JP2008272688A - Crushing method of ceramic raw material - Google Patents

Crushing method of ceramic raw material Download PDF

Info

Publication number
JP2008272688A
JP2008272688A JP2007120447A JP2007120447A JP2008272688A JP 2008272688 A JP2008272688 A JP 2008272688A JP 2007120447 A JP2007120447 A JP 2007120447A JP 2007120447 A JP2007120447 A JP 2007120447A JP 2008272688 A JP2008272688 A JP 2008272688A
Authority
JP
Japan
Prior art keywords
mass
raw material
less
ceramic raw
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007120447A
Other languages
Japanese (ja)
Inventor
Kiyonari Zenba
研也 善場
Koji Eguchi
孝二 江口
Hiroshi Yokota
博 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2007120447A priority Critical patent/JP2008272688A/en
Publication of JP2008272688A publication Critical patent/JP2008272688A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of continuously and efficiently crushing ceramic raw material with high hardness. <P>SOLUTION: A crushing method of ceramic raw material is provided in which the ceramic raw material with a maximum particle diameter of 200 μm or less is charged into a vibration mill with an inner wall and media composed of an iron-based material, crushed to obtain the particle content of 3 μm or less of 10-40 mass% and classified, particles of 7 μm or less are collected, while part of or all of the residual crushed particles over 7 μm are returned to the ceramic raw material. In the classified and collected particles of 7 μm or less, the ratio of particles of 3 μm or less is 85-95 mass%. The ratio of the classified and collected particles of 7 μm or less is 10-30 pts.mass to 100 pts.mass of the ceramic raw material, and the return ratio of part of or all particles over 7 μm is set to 10-30 pts.mass to the 100 pts.mass of the ceramic raw material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、セラミックス原料の粉砕方法に関する。 The present invention relates to a method for pulverizing ceramic raw materials.

セラミックス原料において、炭化物は一般的にセラミックス原料の中で硬度が高いものである。その中でも炭化ホウ素はダイヤモンドに次ぐ硬さを有するものとして、研磨材を中心に発展してきており、近年はその成型品がサンドブラストノズルを始めとする耐摩耗部品として使用されている。またホウ化物は、融点が高く、硬く、そして金属的な電気伝導を示すことが特徴であり、いわば典型的な共有結合性の結晶であるダイヤモンドと、電気の良導体である金属の両性質を併せ持つ物質と見なすことが出来る。 In the ceramic raw material, the carbide is generally one having a high hardness in the ceramic raw material. Among them, boron carbide has been developed mainly for abrasives as having the hardness next to diamond, and in recent years, the molded product has been used as a wear-resistant component such as a sandblast nozzle. Boride has a high melting point, is hard, and is characterized by metallic electrical conductivity. It has the characteristics of diamond, which is a typical covalent crystal, and metal, which is a good electrical conductor. It can be regarded as a substance.

これらの合成法としては、例えば炭化ホウ素を例に挙げると、(1)無水ホウ酸の炭素還元法や、(2)炭素の存在下における無水ホウ酸のマグネシウム還元法、いわゆるマグネシウムによるテルミット反応、そして(3)ホウ素と炭素の直接反応がある。しかし、(2)マグネシウム還元法や(3)ホウ素と炭素の直接反応はコスト面で不利であり、(1)無水ホウ酸の還元法によって、工業的に生産されることが多い。無水ホウ酸の還元法で得られたインゴットは、その後、粉砕、精製し、整粒して製品となる。 Examples of these synthesis methods include boron carbide as an example: (1) a carbon reduction method of boric anhydride, (2) a magnesium reduction method of boric anhydride in the presence of carbon, a so-called thermite reaction with magnesium, (3) There is a direct reaction between boron and carbon. However, (2) the magnesium reduction method and (3) the direct reaction between boron and carbon are disadvantageous in terms of cost, and (1) they are often produced industrially by the reduction method of boric anhydride. The ingot obtained by the boric anhydride reduction method is then pulverized, refined, and sized to give a product.

合成で得られたインゴットは非常に硬く、塊状或いは粒状であり、微粉末とするには、粉砕する必要がある。その粉砕方法としては、古い文献しか見あたらないが、ジェットミル粉砕、つまり粒子同士の高速衝突による粉砕方法(非特許文献1)やビーズミルによる湿式粉砕(非特許文献2)等が知られている。 The ingot obtained by the synthesis is very hard and is in the form of a lump or granule, and it is necessary to pulverize it into a fine powder. As the pulverization method, only old literature is found, but jet mill pulverization, that is, a pulverization method by high-speed collision of particles (Non-Patent Document 1), wet pulverization by a bead mill (Non-Patent Document 2), and the like are known.

しかし、ジェットミルのような方法では、出発原料が噴射されるノズル径よりも小さなものしかフィード出来ないため、出発原料粒度が制限される。また噴射速度が大きい方が粉砕能力が増すため、一般的にノズル径は小さいものが多く、そのため出発原料の粒度をそれに合わせて細かくする必要があった。 However, since a method such as a jet mill can feed only a nozzle having a diameter smaller than the nozzle diameter from which the starting material is injected, the starting material particle size is limited. Further, since the pulverizing ability increases as the injection speed increases, the nozzle diameter is generally small, and therefore it is necessary to make the particle size of the starting material finer.

また、ビーズミルのような湿式粉砕では、粉砕能力は高いと言えるが、ビーズ等の粉砕媒体の消耗も激しく、また湿式ということで作業性が乾式法と比べると劣るため、本発明者らにとっては、あまり好ましい方法ではなかった。
Technical Paper.Society of Manufacturing Engineers 、Page311〜320(1988) Advances in Ceramics、Vol.21、Page311〜320(1987)
In addition, in the wet pulverization such as the bead mill, the pulverization ability is high, but the consumption of the pulverization medium such as beads is severe, and because the wetness is inferior to the dry method, for the present inventors. It was not a very preferable method.
Technical Paper. Society of Manufacturing Engineers, Pages 311-320 (1988) Advances in Ceramics, Vol. 21, Pages 311 to 320 (1987)

本発明の目的は、非常に硬度の高い炭化物もしくはホウ化物の粒を粉砕して炭化物もしくはホウ化物の粉末を製造する方法において、乾式法で効率よく製造出来る方法を提供することである。本発明の目的は、振動ミルと分級を組み合わせた方法によって達成することが出来る。 An object of the present invention is to provide a method that can be efficiently produced by a dry method in a method of producing carbide or boride powder by pulverizing carbide or boride particles having very high hardness. The object of the present invention can be achieved by a method combining a vibration mill and classification.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)最大粒子径が200μm以下のセラミックス原料を、内壁と媒体がいずれも鉄系材質で構成された振動ミルに投入し、3μm以下の粒子含有率が10〜40質量%の割合になるまで粉砕した後、分級し、7μm以下の粒子を捕集する一方、残りの7μm超の粉砕粒子の一部又は全部をセラミックス原料に戻すセラミックス原料の粉砕方法。
(2)分級して捕集する7μm以下の粒子において、粒子中の3μm以下の粒子の割合が、85〜95質量%である前記(1)に記載の粉砕方法。
(3)分級して捕集する7μm以下の粒子の割合が、セラミックス原料100質量部に対して10〜30質量部であり、7μm超の粉砕粒子の一部又は全部の戻し率を、セラミックス原料100質量部に対して10〜30質量部とする前記(1)又は前記(2)に記載の粉砕方法。
(4)セラミックス原料が二ホウ化チタンであり、分級して捕集した粒子を酸処理して鉄分を除去し、鉄含有率を0.2〜3.0質量%にする前記(1)から前記(3)のいずれか一項に記載の粉砕方法。
(5)セラミックス原料が炭化ホウ素であり、分級して捕集した粒子を酸処理して鉄分を除去し、鉄含有率を0.2質量%以下(0を含む)にする前記(1)から前記(3)のいずれか一項に記載の粉砕方法。
The present invention employs the following means in order to solve the above problems.
(1) A ceramic raw material having a maximum particle size of 200 μm or less is put into a vibration mill whose inner wall and medium are both made of an iron-based material, and the particle content of 3 μm or less reaches a ratio of 10 to 40% by mass. A method of pulverizing a ceramic raw material, which is classified after pulverization and collects particles of 7 μm or less, while returning a part or all of the remaining pulverized particles exceeding 7 μm to the ceramic raw material.
(2) The pulverization method according to (1) above, wherein the proportion of particles of 3 μm or less in the particles classified and collected is 85 to 95% by mass.
(3) The proportion of particles of 7 μm or less that are classified and collected is 10 to 30 parts by mass with respect to 100 parts by mass of the ceramic raw material, and the return rate of part or all of the pulverized particles exceeding 7 μm is determined as the ceramic raw material. The pulverization method according to (1) or (2), wherein the amount is 10 to 30 parts by mass with respect to 100 parts by mass.
(4) From the above (1), the ceramic raw material is titanium diboride, and the particles collected after classification are acid-treated to remove the iron content, so that the iron content is 0.2 to 3.0 mass%. The pulverization method according to any one of (3).
(5) From the above (1), the ceramic raw material is boron carbide, and the particles collected after classification are acid-treated to remove the iron content, so that the iron content is 0.2% by mass or less (including 0). The pulverization method according to any one of (3).

本発明によれば、セラミックス原料の粉末を乾式法で効率よく製造出来る。特に、硬度の高い炭化物またはホウ化物の粒を粉砕して粉末を製造することに優れている。 According to the present invention, ceramic raw material powder can be efficiently produced by a dry method. In particular, it is excellent in producing powder by pulverizing grains of carbide or boride having high hardness.

炭化物やホウ化物の粒を振動ミルで粉砕する際、その粒の最大粒子径は200μm以下、好ましくは、150μmである。最大粒子径が200μmを超えると、振動ミルで粉砕仕切れずに系内に滞留し続ける粉が増加し、後述する振動ミル粉砕品における3μm以下の粒子含有率が10%未満となる。そのため、振動ミルに投入する原料としては、事前に篩い分け等で最大粒子径が200μmとなるように調製する必要がある。 When the carbide or boride grains are pulverized by a vibration mill, the maximum particle diameter of the grains is 200 μm or less, and preferably 150 μm. When the maximum particle size exceeds 200 μm, the amount of powder that remains in the system without being pulverized by the vibration mill increases, and the particle content of 3 μm or less in the vibration mill pulverized product described below is less than 10%. Therefore, it is necessary to prepare the raw material to be put into the vibration mill so that the maximum particle size becomes 200 μm by sieving in advance.

振動ミルは、上筒と下筒が連結された連続二筒式が、ミル内の滞留時間が長くなり好ましい。ここで、ミル内壁と媒体、つまり粉砕ボールの材質は鉄製にする必要がある。鉄ボールは密度が大きいため、粉砕能力が高い。また内壁、つまりライニングも鉄にすることにより、更に粉砕能力は高まる。ミルライニングと粉砕ボールの摩耗による鉄分のコンタミについては、後工程で塩酸等の酸処理精製工程で除去するため、特に問題ない。また、材質が鉄の方が、窒化珪素やアルミナ等のセラミックスと比べて安価な面で良い。 As the vibration mill, a continuous two-cylinder type in which an upper cylinder and a lower cylinder are connected is preferable because a residence time in the mill becomes long. Here, the inner wall of the mill and the medium, that is, the material of the pulverized ball must be made of iron. Since the iron balls have a high density, the grinding ability is high. In addition, the crushing ability is further increased by using iron for the inner wall, that is, the lining. Iron contamination due to mill lining and grinding ball wear is eliminated in an acid treatment purification process such as hydrochloric acid in a subsequent process, and there is no particular problem. Moreover, the material of iron may be cheaper than ceramics such as silicon nitride and alumina.

振動ミルの粉砕においては、最大粒子径が200μm以下のセラミックス原料を振動ミルで粉砕して、3μm以下の粒子含有率を10〜40質量%まで粉砕することが必要である。焼結用途で使う炭化ホウ素粉末や二ホウ化チタン粉末の平均粒径は0.5〜3μmであり、また最大粒子径は7μm以下であることが好ましい。3μm以下の粒子含有率が10質量%未満であると、微粉側で捕集された粒子(微粉側の捕集品)の平均粒径が3μmを超える場合があり、更には最大粒子径も7μmを超える恐れがある。また、分級した粗粉側で捕集された粒子(粗粉側の捕集品)の発生量が多くなり、原料戻し率が高くなるので、微粉側で捕集された粒子(微粉側の捕集品)の粒度のバラツキが大きくなる恐れがある。一方、3μm以下の粒子含有率が40質量%を超えると、微粉側で捕集された粒子(微粉側の捕集品)の平均粒径は0.5μm未満となる。また、ミル内壁や媒体への付着が進行し、徐々に粉砕効率が低下し、ミルの閉塞が起こる恐れがある。 In pulverizing the vibration mill, it is necessary to pulverize a ceramic raw material having a maximum particle size of 200 μm or less with a vibration mill to pulverize a particle content of 3 μm or less to 10 to 40% by mass. The average particle diameter of the boron carbide powder or titanium diboride powder used for sintering is preferably 0.5 to 3 μm, and the maximum particle diameter is preferably 7 μm or less. If the particle content of 3 μm or less is less than 10% by mass, the average particle size of particles collected on the fine powder side (collected product on the fine powder side) may exceed 3 μm, and the maximum particle size is also 7 μm. There is a risk of exceeding. In addition, since the amount of particles collected on the classified coarse powder side (collected product on the coarse powder side) increases and the raw material return rate increases, the particles collected on the fine powder side (collected on the fine powder side) There is a risk that the variation in the grain size of the collected product will increase. On the other hand, when the particle content of 3 μm or less exceeds 40% by mass, the average particle size of particles collected on the fine powder side (collected product on the fine powder side) is less than 0.5 μm. Further, the adhesion to the inner wall of the mill and the medium proceeds, the pulverization efficiency gradually decreases, and the mill may be clogged.

分級は気流式の分級機やサイクロンで行う。硬度の高いセラミックス原料を気流式分級機で分級すると摩耗等でランニングコストが高くなるため、サイクロンが適当である。サイクロンの構造は一般的な構造のもので良い。但し、サイクロン入口流速は20〜25m/sで操業することが、分級効率の面で好ましい。その条件下で、目標の分級粗粉カットに見合ったサイクロン径とする必要がある。また、分級する際の混合比(もしくは固気比)は0.01〜0.02が好ましい。 Classification is performed with an airflow classifier or cyclone. Cyclone is suitable because ceramic materials with high hardness are classified by an airflow classifier and the running cost increases due to wear and the like. The structure of the cyclone may be a general structure. However, it is preferable in terms of classification efficiency that the cyclone inlet flow rate is 20 to 25 m / s. Under that condition, it is necessary to make the cyclone diameter suitable for the target classified coarse powder cut. Moreover, the mixing ratio (or solid-gas ratio) at the time of classification is preferably 0.01 to 0.02.

分級して微粉側で捕集された粒子中(微粉側の捕集品)における3μm以下の粒子含有量は、85〜95質量%が好ましい。85質量%未満であると、サイクロンの分級効率から最大粒子径が7μmを超えてしまうため、焼結体の強度低下を招く恐れがある。一方、95質量%を超えると、比表面積が高いため、成型密度が上がらず、これまた焼結体の強度低下を招く恐れがある。 The particle content of 3 μm or less in the particles classified and collected on the fine powder side (collected product on the fine powder side) is preferably 85 to 95% by mass. If it is less than 85% by mass, the maximum particle size will exceed 7 μm from the cyclone classification efficiency, which may lead to a decrease in strength of the sintered body. On the other hand, if it exceeds 95% by mass, the specific surface area is high, so that the molding density does not increase, and there is a possibility that the strength of the sintered body is reduced.

粉砕方法は、分級した粗粉側で捕集された粒子(粗粉側の捕集品)を連続して原料フィードラインに戻す、いわゆる閉回路プロセスとすることが特徴である。そうすることにより、バッチ粉砕と比べて生産効率が向上する。また、分級した粗粉側で捕集された粒子(粗粉側の捕集品)を未粉砕のセラミックス原料タンクに直接戻しても良いが、未粉砕品と分級した粗粉側で捕集された粒子(粗粉側の捕集品)の戻し品のタンクは別々にし、各々フィードさせた方が良い。その方が、フィードコントロールによる粉体の粒度調整がし易く、微粉側で捕集された粒子(微粉側の捕集品)の粒度のバラツキが小さく、安定化する。 The pulverization method is characterized by a so-called closed circuit process in which the particles collected on the classified coarse powder side (collected product on the coarse powder side) are continuously returned to the raw material feed line. By doing so, the production efficiency is improved compared to batch grinding. In addition, particles collected on the classified coarse powder side (collected product on the coarse powder side) may be directly returned to the unground ceramic material tank, but collected on the coarse powder side classified as an unground product. It is better to separate the tanks for returning the particles (collected products on the coarse powder side) and feed them separately. This makes it easier to adjust the particle size of the powder by feed control, and the particle size variation of the particles collected on the fine powder side (collected product on the fine powder side) is smaller and stabilized.

分級する場合、微粉側の捕集品(7μm以下の粒子)の収量は、セラミックス原料の振動ミル粉砕品、つまり分級前原料のフィード量100質量部に対して、10〜30質量部であることが好ましい。微粉側の捕集量が10質量部未満であると、上述の比表面積が高くなる一方、90質量部以上が粗粉側で捕集され、それがミルに再度戻るので生産性があまり良くない。また、30質量部を超えると、分級操作の際、気流の乱れ等で7μmを超える飛び込み粒子が混入し、焼結体の強度低下を招く恐れがある。本発明の閉回路粉砕分級操作は、セラミックス原料粉砕後の粒度や分級微粉の収率等を調整することにより達成出来る。振動ミルへは、微粉側の捕集品の収量と同量の未粉砕のセラミックス原料を新たに添加することが好ましい。微粉側の捕集品の収量と同量の未粉砕のセラミックス原料を新たに添加することにより、閉回路粉砕分級プロセスのバランスが安定し、振動ミル粉砕後の粒度分布が安定し、分級後の微粉側及び粗粉側の粒度分布が安定する。 In the case of classification, the yield of the collected product (particles of 7 μm or less) on the fine powder side is 10 to 30 parts by mass with respect to the vibration mill pulverized product of the ceramic raw material, that is, the feed amount of the raw material before classification is 100 parts by mass. Is preferred. When the amount collected on the fine powder side is less than 10 parts by mass, the above-mentioned specific surface area is increased, while 90 parts by mass or more are collected on the coarse powder side and returned to the mill, so the productivity is not so good. . On the other hand, if the amount exceeds 30 parts by mass, diverging particles exceeding 7 μm may be mixed during the classification operation due to turbulence of the air flow and the like, and the strength of the sintered body may be reduced. The closed circuit pulverization classification operation of the present invention can be achieved by adjusting the particle size after pulverization of the ceramic raw material, the yield of the classified fine powder, and the like. To the vibration mill, it is preferable to newly add an unground ceramic raw material in the same amount as the yield of the collected product on the fine powder side. By adding a new amount of unground ceramic raw material in the same amount as the yield of the fine powder-side collected product, the balance of the closed circuit pulverization classification process is stabilized, the particle size distribution after vibration mill pulverization is stabilized, and the The particle size distribution on the fine powder side and coarse powder side is stabilized.

微粉側で捕集された粒子(微粉側の捕集品)の粉末は、鉄材質のライニングやボールで粉砕しているので、粉末中の鉄の濃度が上昇する。不純物としての鉄の多い微粉側で捕集された粒子(微粉側の捕集品)の粉末は、焼結用原料としては、使用できない場合があるため、除鉄作業をすることが好ましい。その際、除鉄方法は種々あるが、酸処理法が鉄の低減効果は高く、好ましい。なお、酸処理に用いる薬剤は、鉄を溶解できるものであれば特に制限はなく、それを例示すれば塩酸、硫酸、硝酸等である。 Since the powder of particles collected on the fine powder side (collected product on the fine powder side) is pulverized with an iron material lining or ball, the concentration of iron in the powder increases. Since the powder of particles collected on the fine powder side with a large amount of iron as impurities (collected product on the fine powder side) may not be used as a raw material for sintering, it is preferable to perform iron removal work. At that time, there are various iron removal methods, but the acid treatment method is preferable because the effect of reducing iron is high. In addition, the chemical | medical agent used for an acid treatment will not have a restriction | limiting in particular if it can melt | dissolve iron, If it illustrates, it will be hydrochloric acid, a sulfuric acid, nitric acid etc., for example.

これに対し、捕集粉が二ホウ化チタン粉末の場合には、鉄含有率を0.2〜3.0質量%、また捕集粉が炭化ホウ素粉末の場合には、鉄含有率を0.2質量%以下(0を含む)に調整して除鉄することが好ましい。二ホウ化チタン粉末の場合、鉄分は焼結助剤として働くため、0.2質量%未満であると、焼結密度が上がらず、一方、3.0質量%を超えると、焼結体強度が低下する場合がある。このような二ホウ化チタン粉末は金属蒸発用発熱体の製造用原料として好都合となる。また、炭化ホウ素粉末の場合、0.2質量%を超えると、焼結体の強度が低下する恐れがある。このような炭化ホウ素粉末は防弾板製造用原料として好適となる。 On the other hand, when the collected powder is titanium diboride powder, the iron content is 0.2 to 3.0% by mass. When the collected powder is boron carbide powder, the iron content is 0. It is preferable to remove iron by adjusting it to 2% by mass or less (including 0). In the case of titanium diboride powder, iron acts as a sintering aid, so if it is less than 0.2% by mass, the sintered density does not increase, whereas if it exceeds 3.0% by mass, the sintered body strength May decrease. Such titanium diboride powder is convenient as a raw material for producing a metal evaporation heating element. In the case of boron carbide powder, if it exceeds 0.2 mass%, the strength of the sintered body may be reduced. Such boron carbide powder is suitable as a raw material for producing bulletproof plates.

本発明におけるセラミックス原料及び分級して捕集した粉末の粒度分布測定は、レーザー回折散乱法粒度分布測定機(日機装社製「MICROTRAC HRA」、粒度分布計算ソフト「D.H.S Ver.3.4」)を用い、試料粉末60mgをヘキサメタリン酸ナトリウム0.2質量%水溶液200g中に10分間超音波分散させてから測定した。 The particle size distribution of the ceramic raw material and the powder collected after classification in the present invention is measured by a laser diffraction scattering method particle size distribution measuring instrument (“MICROTRAC HRA” manufactured by Nikkiso Co., Ltd.), particle size distribution calculation software “DH Ver. 4 ”), 60 mg of the sample powder was ultrasonically dispersed in 200 g of a 0.2 mass% aqueous solution of sodium hexametaphosphate for 10 minutes, and then measured.

粉体中の鉄含有量の測定は、全自動蛍光X線分析装置(リガク社製「RIX−3000」、計算ソフトはマルチレーザーシステム)にて測定した。 The iron content in the powder was measured with a fully automatic X-ray fluorescence analyzer (“RIX-3000” manufactured by Rigaku Corporation, the calculation software was a multi-laser system).

焼結体のビッカース硬度測定は、JIS R 1623に準拠して測定した。防弾板用途向けの炭化ホウ素焼結体に好適なビッカース硬度は27GPa以上、金属蒸着用発熱体向けの二ホウ化チタンと窒化ホウ素の複合焼結体のビッカース硬度は10GPa以上が好ましい。また、焼結体の相対密度は、実測密度と理論密度から算出した。防弾板用途向けの炭化ホウ素焼結体の相対密度は99%以上、金属蒸着用発熱体向けの二ホウ化チタンと窒化ホウ素の複合焼結体の相対密度は90%以上が望ましい。 The Vickers hardness of the sintered body was measured according to JIS R 1623. The Vickers hardness suitable for the boron carbide sintered body for use in the bulletproof plate is preferably 27 GPa or more, and the Vickers hardness of the composite sintered body of titanium diboride and boron nitride for the metal evaporation heating element is preferably 10 GPa or more. The relative density of the sintered body was calculated from the measured density and the theoretical density. The relative density of the boron carbide sintered body for use in bulletproof plates is preferably 99% or more, and the relative density of the composite sintered body of titanium diboride and boron nitride for a metal vapor deposition heating element is desirably 90% or more.

(実施例1〜11、比較例1〜3)
無水ホウ酸の炭素還元法で合成された炭化ホウ素のインゴット(粒度0.3−5mm、純度99質量%)を、ジョークラッシャーで粗砕、Wロールクラッシャーで中砕し、金網目開き147μmの振動篩で篩い分けして、その篩下として最大粒子径200μmの炭化ホウ素原料を調製した。
(Examples 1-11, Comparative Examples 1-3)
Boron carbide ingot (particle size: 0.3-5mm, purity: 99% by mass) synthesized by the carbon reduction method of boric anhydride is crushed with a jaw crusher and crushed with a W roll crusher, and vibration of a wire mesh opening of 147 μm By sieving with a sieve, a boron carbide raw material having a maximum particle diameter of 200 μm was prepared as the sieve.

本発明の粉砕分級閉回路プロセスを図1に示す。まず1のフィーダーに最大粒子径200μm以下の炭化ホウ素原料を投入し、3の連続二筒式振動ミルで粉砕した。ミル内壁は鉄ライニング、及び粉砕ボールは鉄球とした。またボール充填量は、振動ミル内容積の80体積%とした。振動ミル粉砕品は、6のブロワーにて吸引され、4のサイクロンで分級した。サイクロンの微粉側は5のバグフィルターで捕集した(製品A)。一方、サイクロンの粗粉側(戻り粉B)は、2の戻り粉のフィーダーに常時輸送して、振動ミルへ再フィードする閉回路プロセスで操業した。 The pulverization classification closed circuit process of the present invention is shown in FIG. First, a boron carbide raw material having a maximum particle size of 200 μm or less was introduced into 1 feeder and pulverized by 3 continuous 2-cylinder vibration mills. The inner wall of the mill was an iron lining, and the grinding balls were iron balls. The ball filling amount was 80% by volume of the vibration mill internal volume. The vibration mill pulverized product was sucked by 6 blowers and classified by 4 cyclones. The fine powder side of the cyclone was collected with 5 bag filters (Product A). On the other hand, the coarse powder side (return powder B) of the cyclone was operated in a closed circuit process in which it was always transported to the feeder of the second return powder and re-feeded to the vibration mill.

振動ミルへのフィード量は、10kg/hとし、分級微粉側の捕集量を1時間毎に確認し、それと同量の未粉砕の炭化ホウ素原料をフィードするように調整して行った。また、サイクロンによる分級条件は、サイクロンの入口風速を24m/sとなるように、ブロワー風量を調整した。その際の混合比(粉体量/輸送空気量)は、0.017であった。 The feed amount to the vibration mill was 10 kg / h, the amount collected on the classified fine powder side was confirmed every hour, and the same amount of unground boron carbide raw material was adjusted to be fed. Moreover, the classification conditions by a cyclone adjusted the blower air volume so that the inlet wind speed of a cyclone might be set to 24 m / s. The mixing ratio (powder amount / transport air amount) at that time was 0.017.

バグフィルターで捕集した製品を、濃硝酸にて酸処理を実施した。その後、脱水洗浄し、最後に120℃乾燥を行い、炭化ホウ素粉末を得た。酸処理は、炭化ホウ素/90℃温水/濃硝酸=6/91/3の割合(質量%)で15時間撹拌して行った。 The product collected by the bag filter was acid-treated with concentrated nitric acid. Thereafter, it was dehydrated and washed, and finally dried at 120 ° C. to obtain a boron carbide powder. The acid treatment was performed by stirring at a ratio (mass%) of boron carbide / 90 ° C. warm water / concentrated nitric acid = 6/91/3 for 15 hours.

得られた炭化ホウ素粉末を油圧プレス機(森鉄工社製)にて成形圧320MPaで成形し、黒鉛ダイスに充填し、窒素雰囲気中、2000℃でホットプレス焼成し焼結体を製造した。そのビッカース硬度を、JIS R 1610に準拠した方法で、試験力98Nにおいて測定したところ表1と表2のとおりであった。この結果から、製造された炭化ホウ素焼結体は防弾板として適合するものであることがわかった。 The obtained boron carbide powder was molded by a hydraulic press machine (manufactured by Mori Tekko Co., Ltd.) at a molding pressure of 320 MPa, filled in a graphite die, and hot-press fired at 2000 ° C. in a nitrogen atmosphere to produce a sintered body. The Vickers hardness was measured according to JIS R 1610 at a test force of 98 N, and the results were as shown in Tables 1 and 2. From this result, it was found that the manufactured boron carbide sintered body is suitable as a bulletproof plate.

(実施例12〜17)
二ホウ化チタンのインゴット(粒度0.3−5mm、純度99質量%)を用いたこと以外は、上記炭化ホウ素と同一条件にて粉砕分級、酸処理を行い、二ホウ化チタン粉末を製造した。二ホウ化チタン粉末/窒化ホウ素粉末(電気化学工業社製、純度99.9質量%、平均粒径5μm)/SrCO粉末(本荘ケミカル社製、純度99.9質量%、平均粒径0.5μm)=48.8/50.7/0.5の割合(質量%)で混合し、油圧プレス機(森鉄工社製)にて成形圧50MPaで成型し、窒素雰囲気中、2000℃でホットプレス焼成を行い、二ホウ化チタンと窒化ホウ素の複合焼結体を製造した。そのビッカース硬度は表2に示すとおりであった。この結果から、製造された複合焼結体は十分に緻密化されていたので、金属蒸着用発熱体として適合するものであることがわかった。
(Examples 12 to 17)
Except for using a titanium diboride ingot (particle size: 0.3-5 mm, purity: 99 mass%), pulverization classification and acid treatment were performed under the same conditions as the above boron carbide to produce titanium diboride powder. . Titanium diboride powder / boron nitride powder (manufactured by Denki Kagaku Kogyo Co., Ltd., purity 99.9% by mass, average particle size 5 μm) / SrCO 3 powder (manufactured by Honjo Chemical Co., Ltd., purity 99.9% by mass, average particle size 0. 5 μm) = 48.8 / 50.7 / 0.5 (mass%), mixed with a hydraulic press machine (manufactured by Mori Tekko Co., Ltd.) at a molding pressure of 50 MPa, and hot in a nitrogen atmosphere at 2000 ° C. Press firing was performed to produce a composite sintered body of titanium diboride and boron nitride. The Vickers hardness was as shown in Table 2. From this result, it was found that the manufactured composite sintered body was sufficiently densified, so that it was suitable as a heating element for metal vapor deposition.

Figure 2008272688
Figure 2008272688

Figure 2008272688
Figure 2008272688

粉砕方法の概略図である。It is the schematic of the grinding | pulverization method.

符号の説明Explanation of symbols

1 セラミックス原料フィーダー(未粉砕)
2 分級粗粉戻り粉フィーダー
3 連続二筒式振動ミル
4 サイクロン
5 バグフィルター
6 ブロワー
7 分級微粉(製品)
8 分級粗粉(戻り粉)
1 Ceramic material feeder (unground)
2 Classification coarse powder return powder feeder 3 Continuous two-cylinder vibration mill 4 Cyclone 5 Bag filter 6 Blower 7 Classification fine powder (Product)
8 Classification coarse powder (returned powder)

本発明のセラミックス原料の粉砕方法により、炭化ホウ素及び二ホウ化チタンを効率良く粉砕することができた。 Boron carbide and titanium diboride could be efficiently pulverized by the method for pulverizing ceramic raw materials of the present invention.

本発明により、の粉砕方法は、セラミックス原料、特に炭化ホウ素や二ホウ化チタンの粉砕に好適である。また、本発明で粉砕して得られた炭化ホウ素や二ホウ化チタン粉末は、各々防弾板の製造用原料、又は金属蒸着用発熱体の製造用原料として使用される。 The pulverizing method according to the present invention is suitable for pulverizing ceramic raw materials, particularly boron carbide and titanium diboride. Further, the boron carbide and titanium diboride powder obtained by pulverization according to the present invention are each used as a raw material for producing a bulletproof plate or a raw material for producing a heating element for metal vapor deposition.

Claims (5)

最大粒子径が200μm以下のセラミックス原料を、内壁と媒体がいずれも鉄系材質で構成された振動ミルに投入し、3μm以下の粒子含有率が10〜40質量%の割合になるまで粉砕した後、分級し、7μm以下の粒子を捕集する一方、残りの7μm超の粉砕粒子の一部又は全部をセラミックス原料に戻すセラミックス原料の粉砕方法。 After a ceramic raw material having a maximum particle size of 200 μm or less is put into a vibration mill whose inner wall and medium are both made of an iron-based material and pulverized until the particle content of 3 μm or less reaches a ratio of 10 to 40% by mass. A method of pulverizing ceramic raw material, which classifies and collects particles of 7 μm or less while returning part or all of the remaining pulverized particles exceeding 7 μm to the ceramic raw material. 分級して捕集する7μm以下の粒子において、3μm以下の粒子の割合が85〜95質量%である請求項1に記載の粉砕方法。 The pulverization method according to claim 1, wherein the proportion of particles of 3 µm or less is 85 to 95 mass% in the particles of 7 µm or less that are classified and collected. 分級して捕集する7μm以下の粒子の割合が、セラミックス原料100質量部に対して10〜30質量部であり、7μm超の粉砕粒子の一部又は全部の戻し率を、セラミックス原料100質量部に対して10〜30質量部とする請求項1又は請求項2に記載の粉砕方法。 The proportion of particles of 7 μm or less that are classified and collected is 10 to 30 parts by mass with respect to 100 parts by mass of the ceramic raw material, and the return rate of part or all of the pulverized particles exceeding 7 μm is 100 parts by mass of the ceramic raw material. The pulverization method according to claim 1 or 2, wherein the content is 10 to 30 parts by mass based on the mass. セラミックス原料が二ホウ化チタンであり、分級して捕集した粒子を酸処理して鉄分を除去し、鉄含有率を0.2〜3.0質量%にする請求項1から請求項3のいずれか一項に記載の粉砕方法。 The ceramic raw material is titanium diboride, and the particles collected after classification are acid-treated to remove the iron content, so that the iron content is 0.2 to 3.0 mass%. The grinding method according to any one of the above. セラミックス原料が炭化ホウ素であり、分級して捕集した粒子を酸処理して鉄分を除去し、鉄含有率を0.2質量%以下(0を含む)にする請求項1から請求項3のいずれか一項に記載の粉砕方法。 The ceramic raw material is boron carbide, and the particles collected after classification are subjected to acid treatment to remove iron, so that the iron content is 0.2 mass% or less (including 0). The grinding method according to any one of the above.
JP2007120447A 2007-05-01 2007-05-01 Crushing method of ceramic raw material Pending JP2008272688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007120447A JP2008272688A (en) 2007-05-01 2007-05-01 Crushing method of ceramic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007120447A JP2008272688A (en) 2007-05-01 2007-05-01 Crushing method of ceramic raw material

Publications (1)

Publication Number Publication Date
JP2008272688A true JP2008272688A (en) 2008-11-13

Family

ID=40051348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007120447A Pending JP2008272688A (en) 2007-05-01 2007-05-01 Crushing method of ceramic raw material

Country Status (1)

Country Link
JP (1) JP2008272688A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195272A (en) * 2015-11-03 2015-12-30 江苏省冶金设计院有限公司 Single-linkage device and method for low-temperature drying, ore grinding and graded powder collection of chromite
CN105233953A (en) * 2015-11-03 2016-01-13 江苏省冶金设计院有限公司 Device and method for multiple low temperature drying chromite grinding and hierarchical powder collection
KR20170127992A (en) * 2016-05-13 2017-11-22 티엠에스테크 주식회사 Method for manufacturing semiconductor of thermoelectric module, semiconductor of thermoelectric module and thermoelectric modulef using the same
CN107935604A (en) * 2018-01-02 2018-04-20 佛山市霍普除铁设备制造有限公司 A kind of ceramic raw material deep processing and production line and production method
WO2020003924A1 (en) 2018-06-26 2020-01-02 昭和電工株式会社 Boron trichloride production method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105195272A (en) * 2015-11-03 2015-12-30 江苏省冶金设计院有限公司 Single-linkage device and method for low-temperature drying, ore grinding and graded powder collection of chromite
CN105233953A (en) * 2015-11-03 2016-01-13 江苏省冶金设计院有限公司 Device and method for multiple low temperature drying chromite grinding and hierarchical powder collection
KR20170127992A (en) * 2016-05-13 2017-11-22 티엠에스테크 주식회사 Method for manufacturing semiconductor of thermoelectric module, semiconductor of thermoelectric module and thermoelectric modulef using the same
KR101968581B1 (en) * 2016-05-13 2019-04-12 티엠에스테크 주식회사 Method for manufacturing semiconductor of thermoelectric module, semiconductor of thermoelectric module and thermoelectric modulef using the same
CN107935604A (en) * 2018-01-02 2018-04-20 佛山市霍普除铁设备制造有限公司 A kind of ceramic raw material deep processing and production line and production method
WO2020003924A1 (en) 2018-06-26 2020-01-02 昭和電工株式会社 Boron trichloride production method
US11878912B2 (en) 2018-06-26 2024-01-23 Resonac Corporation Method of producing boron trichloride

Similar Documents

Publication Publication Date Title
CN101247911B (en) Nanocrystalline sintered bodies made from alpha aluminium oxide and method for production and use thereof
JP5420173B2 (en) Method for producing powder composition, CBN compact, tool insert
JP3262301B2 (en) Silica carbide wire sintered abrasive particles and method for producing the same
JP6871173B2 (en) Fragile ceramic bonded diamond composite particles and their manufacturing method
JP5198121B2 (en) Tungsten carbide powder, method for producing tungsten carbide powder
CN104630529B (en) B4C is used as fine-grained wc Co hard alloy of dispersion-strengtherning additive and preparation method thereof
JP6853951B2 (en) cBN sintered body and cutting tool
JP2014507509A (en) α-Alumina abrasive and preparation method thereof
JP2008272688A (en) Crushing method of ceramic raw material
JP2005097098A (en) Cubic boron nitride, its producing method and whetstone and sintered body using it
NO345193B1 (en) A SiC based sinterable powder, a manufacturing method thereof, a slurry comprising the said SiC based sinterable powder, and a manufacturing method of a SiC pressureless sintered body.
CN105540591B (en) The preparation method of multi items boron carbide micro powder
JP3280056B2 (en) Sintered microcrystalline ceramic material and method for producing the same
JP6955254B2 (en) Crystal grain refiner for casting containing heterogeneous particles in high concentration and its manufacturing method
JP5875523B2 (en) Silica sand granule and method for producing the same
WO2015045547A1 (en) Method for producing ingot and powder of zirconium carbide
CA1276428C (en) Vibratory grinding of silicon carbide
CN103357480A (en) Silicon carbide cutting blade material and preparation method thereof
KR100700197B1 (en) Process for Manufacturing Sintered Materials Containing Cobalt Component
KR102001397B1 (en) Manufacturing Method of Aluminum-Silicon Carbide Using By-product of Cutting Process
US10196314B2 (en) Method of preparing a multimodal cubic boron nitride powder
JP7015979B2 (en) cBN sintered body and cutting tool
JP2003137656A (en) Boron carbide-titanium diboride sintered compact, and production method therefor
CN102114544A (en) Method for preparing tungsten powder having uniform size distribution as well as excellent degree of sphericity and dispersity
JP3985994B2 (en) Manufacturing method of molding material, manufacturing method of molded body, manufacturing method of sintered body, molding material and molded body