JP2008254986A - Activation device and method for hydrogen storage alloy vessel - Google Patents

Activation device and method for hydrogen storage alloy vessel Download PDF

Info

Publication number
JP2008254986A
JP2008254986A JP2007101744A JP2007101744A JP2008254986A JP 2008254986 A JP2008254986 A JP 2008254986A JP 2007101744 A JP2007101744 A JP 2007101744A JP 2007101744 A JP2007101744 A JP 2007101744A JP 2008254986 A JP2008254986 A JP 2008254986A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
storage alloy
hydrogen storage
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007101744A
Other languages
Japanese (ja)
Other versions
JP4916367B2 (en
Inventor
Yasuhiro Fujita
泰宏 藤田
Takashi Iwamoto
隆志 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2007101744A priority Critical patent/JP4916367B2/en
Publication of JP2008254986A publication Critical patent/JP2008254986A/en
Application granted granted Critical
Publication of JP4916367B2 publication Critical patent/JP4916367B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the reduction of activation time by making hydrogen pressure and fluid pressure almost equal, thus making the suppression of the deformation of a hydrogen storage alloy vessel and heat exchange at high efficiency consistent. <P>SOLUTION: Regarding the activation device and method for a hydrogen storage alloy vessel, hydrogen (18a) is fed to the inside of a hydrogen storage alloy vessel (20) arranged at the inside of a pressure resistant vessel (1) via hydrogen piping (3), the flow rate of a fluid (6) fed to the inside of the pressure resistant vessel (1) is controlled by a charging-pressurizing means (14), and hydrogen pressure and fluid pressure are made almost equal. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素吸蔵合金容器の活性化装置及び方法に関し、特に、水素吸蔵合金容器内部にかけられる水素圧力とほぼ同等の流体圧力を外部にかけることにより、水素吸蔵合金容器の変形の抑制と効率的な熱交換を両立させ、活性化時間の短縮を実現するための新規な改良に関する。   The present invention relates to an apparatus and method for activating a hydrogen storage alloy container, and in particular, by applying a fluid pressure substantially equal to the hydrogen pressure applied to the inside of the hydrogen storage alloy container to the outside, the deformation and efficiency of the hydrogen storage alloy container are suppressed. The present invention relates to a novel improvement for achieving both heat exchange and shortening the activation time.

従来、用いられていた水素吸蔵合金の活性化方法としては、例えば、粉末状の水素吸蔵合金を水素導入管を設けた密閉容器内に入れ、80℃以上の温度で数時間〜数十時間真空引きをした後、室温以下の温度で数気圧以上の水素を導入する方法が一般的である。ここで、前半部分の高温での真空引きを「減圧活性化」、後半部分の低温での高圧水素導入を「加圧活性化」と呼ぶ。BCC系水素吸蔵合金のような活性化しにくい水素吸蔵合金では、AB5系やAB2系の活性化しやすい合金に比べ、減圧活性化条件の高温化及び高真空化とともに、加圧活性化条件の低温化および高圧化が必要である。また、これらの活性化条件を強めるほど、一般的に活性化にかかる時間は短くなる。すなわち、減圧活性化工程では100℃よりも150℃の方が、加圧活性化工程では20℃よりも0℃、或いは1MPaよりも10MPaで行った方が活性化完了までの時間は短くなる。   Conventionally, as a method for activating a hydrogen storage alloy that has been used, for example, a powdered hydrogen storage alloy is placed in a sealed container provided with a hydrogen introduction tube, and is vacuumed at a temperature of 80 ° C. or more for several hours to several tens of hours. After pulling, a method of introducing hydrogen at several atmospheres or more at a temperature below room temperature is common. Here, evacuation at a high temperature in the first half is called “depressurization activation”, and high-pressure hydrogen introduction at a low temperature in the second half is called “pressurization activation”. Hydrogen-absorbing alloys that are difficult to activate, such as BCC-based hydrogen-absorbing alloys, have higher pressure activation conditions and higher vacuums, and lower pressure activation conditions than AB5- and AB2-based alloys that are easily activated. And high pressure is necessary. In addition, as the activation conditions are increased, the activation time is generally shortened. That is, the time until activation is completed is shorter when the pressure activation step is performed at 150 ° C. than 100 ° C., and when the pressure activation step is performed at 0 ° C. than 20 ° C. or 10 MPa rather than 1 MPa.

しかしながら、実用的な水素吸蔵合金容器を活性化する場合には、容器の設計温度、圧力に自ずと制限があるため、活性化条件を無制限に強めることはできない。金属容器であれば温度の許容幅は比較的広いものの、圧力の許容限度を超えることは容器の変形や破裂をもたらす可能性がある。さらに、活性化前後で水素吸蔵合金自身の体積も大きく変化するため、水素ガス圧力に加えて合金の膨張圧力も考慮に入れる必要がある。すなわち、加圧活性化時の導入水素圧は容器本来の設計圧力よりも低くせざるを得ない。このため、活性化速度の遅い水素吸蔵合金を内蔵した容器では、活性化に要する時間が長くなってしまう欠点があった。   However, when a practical hydrogen storage alloy container is activated, the design conditions and the pressure of the container are naturally limited, and thus the activation conditions cannot be increased without limit. A metal container has a relatively wide allowable temperature range, but exceeding the allowable pressure limit may cause deformation or rupture of the container. Furthermore, since the volume of the hydrogen storage alloy itself changes greatly before and after activation, it is necessary to take into account the expansion pressure of the alloy in addition to the hydrogen gas pressure. That is, the hydrogen pressure introduced during the pressure activation must be lower than the original design pressure of the container. For this reason, in a container containing a hydrogen storage alloy having a slow activation rate, there is a drawback that the time required for activation becomes long.

また、前述の従来方法を改良するために、次の特許文献1および2に記載の方法が提案されていた。
すなわち、特許文献1の方法の場合、水素吸蔵合金を水素とともにポリエチレン袋のような可塑性容器に封入し、袋ごと冷間静水圧プレスすることで活性化する方法が考案されている。しかしながら、水素吸蔵合金は自身の体積の1000倍近い水素を吸収することができることを考えると、例えば体積1Lの水素吸蔵合金(およそ6〜8kg)を活性化するためには、容積1mの可塑性容器が必要になる。活性化する合金量に比例して可塑性容器体積は増えるため、大量処理には不向きな方法であった。
Further, in order to improve the above-described conventional method, methods described in the following Patent Documents 1 and 2 have been proposed.
That is, in the method of Patent Document 1, a method has been devised in which a hydrogen storage alloy is encapsulated in a plastic container such as a polyethylene bag together with hydrogen and activated by cold isostatic pressing together with the bag. However, considering that the hydrogen storage alloy can absorb nearly 1000 times its own volume of hydrogen, for example, in order to activate a hydrogen storage alloy having a volume of 1 L (approximately 6 to 8 kg), a plastic having a volume of 1 m 3 is required. A container is required. Since the volume of the plastic container increases in proportion to the amount of alloy to be activated, this method is not suitable for mass processing.

また、前述の特許文献2の方法の場合、水素ガス供給装置、不活性ガス供給装置、減圧装置を備えたベッセル内に、水素吸放出孔を開放した水素吸蔵合金容器を入れ、ベッセル内部ごと減圧および水素加圧することで、水素活性化する装置および方法が提案されている。この方法では、水素吸蔵合金容器の内外圧を均等にすることができるため、圧力差による容器の変形を考慮することなく、高圧で水素活性化することができる。しかしながら、この方法には、次のような欠点がある。(1)ベッセルごと減圧しなければならないため、水素吸蔵合金容器単体を減圧するときよりも減圧活性化時の真空度を上げることが困難である。(2)合金容器だけではなく、ベッセル内部すべてを高圧水素で満たさなくてはならないため、大量の水素が必要である。(3)熱交換用のジャケットは、減圧時の内圧および加圧時の外圧に共に耐えられる構造としなければならない。(4)活性化終了後、水素吸蔵合金容器を取り出す際は、水素を放出させた上で不活性ガスにてベッセル内部を置換し、さらに不活性ガスで置換したまま合金容器に蓋をしなければならず、装置および製造工程が複雑になっていた。   Moreover, in the case of the method of the above-mentioned patent document 2, the hydrogen storage alloy container which opened | released the hydrogen absorption / release hole was put into the vessel provided with the hydrogen gas supply device, the inert gas supply device, and the decompression device, and the inside of the vessel was decompressed. In addition, an apparatus and a method for activating hydrogen by applying hydrogen pressure have been proposed. In this method, since the internal and external pressures of the hydrogen storage alloy container can be made uniform, hydrogen activation can be performed at a high pressure without considering the deformation of the container due to the pressure difference. However, this method has the following drawbacks. (1) Since the entire vessel must be depressurized, it is more difficult to increase the degree of vacuum during the depressurization activation than when depressurizing the hydrogen storage alloy container alone. (2) A large amount of hydrogen is required because not only the alloy container but also the entire vessel must be filled with high-pressure hydrogen. (3) The jacket for heat exchange must be structured to withstand both the internal pressure during decompression and the external pressure during pressurization. (4) When the hydrogen storage alloy container is taken out after activation, the inside of the vessel is replaced with inert gas after releasing hydrogen, and the alloy container must be covered with the inert gas. The equipment and the manufacturing process were complicated.

特許第2699136号公報Japanese Patent No. 2699136 特開2000−17408号公報JP 2000-17408 A

従来の水素吸蔵合金容器の活性方法は、以上のように構成されているため、次のような課題が存在していた。
すなわち、容器変形を防ぐため、加圧活性化時の水素圧力を一定以下に抑えているため、活性化に時間がかかっていた。そこで、容器に入れる前の水素吸蔵合金を水素ガスとともに可塑性容器に入れ、静水圧をかける事で活性化時間の短縮を図る方法が考案されたが、活性化前の容器体積が非常に大きくなるため、現実的な方法ではない。その他に、蓋を開放した水素吸蔵合金容器をべッセルに入れ、ベッセル内に水素を導入することで、合金容器内外圧を均圧させたまま、活性化する方法が考案されたが、活性化に必要な水素量が多くなることや、活性化終了後の合金容器の取り出しが難しいといった課題が存在していた。
Since the conventional method for activating a hydrogen storage alloy container is configured as described above, the following problems exist.
That is, in order to prevent deformation of the container, the hydrogen pressure during the pressurization activation is kept below a certain level, so that it takes time to activate. Therefore, a method has been devised to reduce the activation time by putting the hydrogen storage alloy before putting into the container together with hydrogen gas into a plastic container and applying hydrostatic pressure, but the container volume before activation becomes very large. Therefore, it is not a realistic method. In addition, a hydrogen storage alloy container with an open lid was placed in a vessel, and hydrogen was introduced into the vessel to devise a method for activation while keeping the pressure inside and outside the alloy container equalized. However, there are problems that the amount of hydrogen required for the process increases, and that it is difficult to take out the alloy container after the activation is completed.

本発明による水素吸蔵合金容器の活性化装置は、耐圧容器内に水素吸蔵合金容器が配置でき、前記耐圧容器の外部に配設された水素源に連通する水素配管が前記水素吸蔵合金容器に接続され、前記耐圧容器には前記耐圧容器に流入させる流体の流入口が設けられ、前記耐圧容器には前記流体の充填及び加圧ができる充填・加圧手段が接続されている構成であり、また、前記流体の熱を除去するための熱除去手段を有する構成であり、また、本発明による水素吸蔵合金容器の活性化方法は、請求項1又は2記載の水素吸蔵合金容器の活性化装置を用い、前記水素吸蔵合金容器に導入した水素の圧力と、前記流体の圧力とが平衡になるように調整しつつ前記水素吸蔵合金容器内の水素吸蔵合金を活性化する方法である。   The activation apparatus for a hydrogen storage alloy container according to the present invention can arrange a hydrogen storage alloy container in a pressure resistant container, and a hydrogen pipe communicating with a hydrogen source disposed outside the pressure resistant container is connected to the hydrogen storage alloy container. The pressure vessel is provided with an inlet for fluid flowing into the pressure vessel, and the pressure vessel is connected to a filling / pressurizing means capable of filling and pressurizing the fluid. The method for activating the hydrogen storage alloy container according to the present invention includes a heat storage means for removing heat from the fluid, and the activation method for the hydrogen storage alloy container according to claim 1 or 2. And a method of activating the hydrogen storage alloy in the hydrogen storage alloy container while adjusting the pressure of hydrogen introduced into the hydrogen storage alloy container and the pressure of the fluid to be balanced.

本発明による水素吸蔵合金容器の活性化装置及び方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、水素吸蔵合金容器を耐圧容器に入れ、水素吸蔵合金容器外部を流体で満たした上で、水素圧力と流体圧力とを平衡させながら水素活性化させるように構成したので、水素吸蔵合金容器の変形を抑えながら高圧活性化ができると共に、流体によって水素吸収熱を除去できるため、水素活性化時間を短縮できる。
Since the apparatus and method for activating a hydrogen storage alloy container according to the present invention are configured as described above, the following effects can be obtained.
That is, since the hydrogen storage alloy container is placed in a pressure vessel, and the outside of the hydrogen storage alloy container is filled with a fluid, the hydrogen is activated while balancing the hydrogen pressure and the fluid pressure. The high pressure activation can be performed while suppressing deformation, and the heat of hydrogen absorption can be removed by the fluid, so that the hydrogen activation time can be shortened.

本発明は、水素吸蔵合金容器内部にかけられる水素圧力とほぼ同等の流体圧力を外部にかけることにより、水素吸蔵合金容器の変形の抑制と効率的な熱交換を両立させ、活性化時間の短縮を実現するようにし水素吸蔵合金容器の活性化装置及び方法を提供することを目的とする。   The present invention applies a fluid pressure substantially equal to the hydrogen pressure applied to the inside of the hydrogen storage alloy container to achieve both suppression of deformation of the hydrogen storage alloy container and efficient heat exchange, and shortening the activation time. An object of the present invention is to provide an apparatus and method for activating a hydrogen storage alloy container.

以下、図面と共に本発明による水素吸蔵合金容器の活性化装置及び方法の好適な実施の形態について説明する。
図1は本発明による水素活性化装置の一形態を示すもので、符号1で示される耐圧容器の蓋部2には、水素配管3、差圧計4及びエア抜き弁5が設けられている。
Hereinafter, preferred embodiments of an apparatus and method for activating a hydrogen storage alloy container according to the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a hydrogen activation apparatus according to the present invention, and a hydrogen pipe 3, a differential pressure gauge 4, and an air vent valve 5 are provided on a lid portion 2 of a pressure vessel indicated by reference numeral 1.

前記耐圧容器1の本体部1Aには、流体6を貯蔵する流体タンク7が流体配管8を介して接続され、この流体配管8は前記本体部1Aの流入口9及び放出口10に接続されている。
前記流体配管8には、第1、第2、第3弁11,12,13が設けられていると共に、前記第1、第3弁11,13間には、この流体6を前記耐圧容器1内に充填・加圧するための充填・加圧ポンプ等からなる充填・加圧手段14が設けられている。
A fluid tank 7 for storing a fluid 6 is connected to the main body 1A of the pressure vessel 1 through a fluid pipe 8, and the fluid pipe 8 is connected to the inlet 9 and the outlet 10 of the main body 1A. Yes.
The fluid pipe 8 is provided with first, second, and third valves 11, 12, and 13, and the fluid 6 is placed between the first and third valves 11 and 13 in the pressure vessel 1. A filling / pressurizing means 14 including a filling / pressurizing pump for filling / pressurizing the inside is provided.

前記差圧計4及び充填・加圧手段14は、出力制御部15に接続され、前記差圧計4からの差圧4aに基づいて前記充填・加圧手段14の流体6の送り量を制御することができるように構成されている。
前記水素配管3には、圧力計16及びレギュレータ17を介して高圧水素源からなるタンク状の水素源18が接続されている。
The differential pressure gauge 4 and the filling / pressurizing means 14 are connected to an output control unit 15 and control the feed amount of the fluid 6 of the filling / pressurizing means 14 based on the differential pressure 4 a from the differential pressure gauge 4. It is configured to be able to.
A tank-like hydrogen source 18 composed of a high-pressure hydrogen source is connected to the hydrogen pipe 3 via a pressure gauge 16 and a regulator 17.

次に、前述の構成において、水素活性化手順について述べる。まず、図1に示されるように、減圧活性化工程が終了した各水素吸蔵合金容器20を水素配管3に取り付け、図2に示されるように、蓋部2を閉める。前記蓋部2を閉めた状態で内部の工程のエアを抜きながら流体6を耐圧容器1内に充填し終わった後、水素18aを導入する。この水素18aと流体6との圧力の差圧が0になるように充填・加圧手段14で送り制御をしながら水素を徐々に加圧していき、目標圧力に達したら、圧力を一定に保ち、活性化終了まで待つ。水素活性化終了後は、流体の圧力と水素の圧力とを同時に抜き、水素吸蔵合金容器20の許容圧力以下まで水素圧力を下げる。最後に、前記耐圧容器1の蓋部2を開けて活性化済みの水素吸蔵合金容器20を取り外す。   Next, the hydrogen activation procedure in the above-described configuration will be described. First, as shown in FIG. 1, each hydrogen storage alloy container 20 in which the reduced pressure activation process is completed is attached to the hydrogen pipe 3, and the lid 2 is closed as shown in FIG. After filling the fluid 6 into the pressure-resistant vessel 1 while evacuating the air in the internal process with the lid 2 closed, hydrogen 18a is introduced. The hydrogen is gradually pressurized while controlling the feed by the filling / pressurizing means 14 so that the differential pressure between the hydrogen 18a and the fluid 6 becomes zero, and when the target pressure is reached, the pressure is kept constant. Wait until the activation is finished. After completion of the hydrogen activation, the pressure of the fluid and the pressure of hydrogen are simultaneously released, and the hydrogen pressure is lowered to the allowable pressure of the hydrogen storage alloy container 20 or less. Finally, the lid 2 of the pressure vessel 1 is opened and the activated hydrogen storage alloy vessel 20 is removed.

尚、前記流体6としては、好ましくは水が用いられるが、活性化温度によっては、油や不凍液を用いても良い。また、水素圧力と流体圧力との差圧解消手段としては、図1に示したような差圧計4の出力に応じて送り出力を調整する方法の他、ダイアフラムやシリンダーを用いて機械的に水素圧力と流体との圧力バランスを取る方法も可能である。   The fluid 6 is preferably water, but oil or antifreeze may be used depending on the activation temperature. As a means for eliminating the differential pressure between the hydrogen pressure and the fluid pressure, in addition to the method of adjusting the feed output according to the output of the differential pressure gauge 4 as shown in FIG. A method of balancing the pressure and the fluid is also possible.

前述の水素吸蔵合金容器の活性化装置及び方法によって、水素吸蔵合金容器20の内外圧を平衡に保つことができるため、水素吸蔵合金容器20の変形を極力抑えながら高い水素圧力で活性化ができると共に、周囲の流体6への熱伝達によって発生した水素吸収熱を除去することができるので、活性化にかかる時間を短縮できる。また、図3のように冷媒を流入させた冷却コイル等からなる熱除去手段30を耐圧容器1に配置すると、水素吸収熱の除去効率は格段に向上し、活性化時間をさらに短くすることができる。ここで、流体6の熱除去手段30は、図3で例示した他に、耐圧容器1の外側に冷却コイルを巻いて耐圧容器1ごと冷却する方法や、流体配管の一部をコイル状にして冷却槽に浸け、流体を強制循環することで冷却する方法も可能である。   The internal and external pressures of the hydrogen storage alloy container 20 can be kept in equilibrium by the above-described hydrogen storage alloy container activation device and method, so that the hydrogen storage alloy container 20 can be activated at a high hydrogen pressure while minimizing deformation of the hydrogen storage alloy container 20 At the same time, since the hydrogen absorption heat generated by the heat transfer to the surrounding fluid 6 can be removed, the activation time can be shortened. Moreover, if the heat removal means 30 including a cooling coil or the like into which a refrigerant is flown as shown in FIG. 3 is arranged in the pressure vessel 1, the removal efficiency of the hydrogen absorption heat can be greatly improved, and the activation time can be further shortened. it can. Here, in addition to the heat removal means 30 for the fluid 6 illustrated in FIG. 3, a cooling coil is wound around the outside of the pressure vessel 1 and the whole pressure vessel 1 is cooled, or a part of the fluid piping is coiled. A method of cooling by immersing in a cooling tank and forcibly circulating a fluid is also possible.

次に、本出願人が本発明による水素吸蔵合金容器の活性化方法について、従来方法と比較するため、定格水素容量50NLの水素吸蔵合金タンク(外寸φ50mm×H132mm、AB5合金330g内蔵)を用いて活性化速度比較の実験を行ったため、その結果について述べる。
従来方法による活性化手順は、次の通りである。(1)80℃の水槽に合金タンクを浸け、5時間真空引きをする。(2)15℃の水槽に合金タンクを浸けると共に、1MPaの水素を内部に導入する。合金タンクの水素吸収量は質量流量計で測定した。
本発明方法による活性化手順は、次の通りである。(1) 80℃の水槽に合金タンクを浸け、5時間真空引きをする。(2)15℃の水が循環するコイルを内部に設けた耐圧容器内に合金タンクを配置し、水素配管を接続して耐圧容器を閉める。(3)耐圧容器内部に水を充填し、水素圧力を徐々に上げていくとともに、平衡させて水圧もあげていく。(4)水素圧力、水圧がともに5MPaに達したら昇圧をやめ、水素吸収量を質量流量計で測定する。次に、水素充填を開始した時刻を0としたときのMHタンクの水素吸収量変化を図4に示す。従来方法では3.5時間かかった活性化が、本発明方法では2時間程度で完了することが判明した。
Next, in order to compare the activation method of the hydrogen storage alloy container according to the present invention with the conventional method, the present applicant uses a hydrogen storage alloy tank with a rated hydrogen capacity of 50 NL (external size φ50 mm × H132 mm, built-in AB5 alloy 330 g). The results of the activation rate comparison were described.
The activation procedure according to the conventional method is as follows. (1) Immerse the alloy tank in a water bath at 80 ° C and evacuate for 5 hours. (2) Immerse the alloy tank in a water bath at 15 ° C. and introduce 1 MPa of hydrogen into the interior. The amount of hydrogen absorbed in the alloy tank was measured with a mass flow meter.
The activation procedure according to the method of the present invention is as follows. (1) Immerse the alloy tank in a water bath at 80 ° C and vacuum for 5 hours. (2) An alloy tank is placed in a pressure vessel in which a coil in which water of 15 ° C. circulates is provided, and a hydrogen pipe is connected to close the pressure vessel. (3) Fill the pressure vessel with water, gradually increase the hydrogen pressure, and equilibrate to increase the water pressure. (4) When both the hydrogen pressure and water pressure reach 5 MPa, stop the pressure increase and measure the hydrogen absorption amount with a mass flow meter. Next, FIG. 4 shows a change in the hydrogen absorption amount of the MH tank when the time when the hydrogen filling is started is set to zero. It was found that the activation that took 3.5 hours in the conventional method was completed in about 2 hours in the method of the present invention.

本発明による水素吸蔵合金容器の活性化装置及び方法を示す構成図である。It is a block diagram which shows the activation apparatus and method of the hydrogen storage alloy container by this invention. 図1の蓋部を閉じた状態を示す構成図である。It is a block diagram which shows the state which closed the cover part of FIG. 図1の他の形態を示す構成図である。It is a block diagram which shows the other form of FIG. 本発明方法と従来方法の活性化時間の速度比較を示す特性図である。It is a characteristic view which shows the speed comparison of the activation time of this invention method and the conventional method.

符号の説明Explanation of symbols

1 耐圧容器
1A 本体部
2 蓋部
3 水素配管
4 差圧計
5 エア抜き弁
6 流体
7 流体タンク
8 流体配管
9 流入口
10 放出口
11〜13 第1〜第3弁
14 充填・加圧手段
15 出力制御部
16 圧力計
17 レギュレータ
18 水素源
18a 水素
20 水素吸蔵合金容器
30 熱除去手段
DESCRIPTION OF SYMBOLS 1 Pressure-resistant container 1A Main-body part 2 Lid part 3 Hydrogen piping 4 Differential pressure gauge 5 Air vent valve 6 Fluid 7 Fluid tank 8 Fluid piping 9 Inlet 10 Outlet 11-13 First to third valves 14 Filling / pressurizing means 15 Output Control part 16 Pressure gauge 17 Regulator 18 Hydrogen source 18a Hydrogen 20 Hydrogen storage alloy container 30 Heat removal means

Claims (3)

耐圧容器(1)内に水素吸蔵合金容器(20)が配置でき、前記耐圧容器(1)の外部に配設された水素源(18)に連通する水素配管(3)が前記水素吸蔵合金容器(20)に接続され、前記耐圧容器(1)には前記耐圧容器(1)に流入させる流体(6)の流入口(9)が設けられ、前記耐圧容器(1)には前記流体(6)の充填及び加圧ができる充填・加圧手段(14)が接続されていることを特徴とする水素吸蔵合金容器の活性化装置。   A hydrogen storage alloy container (20) can be disposed in the pressure resistant container (1), and a hydrogen pipe (3) communicating with a hydrogen source (18) disposed outside the pressure resistant container (1) includes the hydrogen storage alloy container. (20), the pressure vessel (1) is provided with an inlet (9) for the fluid (6) to flow into the pressure vessel (1), and the pressure vessel (1) has the fluid (6 ) Is an apparatus for activating a hydrogen storage alloy container, to which a filling / pressurizing means (14) capable of filling and pressurizing) is connected. 前記流体(6)の熱を除去するための熱除去手段(30)を有することを特徴とする請求項1記載の水素吸蔵合金容器の活性化装置。   The apparatus for activating a hydrogen storage alloy container according to claim 1, further comprising heat removal means (30) for removing heat of the fluid (6). 請求項1又は2記載の水素吸蔵合金容器の活性化装置を用い、前記水素吸蔵合金容器(20)に導入した水素(18a)の圧力と、前記流体(6)の圧力とが平衡になるように調整しつつ前記水素吸蔵合金容器(20)内の水素吸蔵合金を活性化することを特徴とする水素吸蔵合金容器の活性化方法。   Using the hydrogen storage alloy container activation device according to claim 1 or 2, the pressure of hydrogen (18a) introduced into the hydrogen storage alloy container (20) and the pressure of the fluid (6) are balanced. And activating the hydrogen storage alloy in the hydrogen storage alloy container (20) while adjusting the temperature of the hydrogen storage alloy container.
JP2007101744A 2007-04-09 2007-04-09 Device for activating hydrogen storage alloy container Active JP4916367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007101744A JP4916367B2 (en) 2007-04-09 2007-04-09 Device for activating hydrogen storage alloy container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007101744A JP4916367B2 (en) 2007-04-09 2007-04-09 Device for activating hydrogen storage alloy container

Publications (2)

Publication Number Publication Date
JP2008254986A true JP2008254986A (en) 2008-10-23
JP4916367B2 JP4916367B2 (en) 2012-04-11

Family

ID=39978933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007101744A Active JP4916367B2 (en) 2007-04-09 2007-04-09 Device for activating hydrogen storage alloy container

Country Status (1)

Country Link
JP (1) JP4916367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167285A (en) * 2011-03-02 2011-08-31 上海师范大学 Portable, safe and controllable hydrolysis hydrogen-producing device
CN103253630A (en) * 2013-05-16 2013-08-21 桂林电子科技大学 Hydrolysis hydrogen production device with internal integrated feeding tank and layered heat conduction and drying architecture
JP2016211646A (en) * 2015-05-07 2016-12-15 株式会社日本製鋼所 Hydrogen pressure rise storage system and boosting method of hydrogen pressure rise storage system
CN114877241A (en) * 2022-05-25 2022-08-09 武汉氢能与燃料电池产业技术研究院有限公司 Activation hydrogen charging and discharging water bath device and method for hydrogen storage tank

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196701A (en) * 1981-05-29 1982-12-02 Kawasaki Heavy Ind Ltd Activating method for metallic hydride
JPS6353400A (en) * 1986-08-20 1988-03-07 Sekisui Chem Co Ltd Method for mass-activating metal hydride
JPH06248302A (en) * 1993-02-23 1994-09-06 Sanyo Special Steel Co Ltd Method for activating hydrogen storage alloy
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002130599A (en) * 2000-10-18 2002-05-09 Toyota Motor Corp Hydrogen absorption unit and hydrogen absorption method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196701A (en) * 1981-05-29 1982-12-02 Kawasaki Heavy Ind Ltd Activating method for metallic hydride
JPS6353400A (en) * 1986-08-20 1988-03-07 Sekisui Chem Co Ltd Method for mass-activating metal hydride
JPH06248302A (en) * 1993-02-23 1994-09-06 Sanyo Special Steel Co Ltd Method for activating hydrogen storage alloy
JP2000017408A (en) * 1998-07-03 2000-01-18 Japan Metals & Chem Co Ltd Apparatus for activating hydrogen storage alloy and method therefor
JP2002130599A (en) * 2000-10-18 2002-05-09 Toyota Motor Corp Hydrogen absorption unit and hydrogen absorption method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102167285A (en) * 2011-03-02 2011-08-31 上海师范大学 Portable, safe and controllable hydrolysis hydrogen-producing device
CN103253630A (en) * 2013-05-16 2013-08-21 桂林电子科技大学 Hydrolysis hydrogen production device with internal integrated feeding tank and layered heat conduction and drying architecture
JP2016211646A (en) * 2015-05-07 2016-12-15 株式会社日本製鋼所 Hydrogen pressure rise storage system and boosting method of hydrogen pressure rise storage system
CN114877241A (en) * 2022-05-25 2022-08-09 武汉氢能与燃料电池产业技术研究院有限公司 Activation hydrogen charging and discharging water bath device and method for hydrogen storage tank
CN114877241B (en) * 2022-05-25 2024-05-17 武汉氢能与燃料电池产业技术研究院有限公司 Hydrogen storage tank activation charging and discharging water bath device and method

Also Published As

Publication number Publication date
JP4916367B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4916367B2 (en) Device for activating hydrogen storage alloy container
Singh et al. Experiments on solid state hydrogen storage device with a finned tube heat exchanger
TWI303300B (en) Heat exchange apparatus
USRE49947E1 (en) System and method for supplying a lighter-than-air vehicle with hydrogen gas
JP6595177B2 (en) Hydrogen gas filling apparatus and method
CN206447564U (en) A kind of high pressure hydrogen feedway
US2958204A (en) Liquid oxygen converter
CN111360260A (en) Hot isostatic pressing system and method for workpiece
CN106895253A (en) A kind of fibre reinforced composites gas cylinder with superconducting radiator
JP2000017408A (en) Apparatus for activating hydrogen storage alloy and method therefor
CN213767339U (en) Hot isostatic pressing system based on liquid metal hot pressing medium
CN107626266A (en) Hydrogenation reactor
EP1813853A1 (en) High pressure gas container with an auxiliary valve and process for filling it
Shin et al. Study on an actuation system development using temperature control of metal hydrides
CN218836090U (en) Tantalum and niobium material hydrogenation balance system
CN110848565B (en) Xenon filling system and method
JP2008133834A (en) Hydrogen storage device and hydrogen storage method
CN106517091B (en) A kind of high pressure hydrogen feedway and preparation method thereof and application method
JP4964462B2 (en) High pressure gas supply apparatus and high pressure gas supply method
CN220647847U (en) Helium cryogenic container vacuumizing device
JPH07289853A (en) Device for separating and concentrating hydrogen isotope
JP2802958B2 (en) Hydrogen purity improving apparatus and operating method thereof
Syawitri a Review: the Effect of Operating Conditions and Thermal Management on the Performances of Metal Hydride Hydrogen Storage Tank
Klein A 1600 liter tritium hydride storage vessel
JP6803813B2 (en) Hydrogen storage method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4916367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250