JP2008248306A - Powder for powder compaction, powder-compacted magnetic core, and method for producing the same - Google Patents

Powder for powder compaction, powder-compacted magnetic core, and method for producing the same Download PDF

Info

Publication number
JP2008248306A
JP2008248306A JP2007090290A JP2007090290A JP2008248306A JP 2008248306 A JP2008248306 A JP 2008248306A JP 2007090290 A JP2007090290 A JP 2007090290A JP 2007090290 A JP2007090290 A JP 2007090290A JP 2008248306 A JP2008248306 A JP 2008248306A
Authority
JP
Japan
Prior art keywords
powder
less
atomized powder
mesh
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007090290A
Other languages
Japanese (ja)
Inventor
Takao Okochi
敬雄 大河内
Yuichiro Fujita
雄一郎 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2007090290A priority Critical patent/JP2008248306A/en
Publication of JP2008248306A publication Critical patent/JP2008248306A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder-compacted magnetic core having low core loss, and also having high initial permeability and high bias properties, to provide a production method capable of securely providing the same, and to provide powder for power compaction used therefor. <P>SOLUTION: Disclosed is powder for powder compaction obtained by blending water-atomized powder of 50 to 70 wt.% composed of an Fe-Si-Al based alloy, having the average particle diameter of ≤-200 meshes and also having an oxygen content of ≤3,000 ppm, and gas-atomized powder of 30 to 50 wt.% composed of an Fe-Si-Al based alloy, having the average particle diameter of ≤-100 meshes and also having an oxygen content of ≤300 ppm. Also disclosed is a powder-compacted magnetic core almost uniformly comprising water-atomized powder of 50 to 70 wt.% composed of an Fe-Si-Al based alloy, having the average particle diameter of ≤-200 meshes and also having an oxygen content of ≤3,000 ppm and gas-atomized powder of 30 to 50 wt.% composed of an Fe-Si-Al based alloy, having the average particle diameter of ≤-100 meshes and also having an oxygen content of ≤300 ppm, and further compacted into a prescribed shape and also fired. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低コアレスで且つ高初透磁率および高重畳特性を呈する圧粉成形磁芯とその製造方法ならびに係る磁芯を得るための圧粉成形用粉末に関する。   The present invention relates to a dust-forming magnetic core having a low corelessness and exhibiting high initial permeability and high superposition characteristics, a manufacturing method thereof, and a dust-forming powder for obtaining such a magnetic core.

例えば、モーターなどの磁芯(コア)には、純鉄やパーマロイのほか、Fe−Si−Al系合金(Fe−5〜11wt%Si−3〜8wt%Al)が用いられている。係るFe−Si−Al系合金は、鋳造した場合に脆く割れ易いため、複雑な形状や小さな磁芯を製造する場合、例えば、水噴霧して得た粉末を圧粉成形した後、焼成している。
水アトマイズ(噴霧)により得られる粉末は、安価で且つ表面に微細な凹凸を有しているが、噴霧時の水分により当該粉末の表面が酸化している。このため、かなり脱酸処理しないと、水噴霧粉を圧粉成形し且つ焼成して得られる磁芯のコアロスを、所要のレベルまで低くすることができない、という問題があった。
一方、ガスアトマイズ(噴霧)にて得られたFe−Si−Al系合金の粉末と絶縁材とを混合して圧粉成形した後、得られた成形体を焼鈍することにより、低コアロスの圧粉コアを得る製造方法も提案されている(例えば、特許文献1参照)。
For example, in addition to pure iron and permalloy, Fe—Si—Al alloys (Fe-5 to 11 wt% Si-3 to 8 wt% Al) are used for magnetic cores (cores) such as motors. Such an Fe-Si-Al-based alloy is brittle and easily cracked when cast. Therefore, when producing a complicated shape or a small magnetic core, for example, powder formed by water spraying is compacted and fired. Yes.
The powder obtained by water atomization (spraying) is inexpensive and has fine irregularities on the surface, but the surface of the powder is oxidized by moisture during spraying. For this reason, there has been a problem that the core loss of the magnetic core obtained by compacting and firing the water spray powder cannot be reduced to a required level unless it is considerably deoxidized.
On the other hand, the powder of Fe-Si-Al alloy obtained by gas atomization (spraying) and an insulating material are mixed and compacted, and then the compact is annealed to obtain a compact powder with low core loss. A manufacturing method for obtaining a core has also been proposed (see, for example, Patent Document 1).

特開平9−74011号公報(第1〜8頁)JP-A-9-74011 (pages 1 to 8)

特許文献1の明細書における表1,2によれば、酸素含有量が200ppmのガスアトマイズ粉を用いたトロイダルコアの初透磁率(μi)は、90であるのに対し、酸素含有量が2850ppmの水アトマイズ粉を用いたトロイダルコアの初透磁率は、50に留まっている。係る結果は、各酸素含有量の差に基づくと思われる。
しかし、ガスアトマイズ粉は、ほぼ球形状を呈するため、圧粉密度を高めるには、平均粒径の小さな粉末を用いる必要があり、製造コストが高くなる。このため、コアロスが低く、初透磁率および重畳特性の高い磁芯を得るには、実用的ではなかった。
According to Tables 1 and 2 in the specification of Patent Document 1, the initial permeability (μi) of the toroidal core using the gas atomized powder having an oxygen content of 200 ppm is 90, whereas the oxygen content is 2850 ppm. The initial permeability of the toroidal core using water atomized powder remains at 50. Such a result appears to be based on the difference in oxygen content.
However, since the gas atomized powder has a substantially spherical shape, it is necessary to use a powder having a small average particle diameter in order to increase the green compact density, which increases the manufacturing cost. For this reason, it was not practical to obtain a magnetic core with low core loss and high initial permeability and superposition characteristics.

本発明は、背景技術において説明した問題点を解決し、低コアロスで且つ高初透磁率および高重畳特性の圧粉成形磁芯、これを確実に提供できる製造方法、およびこれに用いる圧粉成形用粉末を提供する、ことを課題とする。   The present invention solves the problems described in the background art, and has a low core loss, a high initial permeability and a high superposition property, a dust-forming core, a manufacturing method capable of reliably providing this, and a dust-forming used for the same It is an object to provide a powder for use.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

本発明は、前記課題を解決するため、水アトマイズ粉末とガスアトマイズ粉末とを、それぞれの粒度レベルおよび両粉末の配合割合を所定の範囲にしてブレンドする、ことに着想して成されたものである。
即ち、本発明の圧粉成形用粉末(請求項1)は、Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をブレンドしてなる、ことを特徴とする。
In order to solve the above-mentioned problems, the present invention has been conceived in that water atomized powder and gas atomized powder are blended with each particle size level and blending ratio of both powders within a predetermined range. .
That is, the powder for compacting of the present invention (Claim 1) is made of an Fe—Si—Al alloy, and has an average particle size of −200 mesh or less and an oxygen content of 50 to 70 wt% having an oxygen content of 3000 ppm or less. It is formed by blending water atomized powder and 30-50 wt% gas atomized powder comprising an Fe-Si-Al-based alloy and having an average particle size of -100 mesh or less and an oxygen content of 300 ppm or less. Features.

これによれば、酸素含有量が3000ppm以下で、平均粒径が比較的小さく且つ異形形状の水アトマイズ粉と、酸素含有量が300ppm以下で、平均粒径が比較的大きく且つほぼ球形状のガスアトマイズ粉とが、前記範囲の割合でブレンドされている。このため、混合粉を絶縁材と共に圧粉成形し、更に焼成した際に、圧粉密度が高く且つ粉末全体が比較的均一であるので、酸化によるコアロスを抑制でき、高い初透磁率で且つ高い重畳特性の圧粉成形磁芯を容易に得ることが可能となる。
前記水アトマイズ粉が50wt%未満では、コスト高になるおそれがあり、一方、70wt%を越えると、酸化によるコアロスを生じるおそれがあるため、水アトマイズ粉の割合を50〜70wt%とした。かかる水アトマイズ粉の平均粒径が−200メッシュよりも大きくなると、圧粉成形した際に内部に空隙を生じて、圧粉密度が低下するため、係る範囲を除外した。
前記ガスアトマイズ粉が30wt%未満では、コアロスが上昇し且つ重畳特性が低下し、一方、50wt%を越えると、初透磁率が低下するため、ガスアトマイズ粉の割合を30〜50wt%とした。かかるガスアトマイズ粉の平均粒径が−100メッシュよりも大きくなると、圧粉成形した際に内部に空隙を生じるおそれがあり、圧粉密度が低下するため、係る範囲を除外した。
前記酸素含有量が3000ppmまたは300ppmを越えると、コアロスを生じるおそれがあるため、上記含有量以下とした。
ガスアトマイズ粉の平均粒径を−100メッシュ以下のみとしたのは、これよりも細かくすることは、実用的な技術では高コストになるためである。
尚、前記Fe−Si−Al系合金は、Fe−5〜11wt%Si−3〜8wt%Alのほか、更にC、Mn、Cu、Ni、W、Mo、Ti、Crなどを含有したり、あるいはSやPを微量含むものも含有される。
According to this, a water atomized powder having an oxygen content of 3000 ppm or less and a relatively small average particle size and an irregular shape, and a gas atomizer having an oxygen content of 300 ppm or less and a relatively large average particle size and a substantially spherical shape. The powder is blended at a ratio in the above range. For this reason, when the mixed powder is compacted with an insulating material and further baked, the powder density is high and the entire powder is relatively uniform, so that core loss due to oxidation can be suppressed, and high initial permeability and high It is possible to easily obtain a compacted magnetic core having superimposition characteristics.
If the water atomized powder is less than 50 wt%, the cost may increase. On the other hand, if the water atomized powder exceeds 70 wt%, core loss due to oxidation may occur, so the ratio of the water atomized powder is set to 50 to 70 wt%. When the average particle size of the water atomized powder is larger than −200 mesh, voids are generated inside when compacted and the compact density is reduced.
When the gas atomized powder is less than 30 wt%, the core loss is increased and the superposition characteristics are decreased. On the other hand, when the gas atomized powder exceeds 50 wt%, the initial magnetic permeability is decreased. When the average particle diameter of the gas atomized powder is larger than −100 mesh, there is a possibility that voids are formed inside when compacted, and the compact density is reduced.
If the oxygen content exceeds 3000 ppm or 300 ppm, core loss may occur.
The reason why the average particle size of the gas atomized powder is set to only −100 mesh or less is that making it finer than this will increase the cost in practical technology.
The Fe-Si-Al-based alloy contains, in addition to Fe-5 to 11 wt% Si-3 to 8 wt% Al, C, Mn, Cu, Ni, W, Mo, Ti, Cr, etc. Or what contains a trace amount of S and P is also contained.

一方、本発明の圧粉成形磁芯(請求項2)は、Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をほぼ均一に含有していると共に、所定の形状に成形され且つ焼成されている、ことを特徴とする。
これによれば、圧粉密度および焼成密度が高く且つ酸化していないため、後述するような低コアロス、高初透磁率、および高重畳特性の優れた磁気特性を有する圧粉成形磁芯となっている。このため、小型化や複雑形状する磁芯であっても、安定した磁気特性を奏する共に、比較的安価に提供することが可能となる。
尚、所定の形状には、リング形や円柱形などのほか、種々の異形も含まれる。
On the other hand, the dust-molded magnetic core of the present invention (Claim 2) is made of an Fe-Si-Al-based alloy, and has an average particle size of -200 mesh or less and an oxygen content of 50 to 70 wt% having a content of 3000 ppm or less. It consists of a water atomized powder and a 30-50 wt% gas atomized powder consisting of an Fe-Si-Al alloy and having an average particle size of -100 mesh or less and an oxygen content of 300 ppm or less. At the same time, it is molded into a predetermined shape and fired.
According to this, since the dust density and the firing density are high and not oxidized, it becomes a dust-molded magnetic core having excellent magnetic characteristics such as low core loss, high initial permeability, and high superposition characteristics as described later. ing. For this reason, even a magnetic core having a small size or a complicated shape can provide stable magnetic characteristics and can be provided at a relatively low cost.
The predetermined shape includes various irregular shapes in addition to a ring shape and a cylindrical shape.

また、本発明には、前記圧粉成形磁芯は、初透磁率(μi)が115以上、印加磁界が20Oeにおける透磁率が初透磁率に対して65%以上、およびコアロス(Pt)が400kW/m以下の磁気特性を有する、圧粉成形磁芯(請求項3)も含まれる。
これによれば、低コアロス、高初透磁率、および高重畳特性の優れた磁気特性を有するため、各種の電磁機器やモーターなどにおいて、安定した磁芯として信頼性を高めることが可能となる。
尚、前記コアロスの条件は、50kHzおよび0.1T(テスラ)である。
In the present invention, the dust core has an initial permeability (μi) of 115 or more, a permeability of 20 Oe when applied magnetic field is 65% or more of the initial permeability, and a core loss (Pt) of 400 kW. Also included is a dust-molded magnetic core having a magnetic property of / m 3 or less (Claim 3).
According to this, since it has excellent magnetic characteristics such as low core loss, high initial permeability, and high superposition characteristics, it is possible to improve reliability as a stable magnetic core in various electromagnetic devices and motors.
The core loss conditions are 50 kHz and 0.1 T (Tesla).

更に、本発明による圧粉成形磁芯の製造方法(請求項4)は、Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をブレンドする工程と、かかるブレンドされた混合粉末を絶縁材と共に金型内に充填して圧粉成形する工程と、所定の形状に圧粉成形された成形体を焼成する工程と、を含む、ことを特徴とする。
これによれば、酸素含有量を抑制された水アトマイズ粉とガスアトマイズ粉との混合粉を絶縁材と共に圧粉成形し、得られた成形体を焼成することで、密度が高く且つ粉末全体が比較的均一であり、酸化によるコアロスを抑制でき、高い初透磁率で且つ高い重畳特性の圧粉成形磁芯を、確実に提供することができる。
Furthermore, the method for producing a dust-molded magnetic core according to the present invention (Claim 4) comprises an Fe-Si-Al-based alloy, and has an average particle size of -200 mesh or less and an oxygen content of 3000 ppm or less. Blending 70 wt% water atomized powder and 30-50 wt% gas atomized powder consisting of an Fe-Si-Al alloy and having an average particle size of -100 mesh or less and an oxygen content of 300 ppm or less; And a step of filling the blended mixed powder into a mold together with an insulating material and compacting, and a step of firing a compact compacted into a predetermined shape. .
According to this, the mixed powder of the water atomized powder and the gas atomized powder, in which the oxygen content is suppressed, is compacted together with the insulating material, and the resulting compact is fired, so that the density is high and the entire powder is compared. Therefore, it is possible to reliably provide a dust core having a high initial permeability and a high superposition characteristic, which can suppress the core loss due to oxidation.

尚、前記水アトマイズ粉を得るための水アトマイズ条件は、注湯ノズルの内径:6〜10mm、注下流量:30〜70kg/分、噴霧水流量:8〜15リットル/秒、噴霧水圧:100〜200kg/cmである。
また、前記ガスアトマイズ粉を得るためのガスアトマイズ条件は、注湯ノズルの内径:6〜10mm、注下流量:30〜70kg/分、噴霧ガス流量:300〜600リットル/秒、噴霧ガス圧:20〜40kg/cmである。上記噴霧ガスには、Ar、窒素、あるいはこれらの混合ガスが用いられる。
得られた水アトマイズ粉は、脱水および乾燥処理して回収した後、ガスアトマイズ粉は、回収した後、それぞれ各種のメッシュ用の篩により所定の粒度分布となるように分級される。
更に、前記ブレンド工程には、ブレンダーやミキサーなどが用いられる。
加えて、前記絶縁材は、アクリル樹脂やシリコンなどのペレットや粉末が用いられ、併せて潤滑剤や溶剤も配合される。
The water atomization conditions for obtaining the water atomized powder were as follows: inner diameter of the pouring nozzle: 6 to 10 mm, pouring flow rate: 30 to 70 kg / min, spraying water flow rate: 8 to 15 liters / second, spraying water pressure: 100 it is a ~200kg / cm 2.
Gas atomizing conditions for obtaining the gas atomized powder are as follows: inner diameter of the pouring nozzle: 6 to 10 mm, pouring flow rate: 30 to 70 kg / min, spraying gas flow rate: 300 to 600 liters / second, spraying gas pressure: 20 to 40 kg / cm 2 . Ar, nitrogen, or a mixed gas thereof is used as the atomizing gas.
The obtained water atomized powder is recovered by dehydration and drying, and then the gas atomized powder is recovered and then classified so as to have a predetermined particle size distribution by various mesh screens.
Furthermore, a blender, a mixer, etc. are used for the said blending process.
In addition, as the insulating material, pellets and powders such as acrylic resin and silicon are used, and a lubricant and a solvent are also blended.

以下において、本発明を実施するための最良の形態について説明する。尚、以下において、Fe−Si−Al系合金の組成に関する「%」は全て「wt%」である。
C:0.1%以下、Si:5〜11%、Al:3〜8%、残部Feおよび不可避的不純物からなるFe−Si−Al系合金を、溶解炉で溶解した。
上記Fe−Si−Al系合金の溶湯を、水噴霧装置によって、注湯ノズルの内径:6〜10mm、注下流量:30〜70kg/分、噴霧水流量:8〜15リットル/秒、噴霧水圧:100〜200kg/cmでの条件で水噴霧して水アトマイズ粉とした。得られた水アトマイズ粉を、濾過器により脱水処理し、更にロターリーキルンにより乾燥処理した後、篩により−200メッシュに分級した。
In the following, the best mode for carrying out the present invention will be described. In the following description, all “%” relating to the composition of the Fe—Si—Al based alloy is “wt%”.
C: 0.1% or less, Si: 5 to 11%, Al: 3 to 8%, Fe—Si—Al alloy composed of the remaining Fe and inevitable impurities was melted in a melting furnace.
The molten Fe-Si-Al alloy is melted by a water spraying device, the inner diameter of the pouring nozzle: 6 to 10 mm, the pouring flow rate: 30 to 70 kg / min, the spraying water flow rate: 8 to 15 liters / second, the spraying water pressure. : Water atomized powder was sprayed with water under conditions of 100 to 200 kg / cm 2 . The obtained water atomized powder was dehydrated with a filter, further dried with a rotary kiln, and then classified to -200 mesh with a sieve.

また、別の溶解炉で溶解したFe−Si−Al系合金の溶湯を、ガス噴霧装置によって、注湯ノズルの内径:6〜10mm、注下流量:30〜70kg/分、噴霧ガス流量:300〜600リットル/秒、噴霧ガス圧:20〜40kg/cmでの条件でガス噴霧してガスアトマイズ粉とした。得られたガスアトマイズ粉を、回収した後、篩により−100メッシュに分級した。
次に、−200メッシュの水アトマイズ粉と−100メッシュのガスアトマイズ粉とを、前者が50〜70wt%で且つ後者が30〜50wt%の配合割合になるように、それぞれ計量してブレンダーに投入した後、約30分間ブレンドした(ブレンド工程)。
次いで、得られた混合粉に、例えば、アクリル樹脂(絶縁材)の粉末、ステアリン酸などの潤滑剤、および溶剤を加えて、金型のキャビティ内に充填した後、開口部がポンチを当該キャビティ内に圧入して、例えばリング形状に圧粉成形した(圧粉成形工程)。
In addition, the molten Fe—Si—Al alloy melted in another melting furnace is poured by a gas spraying device, the inner diameter of the pouring nozzle: 6 to 10 mm, the pouring flow rate: 30 to 70 kg / min, the spraying gas flow rate: 300 Gas atomized powder was formed by gas spraying under conditions of ˜600 liters / second and atomizing gas pressure: 20 to 40 kg / cm 2 . The obtained gas atomized powder was collected and then classified to −100 mesh with a sieve.
Next, -200 mesh water atomized powder and -100 mesh gas atomized powder were weighed and introduced into the blender so that the former was 50 to 70 wt% and the latter was 30 to 50 wt%. Thereafter, blending was performed for about 30 minutes (blending step).
Next, for example, an acrylic resin (insulating material) powder, a lubricant such as stearic acid, and a solvent are added to the obtained mixed powder and filled in the cavity of the mold. It was press-fitted into the inside and compacted, for example, into a ring shape (compact molding process).

更に、得られたリング形の成形体を、不活性雰囲気中で約400〜650℃に加熱して焼成した(焼成工程)。
以上の製造方法により得られた圧粉磁芯の磁気特性を測定した結果、初透磁率(μi)が115以上と高く、印加磁界が20Oeにおける透磁率も90%以上と高く、コアロス(Pt)が400kW/m以下と低い、優れたものとなった。
これは、酸素含有量が3000ppm以下で、平均粒径が比較的小さく且つ異形形状の水アトマイズ粉と、酸素含有量が300ppm以下で、平均粒径が比較的大きく且つほぼ球形状のガスアトマイズ粉とを、前記範囲の割合でブレンドし、得られた混合粉を絶縁材と共に圧粉成形し、更に焼成した際に、圧粉密度および焼成密度が高く且つ酸化が抑制されていたため、コアロスを低く抑制でき、高い初透磁率で且つ高い重畳特性となったものである。
Furthermore, the obtained ring-shaped molded body was heated and fired at about 400 to 650 ° C. in an inert atmosphere (firing step).
As a result of measuring the magnetic properties of the dust core obtained by the above manufacturing method, the initial magnetic permeability (μi) was as high as 115 or higher, the magnetic permeability at 20 Oe was as high as 90%, and the core loss (Pt). Is as low as 400 kW / m 3 or less.
This is a water atomized powder having an oxygen content of 3000 ppm or less and a relatively small average particle size and an irregular shape, and a gas atomized powder having an oxygen content of 300 ppm or less and a relatively large average particle size and a substantially spherical shape. Are blended in the proportion of the above range, and the resulting mixed powder is compacted with an insulating material and further fired, so that the powder density and firing density are high and oxidation is suppressed, so the core loss is kept low. It has a high initial permeability and a high superposition characteristic.

C:0.01%以下、Si:9.48%、Al:5.53%、残部Feおよび不可避的不純物からなるFe−Si−Al系合金を、溶解炉で溶解した。
上記Fe−Si−Al系合金の溶湯を、水噴霧装置によって、注湯ノズルの内径:8mm、注下流量:50kg/分、噴霧水流量:10リットル/秒、噴霧水圧:100kg/cmでの条件で水噴霧して水アトマイズ粉とした。得られた水アトマイズ粉を、濾過器にて脱水処理し、ロターリーキルンにて乾燥処理して、酸素含有量を1900ppm以下とした後、異なるメッシュの篩により、−100メッシュ、−145メッシュ、および−200メッシュの3種類に分級した。
また、別の溶解炉で溶解した上記Fe−Si−Al系合金の溶湯を、ガス噴霧装置によって、注湯ノズルの内径:8mm、注下流量:50kg/分、噴霧ガス流量:500リットル/秒、噴霧ガス圧:30kg/cmでの条件でガス噴霧してガスアトマイズ粉とした。得られた酸素含有量が200ppm以下のガスアトマイズ粉を、回収した後、篩により−100メッシュに分級した。
C: 0.01% or less, Si: 9.48%, Al: 5.53%, Fe—Si—Al alloy composed of the balance Fe and inevitable impurities was melted in a melting furnace.
The molten Fe-Si-Al alloy was melted with a water spray device at an inner diameter of the pouring nozzle: 8 mm, a pouring flow rate: 50 kg / min, an atomizing water flow rate: 10 liters / second, and an atomizing water pressure: 100 kg / cm 2 . Water atomized powder was sprayed with water under the conditions described above. The obtained water atomized powder was dehydrated with a filter and dried with a rotary kiln to reduce the oxygen content to 1900 ppm or less, and thereafter, −100 mesh, −145 mesh, And -200 mesh.
In addition, the molten Fe-Si-Al alloy melted in another melting furnace is injected by a gas spraying device with an inner diameter of the pouring nozzle: 8 mm, a pouring flow rate: 50 kg / min, an atomizing gas flow rate: 500 liters / second. The gas atomized powder was formed by gas spraying under the condition of spraying gas pressure: 30 kg / cm 2 . The obtained gas atomized powder having an oxygen content of 200 ppm or less was collected, and then classified to −100 mesh with a sieve.

次に、−100メッシュ、−145メッシュ、および−200メッシュの各水アトマイズ粉と、−100メッシュのガスアトマイズ粉とを、前者が50,60,70wt%で且つ後者が50,40,30wt%の配合割合であって、全体が100wt%になるように、それぞれ計量してブレンダーに投入した後、約30分間ブレンドした。
また、−100メッシュ、−145メッシュ、−200メッシュの水アトマイズ粉が100wt%である3種類の単一粉と、−100メッシュのガスアトマイズ粉が100wt%の単一粉とを、別途に用意した。
Next, water atomized powder of −100 mesh, −145 mesh, and −200 mesh and gas atomized powder of −100 mesh are 50, 60, 70 wt% in the former and 50, 40, 30 wt% in the latter. The blending ratio was 100% by weight, and each was weighed and put into a blender, and then blended for about 30 minutes.
In addition, three types of single powder in which the water atomized powder of −100 mesh, −145 mesh, and −200 mesh is 100 wt% and a single powder in which the gas atomized powder of −100 mesh is 100 wt% were separately prepared. .

次に、得られた9種類の混合粉および4種類の単一粉ごとに、アクリル樹脂の粉末:1wt%、潤滑剤(ステアリン酸アミド):1wt%、および溶剤:5wt%を加えて、金型のキャビティ(外径28mm×内径20mm)内に充填した後、開口部がポンチを当該キャビティ内の成形圧力(20t/cm)で圧入して、個別にリング形状に圧粉成形した。
更に、得られた13個の成形体を不活性雰囲気中で約650℃に加熱・焼成した。
以上の製造方法により得られた13個の圧粉成形磁芯の磁気特性を測定した。その結果を、表1〜表3および図1〜図3のグラフに示した。
Next, for each of the obtained 9 kinds of mixed powders and 4 kinds of single powders, an acrylic resin powder: 1 wt%, a lubricant (stearic acid amide): 1 wt%, and a solvent: 5 wt% were added. After filling the cavity of the mold (outer diameter 28 mm × inner diameter 20 mm), the opening was press-fitted with a molding pressure (20 t / cm 2 ) in the cavity and individually molded into a ring shape.
Further, the 13 molded bodies obtained were heated and fired at about 650 ° C. in an inert atmosphere.
The magnetic properties of 13 dust cores obtained by the above manufacturing method were measured. The results are shown in the graphs of Tables 1 to 3 and FIGS.

尚、表1〜表3中の最右欄は、−100メッシュのガスアトマイズ粉のみからなる単一粉による圧粉成形磁芯の磁気特性を示している。
また、表1の初透磁率の評価は、115以上を○、それ未満を×とし、表2の重畳特性の評価は、65%以上を○、それ未満を×とし、表3のコアロスの評価は、400kW/m以下を○、これを越えるものを×とした。
更に、表2の重畳特性は、初透磁率に対する印加磁界20Oeにおける透磁率の割合(%)である。
加えて、図1〜図3において、最右側の−100メッシュのガスアトマイズ粉のみからなる単一粉と、3種類メッシュの水アトマイズ粉を50wt%含む例との間を結ぶ細い実線、細い破線、および細い一点鎖線は、かくなるであろうという推定に基づく仮想線である。
The rightmost column in Tables 1 to 3 shows the magnetic characteristics of the powder-molded magnetic core made of a single powder made of only -100 mesh gas atomized powder.
In addition, the evaluation of the initial magnetic permeability in Table 1 is evaluated as “◯” when 115 or higher, and “X” when the initial magnetic permeability is less than that. Of 400 kW / m 3 or less was rated as ◯, and those exceeding this were rated as x.
Furthermore, the superposition characteristics in Table 2 are the ratio (%) of the permeability in the applied magnetic field 20Oe to the initial permeability.
In addition, in FIG. 1 to FIG. 3, a thin solid line connecting a single powder consisting only of the gas atomized powder of the rightmost −100 mesh and an example containing 50 wt% of three types of water atomized powder, a thin broken line, And the thin dash-dot line is an imaginary line based on the assumption that it will be stiff.

Figure 2008248306
Figure 2008248306

Figure 2008248306
Figure 2008248306

Figure 2008248306
Figure 2008248306

表1および図1のグラフによれば、−100メッシュのガスアトマイズ粉のみからなる圧粉成形磁芯は、初透磁率が65と低かったが、これ以外の12種類の圧粉成形磁芯は、全て初透磁率が115以上と高くなった。具体的には、酸素量がある程度抑制されていれば、水アトマイズ粉が多く、且つそのメッシュが荒いほど、初透磁率が高くなることが判明した。
また、表2および図2のグラフによれば、−100メッシュのガスアトマイズ粉のみ、およびガスアトマイズ粉の割合が高い磁芯ほど、重畳特性が65%以上と高くなった。一方、−100,−145,−200メッシュの水アトマイズ粉のみからなる磁芯と、水アトマイズ粉の割合が高い磁芯ほど、重畳特性が65%未満と低くなった。
According to the graph of Table 1 and FIG. 1, although the powder-molded magnetic core which consists only of -100 mesh gas atomized powder had low initial permeability 65, other 12 types of powder-molded magnetic cores are as follows. In all cases, the initial permeability increased to 115 or higher. Specifically, it has been found that if the amount of oxygen is suppressed to some extent, the initial permeability becomes higher as the amount of water atomized powder increases and the mesh becomes rougher.
Moreover, according to the graph of Table 2 and FIG. 2, only the -100 mesh gas atomized powder and the magnetic core with the higher ratio of gas atomized powder, the superimposition characteristic became 65% or more. On the other hand, the superposition characteristics of the magnetic core made only of -100, -145, and -200 mesh water atomized powder and the magnetic core having a higher ratio of water atomized powder were as low as less than 65%.

更に、表3および図3のグラフによれば、−200メッシュの水アトマイズ粉で且つガスアトマイズ粉が30〜50wt%配合された磁芯、および−100メッシュのガスアトマイズ粉のみを用いた磁芯は、コアロスが400kW/m以下と低くなった。一方、−100,−145,−200メッシュの水アトマイズ粉のみからなる磁芯、および−100,−145メッシュの水アトマイズ粉を含む磁芯は、コアロスが400kW/m超と高くなった。
表1〜表3の全てで評価が太い円の白丸○となり、且つ図1〜図3中の白丸○で示した実施例の混合粉を用いて得られた3種類の実施例の圧粉成形磁芯は、前記酸素含有量で且つ−200メッシュの水アトマイズ粉に対し、30〜50wt%の前記酸素含有量で且つ−100メッシュのガスアトマイズ粉をブレンドし、係る混合粉を絶縁材と共に圧粉成形され、更に焼成されている。
Furthermore, according to the graph of Table 3 and FIG. 3, the magnetic core using only -200 mesh water atomized powder and 30-50 wt% gas atomized powder, and the magnetic core using only -100 mesh gas atomized powder are: The core loss was as low as 400 kW / m 3 or less. On the other hand, -100, -145, magnetic core consisting of only -200 mesh water atomized powder, and -100, the core comprising a water-atomized powder of -145 mesh, the core loss becomes high as 400 kW / m 3 greater.
In all of Tables 1 to 3, the evaluation results in a white circle with a thick circle, and three examples of powder compacting obtained using the mixed powders of the examples indicated by white circles in FIGS. The magnetic core is blended with 30-50 wt% of the gas atomized powder of −100 mesh and the oxygen content of −200 mesh with respect to the water atomized powder of −200 mesh, and the mixed powder is compressed together with the insulating material. Molded and then fired.

このため、実施例の磁芯では、酸素含有量が抑制されており、且つ粉末全体が比較的均一に分布した状態で、高い圧粉密度により成形されていたため、初透磁率が115以上、重畳特性が65%以上、および、コアロスが400kW/m以下の優れた磁気特性を奏したものと、推定される。
以上のような実施例の混合粉および圧粉成形磁芯によって、本発明の効果が裏付けられたことが容易に理解される。
For this reason, in the magnetic core of the example, the oxygen content was suppressed and the powder was formed with a high powder density in a relatively uniformly distributed state, so that the initial permeability was 115 or more. It is presumed that the magnetic properties were 65% or more and the core loss was excellent magnetic properties of 400 kW / m 3 or less.
It can be easily understood that the effects of the present invention have been supported by the mixed powder and the dust-molded magnetic core of the above examples.

水・ガスアトマイズ粉のブレンド割合と初透磁率との関係を示すグラフ。The graph which shows the relationship between the blend ratio of water / gas atomized powder and initial permeability. 水・ガスアトマイズ粉のブレンド割合と重畳特性との関係を示すグラフ。The graph which shows the relationship between the blend ratio of water and gas atomized powder, and a superimposition characteristic. 水・ガスアトマイズ粉のブレンド割合とコアロスとの関係を示すグラフ。The graph which shows the relationship between the blend ratio of water / gas atomized powder, and core loss.

Claims (4)

Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、
Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をブレンドしてなる、
ことを特徴とする圧粉成形用粉末。
50-70 wt% water atomized powder consisting of an Fe-Si-Al-based alloy and having an average particle size of -200 mesh or less and an oxygen content of 3000 ppm or less;
It is made of a Fe-Si-Al-based alloy, blended with 30 to 50 wt% gas atomized powder having an average particle size of -100 mesh or less and an oxygen content of 300 ppm or less.
A powder for compacting, characterized in that.
Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をほぼ均一に含有していると共に、所定の形状に成形され且つ焼成されている、
ことを特徴とする圧粉成形磁芯。
50-70 wt% water atomized powder comprising an Fe-Si-Al alloy and having an average particle size of -200 mesh or less and an oxygen content of 3000 ppm or less, and an Fe-Si-Al alloy, 30-50 wt% gas atomized powder having a diameter of -100 mesh or less and an oxygen content of 300 ppm or less is contained almost uniformly, and is molded into a predetermined shape and fired.
A compacted magnetic core characterized by that.
前記圧粉成形磁芯は、初透磁率が115以上、印加磁界が20Oeにおける透磁率が初透磁率に対して65%以上、およびコアロスが400kW/m以下の磁気特性を有する、
ことを特徴とする請求項2に記載の圧粉成形磁芯。
The dust-molded magnetic core has magnetic properties of an initial permeability of 115 or higher, an applied magnetic field of 20 Oe with a magnetic permeability of 65% or higher with respect to the initial magnetic permeability, and a core loss of 400 kW / m 3 or lower.
The dust-molded magnetic core according to claim 2.
Fe−Si−Al系合金からなり、平均粒径が−200メッシュ以下で且つ酸素含有量が3000ppm以下である50〜70wt%の水アトマイズ粉と、Fe−Si−Al系合金からなり、平均粒径が−100メッシュ以下で且つ
酸素含有量が300ppm以下である30〜50wt%のガスアトマイズ粉と、をブレンドする工程と、
上記ブレンドされた混合粉末を絶縁材と共に金型内に充填して圧粉成形する工程と、
所定の形状に圧粉成形された成形体を焼成する工程と、を含む、
ことを特徴とする圧粉成形磁芯の製造方法。
50-70 wt% water atomized powder comprising an Fe-Si-Al alloy and having an average particle size of -200 mesh or less and an oxygen content of 3000 ppm or less, and an Fe-Si-Al alloy, Blending 30-50 wt% gas atomized powder having a diameter of -100 mesh or less and an oxygen content of 300 ppm or less;
Filling the above-mentioned blended mixed powder into a mold together with an insulating material and compacting,
Firing a molded body compacted into a predetermined shape,
A method for producing a compacted magnetic core, characterized in that:
JP2007090290A 2007-03-30 2007-03-30 Powder for powder compaction, powder-compacted magnetic core, and method for producing the same Withdrawn JP2008248306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007090290A JP2008248306A (en) 2007-03-30 2007-03-30 Powder for powder compaction, powder-compacted magnetic core, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007090290A JP2008248306A (en) 2007-03-30 2007-03-30 Powder for powder compaction, powder-compacted magnetic core, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2008248306A true JP2008248306A (en) 2008-10-16

Family

ID=39973602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007090290A Withdrawn JP2008248306A (en) 2007-03-30 2007-03-30 Powder for powder compaction, powder-compacted magnetic core, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2008248306A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
JP2013155414A (en) * 2012-01-31 2013-08-15 Kobe Steel Ltd Mixed powder for dust core
JP2014078629A (en) * 2012-10-11 2014-05-01 Daido Steel Co Ltd Iron-based soft magnetic metal powder
WO2017022595A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic powder
CN112635189A (en) * 2020-12-15 2021-04-09 四川东阁科技有限公司 Production method of high-yield iron-nickel magnetic powder core
CN114369762A (en) * 2022-01-07 2022-04-19 鞍钢股份有限公司 Composite magnetic metal powder material and preparation method and application thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146681A (en) * 2009-10-06 2011-07-28 Fuji Electric Co Ltd Dust core and method of manufacturing the same
JP2013155414A (en) * 2012-01-31 2013-08-15 Kobe Steel Ltd Mixed powder for dust core
JP2014078629A (en) * 2012-10-11 2014-05-01 Daido Steel Co Ltd Iron-based soft magnetic metal powder
WO2017022595A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Soft magnetic powder
JPWO2017022595A1 (en) * 2015-07-31 2018-07-05 株式会社村田製作所 Soft magnetic powder
US11817245B2 (en) 2015-07-31 2023-11-14 Murata Manufacturing Co., Ltd. Soft magnetic powder
CN112635189A (en) * 2020-12-15 2021-04-09 四川东阁科技有限公司 Production method of high-yield iron-nickel magnetic powder core
CN112635189B (en) * 2020-12-15 2022-11-11 四川东阁科技有限公司 Production method of high-yield iron-nickel magnetic powder core
CN114369762A (en) * 2022-01-07 2022-04-19 鞍钢股份有限公司 Composite magnetic metal powder material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2014216495A (en) Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
JP6503058B2 (en) Dust core, method of manufacturing the dust core, inductor including the dust core, and electronic / electrical device in which the inductor is mounted
JP2008248306A (en) Powder for powder compaction, powder-compacted magnetic core, and method for producing the same
WO2008093430A1 (en) High-compressibility iron powder, iron powder comprising the same for dust core, and dust core
KR20070086434A (en) Diffusion bonded nickel-copper powder metallurgy powder
JPH0682577B2 (en) Fe-Si alloy dust core and method of manufacturing the same
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JP2002299114A (en) Dust core
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JP6690781B2 (en) Alloy steel powder
JP2010080978A (en) Soft magnetic alloy powder and powder magnetic core
JP6179245B2 (en) SOFT MAGNETIC COMPOSITION AND METHOD FOR PRODUCING THE SAME, MAGNETIC CORE, AND COIL TYPE ELECTRONIC COMPONENT
JPH0750648B2 (en) Method for manufacturing Fe-Si-A1 alloy powder magnetic core
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP7367310B2 (en) Iron-based metal glass alloy powder
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP2001338808A (en) Filter and amplifier
JP2020111826A (en) Iron-based soft magnetic alloy powder
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JP2004014613A (en) PROCESS FOR PRODUCING Fe-Co BASED COMPOSITE SOFT MAGNETIC SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY
JP2003109812A (en) Dust core and its manufacturing method
JP2003045711A (en) Dust core powder and method of manufacturing dust core using the same
JP2005068483A (en) Production method for sintered compact of mn-based high-damping alloy
JP2005325426A (en) Fe-Ni-BASED SOFT-MAGNETIC ALLOY POWDER, AND METHOD FOR PRODUCING THE POWDER AND DUST CORE

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601