JP2008248656A - Multifunctional water retaining material and multifunctional water retaining pavement body using this material - Google Patents

Multifunctional water retaining material and multifunctional water retaining pavement body using this material Download PDF

Info

Publication number
JP2008248656A
JP2008248656A JP2007094366A JP2007094366A JP2008248656A JP 2008248656 A JP2008248656 A JP 2008248656A JP 2007094366 A JP2007094366 A JP 2007094366A JP 2007094366 A JP2007094366 A JP 2007094366A JP 2008248656 A JP2008248656 A JP 2008248656A
Authority
JP
Japan
Prior art keywords
water
pavement
water retaining
water retention
multifunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007094366A
Other languages
Japanese (ja)
Inventor
Sasagu Terao
奉 寺尾
Katsuhiko Goto
勝彦 呉藤
Norimitsu Sasaki
規充 佐々木
Masatoshi Komiya
正俊 小宮
Toyoshi Yonemura
豊志 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO KAIHATSU KK
Nippon Road Co Ltd
Fukui Prefecture
Original Assignee
NIKKO KAIHATSU KK
Nippon Road Co Ltd
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO KAIHATSU KK, Nippon Road Co Ltd, Fukui Prefecture filed Critical NIKKO KAIHATSU KK
Priority to JP2007094366A priority Critical patent/JP2008248656A/en
Publication of JP2008248656A publication Critical patent/JP2008248656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Road Paving Structures (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multifunctional water retaining material and a multifunctioinal water retaining pavement body, having both humidity conditioning function and ion adsorption-exchange function, in addition to high water retentivity, for coping with multiple problems such as an improvement in an atmospheric environment of a city part, amenity and security of safety, though a conventional water retaining material and the pavement body using its material have only the single function such as water retentivity, since water retention cannot be maintained over a long time due to being low in the water retentivity. <P>SOLUTION: This water retaining material is provided by mainly using porous and multifunctional powder and grain having many pores of a nano level, provided by performing heating dehydration processing on a potassium silicate hydrate generated by hydrothermally reacting a pozzolan substance and a calcium ion in advance. The multifunctional water retaining material and the multifunctional pavement body using this material having both high water retentivity by an extremely high water absorption coefficient, amenity by the autonomous humidity conditioning function, freezing restraint by the ion adsorption-exchange function and adsorptivity of an atmospheric pollutant, are provided by being carried on a pavement material of an opening grain size by adjusting an injection material by adding a cement-based inorganic hardening material and water to this water retaining material. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、天然ゼオライトのような水熱反応に優れたポゾラン物質と、セメント・石灰等のカルシウムイオンとの水熱反応で生成せしめたケイ酸カルシウム水和物を、加熱脱水処理することで得られた保水性・調湿性・イオン吸着・交換能等の多様な機能を高いレベルで併せ持つ多機能保水材、およびこれを開気孔の多孔質舗装材中に無機質硬化材によって担持せしめた多機能保水性舗装体に関するものであり、快適かつ安全な都市大気・交通環境の提供を、省資源かつ省エネルギーで可能とする道路舗装技術に関するものである。   The present invention is obtained by subjecting a calcium silicate hydrate formed by a hydrothermal reaction between a pozzolanic material such as natural zeolite having an excellent hydrothermal reaction and calcium ions such as cement and lime to heat dehydration. Multifunctional water retention material with various functions such as water retention / humidity control, ion adsorption / exchange ability, etc., and the multifunctional water retention that is supported by an inorganic hardener in the open pore porous pavement This is related to road pavement technology that can provide comfortable and safe urban air and traffic environment with resource saving and energy saving.

日本の気候は、夏期の高温多湿や冬季の低温乾燥あるいは低温多湿等、季節や場所によって極めて温湿度環境変化が激しい特徴がある。また近年の人為的環境汚染は生活環境や地球環境に様々な問題を生じている。とりわけ都市部においては夏期のヒートアイランド現象に起因する熱環境の変化が、局所的異常気象の一因になるなど大きな課題となっている。また、冬季の道路凍結による交通障害や転倒事故対策は交通安全確保において益々重要度を増している。さらには、交通量の激しい都市道路沿線住民は排気ガスによる大気汚染によって健康・生命の危険に脅かされており、道路交通システムを含めた都市環境の改善は、快適で安全な環境の確保の観点から極めて重要な社会的課題であり、行政や事業者、生活者等各方面に対して早急な対策が求められている。   Japan's climate is characterized by extremely severe changes in the temperature and humidity environment depending on the season and location, such as high temperature and high humidity in summer and low temperature drying or low temperature and high humidity in winter. In addition, recent human-induced environmental pollution has caused various problems in the living environment and the global environment. Especially in urban areas, changes in the thermal environment due to the heat island phenomenon in summer have become a major issue, such as contributing to local abnormal weather. In addition, countermeasures against traffic obstacles and toppling accidents caused by freezing roads in winter are becoming increasingly important in ensuring traffic safety. Furthermore, residents along urban roads with heavy traffic are threatened by health and life hazards due to air pollution caused by exhaust gas. Improvement of the urban environment, including the road traffic system, is aimed at ensuring a comfortable and safe environment. Therefore, it is an extremely important social issue, and urgent countermeasures are required for various areas such as administration, business operators, and consumers.

しかし従来の道路舗装体の殆どは、密粒度アスファルトコンクリートに代表されるたわみ性舗装やセメントコンクリートを用いた剛性舗装となっているが、いずれも緻密体であり保水性を発揮し得ないので、都市部大気の熱環境改善には打ち水するしかなく、その効果も限定的であった。   However, most of the conventional road pavements are flexible pavements represented by dense grained asphalt concrete and rigid pavements using cement concrete, but all are dense bodies and cannot exhibit water retention, Improving the thermal environment of the urban atmosphere had to be struck with water, and the effect was also limited.

また、冬季の交通安全確保といった観点からは、道路の凍結抑制・防止は重要課題であり、塩化カルシウム等の凍結防止剤を大量に散布する対策を講じているが、経済面の問題はもとより、大量の薬剤散布による塩害の発生も問題となっている。   In addition, from the viewpoint of ensuring traffic safety in winter, road freezing suppression / prevention is an important issue, and measures are being taken to spray a large amount of anti-freezing agents such as calcium chloride. Occurrence of salt damage due to a large amount of chemical spraying is also a problem.

さらに都市住民の健康被害の原因となっている大気汚染物質によるオキシダント発生への対策については、地中浄化や光触媒による浄化の取り組みが試験的にされている現況にあるが、送風や施設設置に多額のコストがかかることが大きな課題である。   Furthermore, with regard to countermeasures against the generation of oxidants due to air pollutants that are a cause of health damage for urban residents, ground purification and photocatalytic purification are currently being tested. The big problem is that it costs a lot of money.

これらのことから対策として、舗装体に保水性や凍結抑制機能の付与をする舗装技術が開発され、手法として開粒度アスファルトコンクリートのように骨材の粒度分布を非連続的にし、骨材を結合するためのアスファルトやセメント材料を、強度的な面で必要最小限使用することでポーラスな構造を持つ舗装材として、その空隙に保水材や機能材からなる注入材を充填させる方法の保水性舗装が提案されている。   As a countermeasure, pavement technology that provides water retention and anti-freezing functions to the pavement has been developed, and as a method, the aggregate particle size distribution is discontinuous and the aggregate is combined like open-graded asphalt concrete. Water-retaining pavement by filling the voids with a water-retaining material or functional material as a pavement material with a porous structure by using asphalt and cement material as much as possible in terms of strength Has been proposed.

例えば、夏期のヒートアイランド現象の緩和のみを目的とした保水性舗装体として、特許文献1にあるように半たわみ性舗装技術を応用し、保水材には有機繊維粉末を使用し、これにセメントと水を加えて調整したスラリーを多孔質舗装材の間隙に充填させる方法がある。また凍結抑制機能も併せ持つ手段としては特許文献2では、保水材として天然無機鉱物粉体や吸水性樹脂等と凍結抑制効果のある塩類を混入した保水性・凍結抑制舗装体が開示されている。   For example, as a water-retaining pavement only for the purpose of alleviating the heat island phenomenon in summer, the semi-flexible pavement technology is applied as described in Patent Document 1, organic fiber powder is used as the water retentive material, and cement and There is a method in which a slurry prepared by adding water is filled in a gap between porous pavement materials. Patent Document 2 discloses a water-retaining / freezing-suppressed pavement in which natural inorganic mineral powders, water-absorbing resins, and the like and salts having a freezing-inhibiting effect are mixed as means for retaining the freezing.

しかし、特許文献1の方法は、保水容量が少なく潜熱効果による舗装表面温度低下機能の発現が短時間であり、乾燥・凍結、天水による破損や強度低下、性能劣化等が著しく、しかも保水性機能が活用される期間は一年の一時期に限定されていること等が課題である。また特許文献2にある吸水性樹脂の混入場合は吸水膨潤の性能劣化も甚だしく、加えて舗装体中の凍結抑制機能物質である塩類のイオン担持能力がほとんど無いので雨水で流失しやすく、効果が持続しないといった課題がある。   However, the method of Patent Document 1 has a small water retention capacity and a short period of time when the pavement surface temperature lowering function due to the latent heat effect is manifested. The problem is that the period of use of is limited to one time of the year. In addition, when the water-absorbent resin described in Patent Document 2 is mixed, the performance of water-absorbing swelling is severely deteriorated, and in addition, since there is almost no ability to carry ions of the salt, which is a freezing-inhibiting functional substance in the pavement, it is easy to be washed away by rainwater, which is effective. There is a problem that it does not last.

さらに、特許文献3に見られるように、舗装体表面にゴムチップを担持させることで、走行車両によって生じる弾性変形によって表層の凍結氷を砕くという低騒音対策と凍結抑制機能を併せ持つ舗装等も提案されているが、交通量が少ない場合は凍結抑制効果が殆ど無いに等しい。   Furthermore, as seen in Patent Document 3, a pavement having a low noise countermeasure and a freezing suppression function in which frozen ice on the surface layer is crushed by elastic deformation caused by a traveling vehicle by carrying a rubber chip on the surface of the pavement is proposed. However, when there is little traffic, it is equivalent to almost no freezing suppression effect.

このようにいずれの方法も未だヒートアイランド現象や路面凍結、大気汚染等の抑制等、課題解決の効果的手段とはなっていないことから、快適で安全な道路とその周辺環境を創生するために、多面的課題に対応できるコストパフォーマンスに優れた高機能かつ多機能の保水性舗装体が求められている。   As described above, none of these methods has yet become effective means for solving problems such as heat island phenomenon, road surface freezing, air pollution control, etc., so in order to create a comfortable and safe road and its surrounding environment Therefore, there is a demand for a highly functional and multifunctional water-retaining pavement that is excellent in cost performance and can cope with various problems.

本発明は従来の夏期や冬季の一時期のみならず、年間を通じての都市部の大気環境改善や凍結抑制機能等、多面的機能を有する保水性舗装体を提供するものであり、その保水性能は既存の保水性舗装や凍結抑制舗装の性能を遥かに凌駕するとともに、新たな機能として大気の湿度に応じて水分を吸放湿する調湿機能、車両の排気ガス等に起因するNOx等の大気汚染物質の吸着機能をも併せ持つ等、高機能かつ多機能の保水性舗装体を提供するものである。
特開2005−68636号公報 特開2005−97957号公報 特許第3190581号公報
The present invention provides a water-retaining pavement having a multifaceted function such as improvement of atmospheric environment and freezing suppression function in urban areas throughout the year as well as in the summer and winter seasons of the past, and the water retention performance is existing. In addition to surpassing the performance of water-retaining pavement and anti-freezing pavement, humidity control function that absorbs and releases moisture according to atmospheric humidity as a new function, air pollution such as NOx caused by vehicle exhaust gas, etc. The present invention provides a highly functional and multi-functional water-retaining pavement that also has a substance adsorption function.
JP 2005-68636 A JP 2005-97957 A Japanese Patent No. 3190581

ヒートアイランド現象のような夏期における都市部の熱環境改善を、水の潜熱効果を用いた舗装技術で対応しようとする場合、最も重要なことは如何にして水分担持容量を多くし、また水分の放出時間を長くするかということにある。   When trying to improve the urban thermal environment in summer, such as the heat island phenomenon, with pavement technology using the latent heat effect of water, the most important thing is how to increase the water carrying capacity and release the moisture. It is about whether to lengthen the time.

水分担持容量を多くするには舗装体の骨材間隙による空隙率を多くすることが効果的であるが、舗装体強度と耐久性の観点から限度があり、開粒度アスファルトコンクリートによって形成される空隙量が限界であることから、保水材そのものの空隙率を高くすることが具体的技術課題の一つとなる。   Increasing the porosity due to the aggregate gap of the pavement is effective for increasing the moisture carrying capacity, but there is a limit from the viewpoint of pavement strength and durability, and the void formed by open-graded asphalt concrete Since the amount is the limit, increasing the porosity of the water retaining material itself is one of the specific technical issues.

しかし特許文献1に開示されている技術は、あらかじめ凍結抑制用塩化物系粉末を、セメント100重量部に対して、最大吸水率が5から80%もしくは100%程度の珪藻土のような天然鉱物や製紙スラッジ焼却灰等の保水材を5から80重量部配合されたセメント組成物からなる保水性注入材に配合し、これに水と若干の混和剤を加えて調整されたセメントミルクを、開粒度アスファルトコンクリートに注入せしめた舗装体が提案されているが、保水機能を発現する舗装体中の空隙は、セメントと天然鉱物やスラッジ焼却灰粒子の中のケイ酸成分との水和反応が進展し、セメントミルク注入時の間隙は当初は多くてもやがて生成した水和物で埋められて行くために、空隙は硬化後の年月とともに大幅に減少し、保水率の低い舗装体となることが問題であった。   However, the technique disclosed in Patent Document 1 is based on a natural mineral such as diatomaceous earth having a maximum water absorption of 5 to 80% or 100% with respect to 100 parts by weight of cement. Mix water-retaining material such as paper sludge incineration ash into a water-retaining injecting material consisting of 5 to 80 parts by weight of cement composition, add water and some admixture to this, and adjust the cement milk to an open particle size Pavements that have been injected into asphalt concrete have been proposed, but the hydration reaction between the cement and the silicic acid components in natural minerals and sludge incinerated ash particles has progressed in the voids in the pavement that exhibit water retention. Since the gap at the time of cement milk injection is initially filled with hydrates that have been formed at the beginning, the voids will greatly decrease over time after hardening, resulting in a pavement with a low water retention rate Theft has been a problem.

また、潜熱効果の持続時間を長くするには細孔容量を大きくするに加えて小さな細孔径を有することが重要であるが、既存技術やこれまでの提案では、細かくてもミクロンレベルの有機繊維粉末や無機鉱物粉末粒子を用いるので、その隙間によって形成される空隙に保水力は依存し、その容量が少なくしかも水分の蒸発による潜熱効果発現時間も短いといった課題がある。   In order to lengthen the duration of the latent heat effect, it is important to have a small pore diameter in addition to increasing the pore volume. Since powder or inorganic mineral powder particles are used, there is a problem that the water retention power depends on the gap formed by the gap, the capacity is small, and the latent heat effect onset time due to evaporation of moisture is short.

さらに既存技術の凍結防止・抑制技術は、塩化カルシウムのような塩類を散布することで結晶の融解熱とイオンによる氷点降下作用を利用しているが、薬剤散布は気象や時間、路面状況等を考慮して随時行なうことが求められ、莫大な経費とマンパワーを要するに加え、塩害によるコンクリートの劣化や周辺環境への負荷が大きな課題となっており、緻密な舗装体や特許文献1記載の方法では塩類の担持力が小さく、雨水による流失を防止出来ないことから、長時間の機能発現は不可能で塩害も低減出来ない。   Furthermore, the existing antifreezing and restraint technology uses the heat of melting of crystals and the freezing point depressing action by ions by spraying salts such as calcium chloride. In addition to enormous costs and manpower, it is important to consider the deterioration of concrete due to salt damage and the load on the surrounding environment. In the dense pavement and the method described in Patent Document 1, Since the salt-carrying capacity is small and it is not possible to prevent runoff due to rainwater, long-term function expression is impossible and salt damage cannot be reduced.

加えて、大気汚染物質による光化学スモッグの発生による大気環境汚染の抑制には、酸化チタン光触媒技術を応用した改善策も提唱されているが、光や紫外線が届かない部分は当然機能を発現しないし、反応速度も遅いことが知られている。またその他の方法として、汚染物質を含む大気を人工的に設置した土壌中に送風機で送ることで浄化する提案もあるが、いずれもコストが問題であり、低廉で効果的な技術開発が課題となっている。   In addition, measures to improve the atmospheric environment pollution caused by the generation of photochemical smog due to air pollutants have been proposed to improve the application of titanium oxide photocatalyst technology. It is known that the reaction rate is also slow. As another method, there are also proposals to purify the air containing pollutants by sending them into artificially installed soil with a blower. However, cost is a problem, and low-cost and effective technological development is an issue. It has become.

本発明の保水材は、高い保水性を発現せしめる手段として、反応性の良いポゾラン物質単独あるいは混合物を、セメントや石灰のようなカルシウム系原料と水熱反応させることにより、多孔質構造のケイ酸カルシウム水和物を生成させた後、それを800℃以下で加熱脱水処理することによってナノレベルの細孔を多く有する粉粒体組織を得るものである。   The water retention material of the present invention is a porous structure silicic acid by hydrothermal reaction of a highly reactive pozzolanic substance alone or a mixture with a calcium-based raw material such as cement or lime as a means for developing high water retention. After the calcium hydrate is formed, it is heated and dehydrated at 800 ° C. or lower to obtain a granular structure having many nano-level pores.

つまり、あらかじめ水熱反応させることによって結晶構造中にナノレベルの細孔が多いケイ酸カルシウム水和物を生成させ、次にこれを乾燥・焼成処理によって粒子間・結晶間・結晶内の水分子を取り除いた脱水ケイ酸カルシウム水和物とすることによって得られた、多機能かつ高保水性の粉粒体を主材とすることに特徴がある。   In other words, by hydrothermal reaction beforehand, calcium silicate hydrate with many nano-level pores in the crystal structure is generated, and then this is dried and calcined to give water molecules between particles, between crystals, and within crystals. It is characterized by using as a main material a multifunctional and highly water-retaining powder obtained by making dehydrated calcium silicate hydrate from which is removed.

また、これを担持させるため、セメント類と水を加えて調整された注入材を舗装材に注入して図1記載の舗装体とすることにより、従来の問題である保水性の向上に加え、微細空隙の減少原因となっている、雨水や塵に含まれるケイ酸分や混入された砂分等と、担持用硬化材であるセメント類との経時的ポゾラン反応の進展をも防止可能となり、多量に形成せしめた微細な空隙を長期間確保するという、従来の保水性舗装体の課題解決ができるのである。   Moreover, in order to carry this, by injecting into the pavement material an injection material adjusted by adding cements and water to the pavement material shown in FIG. 1, in addition to the improvement in water retention, which is a conventional problem, It is also possible to prevent the progress of pozzolanic reaction over time between the silicic acid contained in rainwater and dust, the sand mixed in, etc., which is the cause of the reduction of fine voids, and the cement as the supporting curing material, It is possible to solve the problem of the conventional water-retaining pavement that secures a fine gap formed in a large amount for a long period of time.

さらに、保水材中のナノレベルの細孔によって、毛管凝縮作用による自律的調湿機能や、高いイオン吸着・交換機能という新たな機能をも舗装体に付与することから、これを開気孔の舗装材に注入すれば、長期に亘って快適な温湿度環境をもたらす高保水性の多機能舗装体となる。   In addition, the nano-level pores in the water retention material give the pavement new functions such as autonomous humidity control by capillary condensation and high ion adsorption and exchange functions. If injected into the material, it becomes a highly water-retaining multifunctional pavement that provides a comfortable temperature and humidity environment over a long period of time.

凍結抑制についての既存技術としては、可溶性陽イオンや分子による水の氷点降下作用を利用した化学的方法があり、本発明においては、凍結防止剤の散布による凍結抑制効果を持続させるための手段として、保水材の持つ高いイオン交換・吸着作用によって化学的担持力を高めることによって効果をより持続せしめ、凍結防止剤の散布量や回数の低減ができる。   As an existing technique for freezing suppression, there is a chemical method using the freezing point depressing action of water by soluble cations and molecules, and in the present invention, as a means for sustaining the freezing suppression effect by spraying of an antifreezing agent. By increasing the chemical carrying power through the high ion exchange / adsorption action of the water retaining material, the effect can be further sustained, and the amount and the number of antifreezing agents can be reduced.

また、NOxに代表される大気汚染物質の吸着については、本発明の保水材である脱水ケイ酸カルシウム水和物の細孔に毛管凝縮されている水分子が、NOが酸化されて生じたNO2を吸着し、結晶層間または遊離のカルシウムイオンと反応し、硝酸カルシウムとして固定せしめるものであり、生成した硝酸カルシウムは、冬季の際は再びイオン化して凍結抑制効果を高める。   In addition, for the adsorption of air pollutants represented by NOx, NO2 produced by oxidation of NO by water molecules that are capillary-condensed in the pores of dehydrated calcium silicate hydrate that is the water retention material of the present invention. Is adsorbed, reacts with the crystal layer or with free calcium ions, and is fixed as calcium nitrate. The generated calcium nitrate is ionized again in the winter season to enhance the antifreezing effect.

加えて、保水材原料の一部もしくは注入材の一部にフライアッシュやケイ酸質植物灰等を用いることにより、フライアッシュ中の未燃分や灰中の炭素の化学吸着力も利用され、排ガス中のNOのように大気中に排出された汚染物質中の疎水性化合物の吸着も可能となり、廃棄物利用と資源の循環にも寄与する。   In addition, by using fly ash, siliceous plant ash, etc. as part of the water-retaining material raw material or part of the injection material, unburned components in fly ash and carbon chemisorbing power in ash are also used, and exhaust gas Adsorption of hydrophobic compounds in pollutants discharged into the atmosphere, such as NO in the interior, also contributes to waste utilization and resource recycling.

本発明は、舗装体が保水材の主成分である脱水ケイ酸カルシウム水和物の細孔特性によって高い保水機能を発現し、ヒートアイランド現象の抑制機能を長時間発揮する効果と、珪藻土で知られているような自律的調湿機能の発現等によって、歩行者にも快適な温湿度環境が提供できる効果が可能となる。   The present invention is known for diatomaceous earth, which has an effect of exhibiting a high water retention function due to the pore characteristics of dehydrated calcium silicate hydrate, the main component of the water retention material, and a function of suppressing the heat island phenomenon for a long time. Such an autonomous humidity control function can provide an effect of providing a comfortable temperature / humidity environment for pedestrians.

また保水材の高い陽イオン担持力と吸着力によって、凍結防止剤を強力に担持するとともに、自ら大気汚染物質を水溶性カルシウム塩として吸着固定するので、従来は凍結防止効果の悪かった舗装の傾斜部にも有効で、凍結防止剤の散布量や回数を大幅に削減出来るので経済的な凍結抑制舗装を提供でき、加えて大気汚染物質である窒素酸化物や硫黄酸化物をも吸収出来ることから、道路や都市空間に安全な環境を提供することが可能となる。   In addition, the anti-freezing agent is strongly supported by the high cation carrying capacity and adsorption force of the water retaining material, and the air pollutant is adsorbed and fixed as a water-soluble calcium salt by itself. Because it can effectively reduce the amount and number of antifreeze sprays, it can provide an economical anti-freezing pavement, and can also absorb nitrogen oxides and sulfur oxides, which are air pollutants. It is possible to provide a safe environment for roads and urban spaces.

また、産業廃棄物であるフライアッシュ活用はもとより、再生コンクリート廃材などのセメント系廃材の多くはケイ酸カルシウム水和物を含有していることから、原料もしくは補助剤として使用することにより、廃コンクリートからの骨材再処理過程において発生する微粉廃棄物もリサイクルすることが可能となり、循環型社会の構築にも寄与できる。   In addition, the use of fly ash, which is industrial waste, as well as recycled cement waste, such as cement waste, contains calcium silicate hydrate. It is also possible to recycle the fine powder waste generated during the aggregate reprocessing process from, and contribute to the construction of a recycling society.

保水材の主材は、カルシウム源として普通ポルトランドセメント、ポゾラン物質として反応性の高いゼオライト質凝灰岩を用いて、酸化カルシウムと二酸化珪素のモル比をほぼトバモライト組成となるように配合し、オートクレーブを用いて、水和反応による生成ケイ酸カルシウム水和物の鉱物組成がC-S-Hや結晶度の低いトバモライトとなるように設定した水熱処理を行った後、結晶構造が壊れてウォラストナイトを生成しない温度域である800℃以下の乾燥・焼成脱水処理によって製造することが望ましい。   The main material of the water retention material is normal Portland cement as the calcium source, highly reactive zeolitic tuff as the pozzolanic material, and the molar ratio of calcium oxide and silicon dioxide is blended so as to have a tobermorite composition, and an autoclave is used. After the hydrothermal treatment in which the mineral composition of the calcium silicate hydrate produced by the hydration reaction is set to CSH or tobermorite with low crystallinity, the temperature range where the crystal structure is broken and wollastonite is not generated It is desirable to manufacture by a drying / baking dehydration treatment at 800 ° C. or lower.

保水材には、フライアッシュやセメント廃材等を原料もしくは増量材として使用し、保水材の保水性能である吸水率を既存保水材の限界値である吸水率100%以上となるように調整することが望ましい。   For the water retention material, fly ash, cement waste, etc. are used as raw materials or bulking materials, and the water absorption rate, which is the water retention performance of the water retention material, is adjusted to be 100% or more, which is the limit value of the existing water retention material. Is desirable.

注入材を調整するにあたり、保水材を注入後硬化させるための硬化材は、普通ポルトランドセメントや他の水硬性無機材でも良いが交通解放時間を早める為には、超速硬セメントを用いることが良く、水を加えてスラリーを注入可能な粘性に調整することが必要となるが、この場合減水材の使用はイオン交換・吸着能を低下させるので使用しないことが望ましい。   In adjusting the injection material, the hardener used to harden the water-retaining material after injection may be normal Portland cement or other hydraulic inorganic materials, but in order to speed up the traffic release time, it is better to use super-hard cement. However, it is necessary to adjust the viscosity so that the slurry can be injected by adding water. In this case, it is desirable not to use the water reducing material because it reduces the ion exchange / adsorption ability.

注入材を注入しやすいスラリーに調整するために、やむなく粒材を使用して比重や粘性調整する場合には、ポゾラン反応を生じないか、長期的に性能劣化を招かない粒材として、石灰石やコンクリート再生砂材または、凝灰岩のような保水性の高い多孔質粒材等を合わせて用いることも良い。   When adjusting the specific gravity and viscosity using granules to adjust the slurry to an easy-to-inject slurry, limestone or other materials that do not cause pozzolanic reaction or cause long-term performance degradation It is also possible to use a recycled concrete material such as concrete or a porous granule with high water retention such as tuff.

注入材を保持する舗装材は、開粒度アスファルトコンクリート、ポーラスコンクリート等が望ましいが、骨材として木材チップやプラスチック、その他の無機質材料等を用いることもできる。   The pavement material for holding the injection material is preferably open-graded asphalt concrete, porous concrete or the like, but wood chips, plastics, other inorganic materials, etc. can also be used as the aggregate.

主材となる保水材を製造し性能を調べるため、微粉砕したゼオライト質凝灰岩と、それと化学組成がほとんど同様であるフライアッシュを使用して以下の配合物を180℃で4時間保持する水熱条件で普通ポルトランドセメントと反応させた後、300℃で加熱脱水処理したものの物性・性能の測定を行った。   In order to manufacture the main water-retaining material and to examine its performance, hydrothermal heat that keeps the following composition at 180 ° C for 4 hours using finely ground zeolitic tuff and fly ash with almost the same chemical composition After reacting with ordinary Portland cement under the conditions, the physical properties and performance of the heat dehydrated treatment at 300 ° C. were measured.

水熱反応試料の番号と配合割合
No.1 ポルトランドセメント 100重量部
ゼオライト質凝灰岩 100重量部
水 80重量部
No.2 ポルトランドセメント 100重量部
フライアッシュ 100重量部
水 80重量部
Hydrothermal reaction sample number and blending ratio 1 Portland cement 100 parts by weight
Zeolite tuff 100 parts by weight
80 parts by weight of water 2 Portland cement 100 parts by weight
100 parts by weight fly ash
80 parts by weight of water

それらについてX線回折分析による鉱物組成の同定をした結果、水熱反応生成物の殆どがケイ酸カルシウム水和物であり、生成鉱物の多くはC−S−Hと低結晶度のトバモライトからなるものであった。   As a result of identifying the mineral composition by X-ray diffraction analysis, most of the hydrothermal reaction products are calcium silicate hydrate, and most of the produced minerals are composed of C—S—H and low-crystallinity tobermorite. It was a thing.

保水材としての機能を発現させるためには、硬化体を脱水処理する必要があるので、No.1試料の熱分析(TG-DTA)を行った結果、40℃から160℃付近までは急激に脱水による減量を示すがそれ以降は緩やかに減量し、ケイ酸カルシウム水和物が全ての結晶水を失ってβ−ウォラストナイトに変化するといわれる温度である800℃まで緩やかに減量することが確認されたことから、加熱脱水処理温度は800℃以下が良いことが判った。また、加熱脱水による重量減は300℃以降は特に緩やかであったので、試験では脱水処理条件を300℃で5時間保持することとし、この条件で脱水処理した後、最大粒径2mm以下に粉砕して試験用保水材を製造した。   In order to develop the function as a water retention material, it is necessary to dehydrate the cured body. As a result of conducting a thermal analysis (TG-DTA) of the No. 1 sample, it rapidly increases from 40 ° C to around 160 ° C. It shows weight loss due to dehydration, but after that, it can be gradually reduced, and it can be gradually reduced to 800 ° C, the temperature at which calcium silicate hydrate loses all crystal water and changes to β-wollastonite. From the confirmation, it was found that the heat dehydration temperature is preferably 800 ° C. or lower. In addition, since the weight loss due to heat dehydration was particularly moderate after 300 ° C., the dehydration conditions were maintained at 300 ° C. for 5 hours in the test. After dehydration under these conditions, the maximum particle size was pulverized to 2 mm or less. Thus, a test water-retaining material was produced.

ついで、保水材の保水力(吸水率)と自律的調湿機能を調べるために、JIS法にもとづき吸水率の測定と調湿試験(デシケーター法による)を実施した結果、表1に示したとおり乾燥・焼成温度が高いほど吸水率は高く、No.1の保水力は市販保水材より遥かに高く、相対湿度43%から69%の範囲での吸湿量と放湿量の和を調湿力とすると、いずれも市販の調湿タイル以上の性能であった。   Next, in order to investigate the water retention capacity (water absorption rate) and the autonomous humidity control function of the water retention material, the water absorption rate measurement and humidity control test (by the desiccator method) were performed based on the JIS method. The higher the drying / firing temperature, the higher the water absorption rate, and the No. 1 water retention capacity is much higher than that of commercial water retention materials, and the humidity control capacity is the sum of moisture absorption and moisture release in the range of 43% to 69% relative humidity. As a result, the performance was higher than that of commercially available humidity control tiles.

また、本発明の保水材の特徴であり、高い凍結抑制機能を発揮するために必要なイオン交換・吸着機能について確認するために、陽イオン交換容量の測定を行った結果、No.1は60meq/100g(単位は100gあたりのミリグラム当量)、No.2は52meq/100gであり、土壌改良材としての認定基準である50meq/100gを超え、天然ゼオライト並の陽イオン保持力があることを確認した。   In addition, as a result of measuring the cation exchange capacity in order to confirm the ion exchange / adsorption function that is a feature of the water retention material of the present invention and is necessary for exhibiting a high freezing suppression function, No. 1 is 60 meq. / 100g (unit is milligram equivalent per 100g), No.2 is 52meq / 100g, exceeds 50meq / 100g which is the certification standard as a soil improver, and confirms that it has cation retention ability similar to natural zeolite. did.

最適な注入材の硬化体の物性と保水性を確認することを目的として、No.1の保水材と超速硬セメントと水を施工上最適な粘性のスラリーとなるように配合調整した後、強度試験用型枠に流し込み成型した硬化体について、曲げ強度と吸水率を測定した結果、1週養生後の曲げ強度は0.8N/mmを示し、保水力を表す値である吸水率は、従来品の49%を遥かに上回る112%であり、極めて高い保水力が得られることを確認した。 For the purpose of confirming the physical properties and water retention of the hardened body of the optimal injection material, after adjusting the blending of No. 1 water retention material, super-hard cement and water so as to form an optimally viscous slurry for construction, strength As a result of measuring the bending strength and water absorption rate of the cured product cast into a mold for testing, the bending strength after 1 week curing shows 0.8 N / mm 2 , and the water absorption rate, which is a value representing water retention, It was 112%, far exceeding 49% of the conventional product, and it was confirmed that extremely high water retention ability was obtained.

舗装体の凍結抑制効果や保水による舗装表面温度上昇抑制効果等を確認するための試験体を作成することを目的として、実際の舗装材である開粒度アスファルトコンクリートに前記実施例2の注入材を注入した300mm×300mm×50
mmの舗装体と、比較用試験体として同じサイズの一般的舗装体である密粒度アスファルトコンクリートの舗装体を作成した。
For the purpose of creating a test body for confirming the anti-freezing effect of the pavement and the effect of suppressing the increase in pavement surface temperature due to water retention, the injection material of Example 2 was applied to the open-graded asphalt concrete which is an actual pavement material. 300mm x 300mm x 50 injected
A pavement made of mm and a general pavement of the same size as a test specimen for comparison were prepared.

舗装体の最大保水量についての比較実験として、実施例3で作成した舗装体について、24時間吸水重量と乾燥重量とを測定し、1平方メートル値の最大保水量を算出した結果、密粒度アスファルトコンクリートが0.7kg/ m2であるのに対して従来技術で作成した保水性舗装体は4.7kg/m2、本発明舗装体ではそれらを大きく上回る5.8kg/m2 であった。 As a comparative experiment on the maximum water holding capacity of the pavement, as a result of measuring the water absorption weight and the dry weight for 24 hours for the pavement created in Example 3, and calculating the maximum water holding capacity of 1 square meter, dense grained asphalt concrete Is 0.7 kg / m 2 , while the water-retaining pavement prepared by the prior art is 4.7 kg / m 2 , and the pavement of the present invention is 5.8 kg / m 2 , far exceeding them.

本発明舗装体の保水機能を確認するために、実施例3で作成した試験体を24時間飽水させ、温度30%湿度40%に設定した人工試験室内の天秤上に容器ごと設置し、日射量を1平方メートルあたり460ワット照射し、舗装体表面温度と減量を測定した結果、放水による減量は図2に示したように長時間にわたって継続するとともに50時間後の減量は通常の密粒度アスファルトコンクリートはもとより、従来技術の保水性舗装体(図中表記の比較例)の2倍近い保水量を示した。   In order to confirm the water retention function of the pavement of the present invention, the specimen prepared in Example 3 was saturated for 24 hours, and the container was placed on a balance in an artificial test chamber set at a temperature of 30% and a humidity of 40%. As a result of irradiating the amount of 460 watts per square meter and measuring the surface temperature and weight loss of the pavement, the weight loss due to water discharge continues for a long time as shown in Fig. 2 and the weight loss after 50 hours is normal fine grained asphalt concrete Of course, the water retention amount was nearly twice that of the conventional water retention pavement (comparative example shown in the figure).

また、舗装体の表面温度上昇抑制効果についても図3に示したように、従来の舗装体表面温度は3時間程度で54℃に達するのに対して、本発明舗装体は10時間以上抑制効果が継続し、50時間後の舗装体表面温度も従来の保水性舗装体よりも低く、44℃までしか上昇しなかった。   Further, as shown in FIG. 3, the pavement surface temperature rises to 54 ° C. in about 3 hours, while the pavement of the present invention has a suppression effect of 10 hours or more. The pavement surface temperature after 50 hours was lower than that of the conventional water-retaining pavement and increased only to 44 ° C.

本発明による舗装体の、イオン吸着・交換能による凍結防止剤担持機能と舗装表面凍結抑制効果を確認するため、冬季の北陸地方の代表的気象条件として、人工気象室中で低温はマイナス2℃から4℃での凍結条件と8℃での融解、さらにその間に時間雨量4mmの雨が降るといった条件を設定し、凍結防止剤である塩化カルシウム水溶液に24時間浸した後の舗装体について、各条件下でのすべり抵抗(BPN値)を測定した結果、表2に示したように密粒度アスファルトコンクリートは低温保持後の降雨によって凍結防止剤は洗い流されるが、本発明による舗装体は降雨後もイオンの担持効果によって舗装体は凍結せず、通常安全とされるBPN値40以上の滑り抵抗値であることが確認された。   In order to confirm the antifreezing agent loading function by the ion adsorption / exchange ability and the pavement surface freezing suppression effect of the pavement according to the present invention, as a typical weather condition in the Hokuriku region in winter, the low temperature is minus 2 ° C. in an artificial weather room. For the pavement after immersing it in a calcium chloride aqueous solution that is an antifreezing agent for 24 hours, setting freezing conditions at 4 ° C and thawing at 8 ° C, followed by rain of 4 mm of rain during that time. As a result of measuring the slip resistance (BPN value) under the conditions, as shown in Table 2, in the dense grained asphalt concrete, the antifreezing agent is washed away by the rain after holding at low temperature, but the pavement according to the present invention is also It was confirmed that the pavement did not freeze due to the ion loading effect, and had a slip resistance value of a BPN value of 40 or more, which is normally considered safe.

表1記載のNo.1試料の300℃脱水処理物について、調湿能力を確認するために、水蒸気吸着等温線を測定した結果である図4から、一般的な珪藻土の3倍以上の調湿力であり、ナノレベルの細孔が多いことに起因する特徴である、中湿度域に保つための吸放湿力に優れていることが確認され、これを舗装体に担持せしめれば快適とされる湿度に自律的に保つ調湿機能を発揮する優れた舗装体が得られることが証明できた。   From the results of measuring the water vapor adsorption isotherm to confirm the humidity control ability of the No. 1 sample at 300 ° C dehydrated in Table 1, the humidity control is more than 3 times that of general diatomaceous earth. It is confirmed that it is excellent in moisture absorption and release to maintain the medium humidity range, which is a characteristic attributed to the large number of nano-level pores. It has been proved that an excellent pavement that exhibits a humidity control function that keeps it autonomously at a given humidity can be obtained.

その他のカルシウム原料として生石灰を水和させて得られた消石灰と、ポゾラン物質としてケイ酸質植物灰を用いて、カルシウムとケイ酸のモル比がトバモライト組成になるように配合して180℃4時間の水熱処理を行い、反応生成物質のX線分析、熱分析を行った後、これを300℃で脱水処理して得られた保水材の物性測定をした。   Using slaked lime obtained by hydrating quick lime as the other calcium raw material and siliceous plant ash as the pozzolanic material, blended so that the molar ratio of calcium to silicic acid becomes tobermorite composition, 180 ° C. for 4 hours Then, the physical properties of the water-retaining material obtained by dehydrating the reaction product at 300 ° C. were measured.

その結果、水熱処理反応生成物はケイ酸カルシウム水和物が殆どであり、結晶性鉱物はC-S-Hとトバモライトであり、300℃での脱水処理後も鉱物組成に変化はなく、表3に記載の通り実施例1におけるNo.1試料と同様で高い保水性と調湿力であることが確認できた。   As a result, the hydrothermal reaction product is mostly calcium silicate hydrate, the crystalline minerals are CSH and tobermorite, and the mineral composition remains unchanged after dehydration at 300 ° C. As with the No. 1 sample in Example 1, it was confirmed that it had high water retention and humidity control.

開粒度舗装体に注入される注入材が、硬化後も高い保水性を発揮するための配合条件を確認する目的で、増量材として、フライアッシュ、ケイ酸質植物灰、火山灰の固結物であるゼオライト質凝灰岩粉砕物、発泡火山ガラス等の粉体や粒材を配合した保水材に、消石灰と水を加えて一定の粘性となるように調整し、硬化後の吸水率を測定した結果、実施例1で作成した脱水ケイ酸カルシウムをほぼ40%以上配合すれば、吸水率100%以上の保水機能を持つ硬化体が得られることが確認できた。   For the purpose of confirming the compounding conditions for the injection material injected into the open-graded pavement to exhibit high water retention even after hardening, it is a solidified product of fly ash, siliceous plant ash, and volcanic ash as an extender. As a result of measuring the water absorption rate after curing, adjusting to a certain viscosity by adding slaked lime and water to a water retention material blended with a powder of zeolitic tuff, a foamed volcanic glass, and granulated materials, It was confirmed that when approximately 40% or more of the dehydrated calcium silicate prepared in Example 1 was blended, a cured product having a water retention function with a water absorption rate of 100% or more was obtained.

多機能舗装体の構造模式図Structure diagram of multi-functional pavement 密粒度アスファルトコンクリートおよび本発明の舗装体の放湿過程における舗装体重量の変化Changes in pavement weight during moisture release process of dense grained asphalt concrete and pavement of the present invention 密粒度アスファルトコンクリートおよび本発明の舗装体の放湿過程における表面温度の変化Change in surface temperature during moisture release process of dense grained asphalt concrete and pavement of the present invention 本発明による保水材の水蒸気吸着等温線Water vapor adsorption isotherm of water retention material according to the present invention

符号の説明Explanation of symbols

1 骨材
2 接着剤(アスファルト)
3 保水材
4 保水材を担持する硬化体


1 Aggregate 2 Adhesive (asphalt)
3 Water retaining material 4 Cured body carrying water retaining material


Claims (5)

脱水ケイ酸カルシウム水和物を主成分とすることを特徴とする舗装用保水材。   A water retention material for pavements characterized by comprising dehydrated calcium silicate hydrate as a main component. 請求項1記載の保水材が、無機質硬化材によって開粒度の舗装材中に担持されていることを特徴とする保水性舗装体。   A water-retaining pavement characterized in that the water-retaining material according to claim 1 is supported in an open particle size pavement by an inorganic hardener. ポルトランドセメント、生石灰、消石灰あるいはこれらの2以上の混合物からなる群から選択される少なくとも1つの石灰系原料と、ゼオライト質凝灰岩、ケイ酸質植物灰、フライアッシュ、火山灰あるいはこれらの2以上の混合物からなる群から選択される少なくとも1つのポゾラン原料との配合物を、水熱反応させて得られたケイ酸カルシウム水和物を、40℃〜800℃で加熱脱水して得られた脱水ケイ酸カルシウム水和物を主成分とすることを特徴とする保水材。   At least one lime-based material selected from the group consisting of Portland cement, quicklime, slaked lime or a mixture of two or more thereof, and zeolitic tuff, siliceous plant ash, fly ash, volcanic ash or a mixture of two or more thereof Dehydrated calcium silicate obtained by heating and dehydrating calcium silicate hydrate obtained by hydrothermal reaction of a blend with at least one pozzolanic raw material selected from the group consisting of A water retention material characterized by comprising a hydrate as a main component. 吸水率100%以上の前記脱水ケイ酸カルシウム水和物と、フライアッシュ、粉末状のセメント系廃材、ゼオライト、天然の砂あるいは人造の砂からなる群から選択される少なくとも1つの増量材とを配合して吸水率が100%以上となるよう調整されていることを特徴とする請求項3に記載の保水材。   Mixing the dehydrated calcium silicate hydrate having a water absorption rate of 100% or more with at least one filler selected from the group consisting of fly ash, powdered cement waste, zeolite, natural sand or artificial sand The water retention material according to claim 3, wherein the water absorption is adjusted to be 100% or more. 請求項3又は4に記載の保水材が、ポルトランドセメント、超速硬性のセメント、石膏、消石灰あるいはこれらの2以上の混合物からなる群から選択される硬化材に水を配合して得られたスラリーと混合されて、開粒度アスファルトコンクリート又はポーラスコンクリートの空隙に充填されていることを特徴とする保水性舗装体。
A slurry obtained by blending water with a hardening material selected from the group consisting of Portland cement, super-hard-hardening cement, gypsum, slaked lime, or a mixture of two or more thereof. A water-retaining pavement characterized by being mixed and filled in voids of open-graded asphalt concrete or porous concrete.
JP2007094366A 2007-03-30 2007-03-30 Multifunctional water retaining material and multifunctional water retaining pavement body using this material Pending JP2008248656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094366A JP2008248656A (en) 2007-03-30 2007-03-30 Multifunctional water retaining material and multifunctional water retaining pavement body using this material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094366A JP2008248656A (en) 2007-03-30 2007-03-30 Multifunctional water retaining material and multifunctional water retaining pavement body using this material

Publications (1)

Publication Number Publication Date
JP2008248656A true JP2008248656A (en) 2008-10-16

Family

ID=39973916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094366A Pending JP2008248656A (en) 2007-03-30 2007-03-30 Multifunctional water retaining material and multifunctional water retaining pavement body using this material

Country Status (1)

Country Link
JP (1) JP2008248656A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120820A (en) * 2008-11-20 2010-06-03 Nippon Doseki Kogyo Kk Water retentive block
KR101141259B1 (en) 2011-11-09 2012-05-04 충청환경산업 주식회사 A environmentally-friendly cold recyclable aspalt concrete recycled by waste-aspalt concrete, waste-concrete
JP2018044110A (en) * 2016-09-16 2018-03-22 鹿島建設株式会社 Soil modifier
RU2750536C1 (en) * 2020-12-08 2021-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Composition for the arrangement of functional layers of the roadbed
US11408133B2 (en) * 2018-11-07 2022-08-09 Hubei University Of Technology Pavement deicing or snow-melting system and construction method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710527A (en) * 1993-06-23 1995-01-13 Asahi Chem Ind Co Ltd Production of highly crystalline tobermorite
JPH09255323A (en) * 1996-03-19 1997-09-30 Agency Of Ind Science & Technol Preparation of acid-resistant calcium silicate filter aid
JP2006063585A (en) * 2004-08-25 2006-03-09 Marutaka Kk Paving material
JP2006214147A (en) * 2005-02-03 2006-08-17 Tokyo Electric Power Co Inc:The Water supply type retentive pavement structure and its construction method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710527A (en) * 1993-06-23 1995-01-13 Asahi Chem Ind Co Ltd Production of highly crystalline tobermorite
JPH09255323A (en) * 1996-03-19 1997-09-30 Agency Of Ind Science & Technol Preparation of acid-resistant calcium silicate filter aid
JP2006063585A (en) * 2004-08-25 2006-03-09 Marutaka Kk Paving material
JP2006214147A (en) * 2005-02-03 2006-08-17 Tokyo Electric Power Co Inc:The Water supply type retentive pavement structure and its construction method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120820A (en) * 2008-11-20 2010-06-03 Nippon Doseki Kogyo Kk Water retentive block
KR101141259B1 (en) 2011-11-09 2012-05-04 충청환경산업 주식회사 A environmentally-friendly cold recyclable aspalt concrete recycled by waste-aspalt concrete, waste-concrete
JP2018044110A (en) * 2016-09-16 2018-03-22 鹿島建設株式会社 Soil modifier
US11408133B2 (en) * 2018-11-07 2022-08-09 Hubei University Of Technology Pavement deicing or snow-melting system and construction method thereof
RU2750536C1 (en) * 2020-12-08 2021-06-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Белгородский государственный технологический университет им. В.Г. Шухова» Composition for the arrangement of functional layers of the roadbed

Similar Documents

Publication Publication Date Title
US8038789B2 (en) Pervious concrete comprising a geopolymerized pozzolanic ash binder
JP5298306B2 (en) Outside insulation panel
JPH116102A (en) Nox-purifying pavement structure
WO2007069351A1 (en) Adsorbent-containing cold-setting composition, adsorbent-containing molded object, and building material and impregnant for paving both containing adsorbent
CN105236878B (en) A kind of ceramicite concrete permeable ground surface material
US11214525B2 (en) Multiple crystallization enhance (MCE) intermix for Portland cement concrete
KR101924887B1 (en) Eco-friendly Composition of Soil Concrete
JP2008248656A (en) Multifunctional water retaining material and multifunctional water retaining pavement body using this material
KR101066194B1 (en) A water-retentive bottom ash block and its process of manufacture
KR101172808B1 (en) Repairing method of concrete structure using fibersheet and pushpin
KR101155043B1 (en) Cement using waterworks and method for manufacturing the same
KR101172807B1 (en) Repairing method of concrete structure
KR102455242B1 (en) Eco-friendly concrete block having excellent strength and durability and air purification function and heavy metal adsorption function and manufacturing method of the same
JPH03275134A (en) Utilization of coal ash
JP4255802B2 (en) Pavement
JP4140228B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JPH11156326A (en) Solidification of fly ash
JP4867501B2 (en) Water retention block and method for producing the same
JP2008008041A (en) Building or civil-engineering constructed object
JP2009062245A (en) Water holding property-imparting material
KR102243104B1 (en) Method for manufacturing eco-friendly clay pavement with water conservation, thermal blocking property and water permeability using nature-friendly material, and eco-friendly clay pavement manufactured by the same
JP2007112713A (en) Hydraulic material for water holding solidified article and water holding solidified article
KR100913496B1 (en) Road pavement composition of enhanced retentiveness and drainage, and constructing method using the composition
JP4479330B2 (en) Hydraulic material for water retentive solidified body and water retentive solidified body
JP4572079B2 (en) Water-retaining material composition for pavement and construction method of water-retaining pavement

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A521 Written amendment

Effective date: 20100319

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Effective date: 20100324

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Effective date: 20110628

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120117