JP2008261256A - 内燃機関のegrシステム - Google Patents

内燃機関のegrシステム Download PDF

Info

Publication number
JP2008261256A
JP2008261256A JP2007103562A JP2007103562A JP2008261256A JP 2008261256 A JP2008261256 A JP 2008261256A JP 2007103562 A JP2007103562 A JP 2007103562A JP 2007103562 A JP2007103562 A JP 2007103562A JP 2008261256 A JP2008261256 A JP 2008261256A
Authority
JP
Japan
Prior art keywords
exhaust
passage
lpl
egr
hpl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103562A
Other languages
English (en)
Other versions
JP4910849B2 (ja
Inventor
Takeshi Hashizume
剛 橋詰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007103562A priority Critical patent/JP4910849B2/ja
Publication of JP2008261256A publication Critical patent/JP2008261256A/ja
Application granted granted Critical
Publication of JP4910849B2 publication Critical patent/JP4910849B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】HPL装置及びLPL装置を併用するEGRシステムにおいて、PM再生処理の実行時等に排気絞り弁を絞る場合においてもEGR制御精度を確保し好適にEGRを実行可能にする技術を提供する。
【解決手段】ターボチャージャのタービンより下流の排気通路に設けられた排気絞り弁と、タービンより上流の排気通路とターボチャージャのコンプレッサより下流の吸気通路とを接続するHPL通路及びHPL通路に設けられたHPL弁を有するHPL装置と、排気絞り弁より下流の排気通路とコンプレッサより上流の吸気通路とを接続するLPL通路及びLPL通路に設けられたLPL弁を有するLPL装置と、HPL弁及びLPL弁の開度を制御してEGRガス量を制御するEGR制御手段とを備え、排気絞り弁の開度が所定開度より閉じ側の開度に絞られる場合はHPL弁を閉弁しLPL弁の開度制御によってEGRガス量を制御する。
【選択図】図4

Description

本発明は、内燃機関のEGRシステムに関する。
内燃機関からのNOxの排出量を低減する技術として、排気の一部を吸気系に流入させて内燃機関の燃焼室に戻すEGRが知られている。この技術に関して、ターボチャージャを備えた内燃機関において、ターボチャージャのタービンより上流の排気通路とターボチャージャのコンプレッサより下流の吸気通路とを接続するHPL通路を介して排気の一部を内燃機関に戻すHPL手段と、タービンより下流の排気通路とコンプレッサより上流の吸気通路とを接続するLPL通路を介して排気の一部を内燃機関に戻すLPL手段と、を備え、内燃機関の運転状態に応じてHPL手段とLPL手段とを併用又は切り替えてEGRを行う技術も知られている(例えば特許文献1を参照)。HPL手段によって内燃機関に戻される排気(HPLガス)の量は、HPL通路に設けられHPL通路の流路面積を変更するHPL弁の開度を制御することによって調節することができる。同様に、LPL手段によって内燃機関に戻される排気(LPLガス)の量は、LPL通路に設けられLPL通路の流路面積を変更するLPL弁の開度を制御することによって調節することができる。
また、排気中のPMを捕集する能力を有するフィルタを排気通路の途中に設けて大気中に放出されるPMの量を低減する技術が知られている。フィルタを備えた内燃機関では、フィルタのPM捕集能力を好適に維持するために、フィルタにおけるPMの堆積量が所定の許容量を越えた時にフィルタの温度を上昇させることによって堆積したPMを酸化させる処理(以下PM再生処理という)を実行することがある。PM再生処理の技術に関して、PM再生処理を実行する際に、フィルタより下流に設けられた排気絞り弁を絞ることが検討されている。こうすることで背圧が上昇し排気温度が上昇するので、PMの酸化反応を促進させることができる。
特開2005−076456号公報 特開2006−183485号公報 特開2006−226205号公報
ところで、HPL手段及びLPL手段を併設するEGRシステムにフィルタ及びPM再生処理システムを組み込む場合、タービンより下流且つLPL通路の接続箇所より上流の排気通路にフィルタ及び排気絞り弁を配置する構成が考えられる。
しかしながら、このように構成されたEGRシステムにおいて、PM再生処理を実行する際に上述のように排気絞り弁を絞った場合、背圧が上昇することによってHPL通路の上流と下流との圧力差が大きくなるため、HPL弁を精度良く制御することが困難になり、従ってHPLガス量の制御精度が十分に得られなくなる虞があった。
また、背圧が上昇すると、排気行程において気筒内から排気通路に排出される既燃ガスの量が減少し、内部EGR量が増加する傾向がある。そのため、排気絞り弁を絞らない場合と同様のHPL弁及び/又はLPL弁の開度制御を行うと、内部EGR量と、HPL手段及びLPL手段によって内燃機関に戻される排気である外部EGRガスの量と、を合計した全EGR量が想定より多くなり、失火等の燃焼不良を招く虞があった。
本発明はこのような問題点に鑑みてなされたものであり、HPL手段及びLPL手段を併用するEGRシステムにおいて、PM再生処理の実行時等に排気絞り弁を絞る場合においても十分なEGR制御精度を確保し、好適にEGRを実行可能にする技術を提供することを目的とする。
上記目的を達成するため、本発明の内燃機関のEGRシステムは、内燃機関の排気通路に設けられたタービンと内燃機関の吸気通路に設けられたコンプレッサとを有するターボチャージャと、前記タービンより下流の排気通路に設けられ排気通路の流路面積を変更する排気絞り弁と、前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続するHPL通路及び該HPL通路に設けられ該HPL通路の流路面積を変更するHPL弁を有し該HPL通路を介して排気の一部を内燃機関に導くHPL手段と、前記排気絞り弁より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続するLPL通路及び該LPL通路に設けられ該LPL通路の流路面積を変更するLPL弁を有し該LPL通路を介して排気の一部を内燃機関に導くLPL手段と、前記HPL弁及び前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御するEGR制御手段と、を備え、前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL弁を所定開度(H)に略固定するとともに、前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御することを特徴とする。
ここで、「所定開度(S)」とは、排気絞り弁を絞った場合の排気通路の背圧が、HPL弁によるHPLガス量の制御に関して十分な制御精度を確保することが可能な圧力より低くなるような排気絞り弁の開度の下限値である。つまり、排気絞り弁の開度が所定開度(S)以上の開度(開き側の開度)であるならば、排気絞り弁より上流の排気通路における背圧が過剰に高くなることはなく、従ってHPL通路の上流及び下流の圧力差が過剰に大きくなることはなく、HPL弁の開度制御によって十分精度良くHPLガス量を制御することが可能である。逆に、排気絞り弁の開度が所定開度(S)より小さい開度(閉じ側の開度)になると、排気絞り弁より上流の排気通路における背圧が過剰に高くなり、HPL通路の上流及び下流の圧力差が過剰に大きくなり、HPL弁の開度制御によってHPLガス量を精度良く制御することが困難になる。
また、「所定開度(H)」とは、予め定められるHPL弁の開度である。
上記構成によれば、排気絞り弁の開度が所定開度(S)より閉じ側の開度にまで絞られる場合には、HPL弁開度が略固定される。つまり、HPLガス量は略一定値となる。そして、LPL弁の開度を制御することによって内燃機関に戻される排気の量が制御される。排気絞り弁が所定開度(S)より更に絞られている場合においても、LPL通路は排気絞り弁より下流の排気通路から排気を取り出すように設けられているので、LPL通路の上流及び下流の圧力差は過剰に大きくなることはなく、従って、LPL弁の開度制御によるLPLガス量の制御精度は十分確保することができる。よって、略一定量のHPLガスと、十分な精度で制御されたLPLガスとの総量として、要求される全EGRガス量を精度良く内燃機関に供給することが可能になる。
上記構成において、特に所定開度(H)を全閉としても良い。この場合、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られている場合には、要求される全EGRガス量をLPL手段のみを用いて内燃機関に供給することになる。つまり、精度良く制御可能なLPL弁の開度のみを調節することによって、全EGRガス量を制御することができるので、排気絞り弁が絞られている時の全EGRガス量をより精度良く制御することが可能になる。
排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合、上述のように排気絞り弁より上流の排気通路における背圧が上昇するので、排気行程から吸気行程にかけて気筒内から排気通路に排出される既燃ガスの量が減少する傾向がある。つまり、気筒内に残留する既燃ガス(内部EGRガス)の量が増加する傾向がある。従って、前記HPL手段及び前記LPL手段によって前記内燃機関に戻される排気である外部EGRガスの量が、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない場合と同じ量であると、内燃機関に供給される全EGRガス量は過多になる可能性がある。その場合、失火等の燃焼不良を招く虞がある。
そこで、本発明においては、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、外部EGRガスの量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の外部EGRガス量より少なくなるように、前記LPL弁の開度を制御しても良い。
こうすることで、排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合においても、内燃機関に過剰な量のEGRガスが供給されることを抑制できる。
本発明は、前記タービンより下流且つ前記排気絞り弁より上流の排気通路に設けられ排気中のPMを捕集するフィルタと、前記フィルタのPM捕集能力を維持すべく前記フィルタに堆積したPMを酸化させるPM再生手段と、を更に備えた内燃機関に適用することができる。
この場合、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が絞られる場合に、上述のようにHPL弁を所定開度(H)に略固定又は全閉するとともに、LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御すればよい。
こうすることで、PM再生手段によってフィルタに堆積したPMを酸化させる処理が行われている最中においても、精度良くEGRを実行することができる。
PM再生手段によってPMを酸化する処理(PM再生処理)が行われている時は、フィルタにおいてPMが酸化反応することによって排気中の酸素が消費されるとともに、二酸化炭素が生成され、排気中の二酸化炭素濃度が上昇する傾向がある。そのため、PM再生処理が行われていない時と同じ量の全EGRガスが内燃機関に供給されると、気筒内の不活性ガス量が過剰になり、失火等の燃焼不良を招く虞がある。
そこで、本発明においては、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が所定開度(S)より閉じ側の開度に絞られる場合、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の全EGRガス量より少なくなるように、前記LPL弁の開度を制御しても良い。
こうすることで、PM再生処理が行われている時であっても気筒内の不活性ガス量が過剰になることを抑制することができる。
上記構成においは、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が所定開度(S)より閉じ側の開度に絞られる場合、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量から算出されるEGR率が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時のEGR率より小さくなるように、前記LPL弁の開度を制御しても良い。
ここで、全EGRガス量は、外部EGRガス量と内部EGRガス量とを別々に算出し、それらを合計して求めることができる。外部EGRガス量は、例えば、HPL通路の上流と下流との差圧と、HPL弁の開度と、に基づいてHPLガス量を算出し、LPL通路の上流と下流との差圧と、LPL弁の開度と、に基づいてLPLガス量を算出し、各算出されたHPLガス量及びLPLガス量の総量として求めることができる。また、内部EGRガス量は、例えば、背圧と内部EGRガス量との関係を予め実験等により求めてマップ化又は関数化し、それに基づいて背圧の測定値から内部EGRガス量を求めることができる。
全EGRガス量は、前記排気絞り弁の開度が全開とされ且つ前記HPL手段及び前記LPL手段によってEGRが行われない場合の吸入空気量と、実際の吸入空気量と、の差に基づいて算出することもできる。
吸気圧力が等しくても、排気絞り弁を絞らず且つEGRを行わない無EGR状態における吸入空気量に対して、EGRを行ったり排気絞り弁を絞ったりした状態での吸入空気量は、内燃機関に供給されている全EGRガス量の分だけ少なくなる。従って、実際の吸入空気量と無EGR状態での吸入空気量との差に基づいて、全EGRガス量を推定することができる。例えば、吸気圧力と無EGR状態での吸入空気量との関係は予め実験等により求めてマップ化又は関数化し、それに基づいて吸気圧力の測定値から無EGR状態での吸入空気量(無EGR吸入空気量)を算出するとともに、実際の吸入空気量(実吸入空気量)を測定し、無EGR吸入空気量と実吸入空気量との差として全EGRガス量を求めることができる。
なお、上記各構成は、可能な限り組み合わせて採用し得る。
本発明により、HPL手段及びLPL手段を併用するEGRシステムにおいて、PM再生処理の実行時等に排気絞り弁を絞る場合においても十分なEGR制御精度を確保し、好適にEGRを実行することが可能になる。
以下に図面を参照して、この発明を実施するための最良の形態を例示的に詳しく説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限りは、発明の技術的範囲をそれらのみに限定する趣旨のものではない。
図1は、本実施例に係るEGRシステムを適用する内燃機関とその吸気系及び排気系の概略構成を模式的に示す図である。内燃機関1は4つの気筒2を有する水冷式4サイクルディーゼルエンジンである。
各気筒2の吸気ポート(不図示)は吸気マニホールド17において集合し、吸気通路3と連通している。吸気マニホールド17には吸気の圧力を測定する吸気圧センサ22が設けられている。吸気マニホールド17と吸気通路3との接続部近傍には、後述するHPL通路41が接続されている。HPL通路41の接続箇所より上流の吸気通路3には、吸気通路3を流通する吸気の量を調節する第2スロットル弁9が配置されている。第2スロットル弁9より上流の吸気通路3には、吸気を冷却するインタークーラ8が配置されている。インタークーラ8より上流の吸気通路3には、ターボチャージャ13のコンプレッサ11が配置されている。コンプレッサ11より上流の吸気通路3には、後述するLPL通路
31が接続されている。LPL通路31の接続箇所より上流の吸気管3には、吸気通路3に流入する新気の量を調節する第1スロットル弁6が配置されている。第1スロットル弁6より上流の吸気通路3には、吸気通路3に流入する新気の量を測定するエアフローメータ7が設けられている。吸気通路3には、さらに上流においてエアクリーナ(図示略)が接続されている。以下、吸気通路3、吸気マニホールド17、及びこれらに配置されたインタークーラ8やコンプレッサ11等を総称して「吸気系」と呼ぶことがある。
このように構成された吸気系では、エアクリーナを通過して塵や埃等が除去された空気が吸気通路3に流入する。吸気通路3に流入した空気は、コンプレッサ11を通過して加圧された後インタークーラ8を通過して冷却されるとともに、後述するLPL装置30及びHPL装置40によって吸気通路3に導かれたEGRガスと混合しつつ吸気マニホールド17に流入し、吸気マニホールド17の各枝管を介して各気筒2の吸気ポートへ分配される。吸気ポートへ分配された吸気は、吸気バルブ(不図示)が開弁した際に各気筒2の燃焼室内へ吸入される。
各気筒2の排気ポート(不図示)は排気マニホールド18において集合し、排気通路4と連通している。排気マニホールド18には排気中に還元剤としての燃料を添加する燃料添加弁21が設けられている。排気マニホールド18と排気通路4との接続部近傍には、HPL通路41が接続されている。HPL通路41の接続箇所より下流の排気通路4には、ターボチャージャ13のタービン12が配置されている。ターボチャージャ13はタービン12を通過する排気の流路面積を可変にするノズルベーン5を備えた可変容量型のターボチャージャである。タービン12より下流の排気通路4には、排気浄化装置10が配置されている。排気浄化装置10は、酸化触媒と、当該酸化触媒の後段に配置され排気中のPMを捕集し内部に堆積させるたパティキュレートフィルタ(以下、フィルタという)とを有して構成される。排気浄化装置10の構成はこの例に限られず、例えば更に吸蔵還元型NOx触媒等を備えていても良い。排気浄化装置10より下流の排気通路4には、排気通路4を流通する排気の量を調節する排気絞り弁19が配置されている。排気絞り弁19より下流の排気通路4には、LPL通路31が接続されている。以下、排気通路4、排気マニホールド18、及びこれらに配置されたタービン12や排気浄化装置10等を総称して「排気系」と呼ぶことがある。
このように構成された排気系では、内燃機関1の各気筒2で燃焼した既燃ガスが排気ポートを介して排気マニホールド18に排出され、排気通路4に流入する。排気通路4に流入した排気はタービン13を回転駆動した後排気浄化装置10において含有するPM等の有害物質が浄化されるとともに、その一部が後述するLPL装置30及びHPL装置40によってEGRガスとして吸気通路3に導かれる。排気浄化装置10において浄化された後に排気は大気中に放出される。
内燃機関1には、タービン12より上流の排気通路4を流れる排気の一部をコンプレッサ11より下流の吸気通路3に導き、該排気を内燃機関1の燃焼室に戻すHPL装置40が備えられている。HPL装置40は、タービン12より上流の排気通路4と第2スロットル弁9より下流の吸気通路3とを接続するHPL通路41を有し、該HPL通路41を介して前記排気の一部を吸気通路3に流入させる。HPL装置40によって燃焼室に戻される排気を以下「HPLガス」という。HPL通路41には、HPL通路41の流路面積を変更するHPL弁42が配置されている。HPL弁42の開度を調節することによってHPL通路41を流れるHPLガスの量が調節される。
内燃機関1には、タービン12より下流の排気通路4を流れる排気の一部をコンプレッサ11より上流の吸気通路3に導き、該排気を内燃機関1の燃焼室に戻すLPL装置30が備えられている。LPL装置30は、排気絞り弁19より下流の排気通路4とコンプレ
ッサ11より上流の吸気通路3とを接続するLPL通路31を有し、該LPL通路31を介して前記排気の一部を吸気通路3に流入させる。LPL装置30によって燃焼室に戻される排気を以下「LPLガス」という。LPL通路31の途中にはLPLガスを冷却するLPLクーラ33が配置されている。LPLクーラ33より下流側(吸気通路3側)のLPL通路31には、LPL通路31の流路面積を変更するLPL弁32が配置されている。LPL弁32の開度を調節することによってLPL通路31を流れるLPLガスの量が調節される。
このように構成されたHPL装置40及びLPL装置30によってEGRが行われると、水や二酸化炭素等の不燃性且つ吸熱性を有する不活性ガス成分が吸気中に混入されるので、燃焼室における燃料の燃焼温度が低下し、NOxの発生量が減少する。
内燃機関1には、内燃機関1を制御する電子制御装置(ECU)20が併設されている。ECU20は、CPU、ROM、RAM、入出力ポート等を備えたマイクロコンピュータである。ECU20には、上述したエアフローメータ7、吸気圧センサ22の他、内燃機関1のウォータージャケットを循環する冷却水の温度に対応した電気信号を出力する水温センサ14、アクセルペダルの操作量に対応した電気信号を出力するアクセル開度センサ15、内燃機関1のクランクシャフトが所定角度(例えば10°)回転する度にパルス信号を出力するクランクポジションセンサ16等のセンサが電気的に接続され、各センサからの出力信号がECU20に入力される。また、ECU20には、第1スロットル弁6、第2スロットル弁9、ノズルベーン5、排気絞り弁19、LPL弁32、HPL弁42、燃料添加弁21等の機器が電気的に接続され、ECU20から出力される制御信号によってこれらの機器が制御される。
ECU20は、上記各センサから入力される信号に基づいて内燃機関1の運転状態や運転者の要求を取得する。例えば、ECU20は、クランクポジションセンサ16から入力される信号に基づいて機関回転数を算出し、アクセル開度センサ15から入力される信号に基づいて要求されている機関負荷を算出する。そして、算出した機関負荷や機関回転数に応じて上記各機器を制御することで、燃料噴射やEGRの制御を行う。
ここで、本実施例のEGRシステムにおいて行われるEGR制御について説明する。
図2に示すように、本実施例のEGRシステムでは、内燃機関1の運転状態に応じてHPL装置40及びLPL装置30を併用又は切り替えてEGRを行う。図2において、横軸は内燃機関1の機関回転数を表し、縦軸は内燃機関1の機関負荷を表す。図2に示すように、本実施例のEGR制御では、内燃機関1の運転状態が低負荷且つ低回転の時には主にHPL装置40によってEGRを行い、機関負荷又は機関回転数が高くなるほどHPL装置40によって行われるEGR量(HPLガス量)を減少させるとともにLPL装置30によって行われるEGR量(LPLガス量)を増加させ、内燃機関1の運転状態が高負荷乃至高回転側の時には主にLPL装置30によってEGRを行う。
図2において、「HPL」で示された領域が、主にHPL装置40によってEGRが行われる運転状態の領域を表す。この領域を以下HPL領域と呼ぶ。また、「LPL」で示された領域が、主にLPL装置30によってEGRが行われる運転状態の領域を表す。この領域を以下LPL領域と呼ぶ。HPL領域とLPL領域との間の「MIX」で表された中負荷乃至中回転の領域が、HPL装置40及びLPL装置30が併用されてEGRが行われる領域を表す。この領域を以下MIX領域と呼ぶ。上述のように、MIX領域では高負荷乃至高回転側の運転状態になるほどHPLガス量を減少させるとともにLPLガス量を増加させる制御が行われる。換言すれば、高負荷乃至高回転側になるほど全EGRガス中のHPLガスの比率を低くするとともに、LPLガスの比率を高くする。
各運転状態に対応するHPLガス量やLPLガス量の制御目標値は、内燃機関1が当該運転状態で定常運転している時のNOx発生量、スモーク発生量、HC発生量、燃料消費率等の機関性能や排気性能に関する諸特性が所定の規制値や所望の目標値を達成するように適合作業によって予め定められ、ECU20のROMに記憶される。ECU20は取得した機関運転状態に基づいて、当該運転状態に対応するHPLガス量やLPLガス量の制御目標値をROMから読み込み、HPL装置40やLPL装置30によって燃焼室に戻される排気の量がそれぞれ当該制御目標値になるように、HPL弁42、LPL弁32、第1スロットル弁6、第2スロットル弁9、排気絞り弁19、ノズルベーン5等の開度を制御する。
ECU20は、フィルタに堆積したPMの量が所定の許容値を超えたと判定すると、排気絞り弁19を絞るとともに燃料添加弁21から排気中に燃料を添加させる。燃料添加弁21から排気中に燃料が添加されると、添加された燃料はフィルタ前段の酸化触媒において酸化反応し、その際の反応熱によって後段のフィルタに堆積したPMの酸化反応が促進され、フィルタに堆積したPMが除去される。また、排気絞り弁19を絞ることで、排気絞り弁19より上流の排気通路4における背圧が上昇し、内燃機関1から排出される排気の温度が上昇し、酸化触媒やフィルタが昇温されるので、フィルタに堆積したPMの酸化反応が促進される。
このように、適宜フィルタに堆積したPMを酸化除去することで、フィルタのPM捕集能力が維持される。排気絞り弁19を絞るとともに燃料添加弁21から排気中に燃料を添加することによってフィルタに堆積したPMを酸化し除去する処理を、以下PM再生処理という。本実施例においては、PM再生処理を行うECU20が、本発明におけるPM再生手段に相当する。
フィルタに堆積したPMの量を推定する方法としては、既知のPM堆積量推定方法を採用できる。例えば、前回PM再生処理が実行されてからの吸入空気量及び燃料消費量や、車両の走行距離、フィルタの前後差圧等に基づいて推定することができる。また、「所定の許容量」とは、フィルタにおける圧損が内燃機関の正常な運転に支障を来さない大きさになるようなPM堆積量の上限値又は当該上限値に所定のマージンを見込んで定められる量である。
ところで、本実施例のように排気絞り弁19より上流の排気通路4にHPL通路41が接続されているEGRシステムにおいて、PM再生処理を実行する際に排気絞り弁19を絞った場合、背圧が上昇することによってHPL通路41の上流側(すなわち排気通路4との接続部近傍)の圧力と、HPL通路41の下流側(すなわち吸気通路3との接続箇所近傍)の圧力との差が大きくなる。HPL通路41の上流と下流との圧力差が過剰に大きくなると、HPL弁42を精度良く制御することが困難になり、HPLガス量の制御精度が十分に得られなくなる虞があった。
また、背圧が上昇すると、排気行程において気筒2から排気通路4に排出される既燃ガスの量が減少し、排気行程から吸気行程にかけて気筒内に残留する既燃ガス(内部EGRガス)の量が増加する傾向がある。そのため、HPL装置40及びLPL装置30によって内燃機関1に戻される排気(外部EGRガス)の量を、排気絞り弁19を絞らない通常時と同じ量にすると、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が内燃機関1の運転状態に対応する規定値より多くなる可能性がある。その場合、失火等の燃焼不良を招く虞がある。
それに対し、本実施例のEGRシステムでは、PM再生処理に伴って排気絞り弁19が
絞られる場合には、外部EGRガス量の制御をLPL弁32の制御のみによって行うようにした。つまり、PM再生処理を行っていない通常時には上述のように内燃機関1の運転状態に応じてHPL装置40及びLPL装置30を適宜併用又は切り替えて外部EGRガスを内燃機関1に供給するのに対し、排気絞り弁19を絞ってPM再生処理を行っている時には、一時的にHPL弁42を全閉にするとともにLPL装置30のみを用いて外部EGRガスを内燃機関1に供給する。
LPL通路31は排気絞り弁19より下流の排気通路4から排気を取り出すように接続されているため、排気絞り弁19が絞られている場合においても、LPL通路31の上流と下流との圧力差は過剰に大きくはならない。よって、PM再生処理中であって排気絞り弁19が絞られている場合においても、LPL弁32の開度制御によるLPLガス量の制御精度を十分に確保することができ、内燃機関1に供給される外部EGRガスの量を精度良く制御することができる。
この時、LPLガス量が、排気絞り弁19が絞られていない通常時における外部EGRガス量の規定値(内燃機関1の運転状態に応じたHPLガス量の規定値とLPLガス量の規定値との合計)と比較して少なくなるように、LPL弁32を制御するようにした。これにより、排気絞り弁19が絞られて内部EGRガス量が通常時よりも増加している場合においても、内部EGRガス量と外部EGRガス量とを合計した全EGRガス量が規定値より多くなることが抑制される。よって、PM再生処理中において排気絞り弁19が絞られている場合であっても、失火等の燃焼不良が発生することを抑制できる。
さらに、本実施例では、この時、内部EGRガス量と外部EGRガス量(本実施例の場合LPLガス量と等しい)とを合計した全EGRガス量が、排気絞り弁19が絞られていない通常時における全EGRガス量の規定値(内燃機関1の運転状態に応じたHPLガス量の規定値、LPLガス量の規定値、及び内部EGRガス量の規定値の合計)と比較して少なくなるように、LPL弁32を制御するようにした。
PM再生処理中は還元剤として供給される燃料やPMの酸化反応によって排気中の酸素が消費されるため、排気中の酸素濃度が低下するとともに、当該酸化反応によって二酸化炭素が生成されるため、排気中の二酸化炭素濃度が増加する。すなわち、PM再生処理中は、PM再生処理が行われていない通常時よりも不活性成分濃度の濃い排気がEGRガスとして内燃機関1に供給される。従って、PM再生処理中の全EGRガス量を通常時における全EGRガス量の規定値と等しい値に制御してしまうと、想定よりも過剰な量の不活性成分が内燃機関1に供給されることになり、失火等の燃焼不良を招く虞がある。
これに対し、上記のように構成された本実施例によれば、PM再生処理中の全EGRガス量が通常時の全EGRガス量より少なくなるようにLPL弁32が制御されるので、内燃機関1に供給される不活性成分の量が過剰に多くなることが抑制され、失火等の燃焼不良を抑制できる。
ここで、全EGRガス量は、外部EGRガス量と内部EGRガス量とを別々に算出してそれらを合計して求めることができる。外部EGRガス量(すなわちLPLガス量)は、例えば、LPL通路31の上流と下流との差圧と、LPL弁32の開度と、に基づいて算出することができる。また、内部EGRガス量は、例えば、背圧と内部EGRガス量との関係を予め実験等により求めてマップ化又は関数化し、それに基づいて背圧の測定値から内部EGRガス量を求めることができる。
また、全EGRガス量は、排気絞り弁19が絞られておらず且つEGRが行われていない場合の吸入空気量と吸気圧力との関係に基づいて算出することもできる。図3は、吸気
圧力と吸入空気量との関係を示す図である。図3の実線は排気絞り弁19が絞られておらず且つEGRが行われていない場合の吸気圧力と吸入空気量との関係を示している。この関係は予め実験等により求めておくことができる。また、図3の一点鎖線はEGRが行われている場合の吸気圧力と吸入空気量との関係を示している。
EGRが行われている場合、吸気圧力が等しくても、EGRが行われていない場合と比較して、導入されているEGRガス量の分だけ吸入空気量が少なくなる。よって、吸気圧センサ22で測定して得られた吸気圧力に対応するEGR無しの場合の吸入空気量Gbと、エアフローメータ7で測定して得られた実際の吸入空気量Gaと、の差を算出すれば、それが内燃機関1に導入されている全EGRガス量と略等しいと考えることができる。
以下、ECU20によって行われる排気絞り弁19が絞られている時のEGR制御について、図4に基づいて説明する。図4は、排気絞り弁19が絞られている時のEGR制御を行うためのルーチンを示すフローチャートである。このルーチンはECU20によって内燃機関1の稼働中所定時間毎に繰り返し実行される。
まず、ステップ101において、ECU20は排気絞り弁19が絞られているか否かを判定する。具体的には、排気絞り弁19の開度が所定開度Sより閉じ側の開度であるか否かを判定する。ここで所定開度Sとは、排気絞り弁19を絞った場合の排気通路4の背圧が、HPL弁42によるHPLガス量の制御に関して十分な制御精度を確保することが可能な圧力より低くなるような排気絞り弁19の開度の下限値である。つまり、排気絞り弁19の開度が所定開度S以上の開度(開き側の開度)であれば、排気絞り弁19より上流の排気通路4の背圧が過剰に高くなることはなく、従って、HPL通路41の上流と下流との圧力差が過剰に大きくなることはなく、HPL弁42の開度制御によって十分精度良くHPLガス量を制御することが可能である。逆に、排気絞り弁19の開度が所定開度Sより小さい開度(閉じ側の開度)になると、排気絞り弁19より上流の排気通路4における背圧が過剰に高くなり、HPL通路41の上流及び下流の圧力差が過剰に大きくなり、HPL弁42の開度制御によってHPLガス量を精度良く制御することが困難になる。本実施例の場合、PM再生処理中は排気絞り弁19が絞られるので、ステップS101ではPM再生処理中であるか否かを判定するようにしても良い。ステップS101で肯定判定された場合、ECU20はステップS102に進む。ステップS101で否定判定された場合、ECU20はステップS110に進む。
ステップS102において、ECU20はエアフローメータ7によって実吸入空気量Gaを取得する。
ステップS103において、ECU20は吸気圧センサ22によって吸気圧力Pimを取得する。
ステップS104において、ECU20は排気絞り弁19を絞っておらず且つEGRを行っていない状態で吸気圧力がPimである場合に想定される吸入空気量Gbを、図3に示した吸気圧力と吸入空気量との関係(実線で表示)に基づいて算出する。
ステップS105において、ECU20は実EGR率EGRaを算出する。具体的には、ステップS104で算出したEGR無し時の吸入空気量GbとステップS102で取得した実吸入空気量との差(Gb−Ga)によって実EGRガス量を算出し、算出した実EGRガス量に基づいて実EGR率を(Gb−Ga)/Gaによって算出する。
ステップS106において、ECU20は目標EGR率EGRtrgを算出する。目標EGR率EGRtrgは、上述したように、排気絞り弁19が絞られていない場合に内燃
機関1の運転状態に応じて定められるEGR率の目標値と比較して小さい値に設定される。
ステップS107において、ECU20は実EGR率EGRaと目標EGR率EGRtrgとの大小関係を判定する。実EGR率EGRaが目標EGR率EGRtrgと一致した場合、ECU20は本ルーチンの実行を一旦終了する。実EGR率EGRa>目標EGR率EGRtrgの場合、ECU20はステップS108に進み、LPL弁32の開度を閉じ側に補正する。一方、実EGR率EGRa<目標EGR率EGRtrgの場合、ECU20はステップS109に進み、LPL弁32の開度を開き側に補正する。
ステップS110では、ECU20は排気絞り弁19が絞られていない場合の通常時のEGR制御(すなわち、図2に示したEGR制御マップに従った制御)を行う。
なお、以上述べた実施例は本発明を説明するための一例であって、本発明の本旨を逸脱しない範囲内において上記の実施例には種々の変更を加え得る。例えば、本実施例では、排気絞り弁19が所定開度Sより閉じ側の開度に絞られる場合としてPM再生処理が実行される場合を例示したが、冷間時に内燃機関1を暖機する場合にも排気絞り弁19の開度が絞られる場合がある。この場合にも、排気絞り弁19が所定開度Sより閉じ側の開度に絞られる時に本実施例と同様にHPL弁42を閉弁してLPL弁32のみを制御して外部EGRガス量を制御することによって、精度良くEGRを制御することが可能になる。
また、本実施例では排気絞り弁19が所定開度Sより閉じ側の開度に絞られる場合、HPL弁42を全閉する構成について説明したが、HPL弁42の開度をある一定の開度に固定するようにしても良い。この場合、開度が固定されたHPL弁42を通過して内燃機関1に一定量のHPLガスが供給されることになるが、HPLガス量は一定となるので、やはり外部EGRガス量の制御はLPL弁32の開度制御によってなされることになる。従って、排気絞り弁19が絞られている場合においても精度良くEGR制御を行うことができる。
実施例1におけるEGRシステムを適用する内燃機関とその吸気系及び排気系の概略構成を示す図である。 実施例1におけるEGR制御マップを示す図である。 実施例1における吸気圧力と吸入空気量との関係を示す図である。 実施例1における排気絞り弁が絞られている時のEGR制御ルーチンを示すフローチャートである。
符号の説明
1 内燃機関
2 気筒
3 吸気通路
4 排気通路
5 ノズルベーン
6 第1スロットル弁
7 エアフローメータ
8 インタークーラ
9 第2スロットル弁
10 排気浄化装置
11 コンプレッサ
12 タービン
13 ターボチャージャ
14 水温センサ
15 アクセル開度センサ
16 クランクポジションセンサ
17 吸気マニホールド
18 排気マニホールド
19 排気絞り弁
20 ECU
21 燃料添加弁
22 吸気圧センサ
30 LPL装置
31 LPL通路
32 LPL弁
33 LPLクーラ
40 HPL装置
41 HPL通路
42 HPL弁

Claims (7)

  1. 内燃機関の排気通路に設けられたタービンと内燃機関の吸気通路に設けられたコンプレッサとを有するターボチャージャと、
    前記タービンより下流の排気通路に設けられ排気通路の流路面積を変更する排気絞り弁と、
    前記タービンより上流の排気通路と前記コンプレッサより下流の吸気通路とを接続するHPL通路及び該HPL通路に設けられ該HPL通路の流路面積を変更するHPL弁を有し該HPL通路を介して排気の一部を内燃機関に導くHPL手段と、
    前記排気絞り弁より下流の排気通路と前記コンプレッサより上流の吸気通路とを接続するLPL通路及び該LPL通路に設けられ該LPL通路の流路面積を変更するLPL弁を有し該LPL通路を介して排気の一部を内燃機関に導くLPL手段と、
    前記HPL弁及び前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御するEGR制御手段と、
    を備え、
    前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL弁を所定開度(H)に略固定するとともに、前記LPL弁の開度を制御することによって内燃機関に戻される排気の量を制御することを特徴とする内燃機関のEGRシステム。
  2. 請求項1において、
    前記所定開度(H)は、全閉である内燃機関のEGRシステム。
  3. 請求項1又は2において、
    前記EGR制御手段は、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られる場合は、前記HPL手段及び前記LPL手段によって前記内燃機関に戻される排気である外部EGRガスの量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の外部EGRガスの量より少なくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
  4. 請求項1〜3のいずれかにおいて、
    前記タービンより下流且つ前記排気絞り弁より上流の排気通路に設けられ排気中のPMを捕集するフィルタと、
    前記フィルタに堆積したPMを酸化させるPM再生手段と、
    を更に備え、
    前記排気絞り弁の開度が前記所定開度(S)より閉じ側の開度に絞られる場合とは、前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が絞られる場合である内燃機関のEGRシステム。
  5. 請求項4において、
    前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が前記所定開度(S)より閉じ側の開度に絞られる場合、前記内燃機関の排気行程から吸気行程にかけて気筒内に残留する既燃ガスである内部EGRガスの量と前記外部EGRガスの量とを合計した全EGRガス量が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時の全EGRガス量より少なくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
  6. 請求項4において、
    前記PM再生手段によるPMの酸化を促進させるべく排気絞り弁が前記所定開度(S)より閉じ側の開度に絞られる場合、前記内燃機関の排気行程から吸気行程にかけて気筒内
    に残留する既燃ガスである内部EGRガスの量と前記外部EGRガスの量とを合計した全EGRガス量から算出されるEGR率が、前記排気絞り弁の開度が所定開度(S)より閉じ側の開度に絞られない通常時のEGR率より小さくなるように、前記LPL弁の開度を制御する内燃機関のEGRシステム。
  7. 請求項5又は6において、
    前記排気絞り弁の開度が全開とされ且つ前記HPL手段及び前記LPL手段によってEGRが行われない場合の吸入空気量と実際の吸入空気量との差に基づいて前記全EGRガス量を算出する内燃機関のEGRシステム。
JP2007103562A 2007-04-11 2007-04-11 内燃機関のegrシステム Expired - Fee Related JP4910849B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103562A JP4910849B2 (ja) 2007-04-11 2007-04-11 内燃機関のegrシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103562A JP4910849B2 (ja) 2007-04-11 2007-04-11 内燃機関のegrシステム

Publications (2)

Publication Number Publication Date
JP2008261256A true JP2008261256A (ja) 2008-10-30
JP4910849B2 JP4910849B2 (ja) 2012-04-04

Family

ID=39983918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103562A Expired - Fee Related JP4910849B2 (ja) 2007-04-11 2007-04-11 内燃機関のegrシステム

Country Status (1)

Country Link
JP (1) JP4910849B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216449A (ja) * 2009-03-19 2010-09-30 Toyota Motor Corp 内燃機関の排気浄化装置
WO2011074302A1 (ja) * 2009-12-18 2011-06-23 本田技研工業株式会社 内燃機関の制御装置
WO2012093515A1 (ja) * 2011-01-07 2012-07-12 本田技研工業株式会社 内燃機関の制御装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207917A (ja) * 2000-01-21 2001-08-03 Toyota Motor Corp 排気絞り弁の異常検出装置
JP2002155724A (ja) * 2000-09-07 2002-05-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002276405A (ja) * 2001-03-19 2002-09-25 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
JP2003083034A (ja) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp 排気浄化装置
JP2003343287A (ja) * 2002-05-27 2003-12-03 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2004150319A (ja) * 2002-10-29 2004-05-27 Mitsubishi Fuso Truck & Bus Corp 圧縮着火式内燃機関
JP2004278348A (ja) * 2003-03-13 2004-10-07 Toyota Motor Corp 内燃機関の制御装置
WO2005003536A1 (ja) * 2003-07-01 2005-01-13 Tokudaiji Institute Of Automotive Culture Inc. ディーゼルエンジンの排気浄化装置並びに制御手段
JP2005036663A (ja) * 2003-07-16 2005-02-10 Toyota Motor Corp 内燃機関の排気制御装置、及び排気流量推定方法
JP2005315189A (ja) * 2004-04-30 2005-11-10 Isuzu Motors Ltd ディーゼルエンジンの排気ガス後処理装置
JP2006336547A (ja) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207917A (ja) * 2000-01-21 2001-08-03 Toyota Motor Corp 排気絞り弁の異常検出装置
JP2002155724A (ja) * 2000-09-07 2002-05-31 Toyota Motor Corp 内燃機関の排気浄化装置
JP2002276405A (ja) * 2001-03-19 2002-09-25 Isuzu Motors Ltd ディーゼルエンジンの排気浄化装置
JP2003083034A (ja) * 2001-09-14 2003-03-19 Mitsubishi Motors Corp 排気浄化装置
JP2003343287A (ja) * 2002-05-27 2003-12-03 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2004150319A (ja) * 2002-10-29 2004-05-27 Mitsubishi Fuso Truck & Bus Corp 圧縮着火式内燃機関
JP2004278348A (ja) * 2003-03-13 2004-10-07 Toyota Motor Corp 内燃機関の制御装置
WO2005003536A1 (ja) * 2003-07-01 2005-01-13 Tokudaiji Institute Of Automotive Culture Inc. ディーゼルエンジンの排気浄化装置並びに制御手段
JP2005036663A (ja) * 2003-07-16 2005-02-10 Toyota Motor Corp 内燃機関の排気制御装置、及び排気流量推定方法
JP2005315189A (ja) * 2004-04-30 2005-11-10 Isuzu Motors Ltd ディーゼルエンジンの排気ガス後処理装置
JP2006336547A (ja) * 2005-06-02 2006-12-14 Hino Motors Ltd Egr装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216449A (ja) * 2009-03-19 2010-09-30 Toyota Motor Corp 内燃機関の排気浄化装置
WO2011074302A1 (ja) * 2009-12-18 2011-06-23 本田技研工業株式会社 内燃機関の制御装置
CN102597466A (zh) * 2009-12-18 2012-07-18 本田技研工业株式会社 内燃机的控制装置
EP2514952A1 (en) * 2009-12-18 2012-10-24 Honda Motor Co., Ltd. Control device for internal-combustion engine
JP2013148100A (ja) * 2009-12-18 2013-08-01 Honda Motor Co Ltd 内燃機関の制御装置
JP5270008B2 (ja) * 2009-12-18 2013-08-21 本田技研工業株式会社 内燃機関の制御装置
EP2514952A4 (en) * 2009-12-18 2014-02-19 Honda Motor Co Ltd CONTROL DEVICE FOR A COMBUSTION ENGINE
WO2012093515A1 (ja) * 2011-01-07 2012-07-12 本田技研工業株式会社 内燃機関の制御装置
CN103168158A (zh) * 2011-01-07 2013-06-19 本田技研工业株式会社 内燃机的控制装置
JP5511989B2 (ja) * 2011-01-07 2014-06-04 本田技研工業株式会社 内燃機関の制御装置
US9181894B2 (en) 2011-01-07 2015-11-10 Honda Motor Co., Ltd. Control system for internal combustion engine
CN103168158B (zh) * 2011-01-07 2015-11-25 本田技研工业株式会社 内燃机的控制装置

Also Published As

Publication number Publication date
JP4910849B2 (ja) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4281804B2 (ja) 内燃機関の排気浄化システム
JP4285528B2 (ja) 内燃機関の排気再循環システム
US8091535B2 (en) Internal combustion engine with an exhaust-gas recirculation and method for operating an internal combustion engine
JP4225322B2 (ja) 内燃機関の排気還流装置
JP4611941B2 (ja) 内燃機関の排気還流装置
JP4924229B2 (ja) 内燃機関のegrシステム
US10072590B2 (en) Control device and control method for diesel engine
JP2008128028A (ja) 内燃機関の排気再循環システム
JP2001164999A (ja) 排気再循環装置の詰まり検出装置
JP2008138638A (ja) 内燃機関の排気還流装置
JP4736931B2 (ja) 内燃機関の排気還流装置
JP2009046996A (ja) 内燃機関のegrシステム
JP2008138598A (ja) 内燃機関のegrシステム
JP2011001893A (ja) 排気浄化システム
JP4900004B2 (ja) 内燃機関のegrシステム
JP4910849B2 (ja) 内燃機関のegrシステム
JP4957343B2 (ja) 内燃機関のegrシステム
JP4760684B2 (ja) 内燃機関の排気浄化システム
JP4735519B2 (ja) 内燃機関の排気再循環装置
JP4946904B2 (ja) 内燃機関の制御システム
JP2014101812A (ja) エンジンの排気環流装置
JP2013068210A (ja) エンジンの制御装置
JP7225571B2 (ja) 車両用内燃機関の制御装置
JP2006112273A (ja) 内燃機関
JP2007291975A (ja) 内燃機関の排気還流装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees