JP2008266688A - Mn-cu damping alloy and producing method therefor - Google Patents

Mn-cu damping alloy and producing method therefor Download PDF

Info

Publication number
JP2008266688A
JP2008266688A JP2007108647A JP2007108647A JP2008266688A JP 2008266688 A JP2008266688 A JP 2008266688A JP 2007108647 A JP2007108647 A JP 2007108647A JP 2007108647 A JP2007108647 A JP 2007108647A JP 2008266688 A JP2008266688 A JP 2008266688A
Authority
JP
Japan
Prior art keywords
alloy
temperature
cooling
annealing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007108647A
Other languages
Japanese (ja)
Other versions
JP5076609B2 (en
Inventor
Yoichiro Kitamura
陽一郎 北村
Kenji Watabe
健司 渡部
Norimichi Sueoka
伯理 末岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007108647A priority Critical patent/JP5076609B2/en
Publication of JP2008266688A publication Critical patent/JP2008266688A/en
Application granted granted Critical
Publication of JP5076609B2 publication Critical patent/JP5076609B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Mn-Cu damping alloy with which the development of cracking at the working time, is restrained and good damping characteristic can be obtained. <P>SOLUTION: The Mn-Cu damping alloy is obtained by performing the following processes: (1) the solid-solution treatment process, in which the Mn-Cu ingot composed of 15-25 at% Cu and further, 0.001-0.007 at% Ca or 0.005-0.23 at% Mg and the balance Mn with inevitable impurities, is heated to solid-solution temperature of ≥800°C and ≤solidus line temperature and after holding this solid-solution temperature, this ingot is cooled at cooling speed of air-cooling or more; (2) a working process, in which this alloy solid-solution treated, is worked to a finished product shape or to target-shape or to larger shape than the finished product shape; and (3) a high temperature annealing process, in which the worked alloy is heated to the annealing temperature of ≥800°C and ≤solidus line temperature and after holding this annealing temperature, the constant speed slow cooling is performed until the temperature of the alloy reaches the range of 250-450°C. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、Mn−Cu系制振合金及びその製造方法に関し、更に詳しくは、加工性及び制振特性に優れたMn−Cu系制振合金及びその製造方法に関する。   The present invention relates to a Mn—Cu based damping alloy and a method for producing the same, and more particularly to a Mn—Cu based damping alloy having excellent workability and damping characteristics and a method for producing the same.

制振合金は、外部からの振動エネルギーを内部摩擦によって熱に変換することにより振動を吸収する合金であり、その制振機能により、複合型(例えば、片状黒鉛鋳鉄)、強磁性型(例えば、Fe−Cr合金)、転位型(例えば、Mg−Zr合金)、及び、双晶型(例えば、Mn−Cu合金)に分類される。
双晶型に分類されるMn−Cu系制振合金は、双晶の運動により振動を吸収し、高い減衰能を発揮する。この双晶は、Mn−Cu系合金をオーステナイト(γ)相領域から徐冷することによって形成される。Mn−Cu系制振合金を得るにはこの熱処理が欠かせないが、熱処理方法によって制振特性に違いが出るため、より良い制振特性を得るために種々の熱処理方法が提案されている。
A damping alloy is an alloy that absorbs vibration by converting vibration energy from outside into heat by internal friction. Due to its damping function, a composite type (for example, flake graphite cast iron), a ferromagnetic type (for example, , Fe—Cr alloy), dislocation type (for example, Mg—Zr alloy), and twin type (for example, Mn—Cu alloy).
A Mn—Cu vibration damping alloy classified as a twin type absorbs vibrations due to the movement of twins and exhibits high damping ability. This twin is formed by slowly cooling the Mn—Cu alloy from the austenite (γ) phase region. This heat treatment is indispensable for obtaining a Mn—Cu-based vibration damping alloy, but various heat treatment methods have been proposed in order to obtain better vibration damping characteristics since the vibration damping characteristics differ depending on the heat treatment method.

例えば、特許文献1には、マンガン基双晶型制振合金を800〜1100℃で加熱した後、250℃〜475℃の温度範囲に入るまで0.85〜1.65℃/分で定速徐冷し(γ相領域から定速徐冷)、更に10℃/分以上で急冷するマンガン基双晶型制振合金の熱処理方法が開示されている。   For example, in Patent Document 1, a manganese-based twin-type vibration damping alloy is heated at 800 to 1100 ° C., and then at a constant speed of 0.85 to 1.65 ° C./min until it enters a temperature range of 250 ° C. to 475 ° C. A method for heat treatment of a manganese-based twin-type vibration-damping alloy that is gradually cooled (constant-speed gradually cooling from the γ phase region) and further rapidly cooled at 10 ° C./min or more is disclosed.

特開2005−023362JP-A-2005-023362

しかしながら、特許文献1に記載のMn−Cu系合金は、高周波誘導加熱炉を用いて、アルゴン雰囲気下で鋼塊(Mn:bal.、Cu:20at%、Ni:4at%、Fe:2at%)を作製し、熱間鍛造、熱間圧延及び冷間圧延を経て半製品(棒材、板材等)とし、その後で、上記熱処理(すなわち、800〜1100℃で加熱した後、250℃〜475℃の温度範囲に入るまで0.85〜1.65℃/分で定速徐冷し(γ相領域から定速徐冷)、更に10℃/分以上で急冷する熱処理)を行うものである。
このように、鋳込み後の鋼塊を熱間鍛造等の加工により半製品(棒材、板材等)とする場合、MnとCuのマクロ偏析が存在するため、加工の際、内部には不均一な応力が発生し、割れ(特に表面への)が極めて発生しやすいという問題があった。更に、鋳込み後の鋼塊は、MnとCuのマクロ偏析が大きいため、熱間鍛造等の加工による割れ発生が顕著となり、歩留まり低下の要因になるという問題もあった。また、MnとCuのマクロ偏析が大きいと、溶融開始温度が900℃〜1000℃以上に達するMn−Cu組成比(濃度比率)が局所的に存在し、必然的に熱間鍛造ができる温度範囲が狭くなり、熱間加工の際に割れが発生しやすいという問題があった。
更に、鋳込み後の鋼塊は、結晶粒が十分に微細化されておらず、強度が低く、割れ発生の原因になるという問題があった。
However, the Mn—Cu alloy described in Patent Document 1 is a steel ingot (Mn: bal., Cu: 20 at%, Ni: 4 at%, Fe: 2 at%) using a high frequency induction heating furnace in an argon atmosphere. Is made into a semi-finished product (bar material, plate material, etc.) through hot forging, hot rolling and cold rolling, and then heated at 800-1100 ° C. and then 250 ° C.-475 ° C. Until the temperature falls within a temperature range of 0.85 to 1.65 ° C./min, heat treatment is performed at a constant rate of slow cooling (constant rate slow cooling from the γ-phase region), and a rapid cooling at 10 ° C./min or higher.
Thus, when a steel ingot after casting is made into a semi-finished product (bar material, plate material, etc.) by processing such as hot forging, macro segregation of Mn and Cu exists, and therefore, the inside is not uniform during processing. There was a problem that a large amount of stress was generated and cracks (particularly to the surface) were very likely to occur. Furthermore, since the steel ingot after casting has large macrosegregation of Mn and Cu, there is a problem that cracking due to processing such as hot forging becomes remarkable, which causes a decrease in yield. Moreover, when the macrosegregation of Mn and Cu is large, the Mn—Cu composition ratio (concentration ratio) where the melting start temperature reaches 900 ° C. to 1000 ° C. or more exists locally, and the temperature range in which hot forging can be inevitably performed. There is a problem that cracks tend to occur during hot working.
Further, the steel ingot after casting has a problem that the crystal grains are not sufficiently refined, the strength is low, and cracks are caused.

本発明は、上記事情に鑑みてなされたものであり、その目的は、加工時における割れ発生が抑制され、良好な制振特性が得られるMn−Cu系制振合金及びその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a Mn—Cu-based vibration damping alloy in which generation of cracks during processing is suppressed and good vibration damping characteristics can be obtained, and a method for producing the same. There is.

上記課題を解決するために、本発明に係るMn−Cu系制振合金は、Cu:15〜25at%を含み、更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含み、残部がMn及び不可避的不純物からなることを要旨とする。この場合に、更に、Ni:2〜8at%及びFe:1〜3at%を含むものでもよく、これに更に、Al:2〜5at%を含むものでもよい。   In order to solve the above problems, the Mn—Cu vibration damping alloy according to the present invention contains Cu: 15-25 at%, and further Ca: 0.001-0.007 at% or Mg: 0.005-0. The content is .23 at%, with the balance being Mn and inevitable impurities. In this case, it may further contain Ni: 2 to 8 at% and Fe: 1 to 3 at%, and may further contain Al: 2 to 5 at%.

上記課題を解決するために、本発明に係るMn−Cu系制振合金の製造方法は、Cu:15〜25at%を含み、更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含み、残部がMn及び不可避的不純物からなるMn−Cu系合金の鋼塊を800℃以上固相線温度以下の固溶化温度に加熱し、前記固溶化温度で保持した後、空冷以上の冷却速度で冷却する固溶化処理工程を備えたことを要旨とする。前記固溶化処理工程は、前記固溶化温度での保持時間が8時間以上であることが望ましい。
そして、前記固溶化処理工程の後に、前記合金を最終製品形状又はこれより大きい形状まで加工する加工工程と、前記加工工程の後に、前記合金を800℃以上固相線温度以下の焼鈍温度に加熱し、前記焼鈍温度で0.5時間以上8時間以下保持した後、前記合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷する高温焼鈍工程と、前記高温焼鈍工程の後に、前記合金を10℃/分以上で冷却する急冷工程とを備えてもよい。尚、前記Mn−Cu系合金は、更に、Ni:2〜8at%及びFe:1〜3at%を含むものでもよく、これに更に、Al:2〜5at%を含むものでもよい。
In order to solve the above problems, a method for producing a Mn—Cu vibration damping alloy according to the present invention includes Cu: 15 to 25 at%, and Ca: 0.001 to 0.007 at% or Mg: 0.00. A steel ingot of Mn—Cu alloy containing 005 to 0.23 at% and the balance consisting of Mn and inevitable impurities was heated to a solid solution temperature not lower than 800 ° C. and not higher than the solidus temperature, and held at the solid solution temperature. Then, the gist is that a solution treatment step of cooling at a cooling rate higher than air cooling is provided. In the solution treatment step, the retention time at the solution temperature is preferably 8 hours or more.
Then, after the solution treatment step, a processing step for processing the alloy into a final product shape or a shape larger than this, and after the processing step, the alloy is heated to an annealing temperature of 800 ° C. or higher and a solidus temperature or lower. Then, after holding at the annealing temperature for 0.5 hours or more and 8 hours or less, until the temperature of the alloy enters any of the ranges of 250 ° C. to 450 ° C., a constant speed of 0.85 to 1.65 ° C./min You may provide the high temperature annealing process which anneals, and the rapid cooling process which cools the said alloy at 10 degree-C / min or more after the said high temperature annealing process. The Mn—Cu based alloy may further contain Ni: 2-8 at% and Fe: 1-3 at%, and may further contain Al: 2-5 at%.

本発明に係るMn−Cu系制振合金は、上記構成を備えたものであるから、鋼塊にした後の結晶粒の微細化が促進され、これにより、合金強度が高まるため、加工時における割れ発生が抑制される。また、本発明に係るMn−Cu系制振合金は、上記構成を備えたものであるから、適切な熱処理を行うことにより、Mn及びCuの偏析が低減されるため、加工時における不均一応力の発生が低減される。従って、より一層、加工時における割れ発生が抑制される。   Since the Mn—Cu based vibration damping alloy according to the present invention has the above-described configuration, the refinement of crystal grains after being made into a steel ingot is promoted, thereby increasing the alloy strength. Cracking is suppressed. In addition, since the Mn—Cu vibration damping alloy according to the present invention has the above-described configuration, by performing an appropriate heat treatment, segregation of Mn and Cu is reduced, and therefore, non-uniform stress during processing. Is reduced. Therefore, the generation of cracks during processing is further suppressed.

本発明に係るMn−Cu系制振合金の製造方法によれば、所定の組成を備えたMn−Cu系合金の鋼塊が800℃以上固相線温度以下の固溶化温度に加熱され、その固溶化温度で保持された後、空冷以上の冷却速度で冷却されるため、MnとCuのマクロ偏析が低減されるとともに、結晶粒が微細化される。
従って、固溶化処理工程後の合金に熱間加工がなされても、不均一応力の発生による割れや、低強度に起因する割れの発生が抑制される。
高温焼鈍工程においては、加工された合金が800℃以上固相線温度以下の焼鈍温度に加熱され、その焼鈍温度で保持された後、合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷されるため、αMn相の生成や熱膨張によるひずみを回避しつつ、十分な双晶が形成され、良好な制振特性が得られる。
According to the method for producing a Mn—Cu vibration damping alloy according to the present invention, a steel ingot of a Mn—Cu alloy having a predetermined composition is heated to a solution temperature of 800 ° C. or more and a solidus temperature or less, After being held at the solution temperature, it is cooled at a cooling rate equal to or higher than that of air cooling, so that macrosegregation of Mn and Cu is reduced and crystal grains are refined.
Therefore, even when hot working is performed on the alloy after the solution treatment step, cracks due to generation of non-uniform stress and cracks due to low strength are suppressed.
In the high-temperature annealing step, the processed alloy is heated to an annealing temperature of 800 ° C. or more and a solidus temperature or less and held at the annealing temperature, and then the temperature of the alloy is in any of the ranges of 250 ° C. to 450 ° C. Since it is cooled at a constant rate of 0.85 to 1.65 ° C./min until it enters, sufficient twins are formed while avoiding distortion due to the formation of αMn phase and thermal expansion, and good damping characteristics can get.

以下に、本発明の一実施の形態について詳細に説明する。
(組成及びその限定理由)
本発明の一実施形態に係るMn−Cu系制振合金は、γ相領域から冷却することによって形成される双晶の運動により振動を吸収する双晶型制振合金のうち、Mn−Cu−Ni−Fe系のものが好ましく、Cu:15〜25at%、Ni:2〜8at%、Fe:1〜3at%を含有し、更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含有し、残部がMn及び不可避的不純物からなる。
本発明の一実施形態に係るMn−Cu系制振合金は、更に、Al:2〜5at%を含有してもよい。
Hereinafter, an embodiment of the present invention will be described in detail.
(Composition and reasons for limitation)
The Mn—Cu-based damping alloy according to an embodiment of the present invention is a Mn—Cu— of twin type damping alloys that absorb vibrations by the movement of twins formed by cooling from the γ phase region. Ni-Fe-based materials are preferred, including Cu: 15 to 25 at%, Ni: 2 to 8 at%, Fe: 1 to 3 at%, and Ca: 0.001 to 0.007 at% or Mg: 0. 005 to 0.23 at%, with the balance being Mn and inevitable impurities.
The Mn—Cu vibration damping alloy according to one embodiment of the present invention may further contain Al: 2 to 5 at%.

(1)Cu:15〜25at%、Ni:2〜8at%及びFe:1〜3at%。
Mnをベースとして、この組成にすると後述する高温焼鈍工程を行うことにより双晶が形成され、良好な減衰特性が得られるためである。Cuを15〜25at%としたのは、成形加工性を高め、常温近傍に変態点を移動させるためである。Niを2〜8at%及びFe:1〜3at%としたのは、良好な減衰特性を得るためである。
(1) Cu: 15 to 25 at%, Ni: 2 to 8 at%, and Fe: 1 to 3 at%.
This is because, when Mn is used as a base and this composition is used, twins are formed by performing a high-temperature annealing process, which will be described later, and good damping characteristics can be obtained. The reason why the Cu content is set to 15 to 25 at% is to improve the molding processability and move the transformation point to around room temperature. The reason why Ni is set to 2 to 8 at% and Fe: 1 to 3 at% is to obtain good damping characteristics.

(2)Ca:0.001〜0.007at%又はMg:0.005〜0.23at%。
Ca及びMgは、結晶粒の微細化、及び、その微細化によって強度を高めて、熱間加工時の割れを抑制するために含有させる。これらは、いずれか一方を含有させればよい。これらの効果を得るために、Caを0.001at%以上、Mgを0.005at%以上とした。一方、Ca又はMgの量が多すぎると、酸化物又は介在物が形成され加工性が悪化するとともに、特に過剰な介在物は、結晶粒界や双晶界面に析出し、双晶界面の移動が困難となり、減衰特性を劣化させる。また、Mgの場合、沸点が低いので量が多すぎるとスプラッシュが発生してしまう。そこで、これらを回避するために、Caを0.007at%以下、Mgを0.23at%以下とした。
(2) Ca: 0.001 to 0.007 at% or Mg: 0.005 to 0.23 at%.
Ca and Mg are contained in order to increase the strength by refinement of crystal grains and the refinement, and to suppress cracking during hot working. Any one of these may be contained. In order to obtain these effects, Ca is set to 0.001 at% or more, and Mg is set to 0.005 at% or more. On the other hand, if the amount of Ca or Mg is too large, oxides or inclusions are formed and the workability deteriorates. In particular, excessive inclusions precipitate at the grain boundaries and twin interfaces, and the migration of twin interfaces Becomes difficult and deteriorates the attenuation characteristics. In the case of Mg, since the boiling point is low, splashing occurs when the amount is too large. Therefore, in order to avoid these, Ca is set to 0.007 at% or less and Mg is set to 0.23 at% or less.

(3)残部がMn及び不可避的不純物。
Mnは、制振材料として周知であり、本発明に係るMn−Cu系制振合金のベースである。具体的には、Mnは、70〜75at%である。
不可避的不純物には、C、O、N等がある。
(3) The balance is Mn and inevitable impurities.
Mn is well known as a vibration damping material and is the base of the Mn—Cu based vibration damping alloy according to the present invention. Specifically, Mn is 70 to 75 at%.
Inevitable impurities include C, O, N, and the like.

(4)Al:2〜5at%
Alは、必要に応じて含有させればよく、含有させる場合には、2〜5at%含有させる。Alを2〜5at%としたのは、上記組成にAlをこの割合で添加すれば、剛性を高めつつ、良好な減衰特性が得られるためである。
(4) Al: 2 to 5 at%
Al may be contained if necessary, and if contained, 2 to 5 at% is contained. The reason why Al is 2 to 5 at% is that if Al is added to the above composition in this proportion, good damping characteristics can be obtained while increasing rigidity.

(製造方法)
本発明の一実施形態に係るMn−Cu系制振合金は、鋳造工程、固溶化処理工程、加工工程、高温焼鈍工程、急冷工程を行うことにより製造される。
以下これらの各工程について説明する。
(Production method)
The Mn—Cu vibration damping alloy according to an embodiment of the present invention is manufactured by performing a casting process, a solution treatment process, a processing process, a high-temperature annealing process, and a rapid cooling process.
Each of these steps will be described below.

(1)鋳造工程は、Cu:15〜25at%を含み、更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含み、残部がMn及び不可避的不純物からなるMn−Cu系合金を溶解・鋳造して鋼塊を得る工程である。
「Mn−Cu系合金」は、上記組成を備えたものであれば特に限定されず、後述する高温焼鈍工程においてγ相領域から冷却することによって双晶が形成されるものであればよく、更に、Ni:2〜8at%及びFe:1〜3at%を含むものや、更に、Ni:2〜8at%、Fe:1〜3at%及びAl:2〜5at%を含むものでもよい。
「鋼塊」は、所定の組成に配合され、溶解・鋳造されたものであればよく、加工の有無は問わない。
(1) The casting process includes Cu: 15 to 25 at%, and further includes Ca: 0.001 to 0.007 at% or Mg: 0.005 to 0.23 at%, and the balance is from Mn and inevitable impurities. This is a step of obtaining a steel ingot by melting and casting the Mn-Cu alloy.
The “Mn—Cu-based alloy” is not particularly limited as long as it has the above composition, and may be any one in which twins are formed by cooling from the γ-phase region in the high-temperature annealing step described below. Ni: 2 to 8 at% and Fe: 1 to 3 at%, and further, Ni: 2 to 8 at%, Fe: 1 to 3 at%, and Al: 2 to 5 at% may be included.
The “steel ingot” is not particularly limited as long as it is blended in a predetermined composition and melted and cast.

(2)固溶化処理工程は、上記(1)で得られた鋼塊を800℃以上固相線温度以下の固溶化温度に加熱し、その固溶化温度で保持した後、空冷以上の冷却速度で冷却する工程である。固溶化処理工程は、MnとCuのマクロ偏析を解消するために行う。
「固溶化温度に加熱する」のは、γ相単相となる温度にするためである。固溶化温度は、より短時間でMnとCuのマクロ偏析を解消するには高い方が好ましく、具体的には、800℃以上が好ましく、850℃以上が更に好ましく、870℃以上がより更に好ましい。一方、固溶化温度が高くなるほど結晶粒が粗大化し、固溶化温度が高すぎると液相が生成する。従って、固溶化温度は、固相線温度以下が好ましい。Cuを20±5at%程度含むMn−Cu系制振合金の固相線温度は、約1000℃であるため、具体的には、固溶化温度は、1000℃以下が好ましく、950℃以下が更に好ましく、925℃以下がより更に好ましい。
(2) In the solution treatment step, the steel ingot obtained in (1) above is heated to a solid solution temperature not lower than 800 ° C. and not higher than the solidus temperature, held at the solid solution temperature, and then cooled by air cooling or higher. It is the process of cooling at. The solution treatment step is performed to eliminate macro segregation of Mn and Cu.
The reason for “heating to the solid solution temperature” is to set the temperature to a single phase of γ phase. The solution temperature is preferably higher in order to eliminate macro segregation of Mn and Cu in a shorter time, specifically, 800 ° C or higher is preferable, 850 ° C or higher is more preferable, and 870 ° C or higher is even more preferable. . On the other hand, as the solution temperature increases, the crystal grains become coarser, and when the solution temperature is too high, a liquid phase is generated. Therefore, the solid solution temperature is preferably equal to or lower than the solidus temperature. Since the solidus temperature of the Mn—Cu vibration damping alloy containing about 20 ± 5 at% of Cu is about 1000 ° C., specifically, the solution temperature is preferably 1000 ° C. or less, and more preferably 950 ° C. or less. Preferably, 925 ° C. or lower is even more preferable.

「固溶化温度で保持する」のは、MnとCuのマクロ偏析を解消するためである。また、Mg又はCaを含有させたことにより促進される結晶粒の微細化を図るためである。保持時間は、特に限定されないが、MnとCuのマクロ偏析を解消するには長い方が好ましい。MnとCuのマクロ偏析を解消するのは、(1)熱間加工時に内部に不均一な応力が発生して割れ発生の原因になったり、(2)Mn−Cu濃度比率が低融点(900℃)以下に達する個所が局所的に存在し、熱間鍛造ができる温度範囲が狭くなり、割れ発生の原因になるからである。そして、割れ発生は、歩留まり低下の要因にもなる。そこで、割れ発生を抑制するためには、固溶化温度での保持時間は、4時間以上が好ましく、8時間以上が更に好ましい。また、MnとCuのマクロ偏析を解消すれば損失係数を大きくすることができ、より高い制振特性が得られる。   “Hold at the solution temperature” is to eliminate macro segregation of Mn and Cu. Moreover, it is for aiming at the refinement | miniaturization of the crystal grain accelerated | stimulated by containing Mg or Ca. The holding time is not particularly limited, but a longer one is preferable for eliminating macro segregation of Mn and Cu. The reason for eliminating macro segregation of Mn and Cu is that (1) non-uniform stress is generated inside during hot working, causing cracks, or (2) the Mn—Cu concentration ratio is low melting point (900 This is because there are local portions that reach below (° C.), the temperature range in which hot forging can be performed is narrowed, and cracking occurs. The occurrence of cracks also causes a decrease in yield. Therefore, in order to suppress the occurrence of cracks, the retention time at the solution temperature is preferably 4 hours or more, and more preferably 8 hours or more. Further, if macro segregation of Mn and Cu is eliminated, the loss factor can be increased, and higher vibration damping characteristics can be obtained.

「空冷以上の冷却速度で冷却する」のは、冷却速度が遅すぎると冷却時にαMn相が生成するのでこれを回避しつつ、冷却時のMnとCuのマクロ偏析を抑制するためである。   The reason for “cooling at a cooling rate higher than air cooling” is to prevent macro segregation of Mn and Cu during cooling while avoiding this because an αMn phase is generated during cooling if the cooling rate is too slow.

尚、「固溶化処理時の雰囲気」は、特に限定されないが、不活性雰囲気中(例えば、アルゴン雰囲気中)、還元雰囲気中(例えば、水素雰囲気中)、あるいは大気中のいずれであってもよい。大気中で固溶化処理を行うと、製造コストを低減できるという利点がある。大気中で固溶化処理を行うと、合金表面に酸化被膜が形成されるが、後述する加工工程の際に酸化被膜を除去すれば制振特性を劣化させることがない。   The “atmosphere during the solution treatment” is not particularly limited, and may be any of an inert atmosphere (for example, an argon atmosphere), a reducing atmosphere (for example, a hydrogen atmosphere), or the air. . When the solution treatment is performed in the air, there is an advantage that the manufacturing cost can be reduced. When the solution treatment is performed in the atmosphere, an oxide film is formed on the surface of the alloy. However, if the oxide film is removed during the processing step described later, the vibration damping characteristics are not deteriorated.

(3)加工工程は、上記(2)で固溶化処理された合金を最終製品形状又はこれより大きい形状まで加工する工程である。
「固溶化処理された合金を最終製品形状又はこれより大きい形状まで加工する」のは、所望の最終製品を得るために必要だからである。これにより、鋳造時における鋳造組織の破壊、鋳造欠陥の消滅、偏析の解消等の効果も得られる。この加工は、熱間鍛造又は熱間圧延等の熱間加工により行われ、合金は、最終製品又はそれより大きい所定の形状(例えば、棒材や板材)に加工される。この後、更に、冷間圧延等の冷間加工を行ってもよい。また、必要に応じて固溶化処理の際に合金表面に形成された酸化被膜の除去を行ってもよい。「最終製品形状より大きい形状」にするのは、後述する高温焼鈍工程の条件によっては、表面に酸化被膜が生成したり、寸法変化を生ずる場合があるため、精加工仕上げのための削り代を見込んでおくためである。
(3) The processing step is a step of processing the alloy that has been subjected to the solution treatment in (2) to a final product shape or a shape larger than this.
“Solubilized alloy is processed into a final product shape or a larger shape” because it is necessary to obtain a desired final product. Thereby, effects, such as destruction of a cast structure at the time of casting, disappearance of a casting defect, elimination of segregation, are also acquired. This processing is performed by hot processing such as hot forging or hot rolling, and the alloy is processed into a final product or a predetermined shape larger than the final product (for example, a bar or a plate). Thereafter, cold working such as cold rolling may be further performed. Moreover, you may remove the oxide film formed in the alloy surface in the case of a solution treatment as needed. The “larger shape than the final product shape” means that depending on the conditions of the high-temperature annealing process described later, an oxide film may be formed on the surface or dimensional changes may occur. This is to keep in mind.

(4)高温焼鈍工程は、上記(3)で加工された合金を800℃以上固相線温度以下の焼鈍温度に加熱し、その焼鈍温度で保持した後、その合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷する工程である。 (4) In the high-temperature annealing step, the alloy processed in the above (3) is heated to an annealing temperature not lower than 800 ° C. and not higher than the solidus temperature, held at the annealing temperature, and then the temperature of the alloy is 250 ° C. to 450 ° C. This is a step of slow cooling at a constant rate of 0.85 to 1.65 ° C./min until entering any of the range of ° C.

「焼鈍温度に加熱し、その焼鈍温度で保持する」のは、合金をγ相状態にして、固溶化処理での冷却により生じたひずみを解消するためである。更に、固溶化処理で解消されなかったMnとCuのマクロ偏析を消滅させるためである。
従って、焼鈍温度は、800℃以上が好ましく、850℃以上が更に好ましく、870℃以上がより更に好ましい。できるだけ短時間でひずみや偏析を消滅させるには、焼鈍温度は高い方が好ましいが、焼鈍温度が高すぎると、結晶粒が粗大化し、材料が脆化する。更に温度が高い場合には、液相が生成してしまう。また、焼鈍温度が高くなるほど、合金表面からMnが揮発しやすくなる。従って、焼鈍温度は、固相線温度以下が好ましく、950℃以下が更に好ましく、925℃以下がより更に好ましい。
焼鈍温度での保持時間は、特に限定されないが、ひずみや偏析を消滅させるためには、0.5時間以上が好ましく、1時間以上が更に好ましい。一方、必要以上長く保持すると、合金表面からMnが蒸発する。従って、焼鈍温度での保持時間は、加工された合金に十分な削り代がある場合には、8時間以下が好ましく、4時間以下が更に好ましく、また、加工された合金の削り代が少ない場合には、4時間以下が好ましく、3時間以下が更に好ましい。加工された合金が最終製品形状に近くなるほど、焼鈍温度での保持時間を短くするとよい。
The reason for “heating to the annealing temperature and holding at the annealing temperature” is to eliminate the strain caused by cooling in the solution treatment by bringing the alloy into a γ phase state. Furthermore, this is to eliminate macro segregation of Mn and Cu that has not been eliminated by the solution treatment.
Accordingly, the annealing temperature is preferably 800 ° C. or higher, more preferably 850 ° C. or higher, and even more preferably 870 ° C. or higher. In order to eliminate strain and segregation in as short a time as possible, the annealing temperature is preferably high, but if the annealing temperature is too high, the crystal grains become coarse and the material becomes brittle. Further, when the temperature is high, a liquid phase is generated. Further, as the annealing temperature becomes higher, Mn is more easily volatilized from the alloy surface. Therefore, the annealing temperature is preferably not more than the solidus temperature, more preferably not more than 950 ° C, and still more preferably not more than 925 ° C.
The holding time at the annealing temperature is not particularly limited, but is preferably 0.5 hours or longer and more preferably 1 hour or longer in order to eliminate strain and segregation. On the other hand, if it is kept longer than necessary, Mn evaporates from the alloy surface. Accordingly, the holding time at the annealing temperature is preferably 8 hours or less, more preferably 4 hours or less when the machined alloy has a sufficient machining allowance, and when the machining alloy has a less machining allowance. Is preferably 4 hours or shorter, more preferably 3 hours or shorter. The closer the processed alloy is to the final product shape, the shorter the holding time at the annealing temperature.

「その合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷する」のは、定速で、かつ、この冷却速度でスピノーダル分解を起こす温度(400℃近傍)を通過させると、スピノーダル分解により双晶が形成され、これにより、制振特性が備えられるからである。一方、冷却速度が遅すぎると双晶形成に寄与しないαMn相が生成し、逆に、冷却速度が速すぎると双晶形成が不十分になる上、合金内部に熱膨張によるひずみが発生する。冷却速度にばらつきがあっても、同様である。従って、αMn相の生成を回避しつつ双晶を十分に形成させるには、定速徐冷速度は、0.85℃/分以上が好ましく、1.33℃/分以上が更に好ましい。また、熱膨張によるひずみを回避しつつ双晶を十分に形成させるには、定速徐冷速度は、1.65℃/分以下が好ましく、1.60℃/分以下が更に好ましい。
定速徐冷の終了温度は、特に限定されないが、スピノーダル分解により、双晶が十分に形成された後であればよく、具体的には、合金が250℃〜450℃に達するいずれかの温度である。残留ひずみを回避し十分な制振特性を得るには、定速徐冷の終了温度は、450℃以下が好ましく、400℃以下が更に好ましく、350℃以下がより更に好ましい。αMn相の生成を抑制するには、定速徐冷の終了温度は、250℃以上が好ましく、275℃以上が更に好ましく、300℃以上がより更に好ましい。
“Slow cooling at a constant rate of 0.85 to 1.65 ° C./min until the temperature of the alloy falls in any of the ranges of 250 ° C. to 450 ° C.” means that the cooling rate is constant. This is because if a temperature causing spinodal decomposition (near 400 ° C.) is passed, twins are formed by spinodal decomposition, thereby providing damping characteristics. On the other hand, if the cooling rate is too slow, an αMn phase that does not contribute to twin formation is generated. Conversely, if the cooling rate is too fast, twin formation is insufficient and strain due to thermal expansion occurs inside the alloy. The same applies if the cooling rate varies. Therefore, in order to sufficiently form twins while avoiding the formation of αMn phase, the constant slow cooling rate is preferably 0.85 ° C./min or more, and more preferably 1.33 ° C./min or more. In order to sufficiently form twins while avoiding strain due to thermal expansion, the constant slow cooling rate is preferably 1.65 ° C./min or less, and more preferably 1.60 ° C./min or less.
The end temperature of constant-speed slow cooling is not particularly limited, but may be after the twins are sufficiently formed by spinodal decomposition. Specifically, any temperature at which the alloy reaches 250 ° C. to 450 ° C. It is. In order to avoid residual strain and obtain sufficient vibration damping characteristics, the constant temperature slow cooling end temperature is preferably 450 ° C. or lower, more preferably 400 ° C. or lower, and even more preferably 350 ° C. or lower. In order to suppress the formation of αMn phase, the constant temperature slow cooling end temperature is preferably 250 ° C. or higher, more preferably 275 ° C. or higher, and still more preferably 300 ° C. or higher.

尚、「焼鈍工程の雰囲気」は、特に限定されないが、不活性雰囲気(例えば、アルゴン雰囲気、窒素雰囲気)、又は、還元雰囲気(例えば、水素雰囲気)が好ましい。大気中で焼鈍すると、表面に酸化被膜が形成されるので、これを回避するためである。   The “atmosphere of the annealing step” is not particularly limited, but an inert atmosphere (for example, an argon atmosphere or a nitrogen atmosphere) or a reducing atmosphere (for example, a hydrogen atmosphere) is preferable. This is to avoid an oxide film formed on the surface when annealing is performed in the atmosphere.

(5)急冷工程は、上記(4)で制振特性が備えられた合金を10℃/分以上で冷却する工程である。
「10℃/分以上で冷却する」のは、αMn相の生成を抑制するためであり、20℃/分以上で冷却するのが更に好ましい。尚、冷却方法としては、衝風冷却、水冷、油冷を用いることができ、高速冷却をする場合は、水冷及び油冷を行うとよい。
急冷工程の終了温度は、100℃以下の温度であればよく、例えば、室温であればよい。
(5) The rapid cooling step is a step of cooling the alloy having the vibration damping characteristics in (4) above at 10 ° C./min or more.
“Cooling at 10 ° C./min or more” is to suppress the formation of αMn phase, and it is more preferable to cool at 20 ° C./min or more. In addition, as a cooling method, blast cooling, water cooling, and oil cooling can be used, and when performing high speed cooling, it is good to perform water cooling and oil cooling.
The end temperature of the rapid cooling process may be a temperature of 100 ° C. or lower, for example, room temperature.

尚、上記(4)の高温焼鈍工程、又は、上記(5)の急冷工程後を行った後の合金は、そのまま最終製品として販売・使用等しても良く、又は、精仕上げ加工(焼鈍時に生成した酸化被膜の除去、寸法変化の矯正、Mnの蒸発により生じた表面変質層の除去等)を行ってもよい。   The alloy after the high-temperature annealing step (4) or after the rapid cooling step (5) may be sold and used as a final product as it is, or a fine finishing process (during annealing) The generated oxide film may be removed, the dimensional change may be corrected, or the surface altered layer generated by evaporation of Mn may be removed).

(作用)
次に、本発明の一実施形態に係るMn−Cu系制振合金及びその製造方法の作用について説明する。
固溶化処理工程において、所定の組成からなるMn−Cu系合金の鋼塊が800℃以上固相線温度以下の固溶化温度に加熱され、その固溶化温度で保持された後、空冷以上の冷却速度で冷却されると、MnとCuのマクロ偏析が低減されるとともに、Mg又はCaを含有させたことにより、結晶粒が微細化される。
そのため、加工工程においては、合金は、割れ発生が抑制されつつ、最終製品形状又はこれより大きい形状まで加工される。この工程において割れ発生が抑制されることで、最終的に得られるMn−Cu系制振合金の割れ発生が抑制される。
次に、合金は、焼鈍温度に加熱され、その焼鈍温度で保持された後、合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷される。従って、得られたMn−Cu系制振合金は、αMn相の生成や熱膨張によるひずみを回避しつつ、十分な双晶が形成され、高い制振特性が備えられる。
(Function)
Next, the operation of the Mn—Cu vibration damping alloy and the manufacturing method thereof according to one embodiment of the present invention will be described.
In the solution treatment step, the Mn-Cu alloy ingot having a predetermined composition is heated to a solid solution temperature not lower than 800 ° C and not higher than the solidus temperature, and maintained at the solid solution temperature, and then cooled beyond air cooling. When cooled at a speed, macrosegregation of Mn and Cu is reduced, and the crystal grains are refined by containing Mg or Ca.
Therefore, in the processing step, the alloy is processed to a final product shape or a shape larger than this while suppressing the occurrence of cracks. By suppressing the generation of cracks in this step, the generation of cracks in the finally obtained Mn—Cu vibration damping alloy is suppressed.
The alloy is then heated to the annealing temperature, held at that annealing temperature, and then at 0.85 to 1.65 ° C./min until the temperature of the alloy enters any of the ranges of 250 ° C. to 450 ° C. Cooled at a constant speed. Therefore, the obtained Mn—Cu-based damping alloy has sufficient twinning properties and high damping characteristics while avoiding strain due to the formation of αMn phase and thermal expansion.

また、得られたMn−Cu系制振合金は、固溶化処理により、MnとCuのマクロ偏析が低減されているため、Cuに対する室温での固溶限が0%であるC(不可避的に含まれる)の双晶界面又は結晶粒界への析出が抑制され、これにより、制振特性の経時劣化が抑制される。   In addition, since the obtained Mn—Cu vibration-damping alloy has reduced the macrosegregation of Mn and Cu by the solution treatment, C (inevitable) has a solid solubility limit of 0% with respect to Cu at room temperature. Precipitation) at the twin interface or the grain boundary is suppressed, thereby suppressing the deterioration of the damping characteristics with time.

以下、本発明の実施例及び比較例について説明する。尚、以下の実施例及び比較例においては、実施例1のNiを2at%、8at%とした組成、実施例1のFeを1at%、3at%とした組成については実施例1と同等の性能を有するため省略した。また、実施例6のAlを2at%とした組成も、実施例6と同等の性能を有するため省略した。更に、実施例5のCuを15at%とした組成も、実施例5と同等の性能を有するため省略した。
(実施例1〜8及び比較例1〜4)
(割れについて)
実施例1〜8及び比較例1〜4について、表1に示すA〜Jの組成となるように原料を高周波誘導加熱炉に投入し、アルゴン雰囲気下で溶解・鋳造し、それぞれの組成について、150kg鋼塊(直径170mm〜直径190mm×長さ800mm)を作製した。
Examples of the present invention and comparative examples will be described below. In the following examples and comparative examples, the composition of Example 1 with Ni of 2 at% and 8 at% and the composition of Example 1 with Fe of 1 at% and 3 at% are equivalent to those of Example 1. It was omitted because it has The composition of Example 6 with Al of 2 at% was also omitted because it had the same performance as in Example 6. Further, the composition of Example 5 with Cu at 15 at% is omitted because it has the same performance as Example 5.
(Examples 1-8 and Comparative Examples 1-4)
(About cracking)
For Examples 1 to 8 and Comparative Examples 1 to 4, the raw materials were put into a high-frequency induction heating furnace so as to have the compositions of A to J shown in Table 1, and melted and cast in an argon atmosphere. A 150 kg steel ingot (diameter 170 mm-diameter 190 mm x length 800 mm) was produced.

Figure 2008266688
Figure 2008266688

次に、作製した各鋼塊に対して固溶化処理を行った(比較例2を除く)。固溶化処理は、表2に示す条件、すなわち、大気雰囲気下、900℃に加熱し、その温度で8時間(実施例3については24時間)保持した後、空冷することにより行った。   Next, a solution treatment was performed on each steel ingot produced (except for Comparative Example 2). The solution treatment was performed by heating to 900 ° C. under the conditions shown in Table 2, that is, in an air atmosphere, holding at that temperature for 8 hours (24 hours for Example 3), and then air cooling.

次に、得られた各鋼塊に対して熱間加工を行った。熱間加工は、850℃にて2時間加熱後、プレス鍛造することにより行った。これにより、80mm角の角片を作製した。
また、実施例1〜8及び比較例1〜4の80mm角の角片の割れ長さの計測を行った。この計測は、以下の手順で行った。80mm角の横断面より、任意の個所から15mm角(1辺は表層)を切り出し、これを顕微鏡観察用試料として調整し、鏡面研磨及び腐食後、光学顕微鏡にて表層からの割れ個所を観察した。存在する割れ個所に対して、最も長いものから5個所の長さを計測し、その平均値を「割れ長さ」と定義した。
その結果を表2に示す。実施例1〜8は、いずれも割れ長さが0.70mm以下となったのに対して、比較例1〜4は、いずれも割れ長さが0.70mmを超えた。表2では、割れ長さが0.70mm以下のものを「○」で示し、割れ長さが0.25mm以下のものを「◎」で示し、割れ長さが0.70mmを超えたものを「×」で示した。
また、図1に、実施例2及び比較例2の割れ個所を光学顕微鏡で撮影した組織写真(50倍)を示す。同図に示したように、実施例2は、比較例2に比して、結晶粒が微細化され、割れ長さが低減されていることがわかった。
Next, hot working was performed on each obtained steel ingot. Hot working was performed by press forging after heating at 850 ° C. for 2 hours. Thereby, an 80 mm square piece was produced.
Moreover, the measurement of the crack length of the 80 mm square piece of Examples 1-8 and Comparative Examples 1-4 was performed. This measurement was performed according to the following procedure. From a cross section of 80 mm square, a 15 mm square (one side is the surface layer) was cut out from an arbitrary location, this was adjusted as a sample for microscope observation, and after the mirror polishing and corrosion, the cracked portion from the surface layer was observed with an optical microscope. . From the longest one, the length of the five existing cracks was measured, and the average value was defined as the “crack length”.
The results are shown in Table 2. In all of Examples 1 to 8, the crack length was 0.70 mm or less, while in Comparative Examples 1 to 4, the crack length exceeded 0.70 mm. In Table 2, those having a crack length of 0.70 mm or less are indicated by “◯”, those having a crack length of 0.25 mm or less are indicated by “◎”, and those having a crack length exceeding 0.70 mm. Indicated by “x”.
Moreover, the structure photograph (50 times) which image | photographed the crack part of Example 2 and Comparative Example 2 with the optical microscope in FIG. 1 is shown. As shown in the figure, it was found that in Example 2, the crystal grains were refined and the crack length was reduced as compared with Comparative Example 2.

Figure 2008266688
Figure 2008266688

まず、固溶化処理の有無のみが異なる比較例1と2とを比較すると、固溶化処理を行った方が割れ長さが短かったことから、固溶化処理が熱間鍛造時における割れ抑制に有効であることが確認できた。その理由は、固溶化処理によって、組織が均質化され、MnとCuのマクロ偏析が低減されるためと考えられる。
次に、Caの有無が異なる実施例1,2,4と比較例1とを比較すると、Caを添加した方が割れ長さが短かったことから、Mn−Cu−Ni−Feを基本組成とする合金にCaを添加すると、熱間鍛造時における割れ抑制に有効であることがわかった。これは、Ca添加により結晶粒の微細化が促進されたためと考えられる(Caの有無が異なる実施例5と比較例3との比較(但し、これらは、Mn−Cuを基本組成とする)及びCaの有無が異なる実施例6と比較例4との比較についても同様である)。
次に、Mgの有無が異なる実施例7、8と比較例1とを比較すると、Mgを添加した方が割れ長さが短かったことから、Mn−Cu−Ni−Feを基本組成とする合金にMgを添加すると、熱間鍛造時における割れ抑制に有効であることがわかった。これは、Mg添加により結晶粒の微細化が促進されたためと考えられる。
次に、保持時間のみが異なる実施例2と実施例3とを比較すると、保持時間が長い方が割れ長さが短かった。これは、保持時間が長い方が、MnとCuのマクロ偏析が低減されることによる不均一応力の低減や、結晶粒の微細化による強度の改善が図られたためと考えられる。
First, comparing Comparative Examples 1 and 2 that differ only in the presence or absence of the solution treatment, the crack length was shorter when the solution treatment was performed, so the solution treatment was effective in suppressing cracks during hot forging. It was confirmed that. The reason is considered to be that the structure is homogenized by the solution treatment and the macrosegregation of Mn and Cu is reduced.
Next, when Examples 1, 2, 4 and Comparative Example 1 with different presence or absence of Ca were compared with each other, since the crack length was shorter when Ca was added, Mn—Cu—Ni—Fe was used as the basic composition. It was found that adding Ca to the alloy to be used is effective in suppressing cracking during hot forging. This is considered to be because the refinement of crystal grains was promoted by the addition of Ca (comparison between Example 5 and Comparative Example 3 in which Ca is different or not (however, these are based on Mn—Cu) and The same applies to the comparison between Example 6 and Comparative Example 4 in which the presence or absence of Ca is different.
Next, when Examples 7 and 8 differing in the presence or absence of Mg and Comparative Example 1 were compared, the crack length was shorter when Mg was added, so an alloy having a basic composition of Mn—Cu—Ni—Fe. It has been found that the addition of Mg to is effective in suppressing cracking during hot forging. This is presumably because the refinement of crystal grains was promoted by the addition of Mg.
Next, when Example 2 and Example 3 in which only the holding time is different are compared, the longer the holding time, the shorter the crack length. This is probably because the longer the holding time, the reduction of non-uniform stress due to the reduction of Mn and Cu macrosegregation and the improvement of the strength due to the refinement of crystal grains.

(損失係数について)
次に、実施例1〜8及び比較例1〜4の80mm角の角片の中心部から厚さ20mm×幅20mm×長さ200mの角片を切り出し、各角片を水素雰囲気下、900℃に加熱し、この温度で3時間保持した後、冷却速度1.5℃/分で各角片が300℃になるまで定速徐冷(空冷)した(表3参照)。更に、各角片が100℃以下になるまで水冷により急冷した。
(About loss factor)
Next, square pieces having a thickness of 20 mm, a width of 20 mm, and a length of 200 m were cut out from the center of the 80 mm square pieces of Examples 1 to 8 and Comparative Examples 1 to 4, and each square piece was 900 ° C. in a hydrogen atmosphere. And kept at this temperature for 3 hours, and then cooled at a constant rate of 1.5 ° C./min until each square piece reached 300 ° C. (air cooling) (see Table 3). Furthermore, it cooled rapidly by water cooling until each square piece became 100 degrees C or less.

次に、各角片から放電加工により厚さ1mm×幅10mm×長さ160mmの角片を試験片として切り出した。切り出した試験片を用いて、「JIS G0602」に準拠した中央加振法による減衰特性を測定した。減衰特性の測定は次のようにして行った。
まず、試験片の1次共振周波数を測定し、その周波数において振幅ひずみが1×10−3となるバースト正弦波を加振した場合の振動減衰波形を測定した。次に、得られた減衰波形をフーリエ変換し、周波数分布を求め、半値幅法により、ピーク高さが半分となる範囲Δfとピーク周波数fとにより損失係数=Δf/(1.732f)を求めた。尚、加振にはEMIC社製の電磁型加振器を用い、振幅ひずみの測定には小野測器社製のCF−5200型FFTアナライザーを用いた。その結果を表3に示す。比較例2を除き、いずれも損失係数が0.12以上となり、良好な結果が得られた。表2では、損失係数が0.12以上のものを「○」で示し、損失係数が0.16以上のものを「◎」で示し、損失係数が0.11以下のものを「×」で示した。
Next, a square piece having a thickness of 1 mm, a width of 10 mm, and a length of 160 mm was cut out from each square piece as a test piece by electric discharge machining. Using the cut out test piece, the attenuation characteristic by the central excitation method based on “JIS G0602” was measured. The attenuation characteristics were measured as follows.
First, the primary resonance frequency of the test piece was measured, and a vibration attenuation waveform was measured when a burst sine wave having an amplitude distortion of 1 × 10 −3 was applied at that frequency. Next, the obtained attenuation waveform is subjected to Fourier transform to obtain a frequency distribution, and a loss factor = Δf / (1.732f 0 ) by a half-width method with a range Δf in which the peak height is halved and a peak frequency f 0. Asked. An electromagnetic exciter manufactured by EMIC was used for excitation, and a CF-5200 type FFT analyzer manufactured by Ono Sokki Co., Ltd. was used for measurement of amplitude distortion. The results are shown in Table 3. Except for Comparative Example 2, the loss factor was 0.12 or more, and good results were obtained. In Table 2, “○” indicates that the loss factor is 0.12 or more, “◎” indicates that the loss coefficient is 0.16 or more, and “×” indicates that the loss coefficient is 0.11 or less. Indicated.

Figure 2008266688
Figure 2008266688

まず、固溶化処理の有無のみが異なる比較例1と2とを比較すると、固溶化処理を行った方が損失係数が高かったことから、固溶化処理を行っておくと、良い制振特性が得られることが確認できた。その理由は、固溶化処理で組織が均質化され、MnとCuのマクロ偏析が低減され、高温焼鈍で双晶が十分に形成されたためと考えられる。
次に、Caの有無が異なる実施例1〜2と比較例1とを比較すると損失係数に差がなかった。同様にCaの有無が異なる実施例4と比較例1とを比較すると、逆に、比較例1の方が損失係数が高かった。固溶化処理での保持時間に差がある実施例2と実施例3とを比較すると、実施例3の方が損失係数が高かった。これらのことから、Ca量を調整し、保持時間を長くすれば、損失係数が高くなり、制振特性に効果があることがわかった。
一方、Caの有無が異なる実施例5と比較例3との比較や、Mgの有無が異なる実施例7と比較例1との比較では損失係数に差がなかった。また、Caの有無が異なる実施例6と比較例4との比較や、Mgの有無が異なる実施例8と比較例1との比較では、これらの組成では、Mg又はCaを添加しても損失係数に影響を与えない(損失係数を低下させない)ことがわかった。
First, comparing Comparative Examples 1 and 2 that differ only in the presence or absence of the solution treatment, the loss factor was higher when the solution treatment was performed. Therefore, when the solution treatment was performed, good damping characteristics were obtained. It was confirmed that it was obtained. The reason is considered to be that the structure is homogenized by the solution treatment, macro segregation of Mn and Cu is reduced, and twins are sufficiently formed by high-temperature annealing.
Next, when Examples 1 and 2 and Comparative Example 1 with different presence or absence of Ca were compared, there was no difference in loss factor. Similarly, when Example 4 and Comparative Example 1 with different presence or absence of Ca were compared, the loss factor of Comparative Example 1 was higher. When Example 2 and Example 3 having a difference in retention time in the solution treatment were compared, Example 3 had a higher loss factor. From these facts, it was found that if the Ca amount is adjusted and the holding time is lengthened, the loss factor increases and the damping characteristics are effective.
On the other hand, there was no difference in loss factor between the comparison between Example 5 and Comparative Example 3 with different presence or absence of Ca, and the comparison between Example 7 and Comparative Example 1 with different presence or absence of Mg. Moreover, in the comparison between Example 6 and Comparative Example 4 in which the presence or absence of Ca is different, or in the comparison between Example 8 and Comparative Example 1 in which the presence or absence of Mg is different, in these compositions, even if Mg or Ca is added, loss is caused. It has been found that the coefficient is not affected (the loss coefficient is not reduced).

表2及び表3の結果を総合すると、実施例1〜8は、割れ長さ及び損失係数の両者が良好な値を示したが、比較例1〜4は、特に割れ長さの点で実施例に劣ることがわかった。このことから、Ca又はMgを含有させることにより、制振性を維持しつつ、成形加工性を高めることに効果があることがわかった。   When the results of Tables 2 and 3 are combined, Examples 1 to 8 show good values for both the crack length and loss factor, but Comparative Examples 1 to 4 are particularly implemented in terms of crack length. I found it inferior to the examples. From this, it was found that inclusion of Ca or Mg is effective in improving the moldability while maintaining the vibration damping property.

以上、本発明の実施の形態について詳細に説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改変が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明に係るMn−Cu系制振合金及びその製造方法は、制振特性が要求される機器に用いられる各種の部品(例えば、ネジ、ワッシャー、インシュレータ、台座、バネ、バイトホルダー、軸受等)の材料やその製造方法として用いることができる。   The Mn-Cu vibration damping alloy and the manufacturing method thereof according to the present invention are various parts (for example, screws, washers, insulators, pedestals, springs, tool holders, bearings, etc.) used in equipment that requires vibration damping characteristics. It can be used as a material and a manufacturing method thereof.

加工(熱間鍛造)後の実施例2及び比較例2の顕微鏡観察用試料の組織写真(50倍)である。It is a structure | tissue photograph (50 times) of the sample for microscope observation of Example 2 and the comparative example 2 after a process (hot forging).

Claims (8)

Cu:15〜25at%を含み、
更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含み、
残部がMn及び不可避的不純物からなることを特徴とするMn−Cu系制振合金。
Cu: 15-25 at%,
Furthermore, Ca: 0.001-0.007 at% or Mg: 0.005-0.23 at%,
A Mn-Cu vibration damping alloy, characterized in that the balance consists of Mn and inevitable impurities.
更に、Ni:2〜8at%及びFe:1〜3at%を含むことを特徴とする請求項1に記載のMn−Cu系制振合金。   Furthermore, Ni: 2-8at% and Fe: 1-3at% are contained, The Mn-Cu type damping alloy of Claim 1 characterized by the above-mentioned. 更に、Al:2〜5at%を含むことを特徴とする請求項2に記載のMn−Cu系制振合金。   Furthermore, Al: 2-5at% is contained, The Mn-Cu type damping alloy of Claim 2 characterized by the above-mentioned. Cu:15〜25at%を含み、更に、Ca:0.001〜0.007at%又はMg:0.005〜0.23at%を含み、残部がMn及び不可避的不純物からなるMn−Cu系合金の鋼塊を800℃以上固相線温度以下の固溶化温度に加熱し、前記固溶化温度で保持した後、空冷以上の冷却速度で冷却する固溶化処理工程を備えたことを特徴とするMn−Cu系制振合金の製造方法。   Cu: 15 to 25 at%, and further, Ca: 0.001 to 0.007 at% or Mg: 0.005 to 0.23 at%, the balance of Mn-Cu alloy consisting of Mn and inevitable impurities Mn-, comprising a solid solution treatment step of heating a steel ingot to a solid solution temperature of 800 ° C or higher and a solidus temperature or lower and holding at the solid solution temperature, followed by cooling at a cooling rate of air cooling or higher. A method for producing a Cu-based damping alloy. 前記固溶化処理工程は、前記固溶化温度での保持時間が8時間以上であることを特徴とする請求項4に記載のMn−Cu系制振合金の製造方法。   The method for producing a Mn-Cu vibration damping alloy according to claim 4, wherein the solution treatment step has a retention time at the solution temperature of 8 hours or more. 前記固溶化処理工程の後に、前記合金を最終製品形状又はこれより大きい形状まで加工する加工工程と、
前記加工工程の後に、前記合金を800℃以上固相線温度以下の焼鈍温度に加熱し、前記焼鈍温度で0.5時間以上8時間以下保持した後、前記合金の温度が250℃〜450℃の範囲のいずれかに入るまで、0.85〜1.65℃/分で定速徐冷する高温焼鈍工程と、
前記高温焼鈍工程の後に、前記合金を10℃/分以上で冷却する急冷工程とを備えたことを特徴とする請求項4又は5に記載のMn−Cu系制振合金の製造方法。
After the solution treatment step, a processing step for processing the alloy to a final product shape or a shape larger than this,
After the processing step, the alloy is heated to an annealing temperature of 800 ° C. or more and a solidus temperature or less and held at the annealing temperature for 0.5 hours or more and 8 hours or less, and then the temperature of the alloy is 250 ° C. to 450 ° C. Until it enters any of the range of high temperature annealing step of constant cooling at 0.85 to 1.65 ° C./min,
The method for producing a Mn—Cu vibration damping alloy according to claim 4, further comprising a quenching step of cooling the alloy at 10 ° C./min or more after the high-temperature annealing step.
前記Mn−Cu系合金は、更に、Ni:2〜8at%及びFe:1〜3at%を含むことを特徴とする請求項4から6のいずれかに記載のMn−Cu系制振合金の製造方法。   The Mn-Cu based alloy according to any one of claims 4 to 6, wherein the Mn-Cu based alloy further contains Ni: 2 to 8 at% and Fe: 1 to 3 at%. Method. 前記Mn−Cu系合金は、更に、Al:2〜5at%を含むことを特徴とする請求項7に記載のMn−Cu系制振合金の製造方法。   The said Mn-Cu type alloy further contains Al: 2-5at%, The manufacturing method of the Mn-Cu type damping alloy of Claim 7 characterized by the above-mentioned.
JP2007108647A 2007-04-17 2007-04-17 Mn-Cu vibration damping alloy and manufacturing method thereof Expired - Fee Related JP5076609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007108647A JP5076609B2 (en) 2007-04-17 2007-04-17 Mn-Cu vibration damping alloy and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007108647A JP5076609B2 (en) 2007-04-17 2007-04-17 Mn-Cu vibration damping alloy and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008266688A true JP2008266688A (en) 2008-11-06
JP5076609B2 JP5076609B2 (en) 2012-11-21

Family

ID=40046569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007108647A Expired - Fee Related JP5076609B2 (en) 2007-04-17 2007-04-17 Mn-Cu vibration damping alloy and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5076609B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556020B (en) * 2013-11-08 2015-10-28 上海汇智新材料科技有限公司 There is the high Mn content high-damping mn-cu-based alloy of excellent mechanical property
CN106392064A (en) * 2016-12-12 2017-02-15 中南大学 Method for improving sintering property of high-manganese manganin damping alloy through nickel oxalate
CN106424716A (en) * 2016-12-12 2017-02-22 中南大学 Method for modifying performance of sintered Mn-Cu damping alloy with ferrous oxalate
CN106424712A (en) * 2016-12-12 2017-02-22 中南大学 Process for improving structure and property uniformity of manganin sintered damping alloy
CN107641732A (en) * 2017-09-19 2018-01-30 西南交通大学 A kind of preparation method of high-damping two-phase Mn Cu alloys
CN108559896A (en) * 2018-04-16 2018-09-21 上海大学 Cast high-damping manganese copper alloy material and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242977A (en) * 1994-02-28 1995-09-19 Natl Res Inst For Metals Manganese-base high damping alloy and its production
JP2002146498A (en) * 2000-11-08 2002-05-22 Seishin:Kk Workpiece made of high damping alloy
JP2003226951A (en) * 2002-02-05 2003-08-15 Daido Steel Co Ltd Damping alloy heat treatment method
JP2003253369A (en) * 2002-03-04 2003-09-10 Daido Steel Co Ltd Vibration-damping alloy, its production method, and vibration-damping part using the same
JP2005023362A (en) * 2003-07-01 2005-01-27 Daido Steel Co Ltd Heat treating method for manganese based twin crystal type high vibration damping alloy
JP2006289394A (en) * 2005-04-07 2006-10-26 Daido Steel Co Ltd METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY
JP2007302930A (en) * 2006-05-10 2007-11-22 Daido Steel Co Ltd METHOD FOR PRODUCING Mn-Cu BASED DAMPING ALLOY
JP2008121056A (en) * 2006-11-10 2008-05-29 National Institute For Materials Science High-temperature high-damping manganese-based alloy and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07242977A (en) * 1994-02-28 1995-09-19 Natl Res Inst For Metals Manganese-base high damping alloy and its production
JP2002146498A (en) * 2000-11-08 2002-05-22 Seishin:Kk Workpiece made of high damping alloy
JP2003226951A (en) * 2002-02-05 2003-08-15 Daido Steel Co Ltd Damping alloy heat treatment method
JP2003253369A (en) * 2002-03-04 2003-09-10 Daido Steel Co Ltd Vibration-damping alloy, its production method, and vibration-damping part using the same
JP2005023362A (en) * 2003-07-01 2005-01-27 Daido Steel Co Ltd Heat treating method for manganese based twin crystal type high vibration damping alloy
JP2006289394A (en) * 2005-04-07 2006-10-26 Daido Steel Co Ltd METHOD FOR MANUFACTURING RING MADE OF Mn-Cu ALLOY
JP2007302930A (en) * 2006-05-10 2007-11-22 Daido Steel Co Ltd METHOD FOR PRODUCING Mn-Cu BASED DAMPING ALLOY
JP2008121056A (en) * 2006-11-10 2008-05-29 National Institute For Materials Science High-temperature high-damping manganese-based alloy and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556020B (en) * 2013-11-08 2015-10-28 上海汇智新材料科技有限公司 There is the high Mn content high-damping mn-cu-based alloy of excellent mechanical property
CN106392064A (en) * 2016-12-12 2017-02-15 中南大学 Method for improving sintering property of high-manganese manganin damping alloy through nickel oxalate
CN106424716A (en) * 2016-12-12 2017-02-22 中南大学 Method for modifying performance of sintered Mn-Cu damping alloy with ferrous oxalate
CN106424712A (en) * 2016-12-12 2017-02-22 中南大学 Process for improving structure and property uniformity of manganin sintered damping alloy
CN106392064B (en) * 2016-12-12 2018-01-02 中南大学 Improve the method for high manganese copper-manganese damping alloy sintering character with nickel oxalate
CN107641732A (en) * 2017-09-19 2018-01-30 西南交通大学 A kind of preparation method of high-damping two-phase Mn Cu alloys
CN108559896A (en) * 2018-04-16 2018-09-21 上海大学 Cast high-damping manganese copper alloy material and its manufacturing method

Also Published As

Publication number Publication date
JP5076609B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP6119923B1 (en) Steel sheet and manufacturing method thereof
JP6432070B2 (en) Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same
JP5425736B2 (en) Bearing steel with excellent cold workability, wear resistance, and rolling fatigue properties
JP5076609B2 (en) Mn-Cu vibration damping alloy and manufacturing method thereof
JPWO2013069754A1 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6404356B2 (en) Soft high silicon steel sheet and method for producing the same
JP2016216810A (en) Low carbon steel sheet excellent in machinability and friction resistance after hardening and tempering and manufacturing method therefor
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
KR101576345B1 (en) High carbon steel sheet and method for manufacturing the same
WO2013150972A1 (en) Fe-Al ALLOY PRODUCTION METHOD
JP4687983B2 (en) Method for producing Mn-Cu vibration damping alloy
JP5724613B2 (en) Damping alloy material manufacturing method and damping alloy material
JP2012062496A (en) Soft medium carbon steel plate excellent in high frequency quenchability
JP6801464B2 (en) Non-oriented electrical steel sheet
JP5136083B2 (en) Mn-based twinned damping alloy and damping parts or damping products
JP2010090472A (en) Vibration-damping stainless steel, method for producing the same and molded product thereof
KR101536465B1 (en) Soft silicon steel and manufacturing method thereof
JP5702628B2 (en) Zn-Al-Cu alloy rolled material
JP5659930B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
JP7218270B2 (en) Copper alloy rolled sheet and quality judgment method thereof
JP6375692B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof, hot-rolled sheet for non-oriented electrical steel sheet and manufacturing method thereof
JP3535299B2 (en) Large-sized cast and forged products of duplex stainless steel excellent in corrosion resistance and toughness, and methods for producing the same
JP5601268B2 (en) Iron alloy damping material manufacturing method and iron alloy damping material
JP5248222B2 (en) Cold tool steel manufacturing method
JP2008297581A (en) Manganese-based twin-crystal-type damping alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees