JP6803813B2 - Hydrogen storage method - Google Patents

Hydrogen storage method Download PDF

Info

Publication number
JP6803813B2
JP6803813B2 JP2017140342A JP2017140342A JP6803813B2 JP 6803813 B2 JP6803813 B2 JP 6803813B2 JP 2017140342 A JP2017140342 A JP 2017140342A JP 2017140342 A JP2017140342 A JP 2017140342A JP 6803813 B2 JP6803813 B2 JP 6803813B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
container
pressure
storage method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017140342A
Other languages
Japanese (ja)
Other versions
JP2019019931A (en
Inventor
健人 緒方
健人 緒方
彰利 藤澤
彰利 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2017140342A priority Critical patent/JP6803813B2/en
Publication of JP2019019931A publication Critical patent/JP2019019931A/en
Application granted granted Critical
Publication of JP6803813B2 publication Critical patent/JP6803813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

本発明は、水素貯蔵方法に関する。 The present invention relates to a hydrogen storage method.

近年、地球環境の改善につながる燃料電池用の燃料として、水素への期待が高まっている。水素は、沸点が極めて低く、他の燃料ガスのように容易に液化して体積を小さくすることができないため、例えば水素吸蔵合金等に吸蔵させることで体積を小さくする方法が採用されている。 In recent years, expectations for hydrogen as a fuel for fuel cells, which leads to improvement of the global environment, are increasing. Since hydrogen has an extremely low boiling point and cannot be easily liquefied to reduce its volume like other fuel gases, a method of reducing its volume by storing it in, for example, a hydrogen storage alloy is adopted.

水素を自動車等の燃料とする場合、水素吸蔵合金に短時間で水素を吸蔵させられるようにすることが望まれる。水素吸蔵合金による水素の吸蔵反応は発熱反応である。また、水素吸蔵合金は、温度が低いほど水素を吸蔵しやすい特性(PCT特性)を有する。このため、例えば特開2001−208296号公報には、水素吸蔵合金を収容する容器に冷熱媒を挿通する流路を設け、容器内の水素吸蔵合金を冷却しながら水素を吸蔵させることで、水素吸蔵速度を向上する技術が提案されている。 When hydrogen is used as a fuel for automobiles and the like, it is desired that the hydrogen storage alloy can store hydrogen in a short time. The hydrogen storage reaction by a hydrogen storage alloy is an exothermic reaction. Further, the hydrogen storage alloy has a property (PCT property) that the lower the temperature, the easier it is to store hydrogen. For this reason, for example, Japanese Patent Application Laid-Open No. 2001-208296 provides a flow path for inserting a cold heat medium into a container containing a hydrogen storage alloy, and stores hydrogen while cooling the hydrogen storage alloy in the container to store hydrogen. A technique for improving the storage speed has been proposed.

しかしながら、冷熱媒によって水素吸蔵合金を冷却したとしても、水素吸蔵速度が大きい場合には、水素吸蔵合金の温度が上昇することにより容器内の圧力が上昇して水素吸蔵速度が低下してしまうため、必要な水素量を吸蔵させるまでに必要な時間を十分に短縮できない。 However, even if the hydrogen storage alloy is cooled by a cold heat medium, if the hydrogen storage rate is high, the pressure inside the container rises due to the rise in the temperature of the hydrogen storage alloy, and the hydrogen storage rate decreases. , The time required to store the required amount of hydrogen cannot be shortened sufficiently.

特開2001−208296号公報Japanese Unexamined Patent Publication No. 2001-208296

上記不都合に鑑みて、本発明は、水素を短時間で吸蔵させられる水素貯蔵方法を提供することを課題とする。 In view of the above inconvenience, it is an object of the present invention to provide a hydrogen storage method capable of occluding hydrogen in a short time.

上記課題を解決するためになされた本発明の一態様に係る水素貯蔵方法は、容器内に収容した水素吸蔵合金によって水素を吸蔵させる水素貯蔵方法であって、水素の最大供給圧力をPmax、無吸蔵状態から実用吸蔵量の水素を吸蔵させる場合の理想充填時間Ts、容器内の初期圧力上昇速度をVpとして、X=Pmax/(Ts×Vp)で表される評価指数Xの値が0.1以上1.0以下となるよう上記容器内に供給する水素の流量を設定することを特徴とする。 The hydrogen storage method according to one aspect of the present invention, which has been made to solve the above problems, is a hydrogen storage method in which hydrogen is stored by a hydrogen storage alloy contained in a container, and the maximum supply pressure of hydrogen is Pmax, none. The value of the evaluation index X expressed by X = Pmax / (Ts × Vp) is 0, where the ideal filling time Ts when storing a practical amount of hydrogen from the storage state and the initial pressure rise rate in the container are Vp. It is characterized in that the flow rate of hydrogen supplied into the container is set so as to be 1 or more and 1.0 or less.

当該水素貯蔵方法は、評価指数X=Pmax/(Ts×Vp)の値を上記範囲内とするよう水素の流量を設定することによって、容器内の圧力の上昇による水素吸蔵速度の低下を抑制することができる結果、実用吸蔵量の水素を吸蔵させるために要する時間を短縮することができる。 The hydrogen storage method suppresses a decrease in the hydrogen storage rate due to an increase in the pressure inside the container by setting the flow rate of hydrogen so that the value of the evaluation index X = Pmax / (Ts × Vp) is within the above range. As a result, the time required to store the practical storage amount of hydrogen can be shortened.

当該水素貯蔵方法において、上記理想充填時間が、上記水素吸蔵合金の有効水素吸蔵量の50%を充填するための時間であってもよい。このように、上記水素吸蔵合金の有効水素吸蔵量の50%を基準とすることで、水素を短時間で吸蔵させられるより最適化な条件が得られる。 In the hydrogen storage method, the ideal filling time may be the time for filling 50% of the effective hydrogen storage amount of the hydrogen storage alloy. As described above, by using 50% of the effective hydrogen storage amount of the hydrogen storage alloy as a reference, more optimized conditions for storing hydrogen in a short time can be obtained.

当該水素貯蔵方法において上記理想充填時間が10分であってもよい。このように、上記理想充填時間が上記時間であることによって、車両用水素吸蔵装置に水素を供給するシステムを最適化することができる。 In the hydrogen storage method, the ideal filling time may be 10 minutes. As described above, when the ideal filling time is the above time, the system for supplying hydrogen to the hydrogen storage device for vehicles can be optimized.

当該水素貯蔵方法において上記容器を冷却しながら水素を吸蔵させることが好ましい。このように、上記容器を冷却しながら水素を吸蔵させることによって、容器内の圧力の上昇をより確実に抑制することができる。 In the hydrogen storage method, it is preferable to occlude hydrogen while cooling the container. By occluding hydrogen while cooling the container in this way, an increase in pressure inside the container can be suppressed more reliably.

本発明の別の態様に係る水素貯蔵方法は、容器内に収容した水素吸蔵合金によって水素を吸蔵させる水素貯蔵方法であって、水素供給開始から容器内の圧力が水素の最大供給圧力の95%に達するまでの時間が1分以上10分以下となるよう、上記容器内に供給する水素の流量を設定することを特徴とする。 The hydrogen storage method according to another aspect of the present invention is a hydrogen storage method in which hydrogen is stored by a hydrogen storage alloy contained in a container, and the pressure in the container is 95% of the maximum supply pressure of hydrogen from the start of hydrogen supply. It is characterized in that the flow rate of hydrogen supplied into the container is set so that the time required to reach the above level is 1 minute or more and 10 minutes or less.

当該水素貯蔵方法は、水素供給開始から容器内の圧力が水素の最大供給圧力の95%に達するまでの時間を上記範囲内とすることによって、容器内圧力の上昇による水素吸蔵速度の低下を抑制することができる結果、実用吸蔵量の水素を吸蔵させるために要する時間を短縮することができる。 The hydrogen storage method suppresses a decrease in the hydrogen storage rate due to an increase in the pressure inside the container by setting the time from the start of hydrogen supply until the pressure inside the container reaches 95% of the maximum supply pressure of hydrogen within the above range. As a result, the time required to store the practical storage amount of hydrogen can be shortened.

なお、「初期圧力上昇速度」とは、容器内の圧力が水素の最大供給圧力の95%に達するまでの圧力上昇速度を意味するものとする。 The "initial pressure increase rate" means the pressure increase rate until the pressure in the container reaches 95% of the maximum supply pressure of hydrogen.

以上のように、本発明の水素貯蔵方法は、水素を短時間で吸蔵させられる。 As described above, the hydrogen storage method of the present invention can occlude hydrogen in a short time.

本発明の一実施形態の水素貯蔵方法に用いられる水素貯蔵システムの構成を示す模式図である。It is a schematic diagram which shows the structure of the hydrogen storage system used in the hydrogen storage method of one Embodiment of this invention. 本発明の試験における容器内の圧力の時間変化を示すグラフである。It is a graph which shows the time change of the pressure in a container in the test of this invention.

以下、適宜図面を参照しつつ、本発明の実施の形態を詳説する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

[水素貯蔵システム]
図1に、本発明の一実施形態に係る水素貯蔵方法の実施に用いられる水素貯蔵システムの構成を示す。
[Hydrogen storage system]
FIG. 1 shows the configuration of a hydrogen storage system used for carrying out the hydrogen storage method according to the embodiment of the present invention.

図1の水素貯蔵システムは、水素吸蔵合金を収容した水素貯蔵容器1と、不図示の水素供給源から一定の圧力(最大供給圧力)で供給される水素の流量を設定して水素貯蔵容器1に導入する供給マスフローコントローラー2と、供給マスフローコントローラー2から水素貯蔵容器1に水素を導入する流路を遮断可能な供給遮断弁3と、供給マスフローコントローラー2から水素貯蔵容器1に水素を導入する流路内の圧力を検出する圧力計4とを備える。 In the hydrogen storage system of FIG. 1, the hydrogen storage container 1 containing a hydrogen storage alloy and the flow rate of hydrogen supplied at a constant pressure (maximum supply pressure) from a hydrogen supply source (not shown) are set. The supply mass flow controller 2 to be introduced into the supply mass flow controller 2, the supply shutoff valve 3 capable of blocking the flow path for introducing hydrogen from the supply mass flow controller 2 to the hydrogen storage container 1, and the flow for introducing hydrogen from the supply mass flow controller 2 into the hydrogen storage container 1. It is provided with a pressure gauge 4 for detecting the pressure in the road.

また、この水素貯蔵システムは、水素貯蔵容器1から需要設備に水素を一定の流量で供給する排出マスフローコントローラー5と、水素貯蔵容器1から排出マスフローコントローラー5への水素の流出流路を遮断可能な排出遮断弁6とを有する。 Further, this hydrogen storage system can block the discharge mass flow controller 5 that supplies hydrogen from the hydrogen storage container 1 to the demand equipment at a constant flow rate and the hydrogen outflow flow path from the hydrogen storage container 1 to the discharge mass flow controller 5. It has a discharge shutoff valve 6.

水素貯蔵容器1は、熱媒体(冷熱媒又は温熱媒)を挿通する熱媒体流路を有し、熱媒体との熱交換によって収容する水素吸蔵合金を冷却又は加熱することができるよう構成されている。このため、水素貯蔵システムは、冷熱媒源7及び温熱媒源8と、水素貯蔵容器1に冷熱媒と温熱媒とのいずれを挿通するかを選択する入口切替弁9及び出口切替弁10とを有する。 The hydrogen storage container 1 has a heat medium flow path through which a heat medium (cold heat medium or hot heat medium) is inserted, and is configured to be able to cool or heat the hydrogen storage alloy contained by heat exchange with the heat medium. There is. Therefore, the hydrogen storage system includes a cold heat medium source 7 and a hot medium source 8, and an inlet switching valve 9 and an outlet switching valve 10 for selecting whether to insert the cold heat medium or the hot medium into the hydrogen storage container 1. Have.

水素貯蔵容器1としては、熱媒体と水素吸蔵合金との熱交換を促進するために、熱媒体流路を画定する隔壁から水素吸蔵合金を収容する空間に突出するフィンを有することが好ましい。 The hydrogen storage container 1 preferably has fins protruding from the partition wall defining the heat medium flow path into the space accommodating the hydrogen storage alloy in order to promote heat exchange between the heat medium and the hydrogen storage alloy.

水素貯蔵容器1に収容される水素吸蔵合金は、圧力又は温度を制御することによって水素を吸蔵及び放出できる合金である。このような水素吸蔵合金としては、公知のものを用いることができるが、例えば2元系合金、3元系合金、4元系合金、5元系合金等が挙げられる。 The hydrogen storage alloy contained in the hydrogen storage container 1 is an alloy capable of storing and releasing hydrogen by controlling pressure or temperature. As such a hydrogen storage alloy, known ones can be used, and examples thereof include binary alloys, ternary alloys, quaternary alloys, quaternary alloys and the like.

上記2元系合金としては、例えばLaNi等のLaNi系合金、TiFe系合金、MmNi系合金、CaNi系合金、TiMn系合金、TiZr系合金、ZrMn系合金などを挙げることができる。 Examples of the binary alloy include LaNi alloys such as LaNi 5 , TiFe alloys, MmNi alloys, CaNi alloys, Timn alloys, TiZr alloys, Zrmn alloys and the like.

上記3元系合金としては、例えばTi25Cr5025、Ti25Cr2550等のTiCrV系合金、Ti36Cr32Mn32、Ti30Cr35Mn35等のTiCrMn系合金、Ti20Cr4535等のTiCrV系合金、TiVMo系合金などを挙げることができる。 Examples of the ternary alloy include TiCrV alloys such as Ti 25 Cr 50 V 25 , Ti 25 Cr 25 V 50 , Ti Cr Mn alloys such as Ti 36 Cr 32 Mn 32 , and Ti Cr Mn alloys such as Ti 30 Cr 35 Mn 35 , and Ti 20 Cr. Examples thereof include TiCrV alloys such as 45 V 35 and TiVMo alloys.

上記4元系合金としては、例えばTi30Cr4510Mo15、Ti25Cr5020Mo等のTiCrVMo系合金、Ti25Cr4425Fe等のTiCrVFe系合金、Ti25Cr5020Ni等のTiCrVNi系合金などを挙げることができる。 Examples of the quaternary alloy include TiCrVMo alloys such as Ti 30 Cr 45 V 10 Mo 15 and Ti 25 Cr 50 V 20 Mo 5 , Ti Cr VFe alloys such as Ti 25 Cr 44 V 25 Fe 6 , and Ti 25 Cr 50. Examples thereof include TiCrVNi-based alloys such as V 20 Ni 5 .

上記5元系合金としては、例えばTi11Cr1271MoNi等のTiCrVMoNi合金などを挙げることができる。 Examples of the quintuple alloy include TiCrVMoNi alloys such as Ti 11 Cr 12 V 71 Mo 5 Ni 1 .

水素貯蔵容器1ひいては水素吸蔵合金を冷却する冷熱媒の温度としては、水素吸蔵合金の水素平衡圧(平衡解離圧)が例えば0.1MPaとなる温度と近い温度とすることができる。一方、水素貯蔵容器1ひいては水素吸蔵合金を加熱する温熱媒の温度としては、水素吸蔵合金の水素平衡圧が例えば需要設備への供給圧力となる温度以上の温度とすることができる。 The temperature of the cold heat medium for cooling the hydrogen storage container 1 and thus the hydrogen storage alloy can be set to a temperature close to the temperature at which the hydrogen equilibrium pressure (equilibrium dissociation pressure) of the hydrogen storage alloy is, for example, 0.1 MPa. On the other hand, the temperature of the thermal medium for heating the hydrogen storage container 1 and thus the hydrogen storage alloy can be set to a temperature equal to or higher than the temperature at which the hydrogen equilibrium pressure of the hydrogen storage alloy becomes, for example, the supply pressure to the demand equipment.

以上の水素貯蔵システムを用いて行うことができる本発明の一実施形態に係る水素貯蔵方法は、水素貯蔵容器1内に収容した水素吸蔵合金によって水素を吸蔵させる水素貯蔵方法であって、排出遮断弁6を閉じ、入口切替弁9及び出口切替弁10によって水素貯蔵容器1に冷熱媒を挿通させる状態で、供給遮断弁3を開いて水素貯蔵容器1に水素を供給する。 The hydrogen storage method according to the embodiment of the present invention, which can be performed using the above hydrogen storage system, is a hydrogen storage method in which hydrogen is stored by a hydrogen storage alloy contained in the hydrogen storage container 1, and emission blocking is performed. With the valve 6 closed and the cold heat medium inserted into the hydrogen storage container 1 by the inlet switching valve 9 and the outlet switching valve 10, the supply shutoff valve 3 is opened to supply hydrogen to the hydrogen storage container 1.

当該水素貯蔵方法は、供給マスフローコントローラー2によって、水素の流量を設定する。具体的には、水素の最大供給圧力をPmax[MPa]、無吸蔵状態から実用吸蔵量の水素を吸蔵させる場合の理想充填時間Ts[min]、容器内の初期圧力上昇速度をVp[MPa/min]として、X=Pmax/(Ts×Vp)で表される評価指数Xの値が一定の範囲内となるよう上記容器内に供給する水素の流量を設定する。この供給マスフローコントローラー2における水素の流量の設定値は、実験及び経験に基づいて定めることができる。 In the hydrogen storage method, the flow rate of hydrogen is set by the supply mass flow controller 2. Specifically, the maximum supply pressure of hydrogen is Pmax [MPa], the ideal filling time Ts [min] when storing a practical amount of hydrogen from a non-occluded state, and the initial pressure rise rate in the container is Vp [MPa /]. As min], the flow rate of hydrogen supplied into the container is set so that the value of the evaluation index X represented by X = Pmax / (Ts × Vp) is within a certain range. The set value of the hydrogen flow rate in the supply mass flow controller 2 can be determined based on experiments and experience.

評価指数Xの下限としては、0.1が好ましく、0.2がより好ましい。一方、評価指数Xの上限としては、1.0が好ましく、0.6がより好ましい。評価指数Xが上記下限に満たない場合、水素貯蔵容器1内の圧力上昇を十分に抑制することができず、実用吸蔵量の水素を吸蔵させるために要する時間を低減できないおそれがある。逆に、評価指数Xが上記上限を超える場合、水素貯蔵容器1内の圧力上昇は抑制できるが、水素の流量が不十分となって実用吸蔵量の水素を吸蔵させるために要する時間が却って増大するおそれがある。 As the lower limit of the evaluation index X, 0.1 is preferable, and 0.2 is more preferable. On the other hand, as the upper limit of the evaluation index X, 1.0 is preferable, and 0.6 is more preferable. If the evaluation index X is less than the above lower limit, the pressure rise in the hydrogen storage container 1 cannot be sufficiently suppressed, and the time required for storing the practical storage amount of hydrogen may not be reduced. On the contrary, when the evaluation index X exceeds the above upper limit, the pressure increase in the hydrogen storage container 1 can be suppressed, but the flow rate of hydrogen becomes insufficient and the time required to occlude the practical storage amount of hydrogen increases. There is a risk of

このように、当該水素貯蔵方法は、上記評価指数Xを上記範囲内とするよう水素の流量を設定することによって、水素貯蔵容器1内の圧力の上昇による水素吸蔵速度の低下を抑制することができる結果、実用吸蔵量の水素を吸蔵させるために要する時間を短縮することができる。 As described above, the hydrogen storage method can suppress a decrease in the hydrogen storage rate due to an increase in the pressure in the hydrogen storage container 1 by setting the flow rate of hydrogen so that the evaluation index X is within the above range. As a result, the time required to store the practical storage amount of hydrogen can be shortened.

なお、「実用吸蔵量」は、水素吸蔵合金に吸蔵させる水素の標準量であって、システムの用途等に応じて定められる。具体例として、水素貯蔵容器1が車両に搭載される水素燃料タンクである場合、実用吸蔵量は有効水素吸蔵量の50%とすることが好ましい。このように、水素吸蔵合金の有効水素吸蔵量の50%を基準とすることで、水素を短時間で吸蔵させられるより最適化な条件が得られる。 The "practical storage amount" is a standard amount of hydrogen stored in a hydrogen storage alloy, and is determined according to the application of the system and the like. As a specific example, when the hydrogen storage container 1 is a hydrogen fuel tank mounted on a vehicle, the practical storage amount is preferably 50% of the effective hydrogen storage amount. As described above, by using 50% of the effective hydrogen storage amount of the hydrogen storage alloy as a reference, more optimized conditions for storing hydrogen in a short time can be obtained.

また、「理想充填時間」は、水素吸蔵合金に実用吸蔵量の水素を吸蔵させるために要する時間として許容される時間であって、システムの用途等に応じて定められる。具体例として、水素貯蔵容器1が車両に搭載される水素燃料タンクである場合、10分とすることが好ましい。このように、理想充填時間を10分とすることによって、車両に燃料用水素を供給するシステムを最適化することができる。 The "ideal filling time" is a time allowed as a time required for the hydrogen storage alloy to store a practical storage amount of hydrogen, and is determined according to the application of the system and the like. As a specific example, when the hydrogen storage container 1 is a hydrogen fuel tank mounted on a vehicle, it is preferably 10 minutes. By setting the ideal filling time to 10 minutes in this way, it is possible to optimize the system for supplying hydrogen for fuel to the vehicle.

当該水素貯蔵方法では、冷熱媒を挿通して水素貯蔵容器1を冷却しながら水素吸蔵合金に水素を吸蔵させる。このように、水素貯蔵容器1ひいては水素吸蔵合金を冷却しながら水素吸蔵合金に水素を吸蔵させることによって、水素貯蔵容器内の圧力の上昇をより確実に抑制し、実用吸蔵量の水素を吸蔵させるために要する時間をより確実に短縮することができる。 In the hydrogen storage method, a cold heat medium is inserted to cool the hydrogen storage container 1 while causing the hydrogen storage alloy to store hydrogen. In this way, by allowing the hydrogen storage alloy to store hydrogen while cooling the hydrogen storage container 1 and thus the hydrogen storage alloy, the increase in pressure inside the hydrogen storage container is more reliably suppressed, and the practical storage amount of hydrogen is stored. The time required for this can be shortened more reliably.

また、当該水素貯蔵方法では、上記評価指数Xが上記範囲内となると共に、水素供給開始から水素貯蔵容器1内の圧力が水素の最大供給圧力の95%に達するまでの時間が、水素貯蔵システムの需要設備に応じて定められる一定の範囲内となるよう、水素貯蔵容器1内に供給する水素の流量(供給マスフローメーター2の設定値)が設定されることが好ましい。 Further, in the hydrogen storage method, the evaluation index X is within the above range, and the time from the start of hydrogen supply until the pressure in the hydrogen storage container 1 reaches 95% of the maximum supply pressure of hydrogen is the hydrogen storage system. It is preferable that the flow rate of hydrogen supplied into the hydrogen storage container 1 (set value of the supply mass flow meter 2) is set so as to be within a certain range determined according to the demand equipment.

水素貯蔵容器1が車両に搭載される水素燃料タンクである場合、水素供給開始から水素貯蔵容器1内の圧力が水素の最大供給圧力の95%に達するまでの時間の下限としては、1分が好ましく、2分がより好ましい。一方、水素供給開始から水素貯蔵容器1内の圧力が水素の最大供給圧力の95%に達するまでの時間の上限としては、10分が好ましく、6分がより好ましい。水素供給開始から水素貯蔵容器1内の圧力が水素の最大供給圧力の95%に達するまでの時間が上記下限に満たない場合、水素吸蔵合金に水素を十分に吸蔵させる前に水素貯蔵容器1内の圧力が上昇して実用吸蔵量の水素を吸蔵させ終えるまでの時間が増大するおそれがある。逆に、水素供給開始から水素貯蔵容器1内の圧力が水素の最大供給圧力の95%に達するまでの時間が上記上限を超える場合、水素吸蔵合金への水素の供給が過度に抑制されて実用吸蔵量の水素を吸蔵させ終えるまでの時間が増大するおそれがある。 When the hydrogen storage container 1 is a hydrogen fuel tank mounted on a vehicle, the lower limit of the time from the start of hydrogen supply until the pressure in the hydrogen storage container 1 reaches 95% of the maximum hydrogen supply pressure is 1 minute. Preferably, 2 minutes is more preferred. On the other hand, as the upper limit of the time from the start of hydrogen supply until the pressure in the hydrogen storage container 1 reaches 95% of the maximum hydrogen supply pressure, 10 minutes is preferable, and 6 minutes is more preferable. If the time from the start of hydrogen supply until the pressure in the hydrogen storage container 1 reaches 95% of the maximum supply pressure of hydrogen does not reach the above lower limit, the hydrogen storage container 1 is filled with hydrogen before the hydrogen storage alloy is sufficiently stored. There is a risk that the pressure will increase and the time required to finish storing the practical amount of hydrogen stored will increase. On the contrary, when the time from the start of hydrogen supply to the pressure in the hydrogen storage container 1 reaching 95% of the maximum hydrogen supply pressure exceeds the above upper limit, the supply of hydrogen to the hydrogen storage alloy is excessively suppressed for practical use. There is a risk that the time required to finish storing the stored amount of hydrogen will increase.

図1の水素貯蔵システムでは、供給遮断弁3を閉じ、入口切替弁9及び出口切替弁10によって水素貯蔵容器1に温熱媒を挿通させる状態として、排出遮断弁6を開くことによって、水素吸蔵合金から水素を解離させて、水素貯蔵容器1から排出マスフローコントローラー5を介して需要設備に水素を供給する。 In the hydrogen storage system of FIG. 1, the supply shutoff valve 3 is closed, and the discharge shutoff valve 6 is opened so that the heat medium is inserted into the hydrogen storage container 1 by the inlet switching valve 9 and the outlet switching valve 10. Hydrogen is dissociated from the hydrogen storage container 1 and hydrogen is supplied from the hydrogen storage container 1 to the demand equipment via the discharge mass flow controller 5.

[その他の実施形態]
上記実施形態は、本発明の構成を限定するものではない。従って、上記実施形態は、本明細書の記載及び技術常識に基づいて上記実施形態各部の構成要素の省略、置換又は追加が可能であり、それらは全て本発明の範囲に属するものと解釈されるべきである。
[Other Embodiments]
The above embodiment does not limit the configuration of the present invention. Therefore, in the above-described embodiment, the components of each part of the above-described embodiment can be omitted, replaced or added based on the description of the present specification and common general technical knowledge, and all of them are construed as belonging to the scope of the present invention. Should be.

本発明に係る水素貯蔵方法は、評価指数Xが0.1以上1.0以下にならなくても、水素供給開始から容器内の圧力が水素の最大供給圧力の95%に達するまでの時間が1分以上10分以下となるよう、容器内に供給する水素の流量を設定するものであってもよい。逆に、本発明に係る水素貯蔵方法は、特に理想充填時間が長い場合、評価指数Xは0.1以上1.0以下となるが、水素供給開始から容器内の圧力が水素の最大供給圧力の95%に達するまでの時間が10分超となるよう容器内に供給する水素の流量を設定するものであってもよい。 In the hydrogen storage method according to the present invention, even if the evaluation index X does not become 0.1 or more and 1.0 or less, the time from the start of hydrogen supply until the pressure in the container reaches 95% of the maximum hydrogen supply pressure. The flow rate of hydrogen supplied into the container may be set so as to be 1 minute or more and 10 minutes or less. On the contrary, in the hydrogen storage method according to the present invention, the evaluation index X is 0.1 or more and 1.0 or less, especially when the ideal filling time is long, but the pressure in the container is the maximum supply pressure of hydrogen from the start of hydrogen supply. The flow rate of hydrogen supplied into the container may be set so that the time required to reach 95% of the above is more than 10 minutes.

以下、実施例に基づき本発明を詳述するが、この実施例の記載に基づいて本発明が限定的に解釈されるものではない。 Hereinafter, the present invention will be described in detail based on Examples, but the present invention is not limitedly interpreted based on the description of this Example.

上記実施形態と同様の構成を有する水素貯蔵システムを用い、流量の設定を変えて無吸蔵状態から水素吸蔵合金に水素を吸蔵させる試験1〜5を行った。 Using a hydrogen storage system having the same configuration as that of the above embodiment, tests 1 to 5 were performed in which hydrogen was stored in the hydrogen storage alloy from the non-storage state by changing the flow rate setting.

水素ボンベから調圧弁を介して供給マスフローコントローラーに水素を供給した。供給マスフローコントローラーに供給する水素の圧力(最大供給圧力Pmax)は、0.95MPaに設定した。 Hydrogen was supplied from the hydrogen cylinder to the supply mass flow controller via the pressure regulating valve. The pressure of hydrogen supplied to the supply mass flow controller (maximum supply pressure P max ) was set to 0.95 MPa.

水素貯蔵容器としては、熱媒体流路を有する全長300mm、内径46mm、容器体積500ccのジャケット式円筒容器を横置きにして使用した。この水素貯蔵容器には、水素吸蔵合金として、水素平衡圧が−20℃で0.1MPaとなるLaNi系水素吸蔵合金であるMmNi4.55Co0.7Mn0.15(粒径1.2mm以下)を1kg収容した。 As the hydrogen storage container, a jacket-type cylindrical container having a heat medium flow path, a total length of 300 mm, an inner diameter of 46 mm, and a container volume of 500 cc was used horizontally. In this hydrogen storage container, as a hydrogen storage alloy, MmNi 4.55 Co 0.7 Mn 0.15 (particle size 1.), which is a LaNi 5 series hydrogen storage alloy having a hydrogen equilibrium pressure of 0.1 MPa at -20 ° C. 1 kg (2 mm or less) was accommodated.

この水素貯蔵容器の実用吸蔵量としては有効水素吸蔵量の50%の80NLである。また、無吸蔵状態から実用吸蔵量の水素を吸蔵させる場合の理想充填時間Tsは10分である。 The practical storage amount of this hydrogen storage container is 80 NL, which is 50% of the effective hydrogen storage amount. Further, the ideal filling time Ts in the case of storing a practical storage amount of hydrogen from a non-storage state is 10 minutes.

水素貯蔵容器に挿通する冷熱媒としては、MORESCO社のブライン「ナイブラインZ1」を使用し、EYELA社のチラー「CCA−1111」により−20℃の温度で供給した。 As the cold heat medium to be inserted into the hydrogen storage container, the brine "Nybrine Z1" manufactured by MORESCO was used, and the brine was supplied at a temperature of −20 ° C. by the chiller “CCA-1111” manufactured by EYELA.

供給マスフローコントローラーとしては、BROOKS社の「5850E」を用い、供給マスフローコントローラーが出力する実際の流量をキーエンス社のデータロガー「NR−250」を用いて記録した。また、供給マスフローコントローラーから水素貯蔵容器に水素を供給する配管に圧力計を設けて圧力変化を記録した。この圧力は、水素貯蔵容器の内圧と等しいものと考えてよい。 As the supply mass flow controller, "5850E" manufactured by BROOKS was used, and the actual flow rate output by the supply mass flow controller was recorded using the data logger "NR-250" manufactured by Keyence Corporation. In addition, a pressure gauge was installed in the pipe that supplies hydrogen from the supply mass flow controller to the hydrogen storage container to record the pressure change. This pressure can be considered to be equal to the internal pressure of the hydrogen storage vessel.

試験1〜5における供給マスフローコントローラーの設定値としては、それぞれ33.3NL/min、16.7NL/min、8.8NL/min、5.3NL/min及び4.5NL/minとした。 The set values of the supply mass flow controller in Tests 1 to 5 were 33.3 NL / min, 16.7 NL / min, 8.8 NL / min, 5.3 NL / min, and 4.5 NL / min, respectively.

図2に、試験1〜5における容器内の圧力の変化を示す。 FIG. 2 shows changes in pressure inside the container in tests 1 to 5.

次の表1に示すように、試験1〜5における容器内の圧力が水素の最大供給圧力の95%に達するまでの時間(95%圧力上昇時間)は、それぞれ0.7分、1.5分、4.5分、8.9分及び15.3分であった。これから算出される容器内の初期圧力上昇速度Vpは、それぞれ1.29MPa/min、0.60MPa/min、0.2MPa/min、0.10MPa/min及び0.06MPa/minであった。 As shown in Table 1 below, the time required for the pressure inside the vessel to reach 95% of the maximum hydrogen supply pressure (95% pressure rise time) in Tests 1 to 5 was 0.7 minutes and 1.5, respectively. It was minutes, 4.5 minutes, 8.9 minutes and 15.3 minutes. The initial pressure rise rates Vp in the container calculated from this were 1.29 MPa / min, 0.60 MPa / min, 0.2 MPa / min, 0.10 MPa / min, and 0.06 MPa / min, respectively.

Figure 0006803813
Figure 0006803813

上記結果から、試験1〜5において評価指数X=Pmax/(Ts×Vp)を算出した。この結果、試験1〜5の評価指数Xの値は、表1に合わせて示すように、それぞれ0.07、0.16、0.48、0.94及び1.62となった。 From the above results, the evaluation index X = Pmax / (Ts × Vp) was calculated in Tests 1 to 5. As a result, the values of the evaluation indexes X in Tests 1 to 5 were 0.07, 0.16, 0.48, 0.94 and 1.62, respectively, as shown in Table 1.

また、データロガーに記録された水素流量の積算値が実用吸蔵量に達した時間(実吸蔵時間)を確認した結果を、表1に合わせて示す。この結果から、最大供給圧力の95%に達するまでの時間を1分以上10分以下とした場合、及び評価指数Xを0.1以上1.0以下とした場合に、実吸蔵時間が比較的小さく、短時間で水素吸蔵合金に水素を吸蔵させることができた。 Table 1 also shows the results of confirming the time (actual storage time) when the integrated value of the hydrogen flow rate recorded in the data logger reached the practical storage amount. From this result, when the time to reach 95% of the maximum supply pressure is 1 minute or more and 10 minutes or less, and when the evaluation index X is 0.1 or more and 1.0 or less, the actual storage time is relatively relatively. It was small and was able to store hydrogen in a hydrogen storage alloy in a short time.

本発明に係る水素貯蔵方法は、車両に搭載される水素燃料タンクの水素吸蔵合金に水素を吸蔵させるために特に好適に利用することができる。 The hydrogen storage method according to the present invention can be particularly preferably used for storing hydrogen in a hydrogen storage alloy of a hydrogen fuel tank mounted on a vehicle.

1 水素貯蔵容器
2 供給マスフローコントローラー
3 供給遮断弁
4 圧力計
5 排出マスフローコントローラー
6 排出遮断弁
7 冷熱媒源
8 温熱媒源
9 入口切替弁
10 出口切替弁
1 Hydrogen storage container 2 Supply mass flow controller 3 Supply shutoff valve 4 Pressure gauge 5 Discharge mass flow controller 6 Discharge shutoff valve 7 Cold heat medium source 8 Thermal medium source 9 Inlet switching valve 10 Outlet switching valve

Claims (5)

容器内に収容した水素吸蔵合金によって水素を吸蔵させる水素貯蔵方法であって、
水素の最大供給圧力をPmax、無吸蔵状態から実用吸蔵量の水素を吸蔵させる場合の理想充填時間Ts、容器内の初期圧力上昇速度をVpとして、
X=Pmax/(Ts×Vp)で表される評価指数Xの値が0.1以上1.0以下となるよう上記容器内に供給する水素の流量を設定することを特徴とする水素貯蔵方法。
It is a hydrogen storage method in which hydrogen is stored by a hydrogen storage alloy stored in a container.
The maximum supply pressure of hydrogen is Pmax, the ideal filling time Ts when storing a practical amount of hydrogen from a non-occluded state, and the initial pressure rise rate in the container is Vp.
A hydrogen storage method characterized by setting the flow rate of hydrogen supplied into the container so that the value of the evaluation index X represented by X = Pmax / (Ts × Vp) is 0.1 or more and 1.0 or less. ..
上記理想充填時間が、上記水素吸蔵合金の有効水素吸蔵量の50%を充填するための時間である請求項1に記載の水素貯蔵方法。 The hydrogen storage method according to claim 1, wherein the ideal filling time is the time for filling 50% of the effective hydrogen storage amount of the hydrogen storage alloy. 上記理想充填時間が10分である請求項1又は請求項2に記載の水素貯蔵方法。 The hydrogen storage method according to claim 1 or 2, wherein the ideal filling time is 10 minutes. 上記容器を冷却しながら水素を吸蔵させる請求項1、請求項2又は請求項3に記載の水素貯蔵方法。 The hydrogen storage method according to claim 1, claim 2 or claim 3, wherein hydrogen is occluded while cooling the container. 素供給開始から容器内の圧力が水素の最大供給圧力の95%に達するまでの時間が1分以上10分以下となるよう、上記容器内に供給する水素の流量を設定する請求項1に記載の水素貯蔵方法。 As the time from hydrogen supply start until the pressure in the vessel reaches 95% of the maximum supply pressure of the hydrogen is less than 10 minutes or more for 1 minute, to claim 1 for setting the flow rate of the hydrogen supplied to the vessel The hydrogen storage method described .
JP2017140342A 2017-07-19 2017-07-19 Hydrogen storage method Active JP6803813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017140342A JP6803813B2 (en) 2017-07-19 2017-07-19 Hydrogen storage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017140342A JP6803813B2 (en) 2017-07-19 2017-07-19 Hydrogen storage method

Publications (2)

Publication Number Publication Date
JP2019019931A JP2019019931A (en) 2019-02-07
JP6803813B2 true JP6803813B2 (en) 2020-12-23

Family

ID=65353753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017140342A Active JP6803813B2 (en) 2017-07-19 2017-07-19 Hydrogen storage method

Country Status (1)

Country Link
JP (1) JP6803813B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208296A (en) * 2000-01-28 2001-08-03 Honda Motor Co Ltd Method of filling tank storing hydrogen storage alloy with hydrogen
JP2002252008A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen storage equipment for fuel cell
JP4276605B2 (en) * 2004-09-29 2009-06-10 株式会社豊田自動織機 Hydrogen station and vehicle
JP4803573B2 (en) * 2005-03-16 2011-10-26 株式会社日本製鋼所 Heat transfer device
JP5332933B2 (en) * 2009-06-17 2013-11-06 トヨタ自動車株式会社 Hydrogen filling system

Also Published As

Publication number Publication date
JP2019019931A (en) 2019-02-07

Similar Documents

Publication Publication Date Title
US6651701B2 (en) Hydrogen storage apparatus and charging method therefor
EP0015106B1 (en) Absorption-desorption system
JPWO2004033955A1 (en) Fuel filling device and method
JP2014238159A (en) Hydrogen gas charging facility and hydrogen gas charging method
JP2016532067A (en) Process for filling sorption reservoirs with gas
KR101875633B1 (en) Solid state hydrogen storage device and solid state hydrogen storage system
JP2004116619A (en) Fuel filling apparatus and method
JP2000012062A (en) Hydrogen gas supply device and hydrogen gas supply method therefor
JP6803813B2 (en) Hydrogen storage method
JP4844233B2 (en) Hydrogen storage device and hydrogen storage method
JP2007303625A (en) Hydrogen-filling method, hydrogen-filling device, and vehicle mounted with hydrogen-filling device
CN110546425B (en) Hydrogen storage device
JP2002228098A (en) Hydrogen occlusion device for hydrogen occlusion alloy, and device for detecting degradation of hydrogen occlusion alloy utilizing the device
JP2010266046A (en) Hydrogen gas supply device
JP6407589B2 (en) Hydrogen storage / release device and hydrogen storage / release method
JP2008045650A (en) Hydrogen storage device
JP6294217B2 (en) Hydrogen gas supply device
JP2016118275A (en) Fluid cooling method
KR20210074895A (en) System for strong solid state hydrogen
JP2008133834A (en) Hydrogen storage device and hydrogen storage method
JP2011052742A (en) Hydrogen supply device, and method for selecting hydrogen storage alloy in hydrogen supply device
CN110573790A (en) Hydrogen storage and supply system
KR102482076B1 (en) Ti-Fe-Zr-Mn BASED HYDROGEN STORAGE ALLOY HAVING THE CONTROLLED ABSORPTION/DESORPTION PRESSURE OF HYDROGEN AND HYDROGEN FUEL SYSTEM USING THE SAME
CN110357034B (en) Hydrogen recovery system and method based on metal hydride
KR102595622B1 (en) Hydrogen storage system for liquid hydrogen vaporization storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201201

R150 Certificate of patent or registration of utility model

Ref document number: 6803813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150