JP2008258404A - Electrode foil for capacitor - Google Patents

Electrode foil for capacitor Download PDF

Info

Publication number
JP2008258404A
JP2008258404A JP2007099138A JP2007099138A JP2008258404A JP 2008258404 A JP2008258404 A JP 2008258404A JP 2007099138 A JP2007099138 A JP 2007099138A JP 2007099138 A JP2007099138 A JP 2007099138A JP 2008258404 A JP2008258404 A JP 2008258404A
Authority
JP
Japan
Prior art keywords
electrode foil
vapor deposition
base material
deposition layer
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007099138A
Other languages
Japanese (ja)
Other versions
JP4992522B2 (en
Inventor
Yuji Murashima
祐二 村嶋
Tatsuji Aoyama
達治 青山
Kazuhiko Mikami
和彦 三上
Hiroshi Adachi
博 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007099138A priority Critical patent/JP4992522B2/en
Publication of JP2008258404A publication Critical patent/JP2008258404A/en
Application granted granted Critical
Publication of JP4992522B2 publication Critical patent/JP4992522B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrode foil for capacitors having capacity expanded by expanding a surface area further and having excellent mechanical strength for the electrode foil used for the capacitor for various kinds of electronic equipment. <P>SOLUTION: The electrode foil comprises a base material 1 made of valve action metal foil, and a vapor-deposited layer 1a of valve action metal formed by deposition on the surface of the base material 1. In the vapor-deposited layer 1a, a mode of a void diameter is 0.02-0.10 μm, and the thickness (both surfaces) of the vapor-deposited layer 1a is 20-80 μm. The vapor-deposited layer 1a is in a frost columnar structure toward the surface layer from the base material 1, and respective particles in each column are branched into a plurality of parts for integration, thus realizing a so-called Caulerpa lentillifera shape. Further roughening enlarges the surface area and increases mechanical strength, thus realizing miniaturization and increased capacity due to thinning by selecting the optimum void diameters and thicknesses. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は各種電子機器に使用されるコンデンサ用電極箔に関するものである。   The present invention relates to a capacitor electrode foil used in various electronic devices.

各種コンデンサに使用されるコンデンサ用電極箔(以下、電極箔と呼ぶ)は、単位面積当たりの表面積を拡大して容量拡大を図る目的で、一般に表面を粗面化して用いるようにしており、この粗面化作業はエッチングによるものと、蒸着によるものとに大別される。   Capacitor electrode foils (hereinafter referred to as electrode foils) used for various capacitors are generally used with a roughened surface for the purpose of enlarging the capacity by increasing the surface area per unit area. The roughening operation is roughly classified into etching and vapor deposition.

上記エッチングによるものとしては、塩素イオンを含むエッチング液中でアルミニウム箔を電解エッチングする際に、前段でアルミニウム箔の直流電解エッチングを行い、後段で前記アルミニウム箔の浸漬処理をした後、交流電解エッチングの電流密度を徐々に上昇させ、その後一定電流密度でエッチングを行う方法により、アルミニウム原箔の特性変化があっても、後段の交流電解エッチングの開始点となる一定の初期ピットを作ることができて安定した品質の電極箔を製造することができる(特許文献1)等の技術が開示されている。   As for the above-mentioned etching, when the aluminum foil is electrolytically etched in an etching solution containing chlorine ions, the aluminum foil is subjected to DC electrolytic etching in the former stage, and the aluminum foil is immersed in the latter stage, and then AC electrolytic etching is performed. By gradually increasing the current density and then etching at a constant current density, even if the characteristics of the aluminum foil change, it is possible to create a constant initial pit that is the starting point for the subsequent AC electrolytic etching. In addition, there is disclosed a technique capable of manufacturing an electrode foil having a stable and stable quality (Patent Document 1).

また、蒸着によるものとしては、酸素又は酸素化化合物を含む雰囲気でアルミニウムを蒸発させ、次いで凝縮及び凝固させることにより、デポジットゾーンの圧力が2.8〜0.3Paであるチャンバ内の固定又は可動基板の片面又は両面に、0.03〜0.2マイクロメートル/秒の厚み増加速度でデポジットを形成する方法により、比較的大きな容量が得られる(特許文献2)等の技術が開示されている。
特開平9−171945号公報 特公平7−15864号公報
In addition, by evaporation, aluminum is evaporated in an atmosphere containing oxygen or an oxygenated compound, and then condensed and solidified, so that the pressure in the deposit zone is fixed or movable in the chamber of 2.8 to 0.3 Pa. A technique is disclosed in which a relatively large capacity can be obtained by a method of forming a deposit at a thickness increase rate of 0.03 to 0.2 micrometers / second on one or both sides of a substrate (Patent Document 2). .
JP-A-9-171945 Japanese Patent Publication No. 7-15864

しかしながら上記従来のコンデンサ用電極箔では、アルミニウム箔の表面をエッチングにより粗面化する特許文献1の技術では、エッチング技術ならびにコンデンサ用電極箔の機械的強度面から、エッチング加工による表面積の更なる拡大には自ずと限界があり、これ以上の容量拡大を図ることは極めて困難であるという課題を有したものであった。   However, in the conventional capacitor electrode foil, in the technique of Patent Document 1 in which the surface of the aluminum foil is roughened by etching, the surface area is further increased by etching from the viewpoint of the etching technique and the mechanical strength of the capacitor electrode foil. However, there is a limit, and it is extremely difficult to expand the capacity beyond this.

また、アルミニウム箔の表面にアルミニウムを蒸着させて粗面化する特許文献2の技術では、蒸着層を形成する各粒子間の繋がり(結合強度)が弱いために化成時にネッキング部が破壊されるという課題があり、このような破壊が発生すると、破壊した箇所から先には電流が流れなくなるため、所望の容量が得られないというものであった。   In addition, in the technique of Patent Document 2 in which aluminum is vapor-deposited on the surface of an aluminum foil to roughen the surface, the necking portion is destroyed during formation because the connection (bond strength) between the particles forming the vapor deposition layer is weak. There is a problem, and when such a breakdown occurs, a current does not flow from the point where the breakdown occurs, so that a desired capacity cannot be obtained.

さらに、このように各粒子間の結合強度を確保することが難しい状態のコンデンサ用電極箔では、巻回形の素子を作製する際に加わる機械的応力によって蒸着層が破壊されてしまうため、巻回形の素子を作製するのが極めて困難であるという課題があった。   Furthermore, in such a capacitor electrode foil in which it is difficult to ensure the bonding strength between the particles, the vapor deposition layer is destroyed by the mechanical stress applied when the wound element is manufactured. There is a problem that it is extremely difficult to manufacture a circular element.

本発明はこのような従来の課題を解決し、更なる粗面化によって表面積を拡大し、かつ、高い機械的強度を有し、高容量化を実現することができるコンデンサ用電極箔を提供することを目的とするものである。   The present invention solves such a conventional problem, and provides an electrode foil for a capacitor that can increase the surface area by further roughening, have high mechanical strength, and realize high capacity. It is for the purpose.

上記課題を解決するために本発明は、弁作用金属箔からなる基材と、この基材の表面に蒸着によって形成された弁作用金属の蒸着層からなり、この蒸着層が、空孔径の最頻値が0.02〜0.10μm、蒸着層の厚み(両面)が20〜80μmであり、かつ、蒸着層が、基材から表層に向かって霜柱状構造に、かつ、夫々の柱は個々の粒子が複数に枝分かれして一体に結合した、いわゆる、海ぶどう状に形成された構成にしたものである。   In order to solve the above-mentioned problems, the present invention comprises a base material made of a valve action metal foil and a valve action metal vapor deposition layer formed on the surface of the base material by vapor deposition, and this vapor deposition layer has the largest pore diameter. The mode value is 0.02 to 0.10 μm, the thickness (both sides) of the vapor deposition layer is 20 to 80 μm, the vapor deposition layer has a frost columnar structure from the base material to the surface layer, and each column is individual. The particles are branched into a plurality of particles and are combined into a so-called sea grape shape.

以上のように本発明によるコンデンサ用電極箔は、蒸着層が基材から表層に向かって霜柱状構造に、かつ、夫々の柱は個々の粒子が複数に枝分かれして一体に結合した、いわゆる、海ぶどう状に形成されることにより、更なる粗面化によって表面積を拡大し、かつ、高い機械的強度を有するため、最適な空孔径と厚みを選択することによって薄膜化による小型化と、高容量化を同時に実現することができるという効果が得られるものである。   As described above, the electrode foil for a capacitor according to the present invention is a so-called frost columnar structure in which a vapor deposition layer is formed from a base material to a surface layer, and each column is a single unit in which individual particles branch into a plurality of branches. By forming it into a sea grape shape, the surface area is increased by further roughening, and it has high mechanical strength. The effect that the capacity can be realized at the same time is obtained.

(実施の形態)
以下、実施の形態を用いて、本発明の特に全請求項に記載の発明について説明する。
(Embodiment)
Hereinafter, the invention described in the entire claims of the present invention will be described by using embodiments.

図1は本発明の一実施の形態によるコンデンサ用電極箔の構成を示したSEM(走査電子顕微鏡)写真(1万倍)、図2は図1の要部を拡大したSEM写真(3万倍)である。   FIG. 1 is a SEM (scanning electron microscope) photograph (10,000 times) showing the structure of a capacitor electrode foil according to an embodiment of the present invention, and FIG. 2 is an enlarged SEM photograph (30,000 times) of the main part of FIG. ).

図1、図2において、1はアルミニウム箔からなる基材、1aはこの基材1の表面に蒸着によって形成されたアルミニウムの蒸着層であり、図1から分かるように、蒸着層1aは基材1から表層に向かって霜柱状の構造に複数が密集して形成されており、また、このような霜柱状構造に形成された蒸着層1aを構成する夫々の柱は、図2から分かるように、個々の粒子が複数に枝分かれした状態で一体に結合した、いわゆる、海ぶどう状の構造に形成されているものである。   1 and 2, reference numeral 1 denotes a base material made of an aluminum foil, 1a denotes an aluminum vapor deposition layer formed on the surface of the base material 1 by vapor deposition, and as can be seen from FIG. 1, the vapor deposition layer 1a is a base material. As shown in FIG. 2, a plurality of frost column structures are formed densely from 1 to the surface layer, and each column constituting the vapor deposition layer 1 a formed in such a frost column structure can be seen from FIG. 2. These are formed in a so-called sea grape-like structure in which individual particles are integrally bonded in a state of being branched into a plurality of branches.

なお、このように構成された本実施の形態によるコンデンサ用電極箔は、厚みが50μmの高純度アルミニウム箔を用い、真空雰囲気の中にアルゴンガスと酸素を流入させてアルミニウム箔の表面にアルミニウムの微粒子を蒸着させるようにして作製したものであるが、これらはいずれも公知の製造装置ならびに製造方法を用いて行ったものである。   The capacitor electrode foil according to the present embodiment configured as described above uses a high-purity aluminum foil having a thickness of 50 μm. Argon gas and oxygen are allowed to flow into the vacuum atmosphere so that the aluminum foil is placed on the surface of the aluminum foil. These were prepared by vapor-depositing fine particles, both of which were performed using a known manufacturing apparatus and manufacturing method.

このように構成された本実施の形態によるコンデンサ用電極箔は、図3の空孔径分布を示した特性図から明らかなように、空孔径の最頻値が約0.03μmと極めて微細なものであるため、比較用に示したエッチングによる同電極箔の空孔径の最頻値である約0.15μmと比較して極めて微細化されたものであり、これにより、表面積を大きく拡大することができるばかりでなく、蒸着層1aが基材1から表層に向かって霜柱状構造に形成されているために、コンデンサとしてみた場合に、液(駆動用電解液やポリマー等)の含浸性に優れるという特徴を有するものである。   The capacitor electrode foil according to this embodiment configured as described above has an extremely fine pore diameter mode of about 0.03 μm, as is apparent from the characteristic diagram showing the pore diameter distribution in FIG. Therefore, compared with about 0.15 μm, which is the mode value of the hole diameter of the same electrode foil by etching shown for comparison, it is extremely miniaturized, which can greatly increase the surface area. In addition to being able to do so, the vapor deposition layer 1a is formed in a frost columnar structure from the base material 1 to the surface layer. It has characteristics.

さらに、上記霜柱状構造の夫々の柱が、個々の粒子が複数に枝分かれして一体に結合した、いわゆる、海ぶどう状に形成されているために、個々の粒子間の結合強度が高くなってネッキング部の破壊を抑制することができるようになり、これにより、化成時にネッキング部が破壊されるということがなくなるばかりでなく、このコンデンサ用電極箔を用いて巻回形の素子を作製することも容易になるものである。   Furthermore, since each column of the frost columnar structure is formed in a so-called sea grape shape in which individual particles are branched into a plurality of pieces and bonded together, the bond strength between the individual particles is increased. It becomes possible to suppress the destruction of the necking portion, thereby not only preventing the necking portion from being destroyed at the time of chemical formation, but also producing a wound element using this capacitor electrode foil Is also easier.

次に、このように構成された本発明によるコンデンサ用電極箔の特性について、以下に詳細に説明する。   Next, the characteristics of the electrode foil for capacitors according to the present invention configured as described above will be described in detail below.

図4は本発明によるコンデンサ用電極箔の空孔径による蒸着層厚み(両面)と化成容量指数との関係を示した特性図であり、比較用に示したエッチングによる電極箔のエッチング層厚み(両面)が80μmの場合の化成容量を100とし、各空孔径の最頻値における蒸着層厚みによる化成容量を指数化して示したものである。   FIG. 4 is a characteristic diagram showing the relationship between the deposited layer thickness (both sides) according to the hole diameter of the capacitor electrode foil according to the present invention and the chemical conversion index, and the etching layer thickness (both sides) of the electrode foil by etching shown for comparison. ) Is 80 μm, the chemical conversion capacity is 100, and the chemical conversion capacity by the thickness of the deposited layer at the mode of each pore diameter is shown as an index.

なお、化成条件としては、化成電圧5V、保持時間20分、7%アジピン酸アンモニウム水溶液、70℃、0.05A/cm2で化成を行い、測定条件としては、インピーダンスアナライザーを用い、8%ホウ酸アンモニウム水溶液、30℃、測定面積10cm2、測定周波数120Hzで行った。 As the formation conditions, formation was performed at a formation voltage of 5 V, a holding time of 20 minutes, a 7% ammonium adipate aqueous solution, 70 ° C., 0.05 A / cm 2 , and the measurement conditions were 8% boron using an impedance analyzer. An acid ammonium aqueous solution, 30 ° C., a measurement area of 10 cm 2 , and a measurement frequency of 120 Hz were performed.

図4から明らかなように、空孔径の最頻値が小さくなるに従い、蒸着層の厚みに比例した化成容量指数はより一層大きくなり、比較用に示したエッチングによる電極箔よりも各蒸着層厚みにおいて化成容量指数が高く、これにより薄膜化と同時に高容量化が図れることが分かり、このような効果は空孔径が小さくなることによって比表面積の拡大が図られていることに起因するものと判断できる。   As is clear from FIG. 4, as the mode value of the pore diameter decreases, the chemical conversion capacity index proportional to the thickness of the vapor deposition layer becomes larger, and the thickness of each vapor deposition layer is larger than the electrode foil by etching shown for comparison. It can be seen that the conversion capacity index is high and the capacity can be increased at the same time as the thinning, and this effect is considered to be due to the expansion of the specific surface area by reducing the pore diameter. it can.

図5は本発明によるコンデンサ用電極箔の空孔径による蒸着層厚み(両面)と電解質被覆率との関係を示した特性図であり、ここでいう電解質被覆率(%)とは、固体電解質形成後の容量指数(製品容量指数)/化成容量指数×100で算出した値とした。   FIG. 5 is a characteristic diagram showing the relationship between the thickness of the deposited layer (both sides) and the electrolyte coverage by the pore diameter of the electrode foil for capacitors according to the present invention, where the electrolyte coverage (%) is the solid electrolyte formation. It was set as the value calculated by the capacity index (product capacity index) / chemical conversion capacity index × 100.

なお、固体電解質形成条件としては、ピロールモノマーを電解重合することにより固体電解質を形成した後、カーボンと銀ペーストを塗布することにより陰極層を形成したものである。   In addition, as solid electrolyte formation conditions, after forming a solid electrolyte by electrolytic polymerization of a pyrrole monomer, a cathode layer is formed by applying carbon and a silver paste.

図5から明らかなように、空孔径の最頻値が小さくなるに従い、蒸着層の厚みに比例して電解質被覆率がより一層低下する。これにより、蒸着層の厚みを厚くするのであれば、空孔径の最頻値を大きくする必要があり、また逆に、蒸着層の厚みを薄くすれば、電解質被覆率を低下させずに空孔径の最頻値を小さくすることができることが分かる。   As is apparent from FIG. 5, as the mode value of the pore diameter decreases, the electrolyte coverage decreases further in proportion to the thickness of the vapor deposition layer. Accordingly, if the thickness of the vapor deposition layer is increased, the mode of the pore diameter needs to be increased. Conversely, if the thickness of the vapor deposition layer is decreased, the pore diameter can be reduced without reducing the electrolyte coverage. It can be seen that the mode value of can be reduced.

なお、このように電解質被覆率が低下する理由としては、空孔径の最頻値が小さくなるとモノマーの含浸性が悪化し、更に蒸着層の厚みが増すことによってより一層悪化してしまうためである。   In addition, the reason why the electrolyte coverage is reduced in this way is that when the mode value of the pore diameter is reduced, the impregnation property of the monomer is deteriorated, and further, the thickness is further deteriorated by increasing the thickness of the vapor deposition layer. .

従って、上記図4に示した空孔径による蒸着層厚み(両面)と化成容量指数との関係と、図5に示した空孔径による蒸着層厚み(両面)と電解質被覆率との関係から、空孔径による蒸着層厚み(両面)と製品容量の関係を求めると図6に示すような結果が得られる。   Therefore, from the relationship between the vapor deposition layer thickness (both sides) and the conversion capacity index due to the pore diameter shown in FIG. 4 and the relationship between the vapor deposition layer thickness (both sides) and the electrolyte coverage due to the pore diameter shown in FIG. When the relationship between the vapor deposition layer thickness (both sides) and the product capacity according to the hole diameter is obtained, the result shown in FIG. 6 is obtained.

図6は上記本発明によるコンデンサ用電極箔の空孔径による蒸着層厚み(両面)と製品容量指数との関係を示した特性図であり、図6から明らかなように、上記図4において最も高い化成容量指数を示した、空孔径の最頻値が0.01μmのものは、図5に示すように電解質被覆率が低いため、製品容量指数としては比較用に示したエッチングによる電極箔のエッチング層厚みが80μmの場合の製品容量指数100を上回ることはできないことが分かる。   FIG. 6 is a characteristic diagram showing the relationship between the vapor deposition layer thickness (both sides) and the product capacity index according to the pore diameter of the capacitor electrode foil according to the present invention, and as is clear from FIG. 6, it is the highest in FIG. When the mode value of the pore diameter indicating the chemical conversion index is 0.01 μm, the electrolyte coverage is low as shown in FIG. It can be seen that the product capacity index 100 when the layer thickness is 80 μm cannot be exceeded.

また、空孔径の最頻値が0.02μmのものでは、蒸着層厚みが20〜80μmの範囲において、エッチングによる電極箔のエッチング層厚みが80μmの場合の製品容量指数100を上回ることができるが、空孔径の最頻値が0.02μmを超えるものでは蒸着層厚みが薄い範囲において、上記エッチングによる電極箔のエッチング層厚みが80μmの場合の製品容量指数100を上回ることができない場合があることが分かる。   In addition, when the mode value of the pore diameter is 0.02 μm, the product capacity index 100 can be exceeded when the thickness of the deposited layer of the electrode foil is 80 μm in the range of 20 to 80 μm. When the mode value of the pore diameter exceeds 0.02 μm, the product capacity index 100 may not be exceeded when the thickness of the deposited layer of the electrode foil is 80 μm in the range where the thickness of the deposited layer is thin. I understand.

但し、このようにエッチングによる電極箔のエッチング層厚みが80μmの場合の製品容量指数100を上回ることができない場合でも、蒸着層厚み当たりの容量はエッチングによる電極箔を大きく超えているために蒸着層厚みが薄いものを用いても同等の容量を得ることが可能になり、更に、空孔径の最頻値が大きくなるに従って電解質被覆率が高まるために、製品としての信頼性は高くなるものである。   However, even when the etching capacity of the electrode foil by etching is not 80 μm, the capacity per 100 nm of the deposition layer thickness greatly exceeds that of the electrode foil by etching. It is possible to obtain the same capacity even when a thin one is used, and the electrolyte coverage increases as the mode value of the pore diameter increases, so that the reliability as a product increases. .

すなわち、エッチングによる電極箔のエッチング層厚みが80μm(両面)の場合、機械的強度確保のためにエッチング層以外の芯部として25μmが必要なため、電極箔としての総厚みは105μmとなるが、本発明によれば、蒸着層厚み(両面)が20μmで略同等の容量を得ることが可能なため、電極箔としての総厚みは20μm+25μm=45μmで良いことになり、この厚みの差分だけ電極箔を薄くすることが可能になるものである。   That is, when the etching layer thickness of the electrode foil by etching is 80 μm (both sides), 25 μm is required as a core other than the etching layer in order to ensure mechanical strength, so the total thickness as the electrode foil is 105 μm. According to the present invention, since the deposited layer thickness (both sides) is 20 μm and substantially the same capacity can be obtained, the total thickness as the electrode foil may be 20 μm + 25 μm = 45 μm. Can be made thinner.

このように、本発明によるコンデンサ用電極箔は、空孔径の最頻値が0.02〜0.10μm、かつ、蒸着層の厚み(両面)が20〜80μmの範囲において、エッチングによる電極箔のエッチング層厚み(両面)が80μmの場合の製品容量指数100を大きく上回って最も顕著な効果を発揮することができるものであり、これにより、薄膜化による小型化と、高容量化を同時に実現することが可能になるという格別の効果を奏するものである。   As described above, the capacitor electrode foil according to the present invention has a mode of pore diameter of 0.02 to 0.10 μm and the thickness (both sides) of the vapor deposition layer is in the range of 20 to 80 μm. The etching layer thickness (both sides) is much higher than the product capacity index 100 when the thickness is 80 μm, and the most prominent effect can be exhibited, thereby simultaneously realizing miniaturization by thinning and high capacity. It has the special effect that it becomes possible.

本発明によるコンデンサ用電極箔は、薄膜化による小型化と、高容量化を同時に実現することができるという効果を有し、あらゆる分野のコンデンサとして有用である。   The electrode foil for a capacitor according to the present invention has an effect that it is possible to simultaneously realize a reduction in size due to a thin film and an increase in capacity, and is useful as a capacitor in various fields.

本発明の一実施の形態によるコンデンサ用電極箔の構成を示したSEM写真SEM photograph showing the configuration of an electrode foil for a capacitor according to an embodiment of the present invention 図1の要部を拡大したSEM写真SEM photo with enlarged main part of FIG. 同コンデンサ用電極箔の空孔径分布を示した特性図Characteristic diagram showing the pore size distribution of the capacitor electrode foil 同コンデンサ用電極箔の空孔径による蒸着層厚みと化成容量指数の関係を示した特性図Characteristic diagram showing the relationship between the deposition layer thickness and chemical capacity index according to the hole diameter of the electrode foil for the capacitor 同コンデンサ用電極箔の空孔径による蒸着層厚みと電解質被覆率の関係を示した特性図Characteristic diagram showing the relationship between the deposition layer thickness and the electrolyte coverage by the hole diameter of the capacitor electrode foil 同コンデンサ用電極箔の空孔径による蒸着層厚みと製品容量指数の関係を示した特性図Characteristic diagram showing the relationship between vapor deposition layer thickness and product capacity index according to the hole diameter of the capacitor electrode foil

符号の説明Explanation of symbols

1 基材
1a 蒸着層
1 Base material 1a Vapor deposition layer

Claims (4)

弁作用金属箔からなる基材と、この基材の表面に蒸着によって形成された弁作用金属の蒸着層からなり、この蒸着層が、空孔径の最頻値が0.02〜0.10μmであり、かつ、蒸着層の厚み(両面)が20〜80μmであるコンデンサ用電極箔。 It consists of a base material made of a valve action metal foil and a valve action metal vapor deposition layer formed on the surface of the base material by vapor deposition, and this vapor deposition layer has a mode value of the pore diameter of 0.02 to 0.10 μm. And a capacitor electrode foil having a vapor deposition layer thickness (both sides) of 20 to 80 μm. 弁作用金属の蒸着層が、基材から表層に向かって霜柱状構造に、かつ、夫々の柱は個々の粒子が複数に枝分かれして一体に結合した、いわゆる、海ぶどう状に形成された請求項1に記載のコンデンサ用電極箔。 The vapor deposition layer of the valve action metal is formed in a frost columnar structure from the base material to the surface layer, and each column is formed in a so-called sea grape shape in which individual particles are branched into a plurality and integrally joined. Item 2. The capacitor electrode foil according to Item 1. 弁作用金属箔からなる基材としてアルミニウム箔を用いた請求項1に記載のコンデンサ用電極箔。 The electrode foil for capacitors according to claim 1, wherein an aluminum foil is used as a base material made of a valve action metal foil. 弁作用金属の蒸着層としてアルミニウムを用いた請求項1に記載のコンデンサ用電極箔。 The electrode foil for capacitors according to claim 1, wherein aluminum is used as a vapor deposition layer of the valve metal.
JP2007099138A 2007-04-05 2007-04-05 Capacitor electrode foil and capacitor using the same Expired - Fee Related JP4992522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099138A JP4992522B2 (en) 2007-04-05 2007-04-05 Capacitor electrode foil and capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099138A JP4992522B2 (en) 2007-04-05 2007-04-05 Capacitor electrode foil and capacitor using the same

Publications (2)

Publication Number Publication Date
JP2008258404A true JP2008258404A (en) 2008-10-23
JP4992522B2 JP4992522B2 (en) 2012-08-08

Family

ID=39981680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099138A Expired - Fee Related JP4992522B2 (en) 2007-04-05 2007-04-05 Capacitor electrode foil and capacitor using the same

Country Status (1)

Country Link
JP (1) JP4992522B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043059A1 (en) 2009-10-09 2011-04-14 パナソニック株式会社 Electrode foil and capacitor employing same
EP2365496A1 (en) * 2008-12-01 2011-09-14 Panasonic Corporation Electrode foil for capacitor and electrolytic capacitor using the electrode foil
WO2011118308A1 (en) * 2010-03-26 2011-09-29 三洋電機株式会社 Capacitor element, substrate with built-in capacitor, element sheet, and production methods for same
JP2012072495A (en) * 2010-08-31 2012-04-12 Kagoshima Univ Aluminum thin film, method for producing the same, electrolytic capacitor, catalytic metal film, and separation element
US20120170173A1 (en) * 2010-03-16 2012-07-05 Akiyoshi Oshima Electrode foil and capacitor using same
US8654509B2 (en) 2010-02-15 2014-02-18 Panasonic Corporation Electrode foil, process for producing same, and capacitor using electrode foil
JP5522048B2 (en) * 2008-10-10 2014-06-18 パナソニック株式会社 Capacitor electrode foil, manufacturing method thereof, and solid electrolytic capacitor using the electrode foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190400A (en) * 1992-01-08 1993-07-30 Toyo Metaraijingu Kk High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH0715864B2 (en) * 1992-02-14 1995-02-22 サトマ Electrode capacitor electrode sheet and method for manufacturing the same
JPH11317331A (en) * 1998-03-03 1999-11-16 Acktar Ltd Manufacture of large surface area foil electrode
JP2008010490A (en) * 2006-06-27 2008-01-17 Nichicon Corp Manufacturing method of electrode for electrolytic capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190400A (en) * 1992-01-08 1993-07-30 Toyo Metaraijingu Kk High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH0715864B2 (en) * 1992-02-14 1995-02-22 サトマ Electrode capacitor electrode sheet and method for manufacturing the same
JPH11317331A (en) * 1998-03-03 1999-11-16 Acktar Ltd Manufacture of large surface area foil electrode
JP2008010490A (en) * 2006-06-27 2008-01-17 Nichicon Corp Manufacturing method of electrode for electrolytic capacitor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5522048B2 (en) * 2008-10-10 2014-06-18 パナソニック株式会社 Capacitor electrode foil, manufacturing method thereof, and solid electrolytic capacitor using the electrode foil
EP2365496A4 (en) * 2008-12-01 2013-01-23 Panasonic Corp Electrode foil for capacitor and electrolytic capacitor using the electrode foil
EP2365496A1 (en) * 2008-12-01 2011-09-14 Panasonic Corporation Electrode foil for capacitor and electrolytic capacitor using the electrode foil
US8659876B2 (en) 2008-12-01 2014-02-25 Panasonic Corporation Electrode foil for capacitor and electrolytic capacitor using the electrode foil
US8208242B2 (en) 2009-10-09 2012-06-26 Panasonic Corporation Electrode foil and capacitor using the same
WO2011043059A1 (en) 2009-10-09 2011-04-14 パナソニック株式会社 Electrode foil and capacitor employing same
US8654509B2 (en) 2010-02-15 2014-02-18 Panasonic Corporation Electrode foil, process for producing same, and capacitor using electrode foil
CN102640241A (en) * 2010-03-16 2012-08-15 松下电器产业株式会社 Electrode foil and capacitor using same
US20120170173A1 (en) * 2010-03-16 2012-07-05 Akiyoshi Oshima Electrode foil and capacitor using same
US9001497B2 (en) 2010-03-16 2015-04-07 Panasonic Intellectual Property Management Co., Ltd. Electrode foil and capacitor using same
CN102640241B (en) * 2010-03-16 2015-09-30 松下知识产权经营株式会社 Electrode foil and use its capacitor
WO2011118308A1 (en) * 2010-03-26 2011-09-29 三洋電機株式会社 Capacitor element, substrate with built-in capacitor, element sheet, and production methods for same
JP2012072495A (en) * 2010-08-31 2012-04-12 Kagoshima Univ Aluminum thin film, method for producing the same, electrolytic capacitor, catalytic metal film, and separation element

Also Published As

Publication number Publication date
JP4992522B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4992522B2 (en) Capacitor electrode foil and capacitor using the same
JP5429430B2 (en) Electrode foil, method for producing the same, and capacitor
JPWO2010041387A1 (en) Capacitor electrode foil, manufacturing method thereof, and solid electrolytic capacitor using the electrode foil
JP2008288295A (en) Solid electrolytic capacitor
WO2007058242A1 (en) Electrode sheet for capacitor and process for producing the same
JP2008288296A (en) Solid electrolytic capacitor
JP4285523B2 (en) Electrode foil for solid electrolytic capacitor and manufacturing method thereof
JP4555204B2 (en) Aluminum cathode foil for electrolytic capacitors
JP2008258222A (en) Electrolytic capacitor
JP4665866B2 (en) Manufacturing method of valve metal composite electrode foil
JP2007208254A (en) Electrode, membrane, printing plate precursor, and another article including multi-strata porous coating, and method of manufacturing them
JP4797754B2 (en) Electrode capacitor electrode material
JP2008258355A (en) Electrode foil for capacitor
JP2010114297A (en) Multilayer porous electrode foil and method of manufacturing the same, and multilayer solid-state electrolytic capacitor using multilayer porous electrode foil
JP2008047755A (en) Manufacturing method of valve metal composite electrode foil
JP2009049376A (en) Electrode foil for capacitor
JP5573362B2 (en) Electrode foil, capacitor using this electrode foil, and method for producing electrode foil
JP4665854B2 (en) Valve metal composite electrode foil and manufacturing method thereof
JP2009135429A (en) Solid electrolytic capacitor
JP5223517B2 (en) Foil-like porous valve metal anode body and method for producing the same
JP2006352172A (en) Solid electrolytic capacitor and its manufacturing method
JP2011211028A (en) Electrode foil and capacitor
JP2011096872A (en) Electrode foil and method of manufacturing the same, and capacitor using the electrode foil
JP4910614B2 (en) Electrode capacitor electrode material
JP2009081343A (en) Aluminum foil material for vapor deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4992522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees