JP2008260648A - Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles - Google Patents

Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles Download PDF

Info

Publication number
JP2008260648A
JP2008260648A JP2007103375A JP2007103375A JP2008260648A JP 2008260648 A JP2008260648 A JP 2008260648A JP 2007103375 A JP2007103375 A JP 2007103375A JP 2007103375 A JP2007103375 A JP 2007103375A JP 2008260648 A JP2008260648 A JP 2008260648A
Authority
JP
Japan
Prior art keywords
magnetic
ultrafine particles
magnetic ultrafine
inorganic oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007103375A
Other languages
Japanese (ja)
Inventor
Haruhide Kyo
東英 巨
Bai Hen
培 辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPROUT NET WORKING KK
Original Assignee
SPROUT NET WORKING KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPROUT NET WORKING KK filed Critical SPROUT NET WORKING KK
Priority to JP2007103375A priority Critical patent/JP2008260648A/en
Publication of JP2008260648A publication Critical patent/JP2008260648A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of coating an inorganic oxide film on the surface of magnetite ultrafine particles in order to develop a preparation method and a dispersion method of nano-composite fine particles having resistance against oxidation, high temperatures and wear by compositing the surface of magnetic ultrafine particles in stead of coating magnetite on the surface. <P>SOLUTION: To prepare composite magnetic ultrafine particles by coating an inorganic oxide film on the surface of magnetic ultrafine particles using an inorganic chemical reaction. A dispersion of magnetic ultrafine particles synthesized by ultrasonic waves in a binder is prepared. A method of foaming an inorganic oxide film on the surface of the magnetic ultrafine particles and a method of dispersing the particles are presented. A composite magnetic ultrafine particle having a wide range of applications is prepared. The composite magnetic ultrafine particle is applicable for magnetic materials for magnetic optics and drug transportation. A magnetic fluid is obtained by dispersing the composite magnetic ultrafine particles in a medium to improve the characteristics such as high frequency magnetic wave absorption and magnetic optics. The application to medical DDS is made possible. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁性超微粒子の製造、表面コーティング処理方法及び分散媒体に関し、特に表面コーティング処理することによって耐高温性、磁気光学効果や高周波マイクロ波の吸収を向上させた磁性微粒子の製造方法および磁性微粒子分散媒体に関する技術分野である。   The present invention relates to production of magnetic ultrafine particles, a surface coating treatment method, and a dispersion medium, and in particular, a method for producing magnetic fine particles having improved high-temperature resistance, magneto-optical effect and high-frequency microwave absorption and magnetic properties by surface coating treatment. This is a technical field related to fine particle dispersion media.

近年,ナノテクノロジーの発展に伴い, 様々な分野でナノ材料が応用されている。特に磁性ナノ微粒子は磁気研磨,磁気記録材料,磁性流体,触媒,生物医学材料など多くの応用が期待されている。磁性微粒子の合成方法には,ゾルーゲル法や超臨界水熱法,共沈法などが知られている。共沈法は制御が容易であり,製造コストが安く, 簡単に大量生産ができる。しかし,合成された磁性超微粒子では酸化し易い、分散性と耐磨耗性が弱いなど欠点がある。   In recent years, with the development of nanotechnology, nanomaterials are applied in various fields. In particular, magnetic nanoparticles are expected to have many applications such as magnetic polishing, magnetic recording materials, magnetic fluids, catalysts, and biomedical materials. Known methods for synthesizing magnetic fine particles include the sol-gel method, supercritical hydrothermal method, and coprecipitation method. The coprecipitation method is easy to control, the manufacturing cost is low, and mass production is easy. However, the synthesized magnetic ultrafine particles have drawbacks such as easy oxidation and poor dispersibility and wear resistance.

分散媒体の使用においては、磁性超微粒子はそのままの形で樹脂などに分散して用いられるもののほかに、磁性超微粒子の表面に表面処理剤を用いて粒子分散方法があるが、その場合、表面に絶縁になる酸化膜の薄い層を設けることなどがある。   In the use of a dispersion medium, in addition to the magnetic ultrafine particles used as they are dispersed in a resin or the like, there is a particle dispersion method using a surface treatment agent on the surface of the magnetic ultrafine particles. For example, a thin layer of an oxide film that becomes an insulating layer may be provided.

磁性超微粒子には、表面構造は粒子の分散性と微粒子の機能性に及ぼす影響が大きい。しかし、単層の微粒子は磁性粒子間の磁気的あるいは電気的な結合を弱める役割を果しているが、多目的に対応することができない。   For magnetic ultrafine particles, the surface structure has a large effect on the dispersibility of the particles and the functionality of the fine particles. However, the single-layer fine particles play a role of weakening the magnetic or electrical coupling between the magnetic particles, but cannot cope with multiple purposes.

最近に公開したマグネタイト被覆金属磁性微粒子の製造方法の関連出願は特許出願平10−542901に示す。その特許は、常温の撹拌法によるマグネタイトめっき反応においてマグネタイト被覆金属磁性微粒子の合成方法である。   A recently published application related to the method for producing magnetite-coated metal magnetic fine particles is shown in Japanese Patent Application No. 10-542901. The patent is a method for synthesizing magnetite-coated metal magnetic fine particles in a magnetite plating reaction by a stirring method at room temperature.

磁性多層微粒子とその製造及び磁性多層分散媒体の関連出願は特許出願平12−281010に示す。その特許は、中心核を形成する微粒子とこれを被覆する1層または複数層の被覆層とを有し、被覆層にはマグネタイトめっきによって形成された強磁性層を有する磁性多層微粒子を製造し、この磁性微粒子をバインダ中に分散させ成形して磁性多層微粒子分散媒体を形成する。   A related application of magnetic multilayer fine particles and their production and magnetic multilayer dispersion medium is shown in Japanese Patent Application No. 12-281010. The patent manufactures magnetic multilayer fine particles having fine particles forming a central core and one or more coating layers covering the fine particles, and having a ferromagnetic layer formed by magnetite plating in the coating layer, The magnetic fine particles are dispersed in a binder and molded to form a magnetic multilayer fine particle dispersion medium.

そこで、本発明者らは特許出願2006-130844にサイズが8nm程度までの磁性超微粒子の創製法を提案し、界面活性剤のコーティングより油及び水に分散する方法についての研究を行った。   Therefore, the present inventors proposed a method for creating magnetic ultrafine particles having a size of up to about 8 nm in Patent Application 2006-130844, and conducted research on a method of dispersing in oil and water from a surfactant coating.

なお、本発明者らは自分らが作製した磁性超粒子と磁性流体の光学効果を発見し、新しい磁気記録法とその装置の原理を提案した。   In addition, the present inventors discovered the optical effect of the magnetic superparticle and magnetic fluid which they produced, and proposed the principle of the new magnetic recording method and its apparatus.

また、本発明者らは自分らが作製した磁性超粒子と磁性流体を用いて、Spring−8において各種生物媒体に使用することがあるが、現段階では医療DDS(ドラッグデリバリーシステム)への基礎研究が行われているに過ぎない。
特出2004−285640公報 特出平12−281010公報 特出2006−130844公報
In addition, the present inventors may use them for various biological media in Spring-8 using magnetic superparticles and magnetic fluids produced by them, but at present, the basis for medical DDS (drug delivery system). Only research is being done.
Japanese Patent Publication No. 2004-285640 Japanese Patent Publication No.12-281010 Japanese Patent Publication No. 2006-130844

本発明はこのような背景技術に対して、微粒子の表面にマグネタイト被覆ではなく、磁性超微粒子の表面複合化によって酸化しにくく、耐高温・耐磨耗性があるナノ複合微粒子の創製法および分散法を開発するために、マグネタイト超微粒子表面に無機酸化膜コーティング方法を提案する。   In contrast to such background technology, the present invention is not a magnetite coating on the surface of fine particles, but a method for creating and dispersing nano-composite fine particles that are resistant to oxidation by surface complexation of magnetic ultrafine particles and that are resistant to high temperatures and wear. In order to develop the method, an inorganic oxide coating method is proposed on the surface of magnetite ultrafine particles.

なお、本発明は磁性超粒子に無機酸化膜コーティング層構造を持たせることによって、高周波マイクロ波複素透磁率特性や磁気光学効果を向上させるなど、電磁界応答について新たな可能性に着目する。   The present invention focuses on new possibilities for electromagnetic field response, such as improving the high-frequency microwave complex permeability characteristics and the magneto-optical effect by giving the magnetic superparticle an inorganic oxide coating layer structure.

また、複合磁性超粒子の親水性、耐酸化性と薬物の親和性を用いて、医療DDSの実用研究に応用することが可能になる。   Moreover, it becomes possible to apply to the practical research of medical DDS by using the hydrophilicity, oxidation resistance and drug affinity of the composite magnetic superparticle.

このような複合磁性超微粒子の表面層における物性および機能性を制御することより、一層に巨大磁気抵抗効果(GMR)に有効利用することが期待できる。   By controlling the physical properties and functionality of the surface layer of such composite magnetic ultrafine particles, it can be expected to be used more effectively for the giant magnetoresistance effect (GMR).

従来では磁性微粒子の合成方法には,ゾルーゲル法や超臨界水熱法,共沈法などが知られている。共沈法は制御が容易であり,製造コストが安く, 簡単に大量生産ができる。しかし,合成された磁性超微粒子では酸化し易い、分散性と耐磨耗性が弱いなど欠点があった。その欠点に対して、無機酸化物を生成する反応を利用して磁性超微粒子の表面に無機酸化膜をコーティングする方法を提案した。磁性超微粒子の表面に無機酸化膜の作製原理については、最初にアルカリ性溶液の中にマグネタイト微粒子の表面に吸収したOH-イオンと金属塩化物によりマグネタイト微粒子の表面に部分的活性点で化学反応を起こって、表面被覆膜の結合点となる。次に金属塩化物との化学反応を続けて被覆膜がどんどん厚くなる。そしてマグネタイト微粒子の表面における無機酸化膜のコーティング層が得られる。そして、複合超微粒子を直接にイオン交換水中に入れての超音波(45Hz,100W)処理によって磁性超微粒子が分散させる。 Conventionally, sol-gel method, supercritical hydrothermal method, coprecipitation method and the like are known as methods for synthesizing magnetic fine particles. The coprecipitation method is easy to control, the manufacturing cost is low, and mass production is easy. However, the synthesized magnetic ultrafine particles have drawbacks such as easy oxidation and poor dispersibility and wear resistance. In response to this drawback, we proposed a method of coating the surface of magnetic ultrafine particles with an inorganic oxide film using a reaction that generates an inorganic oxide. Regarding the principle of preparing an inorganic oxide film on the surface of magnetic ultrafine particles, first, a chemical reaction is carried out on the surface of magnetite fine particles on the surface of magnetite fine particles by OH - ions and metal chloride absorbed in the surface of magnetite fine particles in alkaline solution. Occurs and becomes a bonding point of the surface coating film. Next, the chemical reaction with the metal chloride continues and the coating film becomes thicker and thicker. And the coating layer of the inorganic oxide film in the surface of a magnetite fine particle is obtained. Then, the magnetic ultrafine particles are dispersed by ultrasonic (45 Hz, 100 W) treatment in which the composite ultrafine particles are directly placed in ion-exchanged water.

本考案は複合磁性微粒子の無機酸化膜により粒子が分散し易い、また複合磁性微粒子が耐高温性良くなり、使用寿命が長くなる。そして表面に酸化膜などの薄い層を設けることにより、粒子間の絶縁を得ているものなどがある。また、複合磁性超粒子が医療DDSへの応用が可能になる。   In the present invention, the particles are easily dispersed by the inorganic oxide film of the composite magnetic fine particles, and the composite magnetic fine particles have a high temperature resistance and a long service life. Some have obtained insulation between particles by providing a thin layer such as an oxide film on the surface. In addition, composite magnetic superparticles can be applied to medical DDS.

本発明者らは磁性超粒子と磁性流体の光学効果を発見し、特許出願2006-130844中に新しい磁気記録法とその装置の原理を提案した。外部磁場の変化により磁性超微粒子の整列結晶構造を変わり、磁性流体の内部における超微粒子の磁区配向の変化より偏光現象が起こられて,レーザ光の反射率が高くなる。それを利用して新しい磁気記憶ディバイスへの応用が可能である。   The present inventors discovered the optical effect of magnetic superparticles and magnetic fluid, and proposed a new magnetic recording method and the principle of the apparatus in patent application 2006-130844. The alignment crystal structure of the magnetic ultrafine particles is changed by the change of the external magnetic field, and the polarization phenomenon is caused by the change of the magnetic domain orientation of the ultrafine particles inside the magnetic fluid, so that the reflectance of the laser light is increased. It can be applied to new magnetic storage devices.

本考案によって合成された複合磁性超微粒子の表面にアモルファス状態の無機酸化膜をコーティングすることができる。その複合磁性超微粒子の使用条件および使用範囲が広くなる。また、複合磁性超微粒子では超音波を用いてバインダ中に分散され成形することが可能になる。   The surface of the composite magnetic ultrafine particles synthesized according to the present invention can be coated with an amorphous inorganic oxide film. The use conditions and use range of the composite magnetic ultrafine particles are widened. In addition, composite magnetic ultrafine particles can be dispersed and molded in a binder using ultrasonic waves.

特許出願2006-130844による合成した磁性超微粒子の分散溶液中にケイ酸塩を入れ、塩酸を適量添加し、ケイ酸ナトリウムと塩酸の反応(式1)によってケイ酸を生成する。アルカリ性の条件下でケイ酸の活性が高いため、ケイ酸はすぐ溶液中のマグネタイト微粒子の表面に吸着する。最初にマグネタイト微粒子の表面に吸収したケイ酸がマグネタイト微粒子の表面における部分的活性点との化学反応(式2)を起こって、表面被覆膜の結合点となる。次にケイ酸が続けて被覆膜と式(3)のように反応して,その反応を続けていくより被覆膜がどんどん厚くなる。そしてマグネタイト微粒子の表面におけるSiO2のコーティング層が得られる。コーティングされた超微粒子を直接にイオン交換水中に入れての超音波(45Hz,100W)処理によって磁性超微粒子(複合微粒子)を分散させる。また、ほかの反応よりケイ酸を生成すれば、反応式(2)と(3)と同様にマグネタイト微粒子の表面にSiO2膜を被覆することが可能である。
A silicate is put in a dispersion of magnetic ultrafine particles synthesized according to Patent Application 2006-130844, an appropriate amount of hydrochloric acid is added, and silicic acid is generated by the reaction of sodium silicate and hydrochloric acid (formula 1). Since the activity of silicic acid is high under alkaline conditions, silicic acid is immediately adsorbed on the surface of magnetite fine particles in the solution. First, the silicic acid absorbed on the surface of the magnetite fine particles undergoes a chemical reaction (formula 2) with a partially active site on the surface of the magnetite fine particles, and becomes a bonding point of the surface coating film. Next, silicic acid continues to react with the coating film as shown in Formula (3), and the coating film becomes thicker than the reaction continues. The coating layer of SiO 2 on the surface of the magnetite particles obtained. The magnetic ultrafine particles (composite fine particles) are dispersed by ultrasonic (45 Hz, 100 W) treatment in which the coated ultrafine particles are directly placed in ion-exchanged water. If silicic acid is generated from other reactions, the surface of the magnetite fine particles can be coated with a SiO 2 film as in the reaction formulas (2) and (3).

透過型電子顕微鏡を用いて観察した複合超微粒子の微細構造は図1に示す。この結果からSiO2膜はアモルファスの状態で存在する。膜の厚さは約2nmである。また、フーリエ変換赤外分光装置FTIR及びX線光電子分光分析XPSの測定結果からSiO2存在することが確認できった。 The fine structure of the composite ultrafine particles observed using a transmission electron microscope is shown in FIG. From this result, the SiO 2 film exists in an amorphous state. The thickness of the film is about 2 nm. Moreover, it was confirmed from the measurement results of the Fourier transform infrared spectrometer FTIR and X-ray photoelectron spectroscopy XPS that SiO 2 was present.

複合磁性超微粒子の耐熱実験の結果は図2に示す。それは各温度下、10min保持して、磁性微粒子のXRD回折パターンです。図2に示す。SiO2添加量1.0wt%の場合は微粒子が700℃まで完全に酸化した。無SiO2コーティングの場合は400℃で完全に酸化する。図3に示した。以上の結果から,超微粒子の表面にSiO2層をコーティングできることが証明された。この方法で合成された磁性超微粒子の高温使用範囲が広くなることが分かった。 The results of the heat resistance experiment of the composite magnetic ultrafine particles are shown in FIG. It is an XRD diffraction pattern of magnetic fine particles held at each temperature for 10 min. As shown in FIG. When the added amount of SiO 2 was 1.0 wt%, the fine particles were completely oxidized to 700 ° C. In the case of a non-SiO 2 coating, it is completely oxidized at 400 ° C. This is shown in FIG. From the above results, it was proved that SiO 2 layer can be coated on the surface of ultrafine particles. It was found that the high temperature use range of the magnetic ultrafine particles synthesized by this method is widened.

複合磁性超微粒子の分散溶液中に塩化チタン、またチタン酸エチル塩を入れ、水を適量で添加し、塩化チタン、またチタン酸エチル塩と水の反応によって酸化チタンを生成する。溶液中のマグネタイト微粒子の表面に吸着すると酸化チタンの覆膜をコーティングすることが可能である。複合超微粒子を直接にイオン交換水中に入れての超音波(45Hz,100W)処理によって磁性超微粒子(複合微粒子)が分散されることが出来る。   Titanium chloride or ethyl titanate is added to the dispersion solution of the composite magnetic ultrafine particles, water is added in an appropriate amount, and titanium oxide is produced by the reaction of titanium chloride or ethyl titanate with water. When adsorbed on the surface of magnetite fine particles in the solution, it is possible to coat the titanium oxide coating. Magnetic ultrafine particles (composite fine particles) can be dispersed by ultrasonic (45 Hz, 100 W) treatment in which the composite ultrafine particles are directly placed in ion-exchanged water.

本提案は磁性超微粒子の表面における無機酸化膜のコーティング処理および分散方面に使用することが可能である。   This proposal can be used for coating and dispersion of inorganic oxide film on the surface of magnetic ultrafine particles.

複合磁性超微粒子の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of composite magnetic ultrafine particles. 複合磁性超微粒子の耐熱実験の測定結果。Measurement results of heat resistance experiment of composite magnetic ultrafine particles. 無SiO2コーティング磁性超微粒子耐え熱実験の測定結果。No SiO 2 coating magnetic measurement result of the ultra-fine particles withstand heat experiment.

Claims (7)

この請求項目は特許出願2006-130844による合成した磁性超微粒子の表面に無機酸化膜をコーティングする方法と分散方法となる。該方法は,金属の塩類(ケイ酸塩、チタンのエチル塩類など)を用いて塩酸あるいは水と反応して無機酸化物を生成する。それをマグネタイト微粒子の表面に吸着すると無機酸化膜のコーティング層が得られる。その後,超音波処理によって磁性超微粒子(複合微粒子)が分散させる。また、この磁性超微粒子を界面活性剤に入れることより、有機バインダ溶液中に分散することができる。   This claim is a method for coating an inorganic oxide film on the surface of the magnetic ultrafine particles synthesized according to Patent Application 2006-130844 and a dispersion method. In this method, a metal salt (silicate, ethyl salt of titanium, etc.) is used to react with hydrochloric acid or water to produce an inorganic oxide. When it is adsorbed on the surface of magnetite fine particles, a coating layer of an inorganic oxide film is obtained. Thereafter, magnetic ultrafine particles (composite fine particles) are dispersed by ultrasonic treatment. Moreover, the magnetic ultrafine particles can be dispersed in the organic binder solution by being put in a surfactant. 前記磁性超微粒子の表面に無機酸化膜をコーティングする方法請求項1記載の表面処理方法。   The surface treatment method according to claim 1, wherein the surface of the magnetic ultrafine particles is coated with an inorganic oxide film. 前記磁性超微粒子をバインダ中に分散される請求項1記載の分散処理方法。   The dispersion treatment method according to claim 1, wherein the magnetic ultrafine particles are dispersed in a binder. 請求項1ないし3のいずれか1項記載の磁性超微粒子がバインダ中に分散され成形されている耐高温磁性材料。   A high-temperature resistant magnetic material in which the magnetic ultrafine particles according to any one of claims 1 to 3 are dispersed and molded in a binder. 請求項1ないし3のいずれか1項記載の磁性超微粒子がバインダ中に分散され成形されている電波吸収材。   A radio wave absorber in which the magnetic ultrafine particles according to any one of claims 1 to 3 are dispersed and molded in a binder. 請求項1ないし3のいずれか1項記載の磁性超微粒子がバインダ中に分散され成形されている磁気光学効果材料。   4. A magneto-optical effect material, wherein the magnetic ultrafine particles according to claim 1 are dispersed and molded in a binder. 請求項1ないし3のいずれか1項記載の磁性超微粒子がバインダ中に分散され成形されている薬物輸送材料。   A drug transport material in which the magnetic ultrafine particles according to any one of claims 1 to 3 are dispersed and molded in a binder.
JP2007103375A 2007-04-11 2007-04-11 Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles Pending JP2008260648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103375A JP2008260648A (en) 2007-04-11 2007-04-11 Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103375A JP2008260648A (en) 2007-04-11 2007-04-11 Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles

Publications (1)

Publication Number Publication Date
JP2008260648A true JP2008260648A (en) 2008-10-30

Family

ID=39983417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103375A Pending JP2008260648A (en) 2007-04-11 2007-04-11 Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles

Country Status (1)

Country Link
JP (1) JP2008260648A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319054A (en) * 2014-10-11 2015-01-28 昆明理工大学 Manometer magnetofluid and application thereof to purification of pollutants
US9236669B2 (en) 2007-08-07 2016-01-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
WO2017135393A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Method for producing color characteristic-controlled oxide particles, oxide particles, and coating or film composition containing said oxide particles
WO2017209305A1 (en) * 2016-06-02 2017-12-07 エム・テクニック株式会社 Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
US9949898B2 (en) 2015-10-05 2018-04-24 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
KR101919156B1 (en) 2011-07-20 2018-11-15 닛토덴코 가부시키가이샤 Patch preparation

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9236669B2 (en) 2007-08-07 2016-01-12 Nanocomp Technologies, Inc. Electrically and thermally non-metallic conductive nanostructure-based adapters
KR101919156B1 (en) 2011-07-20 2018-11-15 닛토덴코 가부시키가이샤 Patch preparation
CN104319054A (en) * 2014-10-11 2015-01-28 昆明理工大学 Manometer magnetofluid and application thereof to purification of pollutants
US9949898B2 (en) 2015-10-05 2018-04-24 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
US10182975B2 (en) 2015-10-05 2019-01-22 M. Technique Co., Ltd. Silicon oxide-coated iron oxide composition for coating comprising iron oxide particles coated with silicon oxide
US10400107B2 (en) 2016-02-02 2019-09-03 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same
WO2017135393A1 (en) * 2016-02-02 2017-08-10 エム・テクニック株式会社 Method for producing color characteristic-controlled oxide particles, oxide particles, and coating or film composition containing said oxide particles
US11084936B2 (en) 2016-02-02 2021-08-10 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics, oxide particles, and coating or film-like composition comprising the same
CN109071254A (en) * 2016-06-02 2018-12-21 M技术株式会社 Control the manufacturing method of the oxide particle of color characteristics
JP6273634B1 (en) * 2016-06-02 2018-02-07 エム・テクニック株式会社 Method for producing oxide particles with controlled color characteristics
CN109071255A (en) * 2016-06-02 2018-12-21 M技术株式会社 It controls the oxide particle of color characteristics and the coating containing the oxide particle is used or membranaceous composition
WO2017209305A1 (en) * 2016-06-02 2017-12-07 エム・テクニック株式会社 Oxide particles with controlled color characteristics, and coating composition or film-like composition containing said oxide particles
WO2017209306A1 (en) * 2016-06-02 2017-12-07 エム・テクニック株式会社 Method for producing oxide particles with controlled color characteristics
JP6273635B1 (en) * 2016-06-02 2018-02-07 エム・テクニック株式会社 Silicon compound-coated oxide particles with controlled color characteristics, and coating or film-like compositions comprising the silicon compound-coated oxide particles
US11247912B2 (en) 2016-06-02 2022-02-15 M. Technique Co., Ltd. Method for producing oxide particles with controlled color characteristics
JP2022031334A (en) * 2016-06-02 2022-02-18 エム・テクニック株式会社 Oxide particles with controlled color characteristics, and coating composition or film-like composition containing the oxide particles
CN109071255B (en) * 2016-06-02 2022-05-27 M技术株式会社 Oxide particles for controlling color characteristics, and coating or film-like composition containing the same
CN109071254B (en) * 2016-06-02 2022-08-30 M技术株式会社 Method for producing oxide particles with controlled color characteristics
JP7421026B2 (en) 2016-06-02 2024-01-24 エム・テクニック株式会社 Oxide particles with controlled color properties and coating or film compositions containing the oxide particles

Similar Documents

Publication Publication Date Title
Tian et al. Synthesis and microwave absorption enhancement of yolk–shell Fe 3 O 4@ C microspheres
Si et al. Magnetic monodisperse Fe3O4 nanoparticles
Bepari et al. Controlled synthesis of α-and γ-Fe2O3 nanoparticles via thermolysis of PVA gels and studies on α-Fe2O3 catalyzed styrene epoxidation
Ahangaran et al. Surface modification of Fe 3 O 4@ SiO 2 microsphere by silane coupling agent
Lv et al. Porous three-dimensional flower-like Co/CoO and its excellent electromagnetic absorption properties
Farimani et al. Study of structural and magnetic properties of superparamagnetic Fe3O4/SiO2 core–shell nanocomposites synthesized with hydrophilic citrate-modified Fe3O4 seeds via a sol–gel approach
Li et al. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors
JP5034264B2 (en) Oxide composite and method for producing the same
Fan et al. Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method
Fuertes et al. A facile route for the preparation of superparamagnetic porous carbons
Pang et al. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate
Milosevic et al. Facile microwave process in water for the fabrication of magnetic nanorods
Chen et al. Fundamental formation of three-dimensional Fe3O4 microcrystals and practical application in anchoring Au as recoverable catalyst for effective reduction of 4-nitrophenol
Wei et al. Encapsulation of high specific surface area red blood cell-like mesoporous carbon spheres by magnetic nanoparticles: A new strategy to realize multiple electromagnetic wave loss mechanism
JP2008260648A (en) Method of coating and dispersion of inorganic oxide film on surface of magnetic ultrafine particles
Cannas et al. Hierarchical formation mechanism of CoFe2O4 mesoporous assemblies
JP5057208B2 (en) Manufacturing method of magnetic material
Li et al. The synthesis of mesoporous TiO2/SiO2/Fe2O3 hybrid particles containing micelle-induced macropores through an aerosol based process
Kim et al. Low-temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process
Ibrahim et al. Carbon coating, carburization, and high-temperature stability improvement of cobalt nanorods
Ge et al. Optimizing the electromagnetic wave absorption performances of designed Fe3O4@ SiO2@ MnO2 hybrids
Daboin et al. Magnetic SiO2-Mn1-xCoxFe2O4 nanocomposites decorated with Au@ Fe3O4 nanoparticles for hyperthermia
Helmi Rashid Farimani et al. Synthesis and study of structural and magnetic properties of superparamagnetic Fe3O4@ SiO2 core/shell nanocomposite for biomedical applications
Li et al. A magnetic mesoporous SiO 2/Fe 3 O 4 hollow microsphere with a novel network-like composite shell: Synthesis and application on laccase immobilization
Gómez-Polo et al. Magnetic induction heating as a new tool for the synthesis of Fe 3 O 4–TiO 2 nanoparticle systems