磨速度は十分遅いため、図1(c)に示されるように、当該第1研磨処理完了後の層間絶縁膜3の上面には研磨時に生じたスクラッチ等の欠陥6が残存した状態である。   However, since the polishing rate of the first polishing process after the planarization is completed is sufficiently slow, as shown in FIG. 1C, the upper surface of the interlayer insulating film 3 after the completion of the first polishing process is not polished. The defect 6 such as a generated scratch remains.

ここで、ステップ#2に係る第1研磨処理と比べて、研磨圧力を1.5倍以上として層間絶縁膜3に対して改めて研磨処理を行う(以下、「第2研磨処理」と称する。ステップ#3)。かかる第2研磨処理によって、層間絶縁膜3の上面を研磨し、上面に残存する欠陥6を取り除く。この第2研磨処理においては、第1研磨処理から研磨材及び研磨布(プラテン)を変える必要は無く、第1研磨処理に引き続き連続的に行うことも可能である。例えば、約6psi(およそ41kPa)の研磨圧力にて約40秒間研磨を行うことで、約100nm程度の膜厚の層間絶縁膜3を除去する。下記表1は、第2研磨処理における層間絶縁膜3の研磨除去量に対する研磨後の層間絶縁膜3の表面に存在する欠陥数を示す表である。   Here, as compared with the first polishing process according to Step # 2, the polishing process is performed again on the interlayer insulating film 3 at a polishing pressure of 1.5 times or more (hereinafter referred to as “second polishing process”). # 3). By the second polishing process, the upper surface of the interlayer insulating film 3 is polished, and the defects 6 remaining on the upper surface are removed. In the second polishing process, it is not necessary to change the abrasive and the polishing cloth (platen) from the first polishing process, and it is possible to perform the second polishing process continuously following the first polishing process. For example, by polishing for about 40 seconds at a polishing pressure of about 6 psi (about 41 kPa), the interlayer insulating film 3 having a thickness of about 100 nm is removed. Table 1 below shows the number of defects present on the surface of the interlayer insulating film 3 after polishing with respect to the polishing removal amount of the interlayer insulating film 3 in the second polishing process.

Figure 2008277495
Figure 2008277495

なお、上記表1に示される欠陥数とは、適切な洗浄を施した後に、欠陥の大きさ(欠陥領域を上面から見たときの平面形状の外接長方体の長辺と短辺の平均値)が約100nm以上を示す欠陥の、直径約200mmの半導体基板(ウェハ)1枚当たりの数によって表している。以下では、欠陥数としてカウントされる範囲内の欠陥を「欠陥6」と記載する。   It should be noted that the number of defects shown in Table 1 above is the size of the defect (the average of the long side and the short side of the circumscribed cuboid in a planar shape when the defect region is viewed from above) after appropriate cleaning. Value) is represented by the number of defects having a value of about 100 nm or more per semiconductor substrate (wafer) having a diameter of about 200 mm. Hereinafter, the defect within the range counted as the number of defects is referred to as “defect 6”.

サンプルS1は、第1研磨処理のみを実行し、第2研磨処理を実行しない場合の欠陥数を測定したものである。また、サンプルS2〜S4は、同一の条件下で第1研磨処理を実行後、それぞれ第2研磨処理の研磨量を変化させたときの欠陥数を測定したものである。また、サンプルS5は、第1研磨処理を行わず、研磨圧力を大きくした第2研磨処理のみを行って凸部4の平坦化処理を行ったときの欠陥数を測定したものである。なお、各サンプルS2〜S5の第2研磨処理の研磨量は、それぞれサンプルS2が28nm、サンプルS3が57nm、サンプルS4が85nm、サンプルS5が113nmである。   Sample S1 is obtained by measuring the number of defects when only the first polishing process is performed and the second polishing process is not performed. Samples S2 to S4 are obtained by measuring the number of defects when the polishing amount of the second polishing process is changed after the first polishing process is performed under the same conditions. Sample S5 is obtained by measuring the number of defects when the flattening process of the convex portion 4 is performed by performing only the second polishing process with an increased polishing pressure without performing the first polishing process. The polishing amount of the second polishing process for each of the samples S2 to S5 is 28 nm for the sample S, 57 nm for the sample S3, 85 nm for the sample S4, and 113 nm for the sample S5.

サンプルS1の場合、第1研磨処理を実行した直後の層間絶縁膜3の表面には30000個を超える非常に多くの欠陥6が存在していることが分かる。従って、第1研磨処理のみを実行することによってCMP工程を完了させ、その後の工程を行った場合、層間絶縁膜3の上面に残存する多くの欠陥6によって、例えば、配線用金属膜堆積時に欠陥6に入り込んだ金属材料が、配線パターン形成のためのエッチング工程において正常にエッチングされない不良が生じたり、あるいは、フォトリソグラフィ工程において欠陥6上部の領域のパターン消失や不要パターンの残存などの不良が生じたりし、配線やヴィアホールが所望の形状とならない等の種々の支障を生じさせることが懸念される。   In the case of the sample S1, it can be seen that a very large number of defects 6 exceeding 30000 exist on the surface of the interlayer insulating film 3 immediately after the first polishing process. Therefore, when the CMP process is completed by performing only the first polishing process and the subsequent processes are performed, many defects 6 remaining on the upper surface of the interlayer insulating film 3 may cause defects during the deposition of the wiring metal film, for example. The metal material that has entered 6 has a defect that is not normally etched in the etching process for forming the wiring pattern, or a defect such as the disappearance of the pattern in the region above the defect 6 or the remaining unnecessary pattern occurs in the photolithography process. However, there is a concern that various troubles such as a wiring or a via hole not having a desired shape may be caused.

一方、サンプルS2の結果によれば、第1研磨処理を実行後、第2研磨処理によって層間絶縁膜3を膜厚28nm除去することにより、欠陥数はウェハ1枚あたりおよそ300個にまで減少する。このことから、第1研磨処理で生じた欠陥数は非常に多いものの、第1研磨処理終了後の層間絶縁膜3の上面位置から深さ30nm以下の位置に存在するものが大半であり、第2研磨処理によって30nm程度の層間絶縁膜3を除去することで、効率的に欠陥6が除去されていると考えられる。また、このことより、第1研磨処理によって生じる欠陥6は、研磨装置の状態により変動するのはもちろんであるものの、一般的な研磨砥粒の大きさに比して小さな欠陥であり、通常の装置管理方法のみで欠陥自体を抑制することは困難であることを示唆するものであると言うことができる。   On the other hand, according to the result of the sample S2, the number of defects is reduced to about 300 per wafer by removing the interlayer insulating film 3 with a film thickness of 28 nm by the second polishing process after the first polishing process. . For this reason, although the number of defects generated in the first polishing process is very large, most of the defects are present at a depth of 30 nm or less from the upper surface position of the interlayer insulating film 3 after the completion of the first polishing process. 2 It is considered that the defect 6 is efficiently removed by removing the interlayer insulating film 3 of about 30 nm by the polishing process. In addition, from this, the defect 6 caused by the first polishing treatment is a defect that is small compared to the size of a general polishing abrasive grain, although it naturally varies depending on the state of the polishing apparatus. It can be said that it is difficult to suppress the defect itself only by the device management method.

また、サンプルS4の結果によれば、第2研磨処理によって層間絶縁膜3の除去量を85nm程度にまで増加させれば、欠陥数はウェハ1枚あたりおよそ100個以下にまで減少させることができ、サンプルS5のように、第2研磨処理のみでCMP工程を行う場合とほとんど同程度の欠陥数に抑制することができる。   Further, according to the result of the sample S4, if the removal amount of the interlayer insulating film 3 is increased to about 85 nm by the second polishing process, the number of defects can be decreased to about 100 or less per wafer. As in sample S5, the number of defects can be suppressed to almost the same as when the CMP process is performed only by the second polishing process.

なお、サンプルS5のように第2研磨処理のみを実行した場合、上記表1に示すように欠陥数を最も減少させることはできるものの、第1研磨処理と比較して研磨圧力が大きいために凸部4が存在しなくなった第1表面状態になった後も、大きく研磨処理が実行される結果、過剰に研磨処理を実行してしまう懸念がある。すなわち、本発明方法のように、第1研磨処理によって平坦化処理を行うことで、研磨膜厚を最小限に抑えながら成膜表面を第1表面状態にした後、欠陥数を減少させるために必要な最小限の研磨処理を第2研磨処理によって実行することで、研磨処理後に残存する欠陥数の減少と研磨される膜厚の抑制とを両立することが可能となる。   When only the second polishing process is performed as in the sample S5, the number of defects can be reduced most as shown in Table 1 above, but the convexity is higher because the polishing pressure is larger than the first polishing process. Even after the first surface state in which the portion 4 no longer exists, there is a concern that the polishing process is excessively performed as a result of the large polishing process being performed. That is, in order to reduce the number of defects after making the film formation surface into the first surface state while minimizing the polishing film thickness by performing the planarization process by the first polishing process as in the method of the present invention. By executing the necessary minimum polishing process by the second polishing process, it is possible to achieve both reduction in the number of defects remaining after the polishing process and suppression of the film thickness to be polished.

ここで、上記表1の結果によれば、第2研磨処理によって層間絶縁膜3を研磨する研磨量は30nm程度以上であることが望ましく、また80nm以上であればより望ましいことが分かる。   Here, according to the results in Table 1, it is found that the polishing amount for polishing the interlayer insulating film 3 by the second polishing process is preferably about 30 nm or more, and more preferably 80 nm or more.

また、第2研磨処理は、第1研磨処理よりも研磨圧力が大きいため、第1表面状態を有する層間絶縁膜3に対して行われる第1研磨処理と比較して研磨速度が速い。従って、第2研磨処理を、層間絶縁膜3の膜厚を一般的な光学的手法等で監視しながら行うことで、残存させたい層間絶縁膜3の膜厚を容易に制御することができ、これにより、層間絶縁膜3を所望の膜厚だけ残存させてCMP工程を完了することができる。従って、層間絶縁膜3の形成工程のバラツキや、CMP装置の研磨速度のバラツキを抑制することが可能となる。   Further, since the second polishing process has a higher polishing pressure than the first polishing process, the polishing rate is higher than that of the first polishing process performed on the interlayer insulating film 3 having the first surface state. Therefore, by performing the second polishing process while monitoring the film thickness of the interlayer insulating film 3 by a general optical method or the like, it is possible to easily control the film thickness of the interlayer insulating film 3 desired to remain, Thereby, the CMP process can be completed while leaving the interlayer insulating film 3 to a desired thickness. Accordingly, it is possible to suppress variations in the formation process of the interlayer insulating film 3 and variations in the polishing rate of the CMP apparatus.

ステップ#3に係る第2研磨処理を終了後は、配線工程、層間絶縁膜堆積工程等の所定の工程を行う。これにより、層間絶縁膜の表面に存する欠陥数を減少させるとともに、残存させたい層間絶縁膜3の膜厚を容易に制御することができる。   After the second polishing process in step # 3 is completed, predetermined processes such as a wiring process and an interlayer insulating film deposition process are performed. Thereby, the number of defects existing on the surface of the interlayer insulating film can be reduced, and the film thickness of the interlayer insulating film 3 desired to remain can be easily controlled.

以上、本発明方法によれば、被研磨膜表面に存する凸部を平坦化するために行う第1研磨処理と、表面に損する欠陥数を減少させるために行う第2研磨処理とを、それぞれ研磨条件を異ならせて実行することにより、成膜された被研磨膜を過剰に研磨することなく、当該被研磨膜表面に対する平坦化処理が行えるとともに、研磨後の表面に存する欠陥量を従来よりも大きく減少することができる。さらに、後で行われる第2研磨処理は、第1研磨処理と比較して研磨圧力が大きいため、第1表面状態の被研磨膜表面に対しても監視可能な速度で研磨を行うことができる。これにより、あらかじめ定められた膜厚だけ研磨した時点で第2研磨処理を終了させる制御が可能となり、残存させたい被研磨膜の膜厚の調整を容易に行うことができる。   As described above, according to the method of the present invention, the first polishing process performed for flattening the convex portion existing on the surface of the film to be polished and the second polishing process performed for reducing the number of defects damaged on the surface are each polished. By performing the process under different conditions, the surface of the film to be polished can be planarized without excessively polishing the film to be polished, and the amount of defects existing on the surface after polishing can be reduced as compared with the prior art. It can be greatly reduced. Furthermore, since the second polishing process to be performed later has a higher polishing pressure than the first polishing process, the surface of the film to be polished in the first surface state can be polished at a monitorable speed. . This makes it possible to control the second polishing process to end when the predetermined film thickness is polished, and to easily adjust the film thickness of the film to be polished.

なお、上述した実施形態では、層間絶縁膜に対する平坦化処理を行う場合を例に挙げて説明を行ったが、研磨対象となる被研磨膜は絶縁膜に限らず、導電膜であっても構わない。また、図1において「凸部」「非凸部」という表現を行ったが、これは成膜表面に形成された凹凸領域の呼称する上での一態様であって、高さ位置が高い領域を基準とすれば「凹部」「非凹部」と記載することも可能である。すなわち、凸部4が存在しない平面状態として定義した前記「第1表面状態」とは、むろん凹部が存在しない平面状態でもあり、これらを総称すれば、成膜表面において半導体基板1の基板面に対して高さ位置または深さ位置が垂直な方向に100nm以上変化する領域を有しない表面状態を指すものである。   In the embodiment described above, the case where the planarization process is performed on the interlayer insulating film has been described as an example. However, the film to be polished is not limited to the insulating film but may be a conductive film. Absent. In addition, the expressions “convex portion” and “non-convex portion” are used in FIG. 1, but this is an aspect for naming the uneven region formed on the film formation surface, and is a region having a high height position. Can be described as “concave portion” and “non-concave portion”. That is, the “first surface state” defined as a planar state in which the convex portion 4 does not exist is, of course, a planar state in which no concave portion exists, and these are collectively referred to as the substrate surface of the semiconductor substrate 1 on the film formation surface. On the other hand, it refers to a surface state having no region in which the height position or depth position changes by 100 nm or more in the vertical direction.

本発明に係る半導体装置の製造方法の各工程における概略断面構造図Schematic cross-sectional structure diagram in each step of the semiconductor device manufacturing method according to the present invention 本発明に係る半導体装置の製造方法の工程手順を示すフローチャート6 is a flowchart showing a process procedure of a semiconductor device manufacturing method according to the present invention. 第1研磨処理の研磨時間特性を示すグラフGraph showing the polishing time characteristics of the first polishing process

符号の説明Explanation of symbols

1: 半導体基板
2: 半導体素子
3: 層間絶縁膜
4: 凸部
5: 非凸部
1: Semiconductor substrate 2: Semiconductor element 3: Interlayer insulating film 4: Convex part 5: Non-convex part

Claims (6)

半導体基板上に絶縁膜または導電膜で構成される被研磨膜を成膜する成膜工程と、
前記成膜工程終了後、前記被研磨膜の成膜表面を平坦化する平坦化工程と、を有する半導体装置の製造方法であって、
前記平坦化工程が、
非プレストニアン特性を有する砥粒を用いて前記被研磨膜の表面に対して研磨処理を行う第1研磨処理と、
前記第1研磨処理を終了後、前記第1研磨処理と比較して1.5倍以上の研磨圧力の下で前記被研磨膜の表面に対して研磨処理を行う第2研磨処理と、を有し、
前記第1研磨処理が、
前記被研磨膜の成膜表面を、少なくとも前記半導体基板面に垂直な方向の高さまたは深さが100nm以上の凸部または凹部が存在しない第1表面状態に変化させた段階で終了することを特徴とする半導体装置の製造方法。
A film forming process for forming a film to be polished comprising an insulating film or a conductive film on a semiconductor substrate;
A flattening step of flattening a film-forming surface of the film to be polished after the film-forming step,
The planarization step comprises:
A first polishing process for performing a polishing process on the surface of the film to be polished using abrasive grains having non-Prestonian characteristics;
A second polishing process for performing a polishing process on the surface of the film to be polished under a polishing pressure of 1.5 times or more compared with the first polishing process after the first polishing process is completed. And
The first polishing process includes
Finishing at the stage where the film forming surface of the film to be polished is changed to a first surface state in which at least a height or depth in a direction perpendicular to the surface of the semiconductor substrate is not more than 100 nm. A method of manufacturing a semiconductor device.
前記第1研磨処理において、
前記第1表面状態を示す成膜表面に対する研磨速度が、開始直後の研磨速度の1/4以下であることを特徴とする請求項1に記載の半導体装置の製造方法。
In the first polishing process,
2. The method of manufacturing a semiconductor device according to claim 1, wherein a polishing rate for the film-forming surface showing the first surface state is ¼ or less of a polishing rate immediately after the start.
前記第2研磨処理が、前記第1表面状態を示す成膜表面に対して毎分200nm以上の研磨が可能な研磨条件で行われることを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。   3. The semiconductor according to claim 1, wherein the second polishing treatment is performed under a polishing condition that enables polishing of 200 nm or more per minute on the film-forming surface showing the first surface state. Device manufacturing method. 前記第1研磨処理が、前記第1表面状態を示す成膜表面に対して毎分50nm以下の研磨が可能な研磨条件で行われることを特徴とする請求項1〜請求項3のいずれか1項に記載の半導体装置の製造方法。   The said 1st grinding | polishing process is performed on the grinding | polishing conditions which can grind | polish 50 nm or less per minute with respect to the film-forming surface which shows the said 1st surface state. A method for manufacturing the semiconductor device according to the item. 前記第2研磨処理が、前記被研磨膜に対して膜厚30nm以上研磨を施して終了することを特徴とする請求項1〜請求項4のいずれか1項に記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 1, wherein the second polishing process is finished by polishing the film to be polished by a film thickness of 30 nm or more. 6. 前記被研磨膜が、HDP法により成膜されたシリコン酸化膜であることを特徴とする請求項1〜請求項5のいずれか1項に記載の半導体装置の製造方法。
6. The method of manufacturing a semiconductor device according to claim 1, wherein the film to be polished is a silicon oxide film formed by an HDP method.
JP2007118407A 2007-04-27 2007-04-27 Manufacturing method of semiconductor device Pending JP2008277495A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007118407A JP2008277495A (en) 2007-04-27 2007-04-27 Manufacturing method of semiconductor device
PCT/JP2008/056857 WO2008136240A1 (en) 2007-04-27 2008-04-07 Method for manufacturing semiconductor device
TW97113542A TW200908120A (en) 2007-04-27 2008-04-14 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007118407A JP2008277495A (en) 2007-04-27 2007-04-27 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2008277495A true JP2008277495A (en) 2008-11-13

Family

ID=39943357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007118407A Pending JP2008277495A (en) 2007-04-27 2007-04-27 Manufacturing method of semiconductor device

Country Status (3)

Country Link
JP (1) JP2008277495A (en)
TW (1) TW200908120A (en)
WO (1) WO2008136240A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031909A (en) * 2011-08-03 2013-02-14 Seiko Instruments Inc Method for polishing glass substrate, method for manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus and radio-controlled timepiece

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI820399B (en) * 2021-02-26 2023-11-01 國立臺灣科技大學 Wafer processing method and wafer processing system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359216A (en) * 2001-05-30 2002-12-13 Mitsubishi Electric Corp Polishing method using ceria slurry, and method of manufacturing semiconductor device
JP2004165424A (en) * 2002-11-13 2004-06-10 Ekc Technology Inc Polishing agent composition and polishing method using the same
JP2006032846A (en) * 2004-07-21 2006-02-02 Sharp Corp Method for manufacturing semiconductor device using cmp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013031909A (en) * 2011-08-03 2013-02-14 Seiko Instruments Inc Method for polishing glass substrate, method for manufacturing package, piezoelectric vibrator, oscillator, electronic apparatus and radio-controlled timepiece

Also Published As

Publication number Publication date
WO2008136240A1 (en) 2008-11-13
TW200908120A (en) 2009-02-16

Similar Documents

Publication Publication Date Title
JP6030703B2 (en) Use of CsOH in dielectric CMP slurry
KR100579538B1 (en) Method for fabricating semiconductor device
KR100734305B1 (en) Fabrication method of semiconductor device having dishing-free planarized layer and semiconductor device fabricated using the same
US20130078784A1 (en) Cmp slurry and method for manufacturing semiconductor device
JP5261065B2 (en) Manufacturing method of semiconductor device
KR100585550B1 (en) Semiconductor substrate and method for fabricating the same and fabricating method for semiconductor device
JP5141068B2 (en) Polishing method, polishing apparatus, and semiconductor device manufacturing method
KR100692472B1 (en) Manufacturing method of semiconductor device and semiconductor device
US20080220585A1 (en) Method of manufacturing a semiconductor device
JP2004363191A (en) Chemical mechanical polishing slurry for organic film, method of chemically/mechanically polishing organic film, and method of manufacturing semiconductor device
JP2005203394A (en) Manufacturing method of semiconductor device
JP2008263027A (en) Substrate processing method
JP2008277495A (en) Manufacturing method of semiconductor device
JP2008021704A (en) Method of manufacturing semiconductor device
US20070269908A1 (en) Method for in-line controlling hybrid chemical mechanical polishing process
US7186655B2 (en) Method for manufacturing semiconductor device
JP4546071B2 (en) Manufacturing method of semiconductor device
JP2006190784A (en) Method of manufacturing semiconductor device
US20060258158A1 (en) Polish method for semiconductor device planarization
US7109117B2 (en) Method for chemical mechanical polishing of a shallow trench isolation structure
JP4499613B2 (en) Insulating film polishing method
CN111599677B (en) Semiconductor structure and forming method thereof
US6897121B2 (en) Method of removing HDP oxide deposition
JP2007019428A (en) Method of manufacturing semiconductor device
KR20080101454A (en) Method for isolation of semiconductor device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203