JP2008248412A - Dispersant for carbon fiber, carbon fiber dispersant obtained by dispersion, conductive composite material induced from carbon fiber dispersant, conductive coating, method for coating, and article coated by the method - Google Patents

Dispersant for carbon fiber, carbon fiber dispersant obtained by dispersion, conductive composite material induced from carbon fiber dispersant, conductive coating, method for coating, and article coated by the method Download PDF

Info

Publication number
JP2008248412A
JP2008248412A JP2007089253A JP2007089253A JP2008248412A JP 2008248412 A JP2008248412 A JP 2008248412A JP 2007089253 A JP2007089253 A JP 2007089253A JP 2007089253 A JP2007089253 A JP 2007089253A JP 2008248412 A JP2008248412 A JP 2008248412A
Authority
JP
Japan
Prior art keywords
carbon fiber
unsubstituted
group
carbon
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007089253A
Other languages
Japanese (ja)
Other versions
JP4949909B2 (en
Inventor
Naohiro Tarumoto
直浩 樽本
Kazunori Umishita
一徳 海下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2007089253A priority Critical patent/JP4949909B2/en
Publication of JP2008248412A publication Critical patent/JP2008248412A/en
Application granted granted Critical
Publication of JP4949909B2 publication Critical patent/JP4949909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersant for carbon fibers, improving the dispersibility of the carbon fibers in a resin solution in a mixing technique for mixing a resin material with the carbon fibers, and a technique capable of producing a composite material and coated film obtained by using the dispersant. <P>SOLUTION: The conductive composite material and coating, having uniformly dispersed loosened carbon fibers, are produced by putting the carbon fibers and a dispersant for the carbon fiber expressed by general formula (1) into the resin solution and performing dispersion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を良好に分散および解繊する炭素繊維用分散剤、炭素繊維分散液、導電性複合材料、導電性塗料、導電性塗料を用いた塗装方法、当該方法により得られる炭素繊維含有樹脂膜並びに、当該樹脂膜が塗装された物品に関する。 The present invention uses a carbon fiber dispersant, a carbon fiber dispersion, a conductive composite material, a conductive coating, and a conductive coating that disperse and defibrate carbon fibers in an organic solvent solution of an organic solvent-soluble resin. The present invention relates to a coating method, a carbon fiber-containing resin film obtained by the method, and an article coated with the resin film.

近年発見された炭素繊維は直径1μm以下の太さのチューブ状材料であり、理想的なものとしては炭素6角網目の面がチューブの軸に平行な管を形成し、さらにこの管が二層、三層、四層又は多層になることもある。この炭素繊維は炭素でできた6角網目の数や、チューブの太さによって異なる性質を有する。そのためそれらの化学的特性、電気的特性、機械的特性、熱伝導性、構造特性等の物性を利用して、電子デバイス、電気配線、熱電変換素子材料、建材用放熱材料、電磁波吸収材料、フラットパネルディスプレイ用電界放出陰極材料、電極接合材料、樹脂複合材料、透明導電膜、触媒担持材料、電極・水素貯蔵材、補強材料及び黒色顔料等への応用が期待されている。 Recently discovered carbon fiber is a tube-shaped material with a diameter of 1 μm or less, and ideally, a carbon hexagonal mesh surface forms a tube parallel to the tube axis, and this tube consists of two layers. , Three layers, four layers or multiple layers. This carbon fiber has different properties depending on the number of hexagonal meshes made of carbon and the thickness of the tube. Therefore, using these chemical properties, electrical properties, mechanical properties, thermal conductivity, structural properties, etc., electronic devices, electrical wiring, thermoelectric conversion element materials, heat dissipation materials for building materials, electromagnetic wave absorption materials, flats Application to field emission cathode materials for panel displays, electrode bonding materials, resin composite materials, transparent conductive films, catalyst support materials, electrodes / hydrogen storage materials, reinforcing materials, black pigments, and the like are expected.

電子デバイス製造においてはインクジェット方式による集積回路(LSI、超LSI等)の微細配線の作製、スクリーン印刷や吹き付け方式による均質な電界放出陰極源の製造及びフラットパネルディスプレイへの応用、導電性セラミックス製造等の研究が行われている。 In electronic device manufacturing, production of fine wiring of integrated circuits (LSI, VLSI etc.) by inkjet method, production of homogeneous field emission cathode source by screen printing or spraying method, application to flat panel display, production of conductive ceramics, etc. Is being researched.

導電性材料製造においては圧縮、注型、射出、押出又は延伸方式による帯電防止板の作製、導電性塗料を用いてミクロンオーダーの帯電防止膜、制電膜または静電塗装用導電性プライマー膜の作製、吹き付け方式、スピンコーターまたはバーコーター方式によるサブミクロンオーダーの半透明または透明導電性薄膜作製検討等の研究が盛んに行われている。 In the production of conductive materials, the production of antistatic plates by compression, casting, injection, extrusion, or stretching methods, the use of conductive paints, antistatic films of micron order, antistatic films or conductive primer films for electrostatic coating Studies such as production, spraying, spin-coater or bar-coater methods for the production of semi-transparent or transparent conductive thin films on the order of submicrons have been actively conducted.

炭素繊維を用いて、以上のような機械的、機能的及び複合的材料を製造する際には、炭素繊維が溶液、樹脂溶液または樹脂に均一に分散されていることが必須である。 When producing such mechanical, functional and composite materials using carbon fibers, it is essential that the carbon fibers are uniformly dispersed in a solution, a resin solution or a resin.

しかし炭素繊維は、特性として非常に強い繊維間相互の凝集力(ファンデルワールス力)を有しているため、溶液、樹脂溶液又は樹脂において、炭素繊維同士が凝集してしまい、炭素繊維が十分に分散した溶液、樹脂溶液又は樹脂を製造しにくいのが現状である。これは炭素繊維の原子レベルでの滑らかな表面が樹脂溶液に対する親和性を大きく低下させてしまうからである。 However, since carbon fibers have very strong cohesive force (van der Waals force) between fibers as a characteristic, carbon fibers are aggregated in a solution, resin solution or resin, and carbon fibers are sufficient. Currently, it is difficult to produce a solution, a resin solution or a resin dispersed in. This is because the smooth surface at the atomic level of the carbon fiber greatly reduces the affinity for the resin solution.

したがって、炭素繊維は特異で有用な性質があるにもかかわらず、これを均一に分散したポリマー系ナノコンポジットなどを製造することは極めて困難であり、各種用途への応用を事実上困難にしている。以下に報告されている、いくつかの試みについて記述する。 Therefore, despite the unique and useful properties of carbon fibers, it is extremely difficult to produce polymer nanocomposites and the like in which they are uniformly dispersed, making it practically difficult to apply to various applications. . Some of the attempts reported below are described.

炭素繊維の分散溶媒としては、水溶性溶媒や有機溶媒あるいはそれらの混合溶媒が利用できることが開示されている。例えば、水、酸性溶液、アルカリ性溶液、アルコール、エーテル、石油エーテル、ベンゼン、酢酸エチル、クロロホルム、イソプロピルアルコール、エタノール、アセトン、トルエン等である(例えば、特許文献1参照)。 It is disclosed that a water-soluble solvent, an organic solvent, or a mixed solvent thereof can be used as a carbon fiber dispersion solvent. For example, water, acidic solution, alkaline solution, alcohol, ether, petroleum ether, benzene, ethyl acetate, chloroform, isopropyl alcohol, ethanol, acetone, toluene and the like (for example, see Patent Document 1).

またアミド系極性有機溶媒であるN−メチルピロリドンとポリマー溶媒であるポリビニルピロリドンの混合溶媒中で炭素繊維を分散する方法(例えば、特許文献2参照)も開示されている。さらに炭化水素系溶媒中に塩基性高分子としてポリエステル酸アマイドアミン塩を分散剤として用いた炭素繊維の分散方法(例えば、特許文献3参照)等も開示されている。 Also disclosed is a method of dispersing carbon fibers in a mixed solvent of N-methylpyrrolidone, which is an amide polar organic solvent, and polyvinylpyrrolidone, which is a polymer solvent (see, for example, Patent Document 2). Furthermore, a carbon fiber dispersion method using a polyester acid amide amine salt as a dispersant in a hydrocarbon solvent as a dispersant (for example, see Patent Document 3) is also disclosed.

しかし上記の方法で得られた、炭素繊維分散溶液は炭素繊維の凝集物は良好に分散しているが、炭素繊維が解繊している状態ではないものが多い。また得られた炭素繊維分散液に樹脂を溶解させると、樹脂を添加した事による極性の変化等が要因となり、炭素繊維が再凝集を起こし、炭素繊維が十分に分散した樹脂溶液が得られないのが現状である。 However, in the carbon fiber dispersion solution obtained by the above method, the carbon fiber aggregates are well dispersed, but many carbon fibers are not in a defibrated state. In addition, when the resin is dissolved in the obtained carbon fiber dispersion, a change in polarity due to the addition of the resin causes the carbon fiber to re-aggregate, and a resin solution in which the carbon fiber is sufficiently dispersed cannot be obtained. is the current situation.

また界面活性剤のような添加剤を用いた炭素繊維の分散方法も開示されている。界面活性剤として非イオン系界面活性剤であるTergitol(商標)NP7を用いた提案であるが、炭素繊維の配合量が増加すると、炭素繊維が凝集してしまい、均一な分散が得られない事が報告されている(例えば、非特許文献1参照)。また、単層の炭素繊維を陰イオン性界面活性剤SDS水溶液中で超音波処理することにより、炭素繊維の疎水性表面と界面活性剤の疎水部を吸着させ、外側に親水部を形成して水溶液中に分散することも報告されている(例えば、非特許文献2参照) A carbon fiber dispersion method using an additive such as a surfactant is also disclosed. This is a proposal that uses Tergitol (trademark) NP7, which is a nonionic surfactant, as the surfactant. However, when the amount of carbon fiber increases, the carbon fiber aggregates and uniform dispersion cannot be obtained. Has been reported (for example, see Non-Patent Document 1). In addition, ultrasonic treatment of a single layer of carbon fiber in an aqueous solution of an anionic surfactant SDS adsorbs the hydrophobic surface of the carbon fiber and the hydrophobic portion of the surfactant to form a hydrophilic portion on the outside. It is also reported that it is dispersed in an aqueous solution (for example, see Non-Patent Document 2).

しかし、水溶性溶媒であるため、例えば、ポリマー系ナノコンポジットに応用する際、適用できる高分子は水溶性高分子に限られてしまい、応用範囲に限界がある。 However, since it is a water-soluble solvent, for example, when applied to a polymer-based nanocomposite, the applicable polymer is limited to the water-soluble polymer, and the application range is limited.

さらに界面活性剤の替わりに水溶性高分子PVPの疎水部分を炭素繊維の表面につける方法も提案されているが、やはり水溶性高分子であって応用範囲は限られている(例えば、特許文献3参照)。 Furthermore, a method of attaching a hydrophobic portion of the water-soluble polymer PVP to the surface of the carbon fiber instead of the surfactant has also been proposed, but it is also a water-soluble polymer and its application range is limited (for example, patent document). 3).

このように、炭素繊維の樹脂溶液に対する分散性を改善するために様々な試みがなされているが、必ずしも十分な効果を得ていないのが現状である。 As described above, various attempts have been made to improve the dispersibility of the carbon fiber in the resin solution, but the present situation is that a sufficient effect is not necessarily obtained.

特開2000−72422号公報Japanese Patent Laid-Open No. 2000-72422 特開2005−162877号公報JP 2005-162877 A 特開2006−63436号公報JP 2006-63436 A S.Cui et al. Carbon 41,2003,797−809S. Cui et al. Carbon 41, 2003, 797-809 Michael J. O'Connel et al. SCIENCE VOL297 26 July 2002,593−596Michael J.M. O'Connel et al. SCIENCE VOL297 26 July 2002, 593-596 Michael J. O'Connel et al. CHEMICAL PHYSICS LETTERS,13 July 2001, 264−271Michael J.M. O'Connel et al. CHEMICAL PHYSICS LETTERS, 13 July 2001, 264-271

本発明が解決しようとする課題は、他に類を見ない程、高い凝集力を有する炭素繊維を樹脂の有機溶剤溶液中において均一に分散および解繊させる事を可能にする炭素繊維用分散剤、分散によって得られた炭素繊維分散液、炭素繊維分散液から誘導される導電性複合材料、導電性塗料、塗装方法、炭素繊維が均一に分散された炭素繊維含有樹脂膜及びそれらが塗装された物品を提供する事にある。 The problem to be solved by the present invention is to provide a carbon fiber dispersant that can uniformly disperse and defibrate carbon fibers having a high cohesive force in an organic solvent solution of resin, unlike any other. , Carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, carbon fiber-containing resin film in which carbon fibers are uniformly dispersed, and those coated To provide goods.

上記課題を解決するため、鋭意検討した結果、樹脂の有機溶剤溶液中において炭素繊維を均一に分散させるために、下記一般式(1)で表される構造単位を有する化合物が優れた炭素繊維用分散剤となる事を見出し、本発明の完成に至った。即ち、本発明は、以下の内容で構成されている。
[1] 有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(1)で表される構造単位を有する化合物である炭素繊維用分散剤である。
As a result of intensive studies to solve the above problems, a compound having a structural unit represented by the following general formula (1) is excellent for carbon fibers in order to uniformly disperse carbon fibers in an organic solvent solution of a resin. The inventors have found that it becomes a dispersant, and have completed the present invention. That is, the present invention has the following contents.
[1] For carbon fiber, which is a compound having a structural unit represented by the following general formula (1), which is added to improve dispersibility when carbon fiber is dispersed in an organic solvent solution of an organic solvent-soluble resin. It is a dispersant.

Figure 2008248412

〔式中R、R、RおよびRはそれぞれ独立に水素原子、水酸基、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のヒドロキシアルキル基、アルキルオキシ基、アシルオキシ基、カルボキシル基、アシル基、第1〜3級アミノ基、無置換もしくは置換のアリール基、無置換もしくは置換のアリールオキシ基または無置換もしくは置換の複素環基を表す。RおよびRはそれぞれ独立に水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のアリール基または無置換もしくは置換の複素環基を表す。またRとRが結合して環を形成してもよい。Rは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のヒドロキシアルキル基、アルキルオキシ基、アシルオキシ基、カルボニル基、カルボキシル基、第1〜3級アミノ基、無置換もしくは置換のアリール基、無置換もしくは置換のアリールオキシ基または無置換もしくは置換の複素環基を表す。また平均重合度は200〜8000であり、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
Figure 2008248412

[Wherein R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a hydroxyl group, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted hydroxyalkyl group, or an alkyloxy group. , An acyloxy group, a carboxyl group, an acyl group, a primary to tertiary amino group, an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, or an unsubstituted or substituted heterocyclic group. R 5 and R 6 each independently represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted heterocyclic group. R 5 and R 6 may be bonded to form a ring. R 7 represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted hydroxyalkyl group, an alkyloxy group, an acyloxy group, a carbonyl group, a carboxyl group, or a primary to tertiary amino group. Represents an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, or an unsubstituted or substituted heterocyclic group. The average degree of polymerization is 200 to 8000, and the composition ratio in the structural unit is X: Y: Z = 65 to 90: 5 to 30: 0 to 10. ]

有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(2)で表される構造単位を有する化合物である炭素繊維用分散剤である。 A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (2), which is added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin. is there.

Figure 2008248412

〔式中R、RおよびRは一般式(1)で定義したものと同一の基を表す。また平均重合度は200〜8000であり、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
Figure 2008248412

[Wherein R 5 , R 6 and R 7 represent the same groups as defined in formula (1). The average degree of polymerization is 200 to 8000, and the composition ratio in the structural unit is X: Y: Z = 65 to 90: 5 to 30: 0 to 10. ]

有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(3)で表される構造単位を有する化合物である炭素繊維用分散剤である。 A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (3), which is added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin. is there.

Figure 2008248412

〔式中Rは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のアリール基または無置換もしくは置換の複素環基を表す。またRは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、アルキルカルボニル基、無置換もしくは置換のアリール基、無置換もしくは置換の複素環基、無置換もしくは置換のピラノシル基または無置換もしくは置換のフラノシル基を表す。また平均重合度は200〜8000を表し、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
Figure 2008248412

[Wherein R 8 represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted heterocyclic group. R 9 is a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an alkylcarbonyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic group, an unsubstituted or substituted pyranosyl group. Or an unsubstituted or substituted furanosyl group. Moreover, an average degree of polymerization represents 200-8000, and the composition ratio in the said structural unit is X: Y: Z = 65-90: 5-30: 0-10. ]

有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(4)で表される構造単位を有する化合物である炭素繊維用分散剤である。 A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (4), which is added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin. is there.

Figure 2008248412

〔式中R10は水素原子または無置換または置換の炭素原子が1〜30のアルキル基を表す。また平均重合度は200〜8000を表し、前記構造単位内の組成比は、X:Y=65〜85:15〜35である。〕
[2]有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する一般式(1)〜(4)で表される化合物の少なくとも1種以上からなる炭素繊維用分散剤を含有する炭素繊維分散液である。
Figure 2008248412

[Wherein R 10 represents a hydrogen atom or an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms. Moreover, an average degree of polymerization represents 200-8000, and the composition ratio in the said structural unit is X: Y = 65-85: 15-35. ]
[2] When dispersing carbon fibers in an organic solvent solution of an organic solvent-soluble resin, from at least one of the compounds represented by the general formulas (1) to (4) to be added to improve dispersibility It is the carbon fiber dispersion liquid containing the dispersing agent for carbon fiber which becomes.

前記有機溶剤可溶性樹脂がポリスチレンまたはスチレン共重合体である炭素繊維用分散剤である。 The organic solvent-soluble resin is a dispersant for carbon fiber, which is polystyrene or a styrene copolymer.

有機溶剤可溶性樹脂の有機溶剤溶液中に、一般式(1)〜(4)で表される化合物の少なくとも1種以上からなる炭素繊維用分散剤を用いて炭素繊維を分散させた炭素繊維分散液である。 A carbon fiber dispersion in which carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin using a carbon fiber dispersant comprising at least one of the compounds represented by the general formulas (1) to (4). It is.

前記炭素繊維分散液にさらに着色剤を添加する炭素繊維分散液である。 It is a carbon fiber dispersion in which a colorant is further added to the carbon fiber dispersion.

前記有機溶剤可溶性樹脂がポリスチレンまたはスチレン共重合体である炭素繊維分散液である。 The organic solvent-soluble resin is a carbon fiber dispersion in which polystyrene or styrene copolymer is used.

前記有機溶剤可溶性樹脂を溶解する有機溶剤がケトン系溶剤、アルコール系溶剤、エステル系溶剤から選択される一種以上の溶剤である炭素繊維分散液である。 The organic solvent that dissolves the organic solvent-soluble resin is a carbon fiber dispersion which is one or more solvents selected from ketone solvents, alcohol solvents, and ester solvents.

前記着色剤が無機顔料である炭素繊維分散液である。 It is a carbon fiber dispersion in which the colorant is an inorganic pigment.

前記炭素繊維が外形0.5〜800nmの炭素繊維から構成される炭素繊維分散液である。 The carbon fiber is a carbon fiber dispersion composed of carbon fibers having an outer shape of 0.5 to 800 nm.

炭素繊維が単層炭素繊維、二層炭素繊維、または多層炭素繊維である炭素繊維分散液である。 The carbon fiber dispersion is a carbon fiber dispersion in which the carbon fiber is a single-layer carbon fiber, a double-layer carbon fiber, or a multilayer carbon fiber.

炭素繊維が外径15〜100nmの炭素繊維から構成されるネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであって前記炭素繊維外形の1.3倍以上の大きさを有するものである炭素繊維分散液である。
[3]前記炭素繊維分散液を用いて得られる導電性複合材料である。
[4]前記導電性複合材料が導電性塗料である。
[5]前記導電性塗料を用いて被塗装面に対して塗装する導電性塗料の塗装方法である。
[6]前記導電性塗料の塗装方法で製膜する炭素繊維含有樹脂膜である。
[7]前記炭素繊維含有樹脂膜が前記導電性塗料を塗装することによって表面に製膜された物品である。
A network-like carbon fiber structure in which carbon fibers are composed of carbon fibers having an outer diameter of 15 to 100 nm, and the carbon fiber structures are bonded to each other in such a manner that a plurality of the carbon fibers extend. A carbon fiber dispersion having a granular part that is formed and formed in the process of growing the carbon fiber and having a size of 1.3 times or more of the outer shape of the carbon fiber. It is a liquid.
[3] A conductive composite material obtained using the carbon fiber dispersion.
[4] The conductive composite material is a conductive paint.
[5] A method for applying a conductive paint by coating the surface to be coated with the conductive paint.
[6] A carbon fiber-containing resin film formed by the conductive coating method.
[7] An article in which the carbon fiber-containing resin film is formed on the surface by applying the conductive paint.

本発明の炭素繊維用分散剤は炭素繊維との間に適度な親和性を有するため、炭素繊維を樹脂溶剤溶液中に均一に分散及び解繊させる事ができる。本発明の炭素繊維分散液を使用して得られた炭素繊維樹脂膜の導電性も良好である。また、例えば無機材料、顔料又は他のフィラー等の材料と混合する場合においても、本発明の分散剤を利用する事によって容易に炭素繊維分散液を調整する事ができ、炭素繊維本来の機能を樹脂中に分散した状態で十分に発揮させる事が出来る。 Since the carbon fiber dispersant of the present invention has an appropriate affinity with the carbon fiber, the carbon fiber can be uniformly dispersed and defibrated in the resin solvent solution. The conductivity of the carbon fiber resin film obtained using the carbon fiber dispersion of the present invention is also good. In addition, even when mixing with materials such as inorganic materials, pigments or other fillers, the carbon fiber dispersion can be easily adjusted by using the dispersant of the present invention, and the original functions of carbon fibers can be achieved. It can be fully exerted when dispersed in the resin.

以下、本発明について詳細に説明する。本発明の有機溶剤可溶性樹脂としては、例えば、塩素化ポリエチレン樹脂、塩素化ポリプロピレン樹脂、塩素化エチレン−プロピレン共重合体、塩素化エチレン−酢酸ビニル共重合体等の塩素化ポリオレフィン樹脂、ポリスチレン樹脂、スチレン−アクリル共重合体、スチレン−アセトニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、スチレン−マレイミド共重合体、ASA樹脂、AES樹脂、ACS樹脂、PC−ABSアロイ、PC−AESアロイ等のスチレン樹脂、ポリエチレンテレフタレート樹脂、ポリエステル樹脂、酢酸ビニル樹脂、環状ポリオレフィン共重合体、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂、ポリフェニレンエーテル樹脂、アクリル樹脂、熱可塑性ポリウレタン樹脂、シリコン樹脂、酢酸セルロース、硝酸セルロースおよびこれらを変性した樹脂等が挙げられる。 Hereinafter, the present invention will be described in detail. Examples of the organic solvent-soluble resin of the present invention include, for example, chlorinated polyethylene resins, chlorinated polypropylene resins, chlorinated ethylene-propylene copolymers, chlorinated ethylene resins such as chlorinated ethylene-vinyl acetate copolymers, polystyrene resins, Styrene-acrylic copolymer, styrene-acetonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, styrene-maleimide copolymer, ASA resin, AES resin, ACS resin, PC-ABS alloy Styrene resin such as PC-AES alloy, polyethylene terephthalate resin, polyester resin, vinyl acetate resin, cyclic polyolefin copolymer, polyamideimide resin, polyetherimide resin, polyvinyl formal resin, polyvinyl butyral resin, polyphenylene Ether resins, acrylic resins, thermoplastic polyurethane resins, silicone resins, cellulose acetate, and the like cellulose nitrate and these were modified resin.

本発明で使用する有機溶剤を以下に挙げるが、特にこれらに限定されるものではない。例えば、アルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、シクロヘキサノール)、グリコール類(エチレングリコール、プロピレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ジエチレングリコールモノエチルエーテル、ポリプロピレングリコールモノエチルエーテル、ポリエチレングリコールモノアリルエーテル、ポリプロピレングリコールモノアリルエーテル、エチルセロソルブ、ブチルセロソルブ、カービトール、ブチルカービトール、メトキシブタノール)及びエステルエーテル類(酢酸セロソルブ、酢酸ブチルセロソルブ、酢酸カービトール、酢酸メトキシブチル)、エーテル類(テトラヒドロフラン、ジオキサン)、脂肪族炭化水素類(ミネラルスピリット)、脂環族炭化水素(テレビン油)、混合炭化水素(HAWS、ソルベット100、ソルベット150)、芳香族炭化水素(トルエン、キシレン、エチルベンゼン、)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホン)、エステル類(酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸アミル)、シリコーンオイル類(ポリジメチルシロキサン、部分オクチル置換ポリジメチルシロキサン、部分フェニル置換ポリジメチルシロキサン)、ハロゲン化炭化水素(クロロベンゼン、ジクロロベンゼン、クロロホルム、ブロモベンゼン)、フッ素化物類等が挙げられる。またこれらを2種以上混合してもよい。さらに溶剤の量は、塗料として使用するときの粘度が塗装できる適当な範囲になるように選定すればよい。 Although the organic solvent used by this invention is mentioned below, it is not specifically limited to these. For example, alcohols (methyl alcohol, ethyl alcohol, isopropyl alcohol, butyl alcohol, cyclohexanol), glycols (ethylene glycol, propylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, diethylene glycol monoethyl ether, polypropylene glycol monoethyl ether, polyethylene Glycol monoallyl ether, polypropylene glycol monoallyl ether, ethyl cellosolve, butyl cellosolve, carbitol, butyl carbitol, methoxybutanol) and ester ethers (cellosolve acetate, butyl cellosolve acetate, carbitol acetate, methoxybutyl acetate), ethers (tetrahydrofuran, dioxane) ), Aliphatic charcoal Hydrogen (mineral spirit), alicyclic hydrocarbon (turpentine oil), mixed hydrocarbon (HAWS, sorbet 100, sorbet 150), aromatic hydrocarbon (toluene, xylene, ethylbenzene,), ketones (acetone, methyl ethyl ketone, methyl) Isobutyl ketone, cyclohexanone, isophone), esters (ethyl acetate, butyl acetate, isobutyl acetate, amyl acetate), silicone oils (polydimethylsiloxane, partially octyl-substituted polydimethylsiloxane, partially phenyl-substituted polydimethylsiloxane), halogenated carbonization Examples include hydrogen (chlorobenzene, dichlorobenzene, chloroform, bromobenzene), fluorinated compounds, and the like. Two or more of these may be mixed. Furthermore, the amount of the solvent may be selected so that the viscosity when used as a paint is in an appropriate range that can be applied.

本発明の炭素繊維においては、単層、二層及び多層の炭素繊維を示し、それぞれ目的に応じて用いる事が出来る。本発明においては、より好ましくは、多層の炭素繊維が用いられる。炭素繊維の製造方法に関しては、特に制限されるものではなく、触媒を用いる気相成長法、アーク放電法、レーザー蒸発法及びHiPco法(High−pressure carbon monoxide process)等、従来公知のいずれの製造方法でもよい。 In the carbon fiber of the present invention, single-layer, double-layer and multi-layer carbon fibers are shown and can be used according to the purpose. In the present invention, more preferably, a multi-layer carbon fiber is used. The carbon fiber production method is not particularly limited, and any conventionally known production method such as a vapor phase growth method using a catalyst, an arc discharge method, a laser evaporation method, and a HiPco method (High-pressure carbon monoxide process). The method may be used.

例えば、レーザー蒸着法により単層の炭素繊維を作製する方法を以下に示す。原料としてグラファイトパウダーと、ニッケル及びコバルト微粉末混合ロットを用意した。この混合ロットを665hPa(500Torr)のアルゴン雰囲気下、電気炉により1250℃に加熱し、そこに350mJ/PulseのNd:YAGレーザーの第二高調波パルスを照射し、炭素と金属微粒子を蒸発させることにより、単層の炭素繊維を作製することができる。 For example, a method for producing a single-layer carbon fiber by laser vapor deposition is shown below. As a raw material, graphite powder and a mixed lot of nickel and cobalt fine powder were prepared. This mixed lot is heated to 1250 ° C. by an electric furnace in an argon atmosphere of 665 hPa (500 Torr), and irradiated with a second harmonic pulse of a 350 mJ / Pulse Nd: YAG laser to evaporate carbon and metal fine particles. Thus, a single-layer carbon fiber can be produced.

以上の作製方法は、あくまで典型例であり、金属の種類、ガスの種類、電気炉の温度、レーザーの波長等を変更してもよい。また、レーザー蒸着法以外の作製法、例えばHiPco法、気相成長法、アーク放電法、一酸化炭素の熱分解法、微細な空孔中に有機分子を挿入して熱分解するテンプレート法、フラーレン・金属共蒸着法等、他の手法によって作製された単層の炭素繊維を使用してもよい。 The above manufacturing method is merely a typical example, and the metal type, gas type, electric furnace temperature, laser wavelength, and the like may be changed. In addition, other than laser deposition methods, for example, HiPco method, vapor phase growth method, arc discharge method, carbon monoxide thermal decomposition method, template method in which organic molecules are inserted into fine pores, thermal decomposition, fullerene -You may use the single layer carbon fiber produced by other methods, such as a metal co-evaporation method.

例えば、定温アーク放電法により二層の炭素繊維を作製する方法を以下に示す。基板は表面処理されたSi基板を用い、処理方法としては触媒金属及び触媒助剤金属を溶解した溶液中に、アルミナ粉末を30分間浸し、さらに3時間超音波処理により分散させて得られた溶液をSi基板に塗布し、空気中において120℃で維持間乾燥させた。炭素繊維製造装置の反応室に基板を設置し、反応ガスとして水素とメタンの混合ガスを用い、ガスの供給量は水素を500sccm、メタンを10sccmとし、反応室の圧力を70Torrとした。陰極部はTaよりなる棒状の放電部を用いた。次に陽極部と陰極部及び陽極部と基板との間に直流電圧を印加し、放電電流が2.5Aで一定になるように放電電圧を制御した。放電により陰極部の温度が2300℃になると正規グロー放電状態から異常グロー放電状態になり、放電電流が2.5A、放電電圧が700V、反応ガス温度が3000℃の状態を10分間行うことで、基板全体に単層及び2層の炭素繊維を作製することができる。 For example, a method for producing a two-layer carbon fiber by a constant temperature arc discharge method is shown below. The substrate was a surface-treated Si substrate, and the treatment method was a solution obtained by immersing alumina powder in a solution in which the catalyst metal and the catalyst auxiliary metal were dissolved for 30 minutes, and then dispersing by ultrasonic treatment for 3 hours. Was applied to a Si substrate and dried in air at 120 ° C. for maintenance. A substrate was installed in the reaction chamber of the carbon fiber production apparatus, a mixed gas of hydrogen and methane was used as a reaction gas, the gas supply amount was 500 sccm for hydrogen, 10 sccm for methane, and the pressure in the reaction chamber was 70 Torr. As the cathode part, a rod-like discharge part made of Ta was used. Next, a DC voltage was applied between the anode part and the cathode part, and between the anode part and the substrate, and the discharge voltage was controlled so that the discharge current was constant at 2.5A. When the temperature of the cathode part is 2300 ° C. due to discharge, the normal glow discharge state is changed to an abnormal glow discharge state, and the discharge current is 2.5 A, the discharge voltage is 700 V, and the reaction gas temperature is 3000 ° C. for 10 minutes. Single-layer and double-layer carbon fibers can be produced on the entire substrate.

以上の作製方法は、あくまで一例であり、金属の種類、ガスの種類等、諸条件を変更してもよい。また、アーク放電法以外の作製法によって作製された単層の炭素繊維を使用してもよい。 The above manufacturing method is merely an example, and various conditions such as the type of metal and the type of gas may be changed. Moreover, you may use the single layer carbon fiber produced by production methods other than the arc discharge method.

例えば、気相成長法により三次元構造を有した多層の炭素繊維を作製する方法を以下に示す。基本的には、遷移金属超微粒子を触媒として炭化水素等の有機化合物をCVD法で化学熱分解して繊維構造体(以下、中間体)を得、これをさらに高温熱処理することで多層の炭素繊維を作製することができる。 For example, a method for producing a multi-layer carbon fiber having a three-dimensional structure by a vapor deposition method is shown below. Basically, organic compounds such as hydrocarbons are chemically pyrolyzed by CVD using transition metal ultrafine particles as a catalyst to obtain a fiber structure (hereinafter referred to as an intermediate), which is further subjected to high-temperature heat treatment to produce multi-layer carbon. Fibers can be made.

原料有機化合物としては、ベンゼン、トルエン、キシレンなどの炭化水素、一酸化炭素、エタノール等のアルコール類が使用されるが、炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることが好ましい。なお、少なくとも2つ以上の炭素化合物とは、必ずしも原料有機化合物として2種以上のものを使用するというものではなく、原料有機化合物としては1種のものを使用した場合であっても、繊維構造体の合成過程においては、例えば、トルエンやキシレンの水素脱アルキル化などのような反応を生じて、その後の熱分解反応系においては分解温度の異なる2つ以上の炭素化合物となっているような態様を含むものである。雰囲気ガスには、アルゴン、ヘリウム、キセノン等の不活性ガスや水素を用い、触媒としては鉄、コバルト、モリブデンなどの遷移金属あるいはフェロセン、酢酸金属塩などの遷移金属化合物と硫黄あるいはチオフェン、硫化鉄などの硫黄化合物の混合物を使用する。 As the raw material organic compound, hydrocarbons such as benzene, toluene and xylene, and alcohols such as carbon monoxide and ethanol are used, but it is preferable to use at least two or more carbon compounds having different decomposition temperatures as the carbon source. . Note that at least two or more carbon compounds do not necessarily use two or more types of raw material organic compounds, and even when one type of raw material organic compound is used, the fiber structure In the body synthesis process, for example, a reaction such as hydrogen dealkylation of toluene or xylene occurs, and in the subsequent thermal decomposition reaction system, it becomes two or more carbon compounds having different decomposition temperatures. Including embodiments. The atmosphere gas is an inert gas such as argon, helium, xenon or hydrogen, and the catalyst is a transition metal such as iron, cobalt or molybdenum, or a transition metal compound such as ferrocene or metal acetate, and sulfur or thiophene or iron sulfide. Use a mixture of sulfur compounds such as

中間体の合成は、通常行われている炭化水素などのCVD法を用い、原料となる炭化水素及び触媒の混合液を蒸発させ、水素ガス等をキャリアガスとして反応炉内に導入し、800〜1300℃の温度で熱分解する。これにより、外径が15〜100nmの繊維相互が、前記触媒の粒子を核として成長した粒状体によって結合した疎な三次元構造を有する炭素繊維構造体(中間体)が複数集まった数センチから数十センチの大きさの集合体を合成する。 The synthesis of the intermediate is carried out by using a CVD method such as hydrocarbon, which is usually performed, by evaporating the mixture of hydrocarbon and catalyst as raw materials, introducing hydrogen gas or the like into the reaction furnace as a carrier gas, Pyrolysis at a temperature of 1300 ° C. Thereby, from several centimeters in which a plurality of carbon fiber structures (intermediates) having a sparse three-dimensional structure in which fibers having an outer diameter of 15 to 100 nm are bonded together by granular materials grown using the catalyst particles as nuclei. Synthesize an aggregate of several tens of centimeters.

原料となる炭化水素の熱分解反応は、主として触媒粒子ないしこれを核として成長した粒状体表面において生じ、分解によって生じた炭素の再結晶化が当該触媒粒子ないし粒状体より一定方向に進むことで、繊維状に成長する。しかしこの熱分解速度と成長速度とのバランスを意図的に変化させる、例えば上記したように炭素源として分解温度の異なる少なくとも2つ以上の炭素化合物を用いることで、一次元的方向にのみ炭素物質を成長させることなく、粒状体を中心として三次元的に炭素物質を成長させる。もちろん、このような三次元的な炭素繊維の成長は、熱分解速度と成長速度とのバランスにのみ依存するものではなく、触媒粒子の結晶面選択性、反応炉内における滞留時間、炉内温度分布等によっても影響を受けるが、概して、上記したような熱分解速度よりも成長速度の方が速いと、炭素物質は繊維状に成長し、一方、成長速度よりも熱分解速度の方が速いと、炭素物質は触媒粒子の周面方向に成長する。従って、熱分解速度と成長速度とのバランスを意図的に変化させることで、上記したような炭素物質の成長を一定方向とすることなく、制御下に他方向として、三次元構造を形成することが出来るものである。なお、生成する中間体においては、繊維相互が粒状体により結合された前記したような三次元構造を容易に形成させる上では、触媒等の組成、反応炉内における滞留時間、反応温度及びガス温度等を最適化することが好ましい。 The thermal cracking reaction of the hydrocarbon as a raw material mainly occurs on the surface of the granular particles grown using the catalyst particles or the core, and the recrystallization of carbon generated by the decomposition proceeds in a certain direction from the catalytic particles or granular materials. Grows in a fibrous form. However, by intentionally changing the balance between the thermal decomposition rate and the growth rate, for example, by using at least two or more carbon compounds having different decomposition temperatures as a carbon source as described above, the carbon material is only in a one-dimensional direction. The carbon material is grown three-dimensionally around the granular material without growing the material. Of course, the growth of such three-dimensional carbon fibers does not depend only on the balance between the thermal decomposition rate and the growth rate, but the crystal surface selectivity of the catalyst particles, the residence time in the reactor, and the furnace temperature. In general, if the growth rate is faster than the pyrolysis rate as described above, the carbon material grows in a fibrous form, while the pyrolysis rate is faster than the growth rate. The carbon material grows in the circumferential direction of the catalyst particles. Therefore, by intentionally changing the balance between the pyrolysis rate and the growth rate, the growth of the carbon material as described above can be formed in a certain direction, and a three-dimensional structure can be formed in the other direction under control. Is something you can do. In the intermediate to be produced, the composition of the catalyst, the residence time in the reaction furnace, the reaction temperature, and the gas temperature are used to easily form the three-dimensional structure as described above in which the fibers are bonded together by the granular material. Etc. are preferably optimized.

触媒及び炭化水素の混合ガスを800〜1300℃の範囲の一定温度で加熱生成して得られた中間体は、炭素原子からなるパッチ状のシート片を貼り合わせたような構造を有し、ラマン分光分析をすると、Dバンドが非常に大きく、欠陥が多い。また、生成した中間体は、未反応原料、非繊維状炭素物、タール分及び触媒金属を含んでいる。 An intermediate obtained by heating and generating a mixed gas of catalyst and hydrocarbon at a constant temperature in the range of 800 to 1300 ° C. has a structure in which patch-like sheet pieces made of carbon atoms are bonded together, and Raman When spectroscopic analysis is performed, the D band is very large and there are many defects. Moreover, the produced | generated intermediate body contains the unreacted raw material, non-fibrous carbon material, a tar content, and a catalyst metal.

従って、このような中間体からこれら残留物を除去し、欠陥が少ない所期の炭素繊維構造体を得るためには、適切な方法で2400〜3000℃の高温熱処理を行う。 Therefore, in order to remove these residues from such an intermediate and obtain an intended carbon fiber structure with few defects, high-temperature heat treatment at 2400 to 3000 ° C. is performed by an appropriate method.

すなわち、例えば、この中間体を800〜1200℃で加熱して未反応原料やタール分などの揮発分を除去した後、2400〜3000℃の高温でアニール処理することによって所期の構造体を調製し、同時に繊維に含まれる触媒金属を蒸発させて除去する。なお、この際、物質構造を保護するために不活性ガス雰囲気中に還元ガス又は微量の一酸化炭素ガスを添加してもよい。 That is, for example, the intermediate is heated at 800 to 1200 ° C. to remove volatile components such as unreacted raw materials and tars, and then annealed at a high temperature of 2400 to 3000 ° C. to prepare the desired structure. At the same time, the catalyst metal contained in the fiber is removed by evaporation. At this time, in order to protect the substance structure, a reducing gas or a small amount of carbon monoxide gas may be added to the inert gas atmosphere.

前記中間体を2400〜3000℃の範囲の温度でアニール処理すると、炭素原子からなるパッチ状のシート片は、それぞれ結合して複数のグラフェンシート状の層を形成する。 When the intermediate is annealed at a temperature in the range of 2400 to 3000 ° C., the patch-like sheet pieces made of carbon atoms are bonded to each other to form a plurality of graphene sheet-like layers.

また、このような高温熱処理前もしくは処理後において、炭素繊維構造体の円相当平均径を数センチに解砕処理する工程と、解砕処理された炭素繊維構造体の円相当平均径を50〜100μmに粉砕処理する工程とを経ることで、所望の円相当平均径を有する炭素繊維を作製する。 Further, before or after such high-temperature heat treatment, the step of crushing the equivalent circle average diameter of the carbon fiber structure to several centimeters, and the equivalent circle average diameter of the crushed carbon fiber structure from 50 to 50 The carbon fiber which has a desired circle equivalent average diameter is produced through the process of grind | pulverizing to 100 micrometers.

以上の作製方法は、あくまで一例であり、金属の種類、ガスの種類等、諸条件を変更してもよい。また、気相成長法以外の作製法によって作製された多層の炭素繊維を使用してもよい。 The above manufacturing method is merely an example, and various conditions such as the type of metal and the type of gas may be changed. Moreover, you may use the multilayer carbon fiber produced by production methods other than a vapor phase growth method.

本発明の炭素繊維の添加量については、有機溶剤可溶性樹脂100質量%に対して0.01〜20質量%の範囲であり、好ましくは0.2〜15質量%であり、より好ましくは0.5〜12質量%である。このように炭素繊維が0.01質量%より少ない場合は、所望の導電性が得られない。また炭素繊維が20質量%以上である場合は、炭素繊維が嵩高いため、良好な樹脂膜が作製できなくなる。 About the addition amount of the carbon fiber of this invention, it is the range of 0.01-20 mass% with respect to 100 mass% of organic solvent soluble resin, Preferably it is 0.2-15 mass%, More preferably, it is 0.00. It is 5-12 mass%. Thus, when carbon fiber is less than 0.01 mass%, desired electroconductivity cannot be obtained. Moreover, when carbon fiber is 20 mass% or more, since a carbon fiber is bulky, it becomes impossible to produce a good resin film.

本発明の炭素繊維用分散剤においては、下記表に具体例を示すが、これらに限定されるものではない。 Specific examples of the dispersant for carbon fibers of the present invention are shown in the following table, but are not limited thereto.

Figure 2008248412
Figure 2008248412

本発明の炭素繊維用分散剤の平均重合度は、200〜8000の範囲であり、好ましくは300〜5000であり、特に好ましくは400〜3000である。このように炭素繊維用分散剤の平均重合度が200より少ない場合は、所望の性能が得られず、また炭素繊維用分散剤の平均重合度が8000以上の場合は、使用されている樹脂との相溶性が低下するため、特性を低下させる場合がある。 The average degree of polymerization of the dispersant for carbon fiber of the present invention is in the range of 200 to 8000, preferably 300 to 5000, and particularly preferably 400 to 3000. Thus, when the average degree of polymerization of the dispersant for carbon fiber is less than 200, the desired performance cannot be obtained, and when the average degree of polymerization of the dispersant for carbon fiber is 8000 or more, the resin used is The compatibility may be reduced, and the characteristics may be reduced.

本発明の炭素繊維用分散剤の組成比(X:Y:Z)については、65〜90:5〜30:0〜10の範囲が採用でき、好ましくは70〜85:10〜25:0〜8であり、特に好ましくは75〜85:15〜20:1〜5である。このように炭素繊維用分散剤においてXの組成比が65より少ない場合は、炭素繊維用分散剤の分散解繊性能が得られず、また炭素繊維用分散剤においてXの組成比が90以上の場合は、使用されている樹脂との相溶性が低下するため、特性を低下させる場合がある。 About the composition ratio (X: Y: Z) of the dispersing agent for carbon fibers of this invention, the range of 65-90: 5-30: 0-10 is employable, Preferably it is 70-85: 10-25: 0. 8 and particularly preferably 75 to 85:15 to 20: 1 to 5. Thus, when the composition ratio of X in the carbon fiber dispersant is less than 65, the dispersion and defibrating performance of the carbon fiber dispersant cannot be obtained, and the composition ratio of X in the carbon fiber dispersant is 90 or more. In such a case, the compatibility with the resin being used is lowered, and the characteristics may be lowered.

本発明の炭素繊維用分散剤の添加量については、炭素繊維100質量%に対して0.0005〜500質量%の範囲であり、好ましくは0.015〜250質量%であり、特に好ましくは0.025〜100質量%である。このように炭素繊維用分散剤が0.0005質量%より少ない場合は、所望の性能が得られない。また炭素繊維用分散剤が500質量%以上である場合は、使用されている樹脂の特性を低下させる場合がある。 About the addition amount of the dispersing agent for carbon fibers of this invention, it is the range of 0.0005-500 mass% with respect to 100 mass% of carbon fibers, Preferably it is 0.015-250 mass%, Most preferably, it is 0. 0.025 to 100% by mass. Thus, when the amount of carbon fiber dispersant is less than 0.0005% by mass, desired performance cannot be obtained. Moreover, when the dispersing agent for carbon fibers is 500 mass% or more, the characteristic of resin currently used may be reduced.

本発明の導電性塗料には、その他の用途に応じて添加剤を加えてもよい。例えば、無機顔料、有機顔料、フィラー、ウィスカ、増粘剤、沈降防止剤、紫外線防止剤、湿潤剤、乳化剤、皮張り防止剤、重合防止剤、たれ防止剤、消泡剤、色分れ防止剤、レベリング剤、乾燥剤、硬化剤、硬化促進剤、可塑剤、耐火・防止剤、防カビ・防藻剤、抗菌剤、殺虫剤、海中防汚剤、金属表面処理剤、脱さび剤、脱脂剤、皮膜化成剤、漂白剤、着色剤、ウッドシーラー、目止め剤、サンディングシーラー、シーラー、セメントフィラー又は樹脂入りセメントペースト等が挙げられる。 Additives may be added to the conductive paint of the present invention according to other applications. For example, inorganic pigments, organic pigments, fillers, whiskers, thickeners, anti-settling agents, UV inhibitors, wetting agents, emulsifiers, anti-skinning agents, polymerization inhibitors, anti-sagging agents, antifoaming agents, color separation prevention Agent, leveling agent, drying agent, curing agent, curing accelerator, plasticizer, fireproofing / preventing agent, fungicide / algaeproofing agent, antibacterial agent, insecticide, marine antifouling agent, metal surface treatment agent, derusting agent, Examples include degreasing agents, film forming agents, bleaching agents, colorants, wood sealers, sealants, sanding sealers, sealers, cement fillers, and resin-containing cement pastes.

本発明で用いられる分散機においては、一般的な分散機が用いられる。例えば、ビーズミル(ダイノーミル、(株)シンマルエンタープライズ)TKラボディスパー、TKフィルミックス、TKパイプラインミクサー、TKホモミックラインミル、TKホモジェッター、TKユニミキサー、TKホモミックラインフロー、TKアジホモディスパー(以上、特殊機化工業(株))、ホモジナイザー・ポリトロン((株)セントラル科学貿易)、ホモジナイザー・ヒストロン((株)日音医理科機器製作所)、バイオミキサー((株)日本精機製作所)、ターボ型攪拌機((株)小平製作所)、ウルトラディスパー(浅田鉄鋼(株))、エバラマイルザー(荏原製作所(株))、超音波装置又は超音波洗浄機(アズワン(株))等が挙げられる。 In the disperser used in the present invention, a general disperser is used. For example, bead mill (Dynomill, Shinmaru Enterprise Co., Ltd.) TK Lab Disper, TK Philmix, TK Pipeline Mixer, TK Homomic Line Mill, TK Homo Jetter, TK Unimixer, TK Homomic Line Flow, TK Aji Homo Disper (Special Machine Industry Co., Ltd.), Homogenizer Polytron (Central Science Trade Co., Ltd.), Homogenizer Histron (Nippon Medical Science Equipment Co., Ltd.), Biomixer (Nippon Seiki Seisakusho Co., Ltd.), Examples include a turbo-type stirrer (Kodaira Seisakusho Co., Ltd.), Ultra Disper (Asada Steel Co., Ltd.), Ebara Mileser (Ebara Seisakusho Co., Ltd.), an ultrasonic device or an ultrasonic cleaning machine (As One Co., Ltd.). .

本発明の導電性塗料を基材に塗装する方法は、一般的な塗装方法を以下に挙げるが、特にこれらに限定するものではない。例えば、エアースプレー塗装、エアレススプレー塗装、低圧霧化スプレー塗装、バーコーダー法による塗装、スピンコーターを用いた塗装等が挙げられる。塗膜の厚さにも特に制限はないが、硬化塗膜が0.01〜10000μmであることが好ましく、より好ましくは1〜100μmであり、特に好ましくは5〜30μmである。 The method for coating the base material with the conductive paint of the present invention includes the following general coating methods, but is not particularly limited thereto. Examples thereof include air spray coating, airless spray coating, low-pressure atomizing spray coating, coating by a bar coder method, and coating using a spin coater. Although there is no restriction | limiting in particular also in the thickness of a coating film, It is preferable that a cured coating film is 0.01-10000 micrometers, More preferably, it is 1-100 micrometers, Especially preferably, it is 5-30 micrometers.

本発明の導電性塗料を上記の方法で基材に塗装して得られた炭素繊維含有樹脂膜は、常温で塗膜を乾燥させることもできる。しかし、塗膜を十分に乾燥させるためには、乾燥温度が10〜150℃に加熱することが好ましく、より好ましくは60〜120℃であり、特に好ましくは70〜120℃である。乾燥温度が10℃未満であると乾燥が十分に進まないおそれがあり、150℃を超えると、素材の変形、塗膜の黄変、膜物性低下等をまねくおそれがある。乾燥時間は、有機溶剤可溶性樹脂、溶剤および基材の種類等で考慮される。 The carbon fiber-containing resin film obtained by applying the conductive paint of the present invention to the substrate by the above method can be dried at room temperature. However, in order to sufficiently dry the coating film, the drying temperature is preferably heated to 10 to 150 ° C, more preferably 60 to 120 ° C, and particularly preferably 70 to 120 ° C. If the drying temperature is less than 10 ° C, the drying may not proceed sufficiently. If the drying temperature exceeds 150 ° C, the material may be deformed, the coating film may turn yellow, or the film properties may deteriorate. The drying time is considered depending on the type of the organic solvent-soluble resin, the solvent, and the base material.

本発明の導電性塗料を塗布する基材については、特に限定されるものではないが、例えば、ガラス、樹脂、金属等が挙げられ、形状についても、フィルム、シート、板、立体など様々な形状が挙げられる。 The base material to which the conductive paint of the present invention is applied is not particularly limited, and examples thereof include glass, resin, metal and the like, and various shapes such as a film, a sheet, a plate, a solid, etc. Is mentioned.

また基材には用途に応じた特性を満足するように、例えば、紫外線吸収剤、酸化防止剤、離型剤、帯電防止剤、着色剤、難燃剤、ガラス繊維等の繊維補強剤、無機充填剤等を1種又は2種以上含有することができる。 In addition, for example, ultraviolet absorbers, antioxidants, mold release agents, antistatic agents, colorants, flame retardants, fiber reinforcing agents such as glass fibers, inorganic fillers, etc. so that the base material satisfies the properties according to the application. 1 type (s) or 2 or more types can be contained.

以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

〔実施番号1〜34〕
表2〜6に示した熱可塑性樹脂を 225gを量りとり、有機溶媒1275gに溶解させて15質量%樹脂溶液を1500g調製した。熱可塑性樹脂が室温で溶解しない場合においては、この溶液を60〜70℃に加温して溶解させた。各種樹脂を溶解させるために使用した有機溶媒は表2〜6に示したとおりである。
[Operation numbers 1 to 34]
225 g of the thermoplastic resins shown in Tables 2 to 6 were weighed and dissolved in 1275 g of an organic solvent to prepare 1500 g of a 15% by mass resin solution. When the thermoplastic resin did not dissolve at room temperature, this solution was heated to 60 to 70 ° C. to dissolve. The organic solvents used for dissolving various resins are as shown in Tables 2-6.

ガラス瓶(柏洋硝子株式会社製)に樹脂溶液(加熱残分15%)を150g、炭素繊維(ナノカーボンテクノロジーズ株式会社製、外径40〜80nm、長さ数μm〜数十μm)をAg及び炭素繊維用分散剤として表1に示した化合物をBg入れ、超音波洗浄機(アズワン(株)製US−4A、発振周波数40kHz)を用いて、処理時間4時間の条件で分散処理を行うことにより、炭素繊維が均一に分散および解繊した導電性塗料を作製した。炭素繊維の添加量、炭素繊維用分散剤の種類及び添加量は表2〜6に示したとおりである。 150 g of resin solution (15% heat residue), carbon fiber (manufactured by Nanocarbon Technologies, outer diameter 40-80 nm, length several μm to several tens μm) in a glass bottle (manufactured by Yoyo Glass Co., Ltd.) and Ag Bg of the compound shown in Table 1 as a dispersant for carbon fiber is added, and dispersion treatment is performed using an ultrasonic cleaner (US-4A manufactured by ASONE Corporation, oscillation frequency 40 kHz) under conditions of a treatment time of 4 hours. Thus, a conductive coating material in which carbon fibers were uniformly dispersed and defibrated was produced. The amount of carbon fiber added, the type and amount of carbon fiber dispersant are as shown in Tables 2-6.

この導電性塗料を使用して、ガラス板(マツナミ(株)50x150x1.65mm)上にバーコーター法にて塗膜を作製し、120℃のホットプレートにて10分放置し、塗膜を作製した。 Using this conductive paint, a coating film was prepared on a glass plate (Matsunami Co., Ltd. 50 × 150 × 1.65 mm) by a bar coater method, and left on a hot plate at 120 ° C. for 10 minutes to prepare a coating film. .

<塗布性>
得られた導電性塗料をバーコーター法にて塗装する際の塗布性を下記評価方法で評価を行った。評価の基準は以下のとおり。
○:バーコーダーで容易に塗布できる
×:バーコーダーでの塗布は困難または塗布はできるが、平滑性のある膜が作製できない
<Applicability>
The applicability when the obtained conductive paint was applied by the bar coater method was evaluated by the following evaluation method. The evaluation criteria are as follows.
○: Can be easily applied with a bar coder ×: Application with a bar coder is difficult or can be applied, but a smooth film cannot be produced

得られた塗膜を用いて、塗膜中における炭素繊維の分散解繊状態の観察ならびに表面抵抗率の評価を行った。 Using the obtained coating film, observation of the dispersion and defibration state of carbon fibers in the coating film and evaluation of surface resistivity were performed.

<塗膜中における炭素繊維の観察>
ガラス基板に作製した塗膜を光学顕微鏡(CarlZeiss社製、Axio imager. M1m)を用いて、塗膜中の炭素繊維の分散および解繊状態を観察し、以下の基準により炭素繊維の分散・解繊状態を評価した。また評価を行った際に撮影した写真については図1〜12に示し、図中に20μmの物差しを示した。
○:20μm以上の炭素繊維凝集物が観察されなかった
△:40μm以上の炭素繊維凝集物が観察されなかった
×:40μm以上の炭素繊維凝集物が観察された
<Observation of carbon fiber in coating film>
Using an optical microscope (Axio imager. M1m, manufactured by Carl Zeiss Co., Ltd.), the dispersion and defibration state of the carbon fibers in the coating film were observed, and the dispersion and disassembly of the carbon fibers were observed according to the following criteria. The fiber condition was evaluated. Moreover, about the photograph image | photographed when evaluating, it showed in FIGS. 1-12 and the 20-micrometer ruler was shown in the figure.
○: Carbon fiber aggregates of 20 μm or more were not observed Δ: Carbon fiber aggregates of 40 μm or more were not observed x: Carbon fiber aggregates of 40 μm or more were observed

<表面抵抗率>
ガラス基板に作製した塗膜を用い、四端針式抵抗率計(三菱化学(株)製Hiresta−UP、MCP−HT450)を用いて塗膜表面5箇所の抵抗(Ω)を測定した。同抵抗計により表面抵抗率(Ω/sq)に換算し、平均値を算出した。その結果は表2〜6に示したとおりである。
<Surface resistivity>
Using the coating film produced on the glass substrate, the resistance (Ω) of the coating film surface at five locations was measured using a four-end needle resistivity meter (Hiresta-UP, MCP-HT450 manufactured by Mitsubishi Chemical Corporation). The average value was calculated by converting to surface resistivity (Ω / sq) using the same resistance meter. The results are as shown in Tables 2-6.

(比較例1〜10)
炭素繊維用分散剤を入れない以外は、実施例と同様にして、表2〜6に示した組合せの導電性塗料を作製した。塗膜中における炭素繊維の観察は図13〜22に示した。また得られた塗膜の表面抵抗率については、平滑性の高い塗膜が得られなかったため測定は行わなかった。
(Comparative Examples 1-10)
Except not including a carbon fiber dispersant, conductive paints having combinations shown in Tables 2 to 6 were produced in the same manner as in the Examples. Observation of the carbon fiber in the coating film is shown in FIGS. Moreover, about the surface resistivity of the obtained coating film, since the coating film with high smoothness was not obtained, it did not measure.

Figure 2008248412
Figure 2008248412

Figure 2008248412
Figure 2008248412

Figure 2008248412
Figure 2008248412

Figure 2008248412
Figure 2008248412

Figure 2008248412
Figure 2008248412

本発明の炭素繊維用分散剤を用いることで、分散解繊性の高い炭素繊維分散液および導電性複合材料を得ることができる。そのため静電気等を好まない電子機器分野、クリーンルーム内等での帯電防止膜および放熱性樹脂膜、電波シールド膜等へ適用することができる。 By using the carbon fiber dispersant of the present invention, it is possible to obtain a carbon fiber dispersion liquid and a conductive composite material having high dispersion and defibrating properties. Therefore, it can be applied to the field of electronic equipment that does not like static electricity, the antistatic film, the heat-dissipating resin film, the radio wave shielding film, etc. in the clean room.

実施番号7における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 7. 実施番号8における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 8. 実施番号9における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 9. 実施番号14における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 14. 実施番号18における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 18. 実施番号19における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 19. 実施番号22における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 22. 実施番号23における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 23. 実施番号28における炭素繊維含有樹脂膜の光学顕微鏡写真である。It is an optical microscope photograph of the carbon fiber containing resin film in execution number 28. 実施例29における炭素繊維含有樹脂膜の光学顕微鏡写真である。4 is an optical micrograph of a carbon fiber-containing resin film in Example 29. FIG. 実施例32における炭素繊維含有樹脂膜の光学顕微鏡写真である。4 is an optical micrograph of a carbon fiber-containing resin film in Example 32. FIG. 実施例33における炭素繊維含有樹脂膜の光学顕微鏡写真である。4 is an optical micrograph of a carbon fiber-containing resin film in Example 33. 比較例1における炭素繊維含有樹脂膜の光学顕微鏡写真である。2 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 1. 比較例2における炭素繊維含有樹脂膜の光学顕微鏡写真である。4 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 2. 比較例3における炭素繊維含有樹脂膜の光学顕微鏡写真である。5 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 3. 比較例4における炭素繊維含有樹脂膜の光学顕微鏡写真である。6 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 4. 比較例5における炭素繊維含有樹脂膜の光学顕微鏡写真である。6 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 5. 比較例6における炭素繊維含有樹脂膜の光学顕微鏡写真である。6 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 6. 比較例7における炭素繊維含有樹脂膜の光学顕微鏡写真である。10 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 7. 比較例8における炭素繊維含有樹脂膜の光学顕微鏡写真である。10 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 8. 比較例9における炭素繊維含有樹脂膜の光学顕微鏡写真である。10 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 9. 比較例10における炭素繊維含有樹脂膜の光学顕微鏡写真である。6 is an optical micrograph of a carbon fiber-containing resin film in Comparative Example 10.

Claims (19)

有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(1)で表される構造単位を有する化合物である炭素繊維用分散剤。
Figure 2008248412

〔式中R、R、RおよびRはそれぞれ独立に水素原子、水酸基、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のヒドロキシアルキル基、アルキルオキシ基、アシルオキシ基、カルボキシル基、アシル基、第1〜3級アミノ基、無置換もしくは置換のアリール基、無置換もしくは置換のアリールオキシ基または無置換もしくは置換の複素環基を表す。RおよびRはそれぞれ独立に水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のアリール基または無置換もしくは置換の複素環基を表す。またRとRが結合して環を形成してもよい。Rは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のヒドロキシアルキル基、アルキルオキシ基、アシルオキシ基、カルボニル基、カルボキシル基、第1〜3級アミノ基、無置換もしくは置換のアリール基、無置換もしくは置換のアリールオキシ基または無置換もしくは置換の複素環基を表す。また平均重合度は200〜8000であり、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (1), which is added to improve dispersibility when carbon fiber is dispersed in an organic solvent solution of an organic solvent-soluble resin.
Figure 2008248412

[Wherein R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, a hydroxyl group, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted hydroxyalkyl group, or an alkyloxy group. , An acyloxy group, a carboxyl group, an acyl group, a primary to tertiary amino group, an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, or an unsubstituted or substituted heterocyclic group. R 5 and R 6 each independently represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted heterocyclic group. R 5 and R 6 may be bonded to form a ring. R 7 represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted hydroxyalkyl group, an alkyloxy group, an acyloxy group, a carbonyl group, a carboxyl group, or a primary to tertiary amino group. Represents an unsubstituted or substituted aryl group, an unsubstituted or substituted aryloxy group, or an unsubstituted or substituted heterocyclic group. The average degree of polymerization is 200 to 8000, and the composition ratio in the structural unit is X: Y: Z = 65 to 90: 5 to 30: 0 to 10. ]
有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(2)で表される構造単位を有する化合物である請求項1記載の炭素繊維用分散剤。
Figure 2008248412

〔式中R、RおよびRは請求項1で定義したものと同一の基を表す。また平均重合度は200〜8000であり、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
2. The carbon according to claim 1, which is a compound having a structural unit represented by the following general formula (2) added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin. Dispersant for fibers.
Figure 2008248412

[Wherein R 5 , R 6 and R 7 represent the same groups as defined in claim 1. The average degree of polymerization is 200 to 8000, and the composition ratio in the structural unit is X: Y: Z = 65 to 90: 5 to 30: 0 to 10. ]
有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(3)で表される構造単位を有する化合物である炭素繊維用分散剤。
Figure 2008248412

〔式中Rは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、無置換もしくは置換のアリール基または無置換もしくは置換の複素環基を表す。またRは水素原子、無置換もしくは置換の炭素原子が1〜30のアルキル基、アルキルカルボニル基、無置換もしくは置換のアリール基、無置換もしくは置換の複素環基、無置換もしくは置換のピラノシル基または無置換もしくは置換のフラノシル基を表す。また平均重合度は200〜8000を表し、前記構造単位内の組成比は、X:Y:Z=65〜90:5〜30:0〜10である。〕
A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (3), which is added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin.
Figure 2008248412

[Wherein R 8 represents a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an unsubstituted or substituted aryl group, or an unsubstituted or substituted heterocyclic group. R 9 is a hydrogen atom, an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms, an alkylcarbonyl group, an unsubstituted or substituted aryl group, an unsubstituted or substituted heterocyclic group, an unsubstituted or substituted pyranosyl group. Or an unsubstituted or substituted furanosyl group. Moreover, an average degree of polymerization represents 200-8000, and the composition ratio in the said structural unit is X: Y: Z = 65-90: 5-30: 0-10. ]
有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する下記一般式(4)で表される構造単位を有する化合物である炭素繊維用分散剤。
Figure 2008248412

〔式中R10は水素原子または無置換または置換の炭素原子が1〜30のアルキル基を表す。また平均重合度は200〜8000を表し、前記構造単位内の組成比は、X:Y=65〜85:15〜35である。〕
A carbon fiber dispersant, which is a compound having a structural unit represented by the following general formula (4), which is added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin.
Figure 2008248412

[Wherein R 10 represents a hydrogen atom or an unsubstituted or substituted alkyl group having 1 to 30 carbon atoms. Moreover, an average degree of polymerization represents 200-8000, and the composition ratio in the said structural unit is X: Y = 65-85: 15-35. ]
有機溶剤可溶性樹脂の有機溶剤溶液中に炭素繊維を分散させる際に、分散性を向上させるために添加する一般式(1)〜(4)で表される化合物の少なくとも1種以上からなる炭素繊維用分散剤を含有する事を特徴とする炭素繊維分散液。 Carbon fibers comprising at least one of the compounds represented by the general formulas (1) to (4) to be added to improve dispersibility when carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin. A carbon fiber dispersion characterized by containing a dispersing agent. 前記有機溶剤可溶性樹脂がポリスチレンまたはスチレン共重合体である請求項1〜5のいずれか1項に記載の炭素繊維用分散剤。 The carbon fiber dispersant according to any one of claims 1 to 5, wherein the organic solvent-soluble resin is polystyrene or a styrene copolymer. 有機溶剤可溶性樹脂の有機溶剤溶液中に、一般式(1)〜(4)で表される化合物の少なくとも1種以上からなる炭素繊維用分散剤を用いて炭素繊維を分散させた炭素繊維分散液。 A carbon fiber dispersion in which carbon fibers are dispersed in an organic solvent solution of an organic solvent-soluble resin using a carbon fiber dispersant comprising at least one of the compounds represented by the general formulas (1) to (4). . 前記炭素繊維分散液にさらに着色剤を添加する事を特徴とする、請求項7記載の炭素繊維分散液。 The carbon fiber dispersion according to claim 7, wherein a colorant is further added to the carbon fiber dispersion. 前記有機溶剤可溶性樹脂がポリスチレンまたはスチレン共重合体である事を特徴とする請求項7または8記載の炭素繊維分散液。 The carbon fiber dispersion according to claim 7 or 8, wherein the organic solvent-soluble resin is polystyrene or a styrene copolymer. 前記有機溶剤可溶性樹脂を溶解する有機溶剤がケトン系溶剤、アルコール系溶剤、エステル系溶剤から選択される一種以上の溶剤である事を特徴とする請求項7〜9のいずれか1項に記載の炭素繊維分散液。 The organic solvent that dissolves the organic solvent-soluble resin is at least one solvent selected from ketone solvents, alcohol solvents, and ester solvents, according to any one of claims 7 to 9. Carbon fiber dispersion. 前記着色剤が無機顔料である事を特徴とする請求項7〜10のいずれか1項に記載の炭素繊維分散液。 The carbon fiber dispersion liquid according to any one of claims 7 to 10, wherein the colorant is an inorganic pigment. 前記炭素繊維が外形0.5〜800nmの炭素繊維から構成される事を特徴とする請求項7〜11のいずれか1項に記載の炭素繊維分散液。 The carbon fiber dispersion liquid according to any one of claims 7 to 11, wherein the carbon fiber is composed of carbon fibers having an outer shape of 0.5 to 800 nm. 炭素繊維が単層炭素繊維、二層炭素繊維、または多層炭素繊維であることを特徴とする請求項12記載の炭素繊維分散液。 The carbon fiber dispersion liquid according to claim 12, wherein the carbon fiber is a single-layer carbon fiber, a double-layer carbon fiber, or a multi-layer carbon fiber. 炭素繊維が外径15〜100nmの炭素繊維から構成されるネットワーク状の炭素繊維構造体であって、前記炭素繊維構造体は、前記炭素繊維が複数延出する態様で、当該炭素繊維を互いに結合する粒状部を有しており、かつ当該粒状部は前記炭素繊維の成長過程において形成されてなるものであって前記炭素繊維外形の1.3倍以上の大きさを有するものである事を特徴とする請求項12または13記載の炭素繊維分散液。 A network-like carbon fiber structure in which carbon fibers are composed of carbon fibers having an outer diameter of 15 to 100 nm, and the carbon fiber structures are bonded to each other in such a manner that a plurality of the carbon fibers extend. The granular part is formed during the growth process of the carbon fiber and has a size of 1.3 times or more of the carbon fiber outer shape. The carbon fiber dispersion according to claim 12 or 13. 請求項7〜14に記載の炭素繊維分散液を用いて得られた事を特徴とする導電性複合材料。 A conductive composite material obtained by using the carbon fiber dispersion according to claim 7. 前記導電性複合材料が導電性塗料である請求項15記載の導電性複合材料。 The conductive composite material according to claim 15, wherein the conductive composite material is a conductive paint. 請求項16に記載の導電性塗料を用いて被塗装面に対して塗装することを特徴とする導電性塗料の塗装方法。 A method for applying a conductive paint, comprising: applying the conductive paint according to claim 16 to a surface to be coated. 請求項17に記載の導電性塗料の塗装方法で製膜することを特徴とする炭素繊維含有樹脂膜。 A carbon fiber-containing resin film, which is formed by the conductive coating method according to claim 17. 請求項18に記載の炭素繊維含有樹脂膜が前記導電性塗料を塗装することによって表面に製膜された物品。 An article in which the carbon fiber-containing resin film according to claim 18 is formed on a surface by applying the conductive paint.
JP2007089253A 2007-03-29 2007-03-29 Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method Expired - Fee Related JP4949909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089253A JP4949909B2 (en) 2007-03-29 2007-03-29 Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089253A JP4949909B2 (en) 2007-03-29 2007-03-29 Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method

Publications (2)

Publication Number Publication Date
JP2008248412A true JP2008248412A (en) 2008-10-16
JP4949909B2 JP4949909B2 (en) 2012-06-13

Family

ID=39973688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089253A Expired - Fee Related JP4949909B2 (en) 2007-03-29 2007-03-29 Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method

Country Status (1)

Country Link
JP (1) JP4949909B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247968A (en) * 2007-03-29 2008-10-16 Hodogaya Chem Co Ltd Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, electroconductive composite material and electroconductive coating material derived from the carbon fiber dispersion, coating method, and article coated by the coating method
WO2009028379A1 (en) * 2007-08-31 2009-03-05 Hokkaido University Synthetic fiber, yarn made of synthetic fiber, or fibrous structure each with adherent carbon nanotube and process for producing these
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
JP2014193812A (en) * 2009-03-20 2014-10-09 Northrop Grumman Systems Corp Reduction of graphene oxide to graphene in high boiling point solvents
KR20150087627A (en) 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same
KR20150087570A (en) 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same
KR20150103538A (en) 2014-03-03 2015-09-11 주식회사 엘지화학 Dispersant for using carbon-containing substance and method of preparing the same
KR20160147263A (en) 2014-09-08 2016-12-22 메이세이 카가쿠고교 가부시키가이샤 Dispersant, dispersion composition, and fibrous sheet
KR101945805B1 (en) 2017-05-30 2019-02-11 한국생산기술연구원 Dispersant, carbon fiber web comprising the same, and carbon-fiber reinforced composite material composition
US10533287B2 (en) 2015-09-29 2020-01-14 Kuraray Co., Ltd. Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet
WO2022009805A1 (en) * 2020-07-09 2022-01-13 大日精化工業株式会社 Carbon material dispersion

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334767A (en) * 2004-05-26 2005-12-08 Kri Inc Dispersion stabilizer and polymer particulate
JP2006142139A (en) * 2004-11-16 2006-06-08 Uni-Chemical Co Ltd Dispersing agent comprising phosphoric acid esterification vinyl based polymer
CN101428209A (en) * 2007-11-08 2009-05-13 北京化工大学 Nano-fibre supported titanium dioxide photocatalyst and preparation method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334767A (en) * 2004-05-26 2005-12-08 Kri Inc Dispersion stabilizer and polymer particulate
JP2006142139A (en) * 2004-11-16 2006-06-08 Uni-Chemical Co Ltd Dispersing agent comprising phosphoric acid esterification vinyl based polymer
CN101428209A (en) * 2007-11-08 2009-05-13 北京化工大学 Nano-fibre supported titanium dioxide photocatalyst and preparation method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247968A (en) * 2007-03-29 2008-10-16 Hodogaya Chem Co Ltd Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, electroconductive composite material and electroconductive coating material derived from the carbon fiber dispersion, coating method, and article coated by the coating method
WO2009028379A1 (en) * 2007-08-31 2009-03-05 Hokkaido University Synthetic fiber, yarn made of synthetic fiber, or fibrous structure each with adherent carbon nanotube and process for producing these
JP2014193812A (en) * 2009-03-20 2014-10-09 Northrop Grumman Systems Corp Reduction of graphene oxide to graphene in high boiling point solvents
WO2012036172A1 (en) * 2010-09-13 2012-03-22 保土谷化学工業株式会社 Carbon microfiber dispersion liquid
CN103201026A (en) * 2010-09-13 2013-07-10 保土谷化学工业株式会社 Carbon microfiber dispersion liquid
WO2012096317A1 (en) 2011-01-12 2012-07-19 保土谷化学工業株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
CN103429667A (en) * 2011-01-12 2013-12-04 保土谷化学工业株式会社 Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
KR20150087570A (en) 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same
KR20150087627A (en) 2014-01-22 2015-07-30 주식회사 엘지화학 A Method for Preparation of Poly Aromatic Oxide and a Poly Aromatic Oxide Prepared by the Same
WO2015111876A1 (en) * 2014-01-22 2015-07-30 주식회사 엘지화학 Method for preparing polyaromatic oxide and polyaromatic oxide prepared thereby
US9845275B2 (en) 2014-01-22 2017-12-19 Lg Chem, Ltd. Method for preparing polyaromatic oxide and polyaromatic oxide prepared thereby
KR20150103538A (en) 2014-03-03 2015-09-11 주식회사 엘지화학 Dispersant for using carbon-containing substance and method of preparing the same
KR20160147263A (en) 2014-09-08 2016-12-22 메이세이 카가쿠고교 가부시키가이샤 Dispersant, dispersion composition, and fibrous sheet
US10894239B2 (en) 2014-09-08 2021-01-19 Meisei Chemical Works, Ltd. Dispersant, dispersion composition, and fibrous sheet
US10533287B2 (en) 2015-09-29 2020-01-14 Kuraray Co., Ltd. Dispersant for carbon fibers, carbon fiber dispersion composition, and method for manufacturing carbon fiber sheet
KR101945805B1 (en) 2017-05-30 2019-02-11 한국생산기술연구원 Dispersant, carbon fiber web comprising the same, and carbon-fiber reinforced composite material composition
WO2022009805A1 (en) * 2020-07-09 2022-01-13 大日精化工業株式会社 Carbon material dispersion

Also Published As

Publication number Publication date
JP4949909B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4949909B2 (en) Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method
JP2008274060A (en) Method for mixing resin material and conductive filler, composite material produced by the method and master pellet
Kashiwagi et al. Relation between the viscoelastic and flammability properties of polymer nanocomposites
JP6121074B1 (en) Alumina-based thermally conductive oxide and method for producing the same
Sharma et al. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites
JP5194480B2 (en) Carbon nanotube coating film and manufacturing method thereof
JP2007529884A (en) Carbon nanotube stripping solution and method
EP2351704A1 (en) Aqueous dispersion of carbon microfibers, process for producing the aqueous dispersion, and article produced using same
KR20070116662A (en) Transparent electrically conductive film, and coating composition for transparent electrically conductive film
WO2017188175A1 (en) Carbon nanotube dispersion, method for producing same, and conductive molded body
US20110036829A1 (en) Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
KR20080049850A (en) Conductive coating material
TW201042009A (en) Conductive film remover and method for removing conductive film
Xu et al. Functionalized carbon nanotubes with oligomeric intumescent flame retardant for reducing the agglomeration and flammability of poly (ethylene vinyl acetate) nanocomposites
JP2010045025A (en) Exothermic body using fine carbon fiber, and manufacturing method thereof
WO2012096317A1 (en) Thermosetting-resin-containing liquid having dispersed fine carbon fibers, and molded thermoset resin obtained therefrom
TW202033446A (en) Carbon nanotube dispersion liquid and method for producing same
JP4971003B2 (en) Dispersant for carbon fiber, carbon fiber dispersion obtained by dispersion, conductive composite material derived from carbon fiber dispersion, conductive paint, coating method, and article coated by the method
JP2005075661A (en) Carbon nanotube dispersed solution and method of manufacturing the same
Johnson et al. Dispersion and film properties of carbon nanofiber pigmented conductive coatings
JP2009057407A (en) Method for improving electrical conductivity of carbon nanotube-containing resin molded body by lamination heating and pressurization
JP2005154630A (en) Carbon nanotube-dispersed polar organic solvent
JP5567782B2 (en) Carbon fiber-containing coating and method for producing the same
US9828484B2 (en) Graphenic dispersions and slurries and coatings thereof
JP6002077B2 (en) Transparent conductive film and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees