JP2008277394A - Thermoelectric module - Google Patents

Thermoelectric module Download PDF

Info

Publication number
JP2008277394A
JP2008277394A JP2007116716A JP2007116716A JP2008277394A JP 2008277394 A JP2008277394 A JP 2008277394A JP 2007116716 A JP2007116716 A JP 2007116716A JP 2007116716 A JP2007116716 A JP 2007116716A JP 2008277394 A JP2008277394 A JP 2008277394A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric module
central region
bonding layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007116716A
Other languages
Japanese (ja)
Inventor
Kazuichi Kuchimachi
和一 口町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2007116716A priority Critical patent/JP2008277394A/en
Publication of JP2008277394A publication Critical patent/JP2008277394A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric module that is high in reliability, as well as, both the mechanical strength and bonding strength of a metal bonding layer. <P>SOLUTION: The thermoelectric module is provided with a plurality of columnar thermoelectric elements 2, an electrode 3 that is electrically connected to the end face of the thermoelectric element 2, and a solder layer 11 that is interposed between the thermoelectric element 2 and the electrode 3 to bond them with each other. The solder layer 11 comprises a center area 11a that is located between an element-side bonding face 13, bonded to the end face of the thermoelectric element 2 and an electrode-side bonding face 14, bonded to the electrode 3; and a peripheral area 11b located in the periphery of the center area 11a. There are some voids in the center area 11a and the peripheral area 11b, and the voidage in the center area 11a is higher than that of the peripheral area 11b in this thermoelectric module. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、空調機、冷温庫、半導体製造装置、光検出装置、レーザダイオード等の温度調節等に好適に使用される熱電モジュール及びその製造方法に関する。   The present invention relates to a thermoelectric module suitably used for temperature adjustment of an air conditioner, a cold / hot storage, a semiconductor manufacturing device, a light detection device, a laser diode, and the like, and a manufacturing method thereof.

一般に、熱電モジュールは、一対の支持基板の間に複数の熱電素子が電極により直列に接続されて構成されている。熱電素子に通電することにより一方の支持基板側が発熱部となり他方の支持基板側が冷却部となるので、熱電モジュールは冷却用素子又は発熱用素子として利用される。   In general, a thermoelectric module is configured by connecting a plurality of thermoelectric elements in series with electrodes between a pair of support substrates. When the thermoelectric element is energized, the one support substrate side becomes a heat generating portion, and the other support substrate side becomes a cooling portion. Therefore, the thermoelectric module is used as a cooling element or a heat generating element.

通常、熱電素子と電極とは半田などの金属接合層により接合されている。この金属接合層と熱電素子との接合界面には、これらの熱膨張特性の差に起因した応力が生じやすい。したがって、長期間の使用により、接合界面付近には上記応力に起因したクラックが生じることがあった。そこで、接合界面付近に生じる応力を低減するために、金属接合層に空隙(ボイド)を形成する技術や熱膨張抑制剤を添加して熱膨張係数を調整する技術が開示されている(特許文献1,2参照)。
特開2003−338641号公報 特開2004−31696号公報
Usually, the thermoelectric element and the electrode are bonded by a metal bonding layer such as solder. Stress due to the difference in thermal expansion characteristics is likely to occur at the bonding interface between the metal bonding layer and the thermoelectric element. Therefore, cracks due to the stress may occur in the vicinity of the bonding interface due to long-term use. Therefore, in order to reduce the stress generated in the vicinity of the bonding interface, a technique for forming voids in the metal bonding layer and a technique for adjusting the thermal expansion coefficient by adding a thermal expansion inhibitor are disclosed (Patent Documents). 1 and 2).
Japanese Patent Laid-Open No. 2003-338641 JP 2004-31696 A

しかしながら、金属接合層に空隙が多くなると、金属接合層自体の機械的強度が低下する傾向にある。また、金属接合層中の熱膨張抑制剤の添加量が多くなると、熱電素子との接合強度が低下する傾向にある。また、車載用途等の振動をともなう動的環境で使用する場合には、他の用途と比べてより高い耐久性が必要である。したがって、本発明は、金属接合層の機械的強度および接合強度を兼ね備え、振動をともなう動的環境であっても信頼性の高い熱電モジュールを提供することを目的とする。   However, when the voids increase in the metal bonding layer, the mechanical strength of the metal bonding layer itself tends to decrease. Moreover, when the addition amount of the thermal expansion inhibitor in the metal bonding layer increases, the bonding strength with the thermoelectric element tends to decrease. Further, when used in a dynamic environment with vibration such as in-vehicle use, higher durability is required as compared with other uses. Accordingly, an object of the present invention is to provide a thermoelectric module having both the mechanical strength and the bonding strength of a metal bonding layer and having high reliability even in a dynamic environment with vibration.

本発明に係る熱電モジュールは、柱状の複数の熱電素子と、前記熱電素子の端面に電気的に接続された電極と、前記熱電素子と前記電極との間に介在しこれらを接合するための金属接合層と、を備え、前記金属接合層は、前記熱電素子の端面に接合された素子側接合面と前記電極に接合された電極側接合面との間に位置する中央領域と、この中央領域の周縁に位置する周縁領域とからなり、前記中央領域および周縁領域には空隙が存在し、前記中央領域における空隙率が前記周縁領域における空隙率よりも高いことを特徴とする。   A thermoelectric module according to the present invention includes a plurality of columnar thermoelectric elements, an electrode electrically connected to an end face of the thermoelectric element, and a metal interposed between and bonded to the thermoelectric element and the electrode A central region located between the element-side joint surface joined to the end face of the thermoelectric element and the electrode-side joint surface joined to the electrode, and the central region. It is characterized in that a gap exists in the central area and the peripheral area, and a porosity in the central area is higher than a porosity in the peripheral area.

前記金属接合層を前記素子側接合面に平行で前記中央領域の重心を通る平面で切断したときの断面における空隙率は、前記素子側接合面における空隙率よりも高いことが好ましく、前記金属接合層を前記素子側接合面に平行で前記中央領域の重心を通る平面で切断したときの断面における空隙の最大径は、前記素子側接合面における空隙の最大径よりも大きいことが好ましい。また、前記金属接合層をX線透過法により観察したときの空隙率は、前記中央領域の方が前記周縁領域よりも高いことが好ましい。   The porosity in a cross section when the metal bonding layer is cut by a plane parallel to the element side bonding surface and passing through the center of gravity of the central region is preferably higher than the porosity in the element side bonding surface. The maximum diameter of the void in the cross section when the layer is cut in a plane parallel to the element side bonding surface and passing through the center of gravity of the central region is preferably larger than the maximum diameter of the void in the element side bonding surface. Moreover, it is preferable that the void ratio when the metal bonding layer is observed by an X-ray transmission method is higher in the central region than in the peripheral region.

前記金属接合層はその主成分よりも融点の高い金属粒子を含有していることが好ましい。前記空隙には不活性ガスが含まれていることが好ましい。また、前記空隙内は、前記金属接合層の外部の雰囲気中よりも気圧が低いことが好ましい。   The metal bonding layer preferably contains metal particles having a melting point higher than that of the main component. The void preferably contains an inert gas. Moreover, it is preferable that the air pressure is lower in the gap than in the atmosphere outside the metal bonding layer.

本発明の熱電モジュールの製造方法は、複数の熱電素子とこれらの熱電素子を電気的に直列に接続するための電極との間に、前記熱電素子と前記電極とを接合する金属接合層を介在させる工程と、前記金属接合層を溶融させる工程と、溶融した前記金属接合層を冷却する工程と、を備えた熱電モジュールの製造方法であって、前記溶融工程は、雰囲気の圧力が大気圧よりも減圧された状態とこの減圧状態から昇圧された状態とを含むことを特徴とする。   The method for manufacturing a thermoelectric module of the present invention includes a metal bonding layer for bonding the thermoelectric element and the electrode between a plurality of thermoelectric elements and an electrode for electrically connecting these thermoelectric elements in series. And a step of melting the metal bonding layer and a step of cooling the molten metal bonding layer, wherein the melting step is performed at an atmospheric pressure higher than atmospheric pressure. Includes a state in which the pressure is reduced and a state in which the pressure is increased from the reduced pressure state.

前記金属接合層には、その主成分よりも融点の高い金属粒子を含有させることが好ましい。また、前記溶融工程において、雰囲気を不活性ガスで置換することが好ましい。さらに、前記溶融工程において、雰囲気の圧力を減圧した後、昇圧するサイクルを、複数回行うことがより好ましい。   The metal bonding layer preferably contains metal particles having a melting point higher than that of the main component. In the melting step, the atmosphere is preferably replaced with an inert gas. Furthermore, in the melting step, it is more preferable to perform the cycle of increasing the pressure after reducing the pressure of the atmosphere a plurality of times.

本発明に係る熱電モジュールは、金属接合層の中央領域および周縁領域に空隙が存在し、中央領域における空隙率が周縁領域における空隙率よりも高いので、金属接合層の機械的強度および接合強度を兼ね備え、信頼性が高い。すなわち、熱電素子との熱膨張特性の差の影響を受けやすい中央領域の空隙を周縁領域に比べて多くすることにより、熱膨張特性の差に起因して生じる応力を吸収または緩和しやすくなる。一方で、熱電素子との熱膨張特性の差の影響を比較的受けにくい周縁領域の空隙を中央領域に比べて少なくすることにより、金属接合層の機械的強度が低下するのを抑制できる。したがって、本発明に係る熱電モジュールは、特に、振動などの動的な負荷がかかる環境下においても優れた耐久性が得られる。   Since the thermoelectric module according to the present invention has voids in the central region and the peripheral region of the metal bonding layer, and the porosity in the central region is higher than the porosity in the peripheral region, the mechanical strength and bonding strength of the metal bonding layer are increased. Combined and highly reliable. That is, by increasing the gap in the central region, which is easily affected by the difference in thermal expansion characteristics with the thermoelectric element, as compared with the peripheral region, it becomes easier to absorb or relax the stress caused by the difference in thermal expansion characteristics. On the other hand, it is possible to suppress a decrease in the mechanical strength of the metal bonding layer by reducing the voids in the peripheral region, which is relatively difficult to be affected by the difference in thermal expansion characteristics with the thermoelectric element, as compared with the central region. Therefore, the thermoelectric module according to the present invention can have excellent durability even in an environment where a dynamic load such as vibration is applied.

以下、図面を参照しながら、本発明にかかる熱電モジュールについて説明する。   The thermoelectric module according to the present invention will be described below with reference to the drawings.

<第1の実施形態>
図1は、本発明の第1の実施形態にかかる熱電モジュールを示す斜視図であり、図2は、図1の熱電モジュールを支持基板に垂直な方向に切断したときの断面図である。図1及び図2に示すように、この熱電モジュールは、対向して配置された一対の第1の支持基板1aと第2の支持基板1b間に複数の熱電素子2が配列されることにより構成されている。具体的には、この熱電モジュールは、第1の支持基板1aと第2の支持基板1bの間に、N型熱電素子2aとP型熱電素子2bとが交互に配列されている。隣接するN型熱電素子2aとP型熱電素子2b間は、第1の支持基板1aの内面に形成された第1の電極3aと第2の支持基板1bの内面に形成された第2の電極3bによって接続されている。熱電素子2と電極3とは、半田層(金属接合層)11が介在しこれらを接合している。
<First Embodiment>
FIG. 1 is a perspective view showing a thermoelectric module according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the thermoelectric module of FIG. 1 cut in a direction perpendicular to a support substrate. As shown in FIGS. 1 and 2, the thermoelectric module is configured by arranging a plurality of thermoelectric elements 2 between a pair of first support substrate 1a and second support substrate 1b arranged to face each other. Has been. Specifically, in this thermoelectric module, N-type thermoelectric elements 2a and P-type thermoelectric elements 2b are alternately arranged between the first support substrate 1a and the second support substrate 1b. Between the adjacent N-type thermoelectric element 2a and P-type thermoelectric element 2b, the first electrode 3a formed on the inner surface of the first support substrate 1a and the second electrode formed on the inner surface of the second support substrate 1b. Connected by 3b. The thermoelectric element 2 and the electrode 3 are joined by a solder layer (metal bonding layer) 11 interposed therebetween.

また、当該直列回路の一方の端に配置された熱電素子2の一端が第1の支持基板1aの内面に形成された端子電極4に接続され、当該直列回路の他方の端に配置された熱電素子2の一端が第1の支持基板1aの内面に形成された端子電極4に接続されている。このようにして、第1の支持基板1aと第2の支持基板1b間に、N型熱電素子2aとP型熱電素子2bとが交互に接続された直列回路が形成される。そして、端子電極4にはそれぞれリード線5が半田等によって接続される。   One end of the thermoelectric element 2 arranged at one end of the series circuit is connected to the terminal electrode 4 formed on the inner surface of the first support substrate 1a, and the thermoelectric element arranged at the other end of the series circuit. One end of the element 2 is connected to a terminal electrode 4 formed on the inner surface of the first support substrate 1a. In this way, a series circuit in which the N-type thermoelectric elements 2a and the P-type thermoelectric elements 2b are alternately connected is formed between the first support substrate 1a and the second support substrate 1b. The lead wires 5 are connected to the terminal electrodes 4 by solder or the like.

以下、第1の支持基板1aと第2の支持基板1bとを特に区別しないでいうときには、単に支持基板1という。N型熱電素子2aとP型熱電素子2bを区別しないでいうときには、単に熱電素子2という。第1の電極3aと第2の電極3bを区別しないでいうときは、単に電極3という。   Hereinafter, when the first support substrate 1a and the second support substrate 1b are not particularly distinguished from each other, they are simply referred to as the support substrate 1. When the N-type thermoelectric element 2a and the P-type thermoelectric element 2b are not distinguished, they are simply referred to as the thermoelectric element 2. When the first electrode 3a and the second electrode 3b are not distinguished from each other, they are simply referred to as electrodes 3.

図3(a)は本実施形態の熱電モジュールの一部を拡大した拡大断面図であり、図3(b)はそのA−A線断面図である。図4(a)は図3(a)の断面図における半田層11のみを描いたものであり、空隙の分布状態を示している。図4(b)は図3(b)の断面図における半田層11のみを描いたものであり、空隙の分布状態を示している。本実施形態において、半田層11のうち、熱電素子2の端面に接合された素子側接合面13と電極3に接合された電極側接合面14との間に位置する柱状の領域を中央領域11aといい、この中央領域11aの少なくとも側部を取り囲むように中央領域11aの周縁に位置する領域を周縁領域11bという。言い換えると、中央領域11aは、素子側接合面13と電極側接合面14のうち素子側接合面13に対して垂直な方向に対向する部分との間に位置する領域であり、素子側接合面13に垂直な方向に素子側接合面13を投影した柱状の領域である。   FIG. 3A is an enlarged cross-sectional view of a part of the thermoelectric module of the present embodiment, and FIG. 3B is a cross-sectional view taken along the line AA. FIG. 4 (a) depicts only the solder layer 11 in the cross-sectional view of FIG. 3 (a) and shows the distribution of voids. FIG. 4 (b) depicts only the solder layer 11 in the cross-sectional view of FIG. 3 (b) and shows the distribution of voids. In the present embodiment, a columnar region located between the element-side bonding surface 13 bonded to the end surface of the thermoelectric element 2 and the electrode-side bonding surface 14 bonded to the electrode 3 in the solder layer 11 is a central region 11a. The region located at the periphery of the central region 11a so as to surround at least the side portion of the central region 11a is referred to as a peripheral region 11b. In other words, the central region 11a is a region located between the element-side bonding surface 13 and a portion of the electrode-side bonding surface 14 that faces in the direction perpendicular to the element-side bonding surface 13, and the element-side bonding surface This is a columnar region in which the element-side bonding surface 13 is projected in a direction perpendicular to 13.

本実施形態にかかる熱電モジュールでは、中央領域11aおよび周縁領域11bには空隙15が存在し、中央領域11aにおける空隙率が周縁領域11bにおける空隙率よりも高い。このように、熱電素子2との熱膨張特性の差の影響を受けやすい中央領域11aの空隙率を周縁領域11bに比べて高くすることにより、中央領域11aに多方向からかかる応力に対して中央領域11aが変形しやすくなるので、熱膨張特性の差に起因して生じる応力を吸収または緩和しやすくなる。一方で、熱電素子2との熱膨張特性の差の影響を比較的受けにくい周縁領域11bの空隙率を中央領域11aに比べて少なくすることにより、半田層11の機械的強度が低下するのを抑制できる。   In the thermoelectric module according to the present embodiment, there are voids 15 in the central region 11a and the peripheral region 11b, and the porosity in the central region 11a is higher than the porosity in the peripheral region 11b. In this way, by increasing the porosity of the central region 11a that is easily affected by the difference in thermal expansion characteristics with the thermoelectric element 2, compared to the peripheral region 11b, the central region 11a is subjected to the stress from multiple directions. Since the region 11a is easily deformed, it is easy to absorb or relieve the stress caused by the difference in thermal expansion characteristics. On the other hand, the mechanical strength of the solder layer 11 is reduced by reducing the porosity of the peripheral region 11b, which is relatively unaffected by the difference in thermal expansion characteristics with the thermoelectric element 2, as compared to the central region 11a. Can be suppressed.

中央領域11aにおいて高い応力吸収効果を得るという点では、中央領域11aの空隙率は3%以上であるのが好ましい。ジュール発熱を抑制するという点では、中央領域11aの空隙率は30%以下であるのが好ましい。また、中央領域11aにおける応力吸収効果を補助するという点では、周縁領域11bの空隙率は0.1%以上であるのが好ましい。半田層11の機械的強度が低下するのを効果的に抑制するという点およびジュール発熱を抑制するという点では、周縁領域11bの空隙率は10%以下であるのが好ましい。中央領域11aの空隙率と周縁領域11bの空隙率との差は、上記した効果をより確実に得るために、好ましくは3%以上30%以下、より好ましくは5%以上25%以下であるのがよい。   In terms of obtaining a high stress absorption effect in the central region 11a, the porosity of the central region 11a is preferably 3% or more. In terms of suppressing Joule heat generation, the porosity of the central region 11a is preferably 30% or less. Moreover, it is preferable that the porosity of the peripheral area | region 11b is 0.1% or more at the point of assisting the stress absorption effect in the center area | region 11a. The porosity of the peripheral region 11b is preferably 10% or less from the viewpoint of effectively suppressing the decrease in mechanical strength of the solder layer 11 and the suppression of Joule heat generation. The difference between the porosity of the central region 11a and the porosity of the peripheral region 11b is preferably 3% or more and 30% or less, more preferably 5% or more and 25% or less in order to obtain the above-described effect more reliably. Is good.

次に、空隙率の測定方法について説明する。本実施形態において、空隙率を測定するときには、以下の方法を用いればよい。すなわち、まず、素子を研磨または切断することにより、素子側接合面と平行な断面(または素子との接合面)を露出させる。必要に応じてポリッシング研磨を行ってもよい。露出させた面を、中央領域と周縁領域に分けて観察する。中央領域の空隙率は、露出面のうち中央領域内において空隙が占める面積を、中央領域の総面積で除した値であり、周縁領域の空隙率は、露出面のうち周縁領域内において空隙が占める面積を、周縁領域の総面積で除した値である。空隙率を評価する部位は特に限定されないが、素子側接合面に平行で中央領域の重心を通る平面で切断したときの断面で比較するのが好ましい。   Next, a method for measuring the porosity will be described. In the present embodiment, the following method may be used when measuring the porosity. That is, first, by polishing or cutting the element, a cross section parallel to the element side bonding surface (or the bonding surface with the element) is exposed. Polishing polishing may be performed as necessary. The exposed surface is divided into a central region and a peripheral region and observed. The porosity of the central region is a value obtained by dividing the area occupied by the void in the central region of the exposed surface by the total area of the central region, and the porosity of the peripheral region is the void in the peripheral region of the exposed surface. It is a value obtained by dividing the occupied area by the total area of the peripheral region. The part for evaluating the porosity is not particularly limited, but it is preferable to compare in a cross section when cut by a plane parallel to the element side bonding surface and passing through the center of gravity of the central region.

中央領域11aの空隙率と周縁領域11bの空隙率を比較する方法として、X線透過法を用いてもよい。本実施形態の熱電モジュールでは、半田層11をX線透過法により観察したときの空隙率は、中央領域11aの方が周縁領域11bよりも高い。この方法を用いることで、中央領域11aと周縁領域11bを容易に比較することができる。X線透過法を用いた具体的な測定方法は、次の通りである。すなわち、半田層11に対して、接合面13に垂直な方向にX線を照射すると、密度差に応じて画像に濃淡ができる。この画像を評価することで空隙が占める割合、空隙の形状、大きさなどを測定できる。X線透過法による測定に用いる装置としては、例えばNAGOYA ELECTRIC WARKS社製のX線検査装置NLX-005を用いることができる。熱電素子はX線を透過しにくいので、素子から半田層11を取り除いて測定するのが好ましい。   As a method for comparing the porosity of the central region 11a and the porosity of the peripheral region 11b, an X-ray transmission method may be used. In the thermoelectric module of the present embodiment, the void ratio when the solder layer 11 is observed by the X-ray transmission method is higher in the central region 11a than in the peripheral region 11b. By using this method, the central region 11a and the peripheral region 11b can be easily compared. A specific measurement method using the X-ray transmission method is as follows. That is, when the solder layer 11 is irradiated with X-rays in a direction perpendicular to the bonding surface 13, the image can be shaded according to the density difference. By evaluating this image, it is possible to measure the ratio occupied by the voids, the shape and size of the voids, and the like. As an apparatus used for measurement by the X-ray transmission method, for example, an X-ray inspection apparatus NLX-005 manufactured by NAGOYA ELECTRIC WARKS can be used. Since the thermoelectric element does not easily transmit X-rays, the measurement is preferably performed after removing the solder layer 11 from the element.

半田層11を接合面13に平行な平面で切断したときの断面(図4(b)に示す断面図)で評価してもよい。具体的には、接合面13に平行で中央領域11aの重心を通る平面で切断したときの断面における空隙15が占める割合(空隙率)は、接合面13における空隙15が占める割合(空隙率)よりも高いことが好ましい。このように接合面13の空隙を相対的に少なくすることにより、熱電素子2から半田層11への熱伝達効率を向上させることができるので、冷却性能が向上する。なお、本実施形態において、空隙率を断面で評価するときには、空隙率は、中央領域11a(または周縁領域11b)の総断面積に対して空隙の面積が占める割合をいう。   You may evaluate by the cross section (cross-sectional view shown in FIG.4 (b)) when the solder layer 11 is cut | disconnected by the plane parallel to the joint surface 13. FIG. Specifically, the ratio (void ratio) occupied by the voids 15 in the cross section when cut by a plane parallel to the bonding surface 13 and passing through the center of gravity of the central region 11a is the ratio (void ratio) occupied by the voids 15 in the bonding surface 13. Higher than that. Thus, by relatively reducing the gap of the joint surface 13, the heat transfer efficiency from the thermoelectric element 2 to the solder layer 11 can be improved, so that the cooling performance is improved. In the present embodiment, when the porosity is evaluated by a cross section, the porosity means a ratio of the area of the void to the total cross-sectional area of the central region 11a (or the peripheral region 11b).

また、半田層11を接合面13に平行な平面で切断したときの断面で評価したときに、中央領域11aの重心を通る平面で切断したときの断面における空隙15の最大径は、接合面13における空隙15の最大径よりも大きいことが好ましい。このように接合面13の空隙15の大きさを相対的に小さくすることにより、熱電素子2から半田層11への熱伝達効率をより向上させることができる。   Further, when the solder layer 11 is evaluated by a cross section obtained by cutting along a plane parallel to the joint surface 13, the maximum diameter of the gap 15 in the cross section when cut by a plane passing through the center of gravity of the central region 11 a is the joint surface 13. It is preferable that it is larger than the maximum diameter of the gap 15 in Thus, the heat transfer efficiency from the thermoelectric element 2 to the solder layer 11 can be further improved by relatively reducing the size of the gap 15 of the joint surface 13.

半田層11を構成する主成分としては、例えばSnSb、SnAgCu、AuSnなどの半田材料が挙げられる。半田層11はその主成分よりも融点の高い金属粒子を含有していることが好ましい。これにより、半田層11の耐熱性が向上する。すなわち、半田層11が高温に晒されたときの強度が向上するので、高温での駆動時の耐久性が向上する。また、金属粒子は、半田層11よりも熱伝導性の高いものであるのが好ましい。これにより、半田層11の熱抵抗を低下させることができるので、冷却性能が向上する。   Examples of the main component constituting the solder layer 11 include solder materials such as SnSb, SnAgCu, and AuSn. The solder layer 11 preferably contains metal particles having a melting point higher than that of the main component. Thereby, the heat resistance of the solder layer 11 is improved. That is, since the strength when the solder layer 11 is exposed to a high temperature is improved, durability at the time of driving at a high temperature is improved. The metal particles are preferably those having higher thermal conductivity than the solder layer 11. Thereby, since the thermal resistance of the solder layer 11 can be reduced, the cooling performance is improved.

また、金属粒子の平均粒径は0.01mm以上であるのが好ましい。金属粒子の平均粒径が0.01mm以上であることで、半田層11中に空隙が形成されやすくなる。空隙が過度に大きくなるのを抑制するという点で、金属粒子の平均粒径は0.2mm以下であるのが好ましい。金属粒子の平均粒径の測定方法としてはレーザー回折散乱法を用いることができる。金属粒子を含有させることで空隙が形成されやすくなる理由は、半田が溶融する際に金属粒子の周りの半田ペーストは凝集して体積が小さくなるが、溶融しない金属粒子がスペーサーとなり、空間が形成されるという現象が起こるためであると考えられる。   Moreover, it is preferable that the average particle diameter of a metal particle is 0.01 mm or more. When the average particle diameter of the metal particles is 0.01 mm or more, voids are easily formed in the solder layer 11. The average particle diameter of the metal particles is preferably 0.2 mm or less from the viewpoint of suppressing the voids from becoming excessively large. As a method for measuring the average particle diameter of the metal particles, a laser diffraction scattering method can be used. The reason why voids are easily formed by including metal particles is that when solder melts, the solder paste around the metal particles agglomerates to reduce the volume, but the metal particles that do not melt serve as spacers to form a space. This is thought to be due to the phenomenon that occurs.

空隙15の大きさは、中央領域11aの厚みに対して0.2倍以上30倍以下であるのが好ましい。空隙15の大きさが中央領域11aの厚みに対して0.2倍以上であることで、熱電素子との熱膨張特性の差に起因して生じる応力をより効果的に吸収することができる。空隙15の大きさが中央領域11aの厚みに対して30倍以下であることで、中央領域11aの機械的強度が低下するのを抑制できる。中央領域11aの厚みは0.01mm以上0.25mm以下であるのが好ましい。また、平均粒径0.01mm以上0.2mm以下の金属粒子が半田層11中に存在することで、半田層11の厚みが過度に薄くなるのを抑制できるので、特に中央領域11aの空隙率を高めることができる。   The size of the gap 15 is preferably not less than 0.2 times and not more than 30 times the thickness of the central region 11a. When the size of the gap 15 is 0.2 times or more with respect to the thickness of the central region 11a, the stress generated due to the difference in thermal expansion characteristics from the thermoelectric element can be absorbed more effectively. It can suppress that the mechanical strength of the center area | region 11a falls because the magnitude | size of the space | gap 15 is 30 times or less with respect to the thickness of the center area | region 11a. The thickness of the central region 11a is preferably 0.01 mm or more and 0.25 mm or less. Further, since metal particles having an average particle diameter of 0.01 mm or more and 0.2 mm or less are present in the solder layer 11, it is possible to suppress the thickness of the solder layer 11 from being excessively thinned. Can be increased.

金属粒子の含有率は、上記した作用を効果的に発現させる点で0.1体積%以上であるのがよく、半田層11の接合強度が低下するのを抑制する点で30体積%以下であるのが好ましい。   The content of the metal particles is preferably 0.1% by volume or more in terms of effectively expressing the above-described action, and is 30% by volume or less in terms of suppressing a decrease in the bonding strength of the solder layer 11. Preferably there is.

空隙15には不活性ガスが含まれていることが好ましい。これにより、半田層11の酸化を抑制することができるので、半田層11の機械的強度、接合強度などが劣化するのを抑制できる。特に、半田層11の酸化を効果的に抑制する点で、空隙15に不活性ガスを存在させることにより空隙15に含まれる酸素濃度が2%以下となるようにするのが好ましい。   The void 15 preferably contains an inert gas. Thereby, since the oxidation of the solder layer 11 can be suppressed, it is possible to suppress the deterioration of the mechanical strength, the bonding strength, and the like of the solder layer 11. In particular, in order to effectively suppress the oxidation of the solder layer 11, it is preferable that the oxygen concentration contained in the gap 15 is 2% or less by making an inert gas exist in the gap 15.

また、空隙15内は、半田層11の外部の雰囲気中よりも気圧を低くするのが好ましい。これにより、空隙15に含まれる酸素量を低減することができるので、半田層11の酸化を抑制することができる。また、空隙15の気圧が大気圧を超えると、空隙15およびその近傍に応力が発生しやすくなるので、空隙15の気圧は大気圧以下であるのがよい。   Further, it is preferable that the pressure in the gap 15 is lower than that in the atmosphere outside the solder layer 11. Thereby, since the amount of oxygen contained in the gap 15 can be reduced, oxidation of the solder layer 11 can be suppressed. Further, if the pressure of the gap 15 exceeds the atmospheric pressure, stress is likely to be generated in the gap 15 and the vicinity thereof. Therefore, the pressure of the gap 15 is preferably equal to or lower than the atmospheric pressure.

次に、本実施形態の熱電モジュールの製造方法の一例について説明する。本実施形態における製造方法は、複数の熱電素子2と、これらの熱電素子2を電気的に直列に接続するための電極3との間に、熱電素子2と電極3とを接合する半田層11を介在させる工程と、半田層11を溶融させる工程と、溶融した半田層11を冷却する工程と、を備えている。   Next, an example of the manufacturing method of the thermoelectric module of this embodiment is demonstrated. In the manufacturing method in the present embodiment, the solder layer 11 that joins the thermoelectric element 2 and the electrode 3 between the plurality of thermoelectric elements 2 and the electrode 3 for electrically connecting these thermoelectric elements 2 in series. A step of interposing, a step of melting the solder layer 11, and a step of cooling the melted solder layer 11.

溶融工程では、雰囲気の圧力を減圧した後、昇圧する。このように半田材料が溶融した状態で雰囲気の圧力を減圧し、溶融した状態を維持したままで昇圧することで、中央領域11aにおける空隙15が占める割合を、周縁領域11bにおける空隙が占める割合よりも高くすることができる。具体的には、例えば溶融工程の初期は、雰囲気の圧力を大気圧とし、その後、雰囲気の圧力を大気圧の1/2以下に減圧し、再度、大気圧まで昇圧するのが好ましい。   In the melting step, the pressure in the atmosphere is reduced and then increased. In this way, the pressure of the atmosphere is reduced in a state where the solder material is melted, and the pressure is increased while maintaining the melted state, so that the ratio of the gap 15 in the central region 11a is greater than the ratio of the gap in the peripheral region 11b. Can also be high. Specifically, for example, at the initial stage of the melting step, it is preferable to set the atmospheric pressure to atmospheric pressure, and then reduce the atmospheric pressure to 1/2 or less of atmospheric pressure, and then increase the pressure to atmospheric pressure again.

特に、溶融工程において、雰囲気の圧力を減圧した後、昇圧するサイクルを、複数回行うことが好ましい。このように減圧・昇圧のサイクルを複数回繰り返すことにより、周縁領域11bの空隙15を少なくし、かつ、中央領域11aに空隙15を集中させることが、より確実に可能になる。また、サイクルを複数回繰り返すことにより、空隙15の形状を球状に近づけることができる。また、サイクルを複数回繰り返すことにより、半田層11を接合面13に平行で中央領域11aの重心を通る平面で切断したときの断面における空隙15が占める割合を、接合面13における空隙15が占める割合よりも高くすることができる。また、サイクルを複数回繰り返すことにより、半田層11を接合面13に平行で中央領域11aの重心を通る平面で切断したときの断面における空隙15の最大径を、接合面13における空隙15の最大径よりも大きくすることができる。   In particular, in the melting step, it is preferable to perform the cycle of increasing the pressure after reducing the pressure of the atmosphere a plurality of times. Thus, by repeating the pressure reduction / pressure increase cycle a plurality of times, it is possible to reduce the gap 15 in the peripheral area 11b and concentrate the gap 15 in the central area 11a more reliably. Moreover, the shape of the space | gap 15 can be approximated in spherical shape by repeating a cycle in multiple times. Further, by repeating the cycle a plurality of times, the gap 15 in the cross section 13 occupies the proportion of the cross section when the solder layer 11 is cut by a plane parallel to the joint surface 13 and passing through the center of gravity of the central region 11a. The percentage can be higher. Further, by repeating the cycle a plurality of times, the maximum diameter of the void 15 in the cross section when the solder layer 11 is cut along a plane parallel to the bonding surface 13 and passing through the center of gravity of the central region 11a is set to the maximum of the void 15 in the bonding surface 13. It can be larger than the diameter.

減圧時の圧力範囲としては1Pa〜500Pa、その保持時間は5〜60秒程度であるのが好ましい。また、昇圧時の圧力範囲としては0.01〜0.3MPa、その保持時間は5〜60秒であるのが好ましい。減圧・昇圧の圧力や時間をコントロールすることで空隙の大きさを調整することができる。   The pressure range during decompression is preferably 1 Pa to 500 Pa, and the holding time is preferably about 5 to 60 seconds. Further, the pressure range at the time of pressure increase is preferably 0.01 to 0.3 MPa, and the holding time is preferably 5 to 60 seconds. The size of the gap can be adjusted by controlling the pressure and time of pressure reduction / pressure increase.

半田材料には、その主成分よりも融点の高い金属粒子を含有させるのが好ましい。半田材料に金属粒子を混合した半田ペーストでは、半田が溶融する際に金属粒子の周りの半田ペーストが凝集して体積が小さくなるが、溶融しない金属粒子はスペーサーとなってその近傍に空間が形成されるので、半田層11に空隙が形成される。更に減圧・昇圧を繰り返すことで空隙は球状になり、中央領域に適度に残存する。   The solder material preferably contains metal particles having a melting point higher than that of the main component. In solder paste in which metal particles are mixed with solder material, the solder paste around the metal particles agglomerates and the volume decreases when the solder melts. As a result, voids are formed in the solder layer 11. Further, by repeating the pressure reduction and pressure increase, the void becomes spherical and remains moderately in the central region.

また、溶融工程において、不活性ガス雰囲気に置換することが好ましい。これにより、空隙15中に不活性ガスを含ませることができ、空隙中の酸素濃度を低下させることができる。空隙15中の不活性ガスの含有量は、上記サイクルを複数回繰り返すことでより高めることができる。   Moreover, it is preferable to replace with an inert gas atmosphere in the melting step. Thereby, an inert gas can be contained in the space | gap 15, and the oxygen concentration in a space | gap can be reduced. The content of the inert gas in the gap 15 can be further increased by repeating the above cycle a plurality of times.

<第2の実施形態>
図5は、本発明の第2の実施形態にかかる熱電モジュールを示す断面図であって、熱電モジュールを支持基板に垂直な方向に切断したときの断面図である。図6(a)は本実施形態の熱電モジュールの一部を拡大した拡大断面図であり、図6(b)はそのB−B線断面図である。図7(a)は本実施形態の熱電モジュールにおける半田層21を接合面13に垂直な方向に切断したときの断面図であり、図7(b)は半田層21を接合面13に平行な方向に切断したときの断面図である。
<Second Embodiment>
FIG. 5 is a cross-sectional view showing a thermoelectric module according to a second embodiment of the present invention, and is a cross-sectional view when the thermoelectric module is cut in a direction perpendicular to the support substrate. FIG. 6A is an enlarged cross-sectional view of a part of the thermoelectric module of the present embodiment, and FIG. 6B is a cross-sectional view taken along the line BB. FIG. 7A is a cross-sectional view of the thermoelectric module of the present embodiment when the solder layer 21 is cut in a direction perpendicular to the joint surface 13, and FIG. 7B is a diagram illustrating the solder layer 21 parallel to the joint surface 13. It is sectional drawing when cut | disconnected in a direction.

図5〜7に示すように、本実施形態にかかる熱電モジュールでは、半田層21が電極3の一方の主面のほぼ全面を覆うように形成されている。本実施形態の場合、半田層21のうち、熱電素子2との接合面13に垂直な方向に接合面13を投影した柱状の領域を中央領域21aといい、中央領域21aの周縁に位置する領域(中央領域21a以外の領域)を周縁領域21bという。このとき、本実施形態にかかる熱電モジュールでは、中央領域21aにおける空隙15が占める割合が周縁領域21bにおける空隙15が占める割合よりも高い。周縁領域21bは、熱電素子2の端部の周縁を囲むように、接合面13に垂直な方向に***している。第1の実施形態と同様の他の部位には同じ符号を付して説明を省略する。   As shown in FIGS. 5 to 7, in the thermoelectric module according to this embodiment, the solder layer 21 is formed so as to cover almost the entire surface of one main surface of the electrode 3. In the present embodiment, a columnar region in the solder layer 21 in which the bonding surface 13 is projected in a direction perpendicular to the bonding surface 13 with the thermoelectric element 2 is referred to as a central region 21a, and is a region located at the periphery of the central region 21a. (A region other than the central region 21a) is referred to as a peripheral region 21b. At this time, in the thermoelectric module according to the present embodiment, the ratio of the gap 15 in the central area 21a is higher than the ratio of the gap 15 in the peripheral area 21b. The peripheral region 21 b protrudes in a direction perpendicular to the bonding surface 13 so as to surround the peripheral edge of the end portion of the thermoelectric element 2. Other parts similar to those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.

なお、上記実施形態では、金属接合層として半田を用いた場合を例に挙げて説明したが、本発明における金属接合層としては半田の他に例えばロウ材などを用いることもできる。   In the above-described embodiment, the case where solder is used as the metal bonding layer has been described as an example. However, for example, a brazing material or the like can be used as the metal bonding layer in the present invention in addition to the solder.

以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further more concretely based on an Example, this invention is not limited to a following example.

次のようにして熱電素子を作製した。まず、一度溶融させて固化したBi、TeおよびSeからなるN型の熱電材料を、ブリッジマン法により一方向に凝固させ、断面が円形(直径1.5mm)の棒状のN型熱電材料を得た。また、一度溶融させて固化したBiSbおよびTeからなるP型の熱電材料を、ブリッジマン法により一方向に凝固させ、断面が円形(直径1.5mm)の棒状のP型熱電材料を得た。 A thermoelectric element was produced as follows. First, an N-type thermoelectric material composed of Bi, Te and Se once melted and solidified is solidified in one direction by the Bridgman method to obtain a rod-shaped N-type thermoelectric material having a circular cross section (1.5 mm in diameter). It was. Also, a P-type thermoelectric material composed of Bi , Sb and Te once melted and solidified is solidified in one direction by the Bridgeman method to obtain a rod-shaped P-type thermoelectric material having a circular cross section (diameter 1.5 mm). It was.

これらの熱電素子の側面に、メッキが付着することを防止するレジストをコーティングした後、ワイヤーソーを用いて1.4mm幅に切断した。ついで、切断面のみに電解メッキでニッケル層を形成し、その上にAu層を形成し、溶解液でレジストを剥離してN型熱電素子及びP型熱電素子を得た。   The side surfaces of these thermoelectric elements were coated with a resist that prevents plating from being attached, and then cut into a width of 1.4 mm using a wire saw. Subsequently, a nickel layer was formed only on the cut surface by electrolytic plating, an Au layer was formed thereon, and the resist was peeled off with a solution to obtain an N-type thermoelectric element and a P-type thermoelectric element.

アルミナフィラーを添加した40mm角の大きさの両面銅貼りのエポキシ樹脂製絶縁基板を用いた。その基板の片面には、複数の銅電極が配列されており、それらの電極上にメタルマスクを用いて電極と同形状に95Sn−5Sbの半田ペーストを塗布した。この半田ペースト上に、N型熱電素子及びP型熱電素子が127対で電気的に直列になるようにパーツフィーダーを使用して各熱電素子を配設した。   An insulating substrate made of epoxy resin with a double-sided copper affixed to a 40 mm square with an alumina filler added was used. A plurality of copper electrodes are arranged on one side of the substrate, and a 95Sn-5Sb solder paste is applied on the electrodes in the same shape as the electrodes using a metal mask. On the solder paste, each thermoelectric element was disposed using a parts feeder so that 127 pairs of N-type thermoelectric elements and P-type thermoelectric elements were electrically in series.

上記のように配列させたN型熱電素子とP型熱電素子を上下の基板で挟み込むようにして、加熱式の真空チャンバーを用いて加熱処理した。この加熱処理(溶融工程)では、後述するように各試料毎に条件を変えて行った。   The N-type thermoelectric elements and the P-type thermoelectric elements arranged as described above were sandwiched between upper and lower substrates, and heat treatment was performed using a heating type vacuum chamber. In this heat treatment (melting step), conditions were changed for each sample as described later.

ついで、基板の端部に半田ごてでリード線を接合した後、洗浄液に浸積して熱電素子及び支持基板に付着している半田ペーストに含まれていたフラックスを洗浄した。その後、熱電モジュールの外周部をシリコーン接着剤で全面シールしてモジュールを得た。得られた各熱電モジュールは、以下の各評価方法で評価した。   Then, after the lead wire was joined to the end portion of the substrate with a soldering iron, the flux contained in the solder paste adhering to the thermoelectric element and the supporting substrate was washed by immersion in a cleaning solution. Thereafter, the outer peripheral portion of the thermoelectric module was entirely sealed with a silicone adhesive to obtain a module. Each obtained thermoelectric module was evaluated by the following evaluation methods.

評価方法1:常温評価
熱電モジュールの一方の基板の表面にSnBi半田を用いて熱交換器を接合し、モジュールの他方の基板の表面を、冷却される銅ブロックとSnBi半田で接合して、評価装置を作製した。熱交換器は内部に水が流れる流路が設けてあり、その流路に25℃の水を流すことによって熱電モジュールの高温側の支持基板を一定温度に維持するものである。上記評価装置に周波数10Hzで振動幅が1mm程度になるように動的振動状態を保ちながら冷却性能が最大になる電流を1分間印加して、1分間OFFする通電サイクルを行った。所定回数の通電サイクルを繰り返し、初期の抵抗との抵抗変化率が30%になったところを寿命として評価を行った。
Evaluation method 1: Normal temperature evaluation A heat exchanger is joined to the surface of one substrate of the thermoelectric module using SnBi solder, and the surface of the other substrate of the module is joined to the cooled copper block with SnBi solder for evaluation. A device was made. The heat exchanger is provided with a flow path through which water flows, and the support substrate on the high temperature side of the thermoelectric module is maintained at a constant temperature by flowing water at 25 ° C. through the flow path. An energization cycle in which the current that maximizes the cooling performance was applied for 1 minute while maintaining the dynamic vibration state so that the vibration width was about 1 mm at a frequency of 10 Hz was applied to the evaluation apparatus and turned off for 1 minute. A predetermined number of energization cycles were repeated, and the evaluation was made assuming that the resistance change rate with respect to the initial resistance reached 30%.

評価方法2:冷却性能
真空チャンバー内に設置された熱交換器の上にグリースを塗布して、その上にモジュールを載せた。更にその上にグリースをのせ、熱電対を配置して断熱材を置き、その上から荷重をかけた。真空チャンバーを閉じて、0.1Paまで減圧し、冷却性能が最大となる電流を印加して、熱交換器につけた熱電対とモジュールの上の熱電対の温度差で冷却性能のΔTを測定した。
Evaluation Method 2: Cooling Performance Grease was applied on the heat exchanger installed in the vacuum chamber, and the module was mounted thereon. Furthermore, grease was put thereon, a thermocouple was placed, a heat insulating material was placed, and a load was applied from above. The vacuum chamber was closed, the pressure was reduced to 0.1 Pa, the current that maximized the cooling performance was applied, and the ΔT of the cooling performance was measured by the temperature difference between the thermocouple attached to the heat exchanger and the thermocouple on the module. .

評価方法3:高温評価
評価方法1と同様の評価装置を作製した。熱交換器は内部に水が流れる流路が設けてあり、その流路に70℃の水を流すことによって熱電モジュールの高温側の支持基板を一定温度に維持するものである。上記評価装置に周波数10Hzで振動幅が1mm程度になるように動的振動状態を保ちながら冷却性能が最大になる電流を連続して印加する連続通電試験を行った。初期の抵抗との抵抗変化率が30%になった時間を寿命として評価を行った。
Evaluation Method 3: High Temperature Evaluation An evaluation device similar to the evaluation method 1 was produced. The heat exchanger is provided with a flow path through which water flows, and the support substrate on the high temperature side of the thermoelectric module is maintained at a constant temperature by flowing water at 70 ° C. through the flow path. A continuous energization test was performed in which a current that maximized cooling performance was continuously applied to the evaluation apparatus while maintaining a dynamic vibration state so that the vibration width was about 1 mm at a frequency of 10 Hz. The time when the resistance change rate with the initial resistance was 30% was evaluated as the lifetime.

各試料の半田付け条件は次の通りである。   The soldering conditions for each sample are as follows.

(実験1のグループ)
試料No.1:中央領域に空隙を形成させるために発砲材を入れて、更に周縁領域の空隙をなくするために、高真空に長い時間真空引きをすることにより、周縁領域の空隙をなくしたものである。
(Experiment 1 group)
Sample No. 1: Foam material is added to form a void in the central region, and the void in the peripheral region is eliminated by evacuating to a high vacuum for a long time in order to eliminate the void in the peripheral region. .

試料No.2:中央領域と周縁領域の空隙率を同じにするために、溶融工程では常圧で加熱処理を行った。 Sample No. 2: In order to make the porosity of the central region and the peripheral region the same, heat treatment was performed at normal pressure in the melting step.

試料No.3:中央領域よりも周縁領域の空隙率を大きくするために、周縁領域に発泡剤を添加した半田を使用し、溶融工程では常圧で加熱処理を行った。 Sample No. 3: In order to increase the porosity of the peripheral region than the central region, solder with a foaming agent added to the peripheral region was used, and heat treatment was performed at normal pressure in the melting step.

試料No.4:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、100Paまで減圧した後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、100Paまでの真空引きと窒素導入を2回繰り返した後、温度を下げて半田を凝固させた。 Sample No. 4: Before melting the solder, pressure reduction (evacuation) of the atmosphere was started, and then the solder was melted and the pressure was reduced to 100 Pa, and then nitrogen gas was introduced into the vacuum chamber to return to normal pressure. Next, evacuation to 100 Pa and introduction of nitrogen were repeated twice, and then the temperature was lowered to solidify the solder.

試料No.5:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、300Paまで真空引きを行った後、窒素ガスを真空チャンバー内に導入して常圧に戻した。その後、温度を下げ半田を凝固させた。 Sample No. 5: Before melting the solder, the atmosphere was started to be depressurized (evacuated), then the solder was melted and evacuated to 300 Pa, and then nitrogen gas was introduced into the vacuum chamber to return to normal pressure. . Thereafter, the temperature was lowered to solidify the solder.

(実験2のグループ)
試料No.6:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、200Paまで減圧した後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、100Paまでの真空引きと窒素導入を2回繰り返した後、温度を下げて半田を凝固させた。
(Experiment 2 group)
Sample No. 6: Before melting the solder, decompression of the atmosphere (evacuation) was started, and then the solder was melted and decompressed to 200 Pa. Then, nitrogen gas was introduced into the vacuum chamber to return to normal pressure. Next, evacuation to 100 Pa and introduction of nitrogen were repeated twice, and then the temperature was lowered to solidify the solder.

試料No.7:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、300Paまで減圧した後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、温度を下げて半田を凝固させた。 Sample No. 7: Before melting the solder, pressure reduction (evacuation) of the atmosphere was started, then the solder was melted, and the pressure was reduced to 300 Pa. Then, nitrogen gas was introduced into the vacuum chamber to return to normal pressure. Next, the temperature was lowered to solidify the solder.

試料No.8:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、300Paまで減圧した後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、300Paまでの真空引きと窒素導入を2回繰り返した後、温度を下げて半田を凝固させた。 Sample No. 8: Before melting the solder, pressure reduction (evacuation) of the atmosphere was started, then the solder was melted, and the pressure was reduced to 300 Pa. Then, nitrogen gas was introduced into the vacuum chamber to return to normal pressure. Next, vacuuming up to 300 Pa and introduction of nitrogen were repeated twice, and then the temperature was lowered to solidify the solder.

試料No.9:接合面に空隙を形成するために素子の表面のメッキを一部はがしたものを使用し、No.8と同じ接合プロセスで作製した。 Sample No. 9: A part of the surface of the element was removed to form a gap on the joint surface. The same joining process as in No. 8 was used.

(実験3のグループ)
試料No.10:接合面に空隙を形成するために素子表面のメッキのうち、直径150μmの円状にメッキの一部を剥がした以外は、試料No.4と同じ接合プロセスで半田付けを行った。
(Experiment 3 group)
Sample No. 10: Sample No. 10 except that a part of the plating on the surface of the element was peeled off into a circle having a diameter of 150 μm in order to form a gap on the joint surface. Soldering was performed by the same joining process as in No. 4.

試料No.11:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、200Paまで真空引きを行った後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、200Paまでの真空引きと窒素導入を2回繰り返した後、温度を下げて半田を凝固させた。 Sample No. 11: Before melting the solder, the pressure reduction (evacuation) of the atmosphere was started, then the solder was melted and evacuated to 200 Pa, and then nitrogen gas was introduced into the vacuum chamber to return to normal pressure. . Next, vacuuming up to 200 Pa and introduction of nitrogen were repeated twice, and then the temperature was lowered to solidify the solder.

試料No.12:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、200Paまで真空引きを行った後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、温度を下げて半田を凝固させた。 Sample No. 12: Before melting the solder, the pressure reduction (evacuation) of the atmosphere was started, and then the solder was melted and evacuated to 200 Pa. Then, nitrogen gas was introduced into the vacuum chamber to return to normal pressure. . Next, the temperature was lowered to solidify the solder.

試料No.13:半田を溶融させる前に、雰囲気の減圧(真空引き)を開始し、ついで半田を溶融させ、300Paまで真空引きを行った後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、温度を下げて半田を凝固させた。 Sample No. 13: Before melting the solder, the pressure reduction (evacuation) of the atmosphere was started, and then the solder was melted and evacuated to 300 Pa. Then, nitrogen gas was introduced into the vacuum chamber and returned to normal pressure. . Next, the temperature was lowered to solidify the solder.

(実験4のグループ)
試料No.14〜17:試料No.4の作製条件をベースに、半田に含有する球状の銅粉の割合と、銅粉の粒径を表4に記載のとおり変化させて中央領域の空隙率が5%、周縁領域の空隙率が1%になるように溶融時の真空引きの回数や真空度をコントロールしてサンプルを作製した。
(Group of Experiment 4)
Sample No. 14-17: Sample No. Based on the production conditions of No. 4, the ratio of the spherical copper powder contained in the solder and the particle size of the copper powder are changed as shown in Table 4 so that the porosity in the central region is 5% and the porosity in the peripheral region is A sample was prepared by controlling the number of vacuums and the degree of vacuum at the time of melting so as to be 1%.

(実験5のグループ)
試料No.18〜20:50ミクロンの球状の銅粉を10体積%入れたSn−Sb半田ペーストを作製した。この半田を溶融させる前に、減圧(真空引き)を開始し、その後半田を溶融させ、150Paまで減圧させた後、大気、窒素、アルゴンの各々を真空チャンバー内に導入して常圧に戻した。ついで、温度を下げて半田を凝固させた。
(Experiment 5 group)
Sample No. An Sn—Sb solder paste containing 10 vol% of 18-20: 50 micron spherical copper powder was prepared. Before the solder is melted, decompression (evacuation) is started, and then the solder is melted and decompressed to 150 Pa. Then, each of air, nitrogen, and argon is introduced into the vacuum chamber to return to normal pressure. . Next, the temperature was lowered to solidify the solder.

試料No.21:50ミクロンの球状の銅粉を入れたSn−Sb半田ペーストを作製した。この半田を溶融させた後に減圧(真空引き)を開始し、その後半田を溶融させ、150Paまで減圧させた後、窒素ガスを真空チャンバー内に導入して常圧に戻した。ついで、100Paまでの真空引きと窒素導入を1回繰り返した後、温度を下げて半田を凝固させた。 Sample No. An Sn—Sb solder paste containing 21:50 micron spherical copper powder was prepared. After the solder was melted, decompression (evacuation) was started, then the solder was melted and decompressed to 150 Pa, and then nitrogen gas was introduced into the vacuum chamber to return to normal pressure. Next, evacuation to 100 Pa and introduction of nitrogen were repeated once, and then the temperature was lowered to solidify the solder.

中央領域および周縁領域の空隙率の評価は次のようにして行った。熱電モジュールの素子の部分を取り除き、金属接合層から基板に向かって透過X線(X線透過法)で観察して、X線探傷による写真から、空隙の形状寸法や面積を算出した。その際、素子の実寸法と写真の寸法比を補正した。   Evaluation of the porosity of the central region and the peripheral region was performed as follows. The element part of the thermoelectric module was removed, the metal bonding layer was observed from the metal bonding layer toward the substrate by transmission X-ray (X-ray transmission method), and the shape dimension and area of the void were calculated from the photograph by X-ray flaw detection. At that time, the actual size of the device and the dimensional ratio of the photograph were corrected.

素子側接合面に平行で中央領域の重心を通る平面で切断したときの断面における空隙率と、素子側接合面における空隙率の評価は次のようにして行った。すなわち、素子を素子側接合面と平行に削っていき、素子側接合面を露出させる。素子側接合面における空隙が占める面積を、素子側接合面の総面積で割った値を空隙率とした。断面の空隙率の評価としては、素子側接合面からさらに素子を、素子側接合面と平行に中央領域の重心まで削っていき、上記断面を露出させる。断面における空隙が占める面積を、中央領域の断面の総面積で割った値を空隙率とした。   Evaluation of the void ratio in the cross section when cut by a plane parallel to the element side bonding surface and passing through the center of gravity of the central region and the void ratio in the element side bonding surface were performed as follows. That is, the element is shaved in parallel with the element side bonding surface to expose the element side bonding surface. The value obtained by dividing the area occupied by the voids in the element-side bonding surface by the total area of the element-side bonding surface was defined as the porosity. For evaluation of the porosity of the cross section, the element is further cut from the element side bonding surface to the center of gravity of the central region in parallel with the element side bonding surface to expose the cross section. The value obtained by dividing the area occupied by the voids in the cross section by the total area of the cross section in the central region was taken as the porosity.

空隙の最大径は、接合面(または断面)における空隙の径うち、最も長い直線のことをいう。また、50μm以下の微小な空隙については、走査型電子顕微鏡(SEM)で観察して、空隙の割合や大きさを測定した。   The maximum diameter of the void means the longest straight line among the diameters of the void in the joint surface (or cross section). Moreover, about the micro space | gap of 50 micrometers or less, it observed with the scanning electron microscope (SEM), and measured the ratio and magnitude | size of the space | gap.

(実験1の結果)
上記評価方法1による評価結果を表1に示す。

Figure 2008277394
(Result of Experiment 1)
Table 1 shows the evaluation results obtained by the evaluation method 1.
Figure 2008277394

表1から、周縁領域に空隙を存在させることで、振動を伴う環境下における寿命が向上することがわかる。その中でも中央領域の空隙率が周縁領域の空隙率より大きくすることで寿命が大きく向上することがわかる。 From Table 1, it can be seen that the presence of voids in the peripheral region improves the lifetime in an environment with vibration. In particular, it can be seen that the lifetime is greatly improved by making the porosity of the central region larger than the porosity of the peripheral region.

(実験2の結果)
上記評価方法1,2による評価結果を表2に示す。

Figure 2008277394
(Result of Experiment 2)
Table 2 shows the evaluation results of the evaluation methods 1 and 2.
Figure 2008277394

表2から、No.6〜9の結果より重心を通る平面の空隙率を高くして、接合面の空隙率を小さくすることで、破壊寿命が延びるとともに冷却性能が向上することがわかる。   From Table 2, no. From the results of 6 to 9, it can be seen that by increasing the porosity of the plane passing through the center of gravity and reducing the porosity of the joint surface, the fracture life is extended and the cooling performance is improved.

(実験3の結果)
上記評価方法1,2による評価結果を表3示す。

Figure 2008277394
(Result of Experiment 3)
Table 3 shows the evaluation results of the evaluation methods 1 and 2.
Figure 2008277394

表3から、重心を通る平面の空隙の大きさが大きく、素子側接合面の空隙が小さいと寿命も長く、冷却性能も向上することがわかる。   From Table 3, it can be seen that if the size of the planar gap passing through the center of gravity is large and the gap on the element side joint surface is small, the life is long and the cooling performance is improved.

(実験4の結果)
上記評価方法2,3による評価結果を表4に示す。

Figure 2008277394
(Result of Experiment 4)
Table 4 shows the evaluation results obtained by the evaluation methods 2 and 3.
Figure 2008277394

表4から、球状の銅粉を入れると振動を伴う高温強度が向上して、高温駆動時の寿命がさらに向上することがわかる。     From Table 4, it can be seen that when spherical copper powder is added, the high-temperature strength accompanied by vibration is improved, and the life at the time of high-temperature driving is further improved.

(実験5の結果)
上記評価方法2,3による評価結果を表5に示す。

Figure 2008277394
(Result of Experiment 5)
Table 5 shows the evaluation results of the evaluation methods 2 and 3.
Figure 2008277394

表5から、空隙の中が不活性ガスを入れると酸化を抑制し、冷却性能が向上する。更に空隙の中が減圧になると酸化を抑制し、冷却性能が向上することがわかる。     From Table 5, when an inert gas is put in the void, the oxidation is suppressed and the cooling performance is improved. Further, it can be seen that when the pressure in the void is reduced, the oxidation is suppressed and the cooling performance is improved.

なお、半田層の空隙に不活性ガスが存在するか否かの評価は、次のようにして行った。すなわち、昇温脱離ガス分析(TDS)中で温度を高温にあげて半田を溶かした状態で空隙中のガスを定性分析した。   In addition, evaluation of whether or not an inert gas exists in the voids of the solder layer was performed as follows. That is, the gas in the voids was qualitatively analyzed in a state where the temperature was raised to a high temperature and the solder was dissolved in the temperature programmed desorption gas analysis (TDS).

また、半田層の空隙内が半田層の外部の雰囲気よりも気圧が低い(減圧されている)か否かの評価は、次のようにして行った。すなわち、高温真空度計において、高温にあげて半田を溶かした状態で、密閉容器内の真空度の変化を観察し、ゲージメータが真空側にふれるか否かで評価した。   In addition, the evaluation of whether the pressure inside the voids of the solder layer is lower (reduced pressure) than the atmosphere outside the solder layer was performed as follows. That is, in a high-temperature vacuum gauge, the change in the vacuum degree in the sealed container was observed in a state where the solder was melted at a high temperature, and an evaluation was made based on whether or not the gauge meter touched the vacuum side.

本発明の第1の実施形態にかかる熱電モジュールを示す斜視図である。It is a perspective view which shows the thermoelectric module concerning the 1st Embodiment of this invention. 図1の熱電モジュールを支持基板に垂直な方向に切断したときの断面図である。It is sectional drawing when the thermoelectric module of FIG. 1 is cut | disconnected in the direction perpendicular | vertical to a support substrate. (a)は第2の実施形態の熱電モジュールの一部を拡大した拡大断面図であり、(b)はそのA−A線断面図である。(a) is the expanded sectional view which expanded a part of thermoelectric module of 2nd Embodiment, (b) is the AA sectional view taken on the line. (a)は図3(a)の断面図における半田層のみを描いたものであり、空隙の分布状態を示している。(b)は図3(b)の断面図における半田層のみを描いたものであり、空隙の分布状態を示している。FIG. 3A illustrates only the solder layer in the cross-sectional view of FIG. (b) depicts only the solder layer in the cross-sectional view of FIG. 3 (b), and shows the distribution of voids. 本発明の第2の実施形態にかかる熱電モジュールを示す断面図であって、熱電モジュールを支持基板に垂直な方向に切断したときの断面図である。It is sectional drawing which shows the thermoelectric module concerning the 2nd Embodiment of this invention, Comprising: It is sectional drawing when a thermoelectric module is cut | disconnected in the direction perpendicular | vertical to a support substrate. (a)は第2の実施形態の熱電モジュールの一部を拡大した拡大断面図であり、(b)はそのB−B線断面図である。(a) is the expanded sectional view which expanded a part of thermoelectric module of 2nd Embodiment, (b) is the BB sectional drawing. (a)は本実施形態の熱電モジュールにおける半田層を接合面に垂直な方向に切断したときの断面図であり、(b)は半田層を接合面に平行な方向に切断したときの断面図である。(a) is a cross-sectional view when the solder layer in the thermoelectric module of the present embodiment is cut in a direction perpendicular to the joint surface, (b) is a cross-sectional view when the solder layer is cut in a direction parallel to the joint surface It is.

符号の説明Explanation of symbols

1 支持基板
1a 第1の支持基板
1b 第2の支持基板
2 電極
2a 第1の電極
2b 第2の電極
3 熱電素子
3a N型熱電素子
3b P型熱電素子
11,21 半田層
13 素子側接合面
14 電極側接合面
15 空隙
DESCRIPTION OF SYMBOLS 1 Support substrate 1a 1st support substrate 1b 2nd support substrate 2 Electrode 2a 1st electrode 2b 2nd electrode 3 Thermoelectric element 3a N type thermoelectric element 3b P type thermoelectric element 11, 21 Solder layer 13 Element side joint surface 14 Electrode side bonding surface 15

Claims (11)

柱状の複数の熱電素子と、前記熱電素子の端面に電気的に接続された電極と、前記熱電素子と前記電極との間に介在しこれらを接合するための金属接合層と、を備え、
前記金属接合層は、前記熱電素子の端面に接合された素子側接合面と前記電極に接合された電極側接合面との間に位置する中央領域と、この中央領域の周縁に位置する周縁領域とからなり、
前記中央領域および周縁領域には空隙が存在し、前記中央領域における空隙率が前記周縁領域における空隙率よりも高いことを特徴とする熱電モジュール。
A plurality of columnar thermoelectric elements, an electrode electrically connected to an end face of the thermoelectric element, and a metal bonding layer interposed between and joining the thermoelectric element and the electrode,
The metal bonding layer includes a central region positioned between an element-side bonding surface bonded to the end surface of the thermoelectric element and an electrode-side bonding surface bonded to the electrode, and a peripheral region positioned at the periphery of the central region. And consist of
The thermoelectric module according to claim 1, wherein air gaps exist in the central region and the peripheral region, and a porosity in the central region is higher than a porosity in the peripheral region.
前記金属接合層を前記素子側接合面に平行で前記中央領域の重心を通る平面で切断したときの断面における空隙率は、前記素子側接合面における空隙率よりも高い請求項1に記載の熱電モジュール。   2. The thermoelectric device according to claim 1, wherein a void ratio in a cross section when the metal bonding layer is cut by a plane parallel to the element side bonding surface and passing through the center of gravity of the central region is higher than a void ratio in the element side bonding surface. module. 前記金属接合層を前記素子側接合面に平行で前記中央領域の重心を通る平面で切断したときの断面における空隙の最大径は、前記素子側接合面における空隙の最大径よりも大きい請求項1または2に記載の熱電モジュール。   The maximum diameter of the void in a cross section when the metal bonding layer is cut by a plane parallel to the element side bonding surface and passing through the center of gravity of the central region is larger than the maximum diameter of the void in the element side bonding surface. Or the thermoelectric module of 2. 前記金属接合層をX線透過法により観察したときの空隙率は、前記中央領域の方が前記周縁領域よりも高い請求項1に記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the porosity of the metal bonding layer when observed by an X-ray transmission method is higher in the central region than in the peripheral region. 前記金属接合層はその主成分よりも融点の高い金属粒子を含有している請求項1〜4のいずれかに記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the metal bonding layer contains metal particles having a melting point higher than that of the main component thereof. 前記空隙には不活性ガスが含まれている請求項1〜5のいずれかに記載の熱電モジュール。   The thermoelectric module according to claim 1, wherein the void contains an inert gas. 前記空隙内は、前記金属接合層の外部の雰囲気中よりも気圧が低い請求項1〜6のいずれかに記載の熱電モジュール。   The thermoelectric module according to any one of claims 1 to 6, wherein the air pressure is lower in the void than in the atmosphere outside the metal bonding layer. 複数の熱電素子とこれらの熱電素子を電気的に直列に接続するための電極との間に、前記熱電素子と前記電極とを接合する金属接合層を介在させる工程と、前記金属接合層を溶融させる工程と、溶融した前記金属接合層を冷却する工程と、を備えた熱電モジュールの製造方法であって、
前記溶融工程は、雰囲気の圧力が大気圧よりも減圧された状態とこの減圧状態から昇圧された状態とを含むことを特徴とする熱電モジュールの製造方法。
A step of interposing a metal bonding layer for bonding the thermoelectric element and the electrode between a plurality of thermoelectric elements and an electrode for electrically connecting the thermoelectric elements in series; and melting the metal bonding layer And a step of cooling the molten metal bonding layer, and a method of manufacturing a thermoelectric module comprising:
The method for manufacturing a thermoelectric module, wherein the melting step includes a state where the pressure of the atmosphere is reduced from atmospheric pressure and a state where the pressure is increased from the reduced pressure state.
前記金属接合層には、その主成分よりも融点の高い金属粒子を含有させる請求項8に記載の熱電モジュールの製造方法。   The method for manufacturing a thermoelectric module according to claim 8, wherein the metal bonding layer contains metal particles having a melting point higher than that of a main component thereof. 前記溶融工程において、雰囲気を不活性ガスで置換する請求項8に記載の熱電モジュールの製造方法。   The method for manufacturing a thermoelectric module according to claim 8, wherein the atmosphere is replaced with an inert gas in the melting step. 前記溶融工程において、雰囲気の圧力を減圧した後、昇圧するサイクルを、複数回行う請求項8〜10のいずれかに記載の熱電モジュールの製造方法。   The method for manufacturing a thermoelectric module according to any one of claims 8 to 10, wherein a cycle of increasing the pressure after reducing the pressure of the atmosphere in the melting step is performed a plurality of times.
JP2007116716A 2007-04-26 2007-04-26 Thermoelectric module Pending JP2008277394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007116716A JP2008277394A (en) 2007-04-26 2007-04-26 Thermoelectric module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007116716A JP2008277394A (en) 2007-04-26 2007-04-26 Thermoelectric module

Publications (1)

Publication Number Publication Date
JP2008277394A true JP2008277394A (en) 2008-11-13

Family

ID=40055037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007116716A Pending JP2008277394A (en) 2007-04-26 2007-04-26 Thermoelectric module

Country Status (1)

Country Link
JP (1) JP2008277394A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231317A (en) * 2008-03-19 2009-10-08 Komatsu Ltd Thermoelectric module
JP2011077163A (en) * 2009-09-29 2011-04-14 Fujitsu Ltd Thermoelectric conversion element, and method of manufacturing the same
JP2012044133A (en) * 2010-08-18 2012-03-01 Samsung Electro-Mechanics Co Ltd Thermoelectric module and method of manufacturing the same
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
EP3171100A1 (en) * 2015-11-17 2017-05-24 Mahle International GmbH Thermoelectric temperature-control unit and temperature-control device
WO2017130461A1 (en) * 2016-01-29 2017-08-03 日立化成株式会社 Thermoelectric conversion module and method for manufacturing same
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same
KR20200035777A (en) * 2018-09-27 2020-04-06 주식회사 엘지화학 Thermoelectric materials and method of manufacturing the same
WO2022019569A1 (en) * 2020-07-24 2022-01-27 엘지이노텍 주식회사 Thermoelectric element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669387A (en) * 1992-08-19 1994-03-11 Hitachi Ltd Junction structure and its manufacture
JPH07321379A (en) * 1994-05-24 1995-12-08 Komatsu Electron Kk Manufacture of thermo-device
JPH09298316A (en) * 1996-05-08 1997-11-18 Matsushita Electric Works Ltd Junction of thermoelectric conversion element
JP2003338641A (en) * 2002-05-22 2003-11-28 Toshiba Corp Thermoelectric element
JP2004031696A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module and method for manufacturing the same
JP2006281309A (en) * 2005-04-05 2006-10-19 Toyota Motor Corp Method of manufacturing joined structure
JP2007093106A (en) * 2005-09-28 2007-04-12 Kyocera Corp Heat exchanging device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669387A (en) * 1992-08-19 1994-03-11 Hitachi Ltd Junction structure and its manufacture
JPH07321379A (en) * 1994-05-24 1995-12-08 Komatsu Electron Kk Manufacture of thermo-device
JPH09298316A (en) * 1996-05-08 1997-11-18 Matsushita Electric Works Ltd Junction of thermoelectric conversion element
JP2003338641A (en) * 2002-05-22 2003-11-28 Toshiba Corp Thermoelectric element
JP2004031696A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module and method for manufacturing the same
JP2006281309A (en) * 2005-04-05 2006-10-19 Toyota Motor Corp Method of manufacturing joined structure
JP2007093106A (en) * 2005-09-28 2007-04-12 Kyocera Corp Heat exchanging device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231317A (en) * 2008-03-19 2009-10-08 Komatsu Ltd Thermoelectric module
JP2011077163A (en) * 2009-09-29 2011-04-14 Fujitsu Ltd Thermoelectric conversion element, and method of manufacturing the same
JP2012044133A (en) * 2010-08-18 2012-03-01 Samsung Electro-Mechanics Co Ltd Thermoelectric module and method of manufacturing the same
JP2012064913A (en) * 2010-09-15 2012-03-29 Samsung Electro-Mechanics Co Ltd Asymmetric thermoelectric module and manufacturing method of the same
JP2017069555A (en) * 2015-09-28 2017-04-06 三菱マテリアル株式会社 Thermoelectric conversion module and thermoelectric conversion device
CN108351128B (en) * 2015-11-17 2019-09-27 马勒国际有限公司 Thermoelectric temperature control unit and temperature control equipment
WO2017084981A1 (en) * 2015-11-17 2017-05-26 Mahle International Gmbh Thermoelectric temperature-control unit and temperature-control device
CN108351128A (en) * 2015-11-17 2018-07-31 马勒国际有限公司 Thermoelectric temperature control unit and temperature control equipment
US10422556B2 (en) 2015-11-17 2019-09-24 Mahle International Gmbh Thermoelectric temperature-control unit and temperature-control device
EP3171100A1 (en) * 2015-11-17 2017-05-24 Mahle International GmbH Thermoelectric temperature-control unit and temperature-control device
WO2017130461A1 (en) * 2016-01-29 2017-08-03 日立化成株式会社 Thermoelectric conversion module and method for manufacturing same
JP2017135309A (en) * 2016-01-29 2017-08-03 日立化成株式会社 Thermoelectric conversion module and method of manufacturing the same
JP2017143111A (en) * 2016-02-08 2017-08-17 日立化成株式会社 Thermoelectric conversion module and method for manufacturing the same
KR20200035777A (en) * 2018-09-27 2020-04-06 주식회사 엘지화학 Thermoelectric materials and method of manufacturing the same
KR102516214B1 (en) * 2018-09-27 2023-03-29 주식회사 엘지화학 Thermoelectric materials and method of manufacturing the same
WO2022019569A1 (en) * 2020-07-24 2022-01-27 엘지이노텍 주식회사 Thermoelectric element

Similar Documents

Publication Publication Date Title
JP2008277394A (en) Thermoelectric module
JP6773143B2 (en) Solder material for semiconductor devices
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JP2011029323A (en) Substrate for power module, power module, and method of manufacturing substrate for power module
US20160172569A1 (en) Thermoelectric power module
JP6369085B2 (en) Power module
JP2010108958A (en) Thermoelectric module, and method of manufacturing the same
JP5092168B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
EP3093882B1 (en) Electronic circuit device
JP5420078B2 (en) JOINT BODY, SEMICONDUCTOR DEVICE EQUIPPED WITH SAME, JOINING METHOD AND MANUFACTURING METHOD USING SAME
JP5526336B2 (en) Solder layer, device bonding substrate using the same, and manufacturing method thereof
JP4349552B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP6939973B2 (en) Copper / ceramic joints and insulated circuit boards
JP2017157600A (en) Manufacturing method of bonded body, manufacturing method of board for power module with heat sink, bonded body and board for power module with heat sink
WO2013005555A1 (en) Metal-bonded structure and method for manufacturing same
JP4935753B2 (en) Power module substrate, power module, and method of manufacturing power module substrate
JP6928297B2 (en) Copper / ceramic joints and insulated circuit boards
JP2016143685A (en) Semiconductor module
JP2015080812A (en) Joint method
JP2010082636A (en) Welding method of pillar-like member, method of manufacturing heat radiation member, and heat radiation member
JP6803106B1 (en) Joining member of semiconductor device
JP2018182088A (en) Heat dissipating substrate, heat dissipating substrate electrode, semiconductor package, and semiconductor module
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module
JP4434106B2 (en) Manufacturing method of semiconductor device
JP6299442B2 (en) Power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619