JP2008248553A - Method of sampling core - Google Patents

Method of sampling core Download PDF

Info

Publication number
JP2008248553A
JP2008248553A JP2007090695A JP2007090695A JP2008248553A JP 2008248553 A JP2008248553 A JP 2008248553A JP 2007090695 A JP2007090695 A JP 2007090695A JP 2007090695 A JP2007090695 A JP 2007090695A JP 2008248553 A JP2008248553 A JP 2008248553A
Authority
JP
Japan
Prior art keywords
core
excavation
boring rod
water
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007090695A
Other languages
Japanese (ja)
Other versions
JP4410808B2 (en
Inventor
Masahiro Konishi
正洋 小西
Katsuto Shibata
勝登 柴田
Masashi Shigetome
正志 重留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENGI KAIHATSU KK
Original Assignee
KYUSHU DENGI KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENGI KAIHATSU KK filed Critical KYUSHU DENGI KAIHATSU KK
Priority to JP2007090695A priority Critical patent/JP4410808B2/en
Publication of JP2008248553A publication Critical patent/JP2008248553A/en
Application granted granted Critical
Publication of JP4410808B2 publication Critical patent/JP4410808B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To smoothly and efficiently sample a core of good quality while surely discharging slime with a small quantity of excavation water when the core is sampled using a double tube sampler. <P>SOLUTION: An impregnated bit sintered by mixing a diamond powder with a metal powder is used as an excavation bit. A boring device used is so structured that a boring rod and the output shaft of its drive source are disposed on the same rotating axis. The rotating speed of the boring rod is set to 300 rpm for sediment, and 1,400 rpm for hard rock. The excavation water used is the mixture obtained by mixing a thickener with water at a rate of 80-120 mL/100 L. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、二重管構造のサンプラーを用いたコアの採取方法に関する。   The present invention relates to a core collection method using a sampler having a double-pipe structure.

従来、先端に掘削ビットを備えた回転自在の外管とコアを収容する非回転の内管で構成された二重管構造のサンプラーをボーリングロッドの先端に取り付け、ボーリングロッドを回転させて掘進方向へ荷重しながら掘削ビットで地盤を掘削し、掘削と並行して掘進用水をボーリングロッド内及び外管と内管の間を通じて送水して切羽へ吐出し、スライムを外管と孔壁の間を通じて掘進用水で排出させながらコアを内管へ収容するコアの採取方法が公知である(例えば特許文献1参照)。   Conventionally, a double-pipe sampler consisting of a rotatable outer tube with a drill bit at the tip and a non-rotating inner tube that houses the core is attached to the tip of the boring rod, and the boring rod is rotated to move in the direction of digging While excavating the ground with a drill bit, water for excavation is sent through the boring rod and between the outer pipe and the inner pipe and discharged to the face in parallel with the excavation, and the slime passes between the outer pipe and the hole wall. A method of collecting a core that accommodates the core in an inner pipe while being discharged with digging water is known (see, for example, Patent Document 1).

ところで、従来技術ではボーリングロッドの回転速度が100rpmと低速で大きな荷重をかけながら掘削するから、粒径の大きいスライムが生じるとともに掘削時の衝撃も大きいものとなる。したがって、スライムを排出するために多量の掘進用水が必要になるとともに衝撃がコアや削孔に伝わり、コアの欠損や流出及び孔壁の崩落等を生じさせて掘進能率やコア採取率を低下させていた。
特開平8−4468号公報
By the way, in the prior art, excavation is performed while applying a large load at a low rotation speed of the boring rod of 100 rpm, so that slime having a large particle size is generated and impact during excavation is large. Therefore, a large amount of water for digging is required to discharge the slime, and the impact is transmitted to the core and the drilling hole, causing the core to be lost, outflow, collapse of the hole wall, etc. It was.
JP-A-8-4468

本発明が解決しようとする課題は、従来のこれらの問題点を解消し、少量の掘進用水でスライムを確実に排出しながら良質のコアを円滑且つ能率的に採取できるコアの採取方法を提供することにある。   The problem to be solved by the present invention is to solve these conventional problems and provide a core collection method capable of smoothly and efficiently collecting a good quality core while reliably discharging slime with a small amount of water for digging. There is.

かかる課題を解決した本発明の構成は、
1) 先端に掘削ビットを備えた回転自在の外管とコアを収容する非回転の内管で構成された二重管構造のサンプラーをボーリングロッドの先端に取り付け、ボーリングロッドを回転させて掘進方向へ荷重しながら掘削ビットで地盤を掘削し、掘削と並行して掘進用水をボーリングロッド内及び外管と内管の間を通じて送水して切羽へ吐出し、スライムを外管と孔壁の間を通じて掘進用水で排出させながらコアを内管へ収容するようにしたコアの採取方法において、掘削ビットとしてダイヤモンド粉末と金属粉末を混合して焼結したインプリグネイテッド型ビットを用い、ボーリングロッドの回転速度を地質が土砂の場合に300〜800rpmに設定し、掘進用水として増粘剤を100〜120mL/100Lの割合で混合したものを用いたことを特徴とする、コアの採取方法
2) 先端に掘削ビットを備えた回転自在の外管とコアを収容する非回転の内管で構成された二重管構造のサンプラーをボーリングロッドの先端に取り付け、ボーリングロッドを回転させて掘進方向へ荷重しながら掘削ビットで地盤を掘削し、掘削と並行して掘進用水をボーリングロッド内及び外管と内管の間を通じて送水して切羽へ吐出し、スライムを外管と孔壁の間を通じて掘進用水で排出させながらコアを内管へ収容するようにしたコアの採取方法において、掘削ビットとしてダイヤモンド粉末と金属粉末を混合して焼結したインプリグネイテッド型ビットを用い、ボーリングロッドの回転速度を地質が硬岩の場合に800〜3000rpmに設定し、掘進用水として増粘剤を80〜100mL/100Lの割合で混合したものを用いたことを特徴とする、コアの採取方法
3) ボーリング装置として、ボーリングロッドとその駆動源の出力軸を同一回転軸上に配置できる構造のものを用いた、前記1)又は2)記載のコアの採取方法
にある。
The configuration of the present invention that solves this problem is as follows.
1) A double-pipe sampler consisting of a rotatable outer tube with a drilling bit at the tip and a non-rotating inner tube that houses the core is attached to the tip of the boring rod, and the boring rod is rotated to dig in While excavating the ground with a drill bit, water for excavation is sent through the boring rod and between the outer pipe and the inner pipe and discharged to the face in parallel with the excavation, and the slime passes between the outer pipe and the hole wall. In the core sampling method in which the core is accommodated in the inner pipe while being discharged with water for excavation, the drilling bit uses an impregnated type bit that is sintered by mixing diamond powder and metal powder, and the rotation speed of the boring rod Is set to 300 to 800 rpm when the geology is earth and sand, and a thickener mixed at a rate of 100 to 120 mL / 100 L is used as water for excavation. Core sampling method 2) A double-pipe sampler consisting of a rotatable outer tube with a drilling bit at the tip and a non-rotating inner tube that houses the core is attached to the tip of the boring rod. Attach and rotate the boring rod to load in the direction of excavation, excavate the ground with the excavating bit, and in parallel with excavation, feed the excavating water through the boring rod and between the outer pipe and the inner pipe and discharge it to the face. In the core collection method in which the core is accommodated in the inner pipe while the slime is discharged with the water for drilling through the outer pipe and the hole wall, the diamond bit and the metal powder are mixed and sintered as a drill bit. Using a mold bit, the rotation speed of the boring rod is set to 800 to 3000 rpm when the geology is hard rock, and a thickener is used as water for excavation 80 to 100 mL / 10 Core sampling method characterized by using a mixture at a rate of 0 L 3) As a boring device, a boring device having a structure in which an output shaft of a boring rod and its driving source can be arranged on the same rotation axis was used. The core collection method according to 1) or 2).

本発明によれば、ボーリングロッドを従来技術と比較して3〜30倍と高速回転させて掘削するから、必要な荷重が約1/10に低減され、掘削時の衝撃を大幅に抑制してコア採取率が向上する。また、低荷重高速回転によりスライムの粒径が小さくなるから、スライムの排出に必要な掘進用水の送水量も増粘化で大幅に低減され、孔壁の崩落やコアの欠損・流出を防止して良質のコアを円滑且つ能率良く採取できる。   According to the present invention, the drilling is performed by rotating the boring rod at a high speed of 3 to 30 times compared with the prior art, so that the necessary load is reduced to about 1/10, and the impact during excavation is greatly suppressed. Core collection rate is improved. In addition, since the slime particle size is reduced by low-load, high-speed rotation, the amount of water used for digging water required for slime discharge is greatly reduced by increasing the viscosity, preventing the collapse of the hole wall and the loss or outflow of the core. High quality cores can be collected smoothly and efficiently.

本発明では、増粘剤を80〜120mL/100Lの割合で混合する。80mL以下であるとスライムの排出が十分で無く、外管と孔壁の間にスライムが詰まるという問題があり、120mL以上だとスライムの排出速度が遅く、掘進能率が低下するという問題がある。増粘剤としてはアクリルポリマーなど市販されている一般的なものが使用できる。ボーリング装置としてボーリングロッドとその駆動源の出力軸を同一回転軸上に配置できる構造のものを用いると、掘削深さが深くてもボーリングロッドが歪曲され難く、先端のサンプラーの振動を抑制してコアの品質を維持できる。以下、本発明の実施例を図面に基づいて具体的に説明する。   In this invention, a thickener is mixed in the ratio of 80-120 mL / 100L. If it is 80 mL or less, there is a problem that slime is not sufficiently discharged, and the slime is clogged between the outer tube and the hole wall, and if it is 120 mL or more, there is a problem that the discharge rate of the slime is slow and the excavation efficiency is lowered. As the thickener, commercially available general materials such as acrylic polymers can be used. If a boring rod with a structure that allows the boring rod and the output shaft of its drive source to be arranged on the same rotation axis is used, the boring rod is not easily distorted even when the excavation depth is deep, and the vibration of the sampler at the tip is suppressed. The core quality can be maintained. Embodiments of the present invention will be specifically described below with reference to the drawings.

図1は実施例のボーリング装置の説明図、図2は実施例のボーリング装置の拡大説明図、図3は実施例の掘進用水の流れを示す説明図である。図中、1はロッドホルダー、1aはペダル、2はベース、2aはウインチ台、2bはジャッキ、3は昇降用フレーム、3aはラック、4は電動コアドリル、4aは加圧用レバー、4bは回転部、5はボーリングロッド、5aは分割ロッド、6はサンプラー、6aは掘削ビット、6bは外管、6cは内管、6dは流路、7はウインチ、7aは巻取部、8はやぐら、9は滑車、10はワイヤー、11は発電機、12はアンカー、13はホース、Cはコア、Gは地盤、Gaはスライム、Hは削孔、Haは切羽、Hbは孔壁、Wは掘進用水である。   FIG. 1 is an explanatory diagram of the boring device of the embodiment, FIG. 2 is an enlarged explanatory diagram of the boring device of the embodiment, and FIG. 3 is an explanatory diagram showing the flow of the digging water of the embodiment. In the figure, 1 is a rod holder, 1a is a pedal, 2 is a base, 2a is a winch base, 2b is a jack, 3 is a lifting frame, 3a is a rack, 4 is an electric core drill, 4a is a pressure lever, 4b is a rotating part 5 is a boring rod, 5a is a split rod, 6 is a sampler, 6a is a drilling bit, 6b is an outer tube, 6c is an inner tube, 6d is a flow path, 7 is a winch, 7a is a winding part, 8 is a tower, 9 Is a pulley, 10 is a wire, 11 is a generator, 12 is an anchor, 13 is a hose, C is a core, G is a ground, Ga is a slime, H is a drilling hole, Ha is a face, Hb is a hole wall, W is a water for digging It is.

本実施例のボーリング装置は、図1に示すようにロッドホルダー1を備えたベース2上に垂直の昇降用フレーム3を脱着自在に取り付け、昇降用フレーム3に下降用の加圧用レバー4aを備えた下向きの電動コアドリル4を昇降自在且つ脱着自在に取り付け、電動コアドリル4の回転部4bにボーリングロッド5をロッドホルダー1を通じて脱着自在に連結し、ボーリングロッド5の先端にサンプラー6を取り付けている。   As shown in FIG. 1, the boring apparatus of the present embodiment has a vertical lifting frame 3 detachably attached to a base 2 having a rod holder 1, and a lifting pressure lever 4 a for lowering. A downwardly-facing electric core drill 4 is attached so as to be movable up and down and detachable. A boring rod 5 is detachably connected to a rotating portion 4 b of the electric core drill 4 through a rod holder 1, and a sampler 6 is attached to the tip of the boring rod 5.

ロッドホルダー1はペダル1aを取り付けて操作性を向上している。ベース2にはその上面の水平レベルを調節するジャッキ2bを四脚に備えており、掘進時に半力不足でずれないようにアンカー12で地盤Gに固定されている。昇降用フレーム3にはラック3aが刻設されており、加圧用レバー4aの回転で電動コアドリル4の図示しないギヤがラック3aと歯合しながら昇降用フレーム3に沿って昇降できるようにしている。   The rod holder 1 is provided with a pedal 1a to improve operability. The base 2 is provided with a jack 2b for adjusting the horizontal level of the upper surface of the base 2 and is fixed to the ground G with an anchor 12 so that it does not shift due to insufficient half-power during excavation. A rack 3a is engraved in the lifting frame 3, and a gear (not shown) of the electric core drill 4 can move up and down along the lifting frame 3 while meshing with the rack 3a by the rotation of the pressurizing lever 4a. .

電動コアドリル4は300/800/1400rpmの切替式で、回転部4bに外部から供給した掘進用水Wをボーリングロッド5内に給水するホース13を接続している。ボーリングロッド5は複数の分割ロッド5aを掘進深さに応じて連結している。やぐら8は分割可能な三脚パイプで、その頂上部から吊下した滑車9にウインチ7の巻取部7aからのワイヤー10を巻架し、サンプラー6の引き上げ時に用いられる。   The electric core drill 4 is a switching type of 300/800/1400 rpm, and is connected to a hose 13 for supplying the drilling water W supplied from the outside to the rotating part 4b into the boring rod 5. The boring rod 5 connects a plurality of split rods 5a according to the depth of excavation. The tower 8 is a separable tripod pipe. The wire 10 from the winding part 7a of the winch 7 is wound around the pulley 9 suspended from the top of the pipe, and is used when the sampler 6 is pulled up.

サンプラー6は、ダイヤモンド粉末と金属粉末を混合して焼結したインプリグネイテッド型の掘削ビット6aと、回転自在の外管6bと、コアCを収容する非回転の内管6cとで構成され、外管6bと内管6cの間には、ボーリングロッド5内を通じて供給した掘進用水Wを送水するための流路6dが形成されている。外管6bの後端はボーリングロッド5の先端と直結している。掘進用水Wはアクリルポリマーからなる増粘剤を100mL/100Lの割合で混合している。   The sampler 6 is composed of an implemented excavation bit 6a obtained by mixing and sintering diamond powder and metal powder, a rotatable outer tube 6b, and a non-rotating inner tube 6c that accommodates the core C. Between the outer tube 6b and the inner tube 6c, a channel 6d for feeding the excavation water W supplied through the inside of the boring rod 5 is formed. The rear end of the outer tube 6 b is directly connected to the tip of the boring rod 5. The water for digging W is mixed with a thickener made of acrylic polymer at a rate of 100 mL / 100 L.

本実施例では、発電機11で給電しながら電動コアドリル4を駆動させてボーリングロッド5を回転させ、加圧用レバー4aを下降操作してサンプラー6を地中に圧入するとともに、ホース13及びボーリングロッド5を通じて掘進用水Wを給水し、掘削ビット6aで地盤Gを掘削しながら掘進用水Wを流路6dを通じて切羽Haへ吐出する。ボーリングロッド5の回転速度は、地質が土砂の場合は300rpmに、地質が硬岩の場合は1400rpmに切り替える。   In this embodiment, the electric core drill 4 is driven while the power is supplied by the generator 11 to rotate the boring rod 5 and the pressurizing lever 4a is lowered to press the sampler 6 into the ground, and the hose 13 and the boring rod. The water for excavation W is supplied through 5, and the water for excavation W is discharged to the face Ha through the channel 6d while excavating the ground G with the excavation bit 6a. The rotation speed of the boring rod 5 is switched to 300 rpm when the geology is earth and sand and to 1400 rpm when the geology is hard rock.

図3に示すように、吐出した掘進用水Wは掘削ビット6aを冷却するとともに外管6bの外方へ流れ、スライムGaはその掘進用水Wの流れで外管6bと孔壁Hbの間に運搬されて上昇しながら排出される。孔壁Hbは掘進用水Wの粘性で崩落が防止される。掘進用水Wの一部は内管6cの内側にも流れ、内管6cとコアCの間に適度な粘性の皮膜水が形成されてコアCの挿入を円滑にする。掘進用水Wの吐出速度は粘性で緩和され、内管6c内のコアの流出を防止する。   As shown in FIG. 3, the discharged excavation water W cools the excavation bit 6a and flows outward of the outer pipe 6b, and the slime Ga is transported between the outer pipe 6b and the hole wall Hb by the flow of the excavation water W. Then it is discharged while rising. The hole wall Hb is prevented from collapsing due to the viscosity of the water W for excavation. Part of the digging water W also flows inside the inner pipe 6c, and a moderately viscous coating water is formed between the inner pipe 6c and the core C to facilitate the insertion of the core C. The discharge speed of the digging water W is relaxed by viscosity, and the outflow of the core in the inner pipe 6c is prevented.

スライムGaの粒径は高速回転による掘削で0.1mm以下の微粉状となり、スライムGaの排出に必要な掘進用水Wの送水量が増粘化で大幅に低減される。従来技術では孔径を67mmとした場合、粒径0.1mm以下のスライムを排出するのに理論上およそ12L/minの送水量が必要であるが、本実施例では2〜7L/minで十分であった。また、従来技術では孔径67mmで100rpmとした場合、50〜450kgの荷重が必要であったが、本実施例では5〜15kgで従来技術と同等の掘進能率を確保できた。   The particle diameter of the slime Ga becomes a fine powder of 0.1 mm or less by excavation by high-speed rotation, and the water supply amount of the excavation water W necessary for discharging the slime Ga is greatly reduced by increasing the viscosity. In the conventional technique, when the hole diameter is 67 mm, a water supply amount of about 12 L / min is theoretically required to discharge slime having a particle diameter of 0.1 mm or less, but 2 to 7 L / min is sufficient in this embodiment. there were. Further, in the conventional technique, when the hole diameter is 67 mm and 100 rpm, a load of 50 to 450 kg is required, but in this example, a digging efficiency equivalent to that of the conventional technique can be secured with 5 to 15 kg.

本発明のコアの採取方法は、垂直方向のコア採取に最も効果を発揮するが、掘削角度には制限されず、様々な地質のコア採取に応用できる。   The core collection method of the present invention is most effective for vertical core collection, but is not limited to the excavation angle, and can be applied to various geological core collections.

実施例のボーリング装置の説明図である。It is explanatory drawing of the boring apparatus of an Example. 実施例のボーリング装置の拡大説明図である。It is expansion explanatory drawing of the boring apparatus of an Example. 実施例の掘進用水の流れを示す説明図である。It is explanatory drawing which shows the flow of the digging water of an Example.

符号の説明Explanation of symbols

1 ロッドホルダー
1a ペダル
2 ベース
2a ウインチ台
2b ジャッキ
3 昇降用フレーム
3a ラック
4 電動コアドリル
4a 加圧用レバー
4b 回転部
5 ボーリングロッド
5a 分割ロッド
6 サンプラー
6a 掘削ビット
6b 外管
6c 内管
6d 流路
7 ウインチ
7a 巻取部
8 やぐら
9 滑車
10 ワイヤー
11 発電機
12 アンカー
13 ホース
C コア
G 地盤
Ga スライム
H 削孔
Ha 切羽
Hb 孔壁
W 掘進用水
DESCRIPTION OF SYMBOLS 1 Rod holder 1a Pedal 2 Base 2a Winch stand 2b Jack 3 Lifting frame 3a Rack 4 Electric core drill 4a Pressure lever 4b Rotating part 5 Boring rod 5a Dividing rod 6 Sampler 6a Drilling bit 6b Outer tube 6c Inner tube 6d Flow path 7 Winch 7a Winding part 8 Yagura 9 Pulley 10 Wire 11 Generator 12 Anchor 13 Hose C Core G Ground Ga Slime H Drilling hole Ha Face Hb Hole wall W Digging water

Claims (3)

先端に掘削ビットを備えた回転自在の外管とコアを収容する非回転の内管で構成された二重管構造のサンプラーをボーリングロッドの先端に取り付け、ボーリングロッドを回転させて掘進方向へ荷重しながら掘削ビットで地盤を掘削し、掘削と並行して掘進用水をボーリングロッド内及び外管と内管の間を通じて送水して切羽へ吐出し、スライムを外管と孔壁の間を通じて掘進用水で排出させながらコアを内管へ収容するようにしたコアの採取方法において、掘削ビットとしてダイヤモンド粉末と金属粉末を混合して焼結したインプリグネイテッド型ビットを用い、ボーリングロッドの回転速度を地質が土砂の場合に300〜800rpmに設定し、掘進用水として増粘剤を100〜120mL/100Lの割合で混合したものを用いたことを特徴とする、コアの採取方法。   A double-pipe sampler consisting of a rotatable outer tube with a drilling bit at the tip and a non-rotating inner tube that houses the core is attached to the tip of the boring rod, and the boring rod is rotated to load in the direction of digging While excavating the ground with a drill bit, in parallel to the excavation, the water for excavation is sent through the boring rod and between the outer pipe and the inner pipe and discharged to the face, and the slime is passed through the outer pipe and the hole wall. In the core collection method in which the core is accommodated in the inner pipe while being discharged by using an impregnated type bit in which diamond powder and metal powder are mixed and sintered as a drilling bit, the rotation speed of the boring rod is geologically controlled. Was set to 300-800 rpm when the earth and sand were used, and a thickener mixed at a rate of 100-120 mL / 100 L was used as water for excavation Wherein, the method taken in the core. 先端に掘削ビットを備えた回転自在の外管とコアを収容する非回転の内管で構成された二重管構造のサンプラーをボーリングロッドの先端に取り付け、ボーリングロッドを回転させて掘進方向へ荷重しながら掘削ビットで地盤を掘削し、掘削と並行して掘進用水をボーリングロッド内及び外管と内管の間を通じて送水して切羽へ吐出し、スライムを外管と孔壁の間を通じて掘進用水で排出させながらコアを内管へ収容するようにしたコアの採取方法において、掘削ビットとしてダイヤモンド粉末と金属粉末を混合して焼結したインプリグネイテッド型ビットを用い、ボーリングロッドの回転速度を地質が硬岩の場合に800〜3000rpmに設定し、掘進用水として増粘剤を80〜100mL/100Lの割合で混合したものを用いたことを特徴とする、コアの採取方法。   A double-pipe sampler consisting of a rotatable outer tube with a drilling bit at the tip and a non-rotating inner tube that houses the core is attached to the tip of the boring rod, and the boring rod is rotated to load in the direction of digging While excavating the ground with a drill bit, in parallel to the excavation, the water for excavation is sent through the boring rod and between the outer pipe and the inner pipe and discharged to the face, and the slime is passed through the outer pipe and the hole wall. In the core collection method in which the core is accommodated in the inner pipe while being discharged by using an impregnated type bit in which diamond powder and metal powder are mixed and sintered as a drilling bit, the rotation speed of the boring rod is geologically controlled. Set to 800-3000 rpm when the rock is hard rock, and used a thickener mixed at a rate of 80-100 mL / 100 L as water for excavation Wherein, the method taken in the core. ボーリング装置として、ボーリングロッドとその駆動源の出力軸を同一回転軸上に配置できる構造のものを用いた、請求項1又は2記載のコアの採取方法。   The core collecting method according to claim 1 or 2, wherein a boring device having a structure in which a boring rod and an output shaft of a driving source thereof can be arranged on the same rotation shaft is used.
JP2007090695A 2007-03-30 2007-03-30 How to collect core Active JP4410808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090695A JP4410808B2 (en) 2007-03-30 2007-03-30 How to collect core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090695A JP4410808B2 (en) 2007-03-30 2007-03-30 How to collect core

Publications (2)

Publication Number Publication Date
JP2008248553A true JP2008248553A (en) 2008-10-16
JP4410808B2 JP4410808B2 (en) 2010-02-03

Family

ID=39973817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090695A Active JP4410808B2 (en) 2007-03-30 2007-03-30 How to collect core

Country Status (1)

Country Link
JP (1) JP4410808B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788713A (en) * 2012-07-27 2012-11-21 宁夏共享集团有限责任公司 Regional blind-hole material taking method for solid
CN103015904A (en) * 2012-12-24 2013-04-03 北京咏归科技有限公司 Sandstone soil extrusion taper-shaped sleeve diamond bit
CN108627362B (en) * 2018-05-09 2020-05-22 刘明亮 Concrete coring method intensity inspection coring device
JP2021092078A (en) * 2019-12-11 2021-06-17 ウィル・パワーグリッド株式会社 Boring machine for geological survey
CN114136699A (en) * 2021-12-23 2022-03-04 中山市承铭农业技术开发有限公司 Soil sample collecting device for agricultural soil testing and formulated fertilization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101975038B (en) * 2010-10-09 2013-01-16 东北石油大学 Device for sampling mud rock by cooling air and rock sample sampling method thereof
CN102445362B (en) * 2011-09-28 2013-07-24 中国水电顾问集团华东勘测设计研究院 Method for sampling jointed rock mass

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788713A (en) * 2012-07-27 2012-11-21 宁夏共享集团有限责任公司 Regional blind-hole material taking method for solid
CN103015904A (en) * 2012-12-24 2013-04-03 北京咏归科技有限公司 Sandstone soil extrusion taper-shaped sleeve diamond bit
CN103015904B (en) * 2012-12-24 2014-12-24 北京咏归科技有限公司 Sandstone soil extrusion taper-shaped sleeve diamond bit
CN108627362B (en) * 2018-05-09 2020-05-22 刘明亮 Concrete coring method intensity inspection coring device
JP2021092078A (en) * 2019-12-11 2021-06-17 ウィル・パワーグリッド株式会社 Boring machine for geological survey
JP7027392B2 (en) 2019-12-11 2022-03-01 東光電気工事株式会社 Boring device for geological survey
CN114136699A (en) * 2021-12-23 2022-03-04 中山市承铭农业技术开发有限公司 Soil sample collecting device for agricultural soil testing and formulated fertilization
CN114136699B (en) * 2021-12-23 2024-02-02 中山市承铭农业技术开发有限公司 Soil sample collection device for agricultural soil testing and formulated fertilization

Also Published As

Publication number Publication date
JP4410808B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
JP4410808B2 (en) How to collect core
JP3761889B2 (en) Method for forming groove wall on ground, groove wall cutter and groove wall cutting device
JP4505479B2 (en) Excavation apparatus and method for making underground construction piles
CA2787592C (en) Underwater drilling arrangement and method for making a bore
JP2009299459A (en) Excavating machine and excavation method
HK1040750A1 (en) Apparatus for and a method of boring the ground
AU2010241465A1 (en) Underwater drilling arrangement and method for introducing a tubular foundation element into the bed of a body of water
EP1118718A3 (en) Rotary displacement piling equipment
JP5078511B2 (en) Embedded pile method using earth drill machine
JP6942001B2 (en) High pressure injection device
CN106677733A (en) Large-diameter drilling drill with drill residue salvaging device
JP6713621B2 (en) Expanding drilling equipment and expanding drilling method
KR101448294B1 (en) direction controllable boring method and apparatus for boring
CN109083591B (en) Drilling bored concrete pile body and pile cap integrated drilling pore-forming method
CN212272089U (en) Portable core drilling machine and green core sampling system
CN111425145A (en) Drill bit device for pipe curtain construction
JP2005098096A (en) Drill and method for removing and drilling in earth
JP2012140787A (en) Construction method of pile body and casing pipe used for the same, and foundation structure constructed thereby
JPH08226117A (en) Sampling method and device for improved soil
JP3101398U (en) Geological survey boring equipment
JP2007297799A (en) Compacting sand-pile creation equipment
JP4610013B2 (en) Contaminated soil purification device and purification method
CN112031825B (en) Small grouting guide pipe for tunnel support
CN221377200U (en) Lake sediment depth setting sampling device
CN114293546B (en) Construction method for supporting and reinforcing broken stone by double pile casings penetrating through karst cave pile foundation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4410808

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141120

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250