JP3432905B2 - Method for producing sendust-based sintered alloy - Google Patents

Method for producing sendust-based sintered alloy

Info

Publication number
JP3432905B2
JP3432905B2 JP21218594A JP21218594A JP3432905B2 JP 3432905 B2 JP3432905 B2 JP 3432905B2 JP 21218594 A JP21218594 A JP 21218594A JP 21218594 A JP21218594 A JP 21218594A JP 3432905 B2 JP3432905 B2 JP 3432905B2
Authority
JP
Japan
Prior art keywords
powder
sendust
temperature
slurry
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21218594A
Other languages
Japanese (ja)
Other versions
JPH0860288A (en
Inventor
治 山下
雅己 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP21218594A priority Critical patent/JP3432905B2/en
Publication of JPH0860288A publication Critical patent/JPH0860288A/en
Application granted granted Critical
Publication of JP3432905B2 publication Critical patent/JP3432905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、粉末冶金法によりセ
ンダスト系焼結合金を製造する方法に係り、特に、Fe
−Al−Si系合金粉末に特定のバインダーを添加混練
してスラリーとなし、これをスプレードライヤー装置に
より平均粒径20〜400μmの造粒粉となすことによ
り、成形時の粉体の流動性、潤滑性を向上させて、成形
サイクルの向上、成形体の寸法精度を向上させ、厚み1
0mm以上の厚肉形状やヨークなどの複雑形状のセンダ
スト系焼結合金を提供することができるセンダスト系焼
結合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sendust-based sintered alloy by a powder metallurgy method, and in particular, Fe
-Al-Si-based alloy powder with a specific binder added and kneaded to form a slurry, and this is made into a granulated powder having an average particle size of 20 to 400 μm by a spray dryer device, whereby the fluidity of the powder during molding, Improves lubricity, improves molding cycle, improves dimensional accuracy of molded products, and improves thickness 1
The present invention relates to a method for producing a sendust-based sintered alloy capable of providing a sendust-based sintered alloy having a thick shape of 0 mm or more and a complicated shape such as a yoke.

【0002】[0002]

【従来の技術】今日、家電製品を始めコンピューターの
周辺機器や変圧器その他の電気機器の鉄心あるいはヨー
ク材、さらに磁気ヘッドのコアとして種々の軟質磁性材
料が使用されており、そして複雑形状化、小型化、軽量
化とともに高性能化が求められている。現在の代表的な
軟質磁性材料としては、Mn−Zn、Ni−Znフェラ
イトなどのソフトフェライト、Fe−Niを主成分とす
るパーマロイ、Fe−Al−Si系のセンダスト、さら
にFe−Co系のパーメンジュールなどが挙げられる。
2. Description of the Related Art Today, various soft magnetic materials are used as iron cores or yoke materials for home electric appliances, computer peripherals, transformers and other electric devices, as well as cores for magnetic heads, and have complicated shapes. Higher performance is required as well as smaller size and lighter weight. Typical typical soft magnetic materials at present are soft ferrites such as Mn-Zn and Ni-Zn ferrites, permalloy containing Fe-Ni as a main component, Fe-Al-Si-based sendust, and Fe-Co-based permanent. Menjuru and the like.

【0003】上記の中でも、センダスト系合金は保磁力
が極めて低く、初磁化率が大きく、しかも高い飽和磁束
密度をもち、他の軟質磁性材料に比べて磁気特性が格段
に優れているにもかかわらずセンダスト合金特有の脆弱
さのために、用途は主に磁気ヘッドのコアもしくは圧粉
磁心に限定されており、使用量も比較的少ない状況であ
る。
Among the above, the sendust type alloy has a very low coercive force, a large initial magnetic susceptibility, a high saturation magnetic flux density, and a magnetic property remarkably excellent as compared with other soft magnetic materials. Due to the fragility peculiar to Sendust alloy, its application is mainly limited to the core of the magnetic head or the dust core, and the amount used is relatively small.

【0004】すなわち、センダスト系高透磁率材料は保
磁力が0.04(Oe)と極めて低く、また初磁化率が
最大で30000を越え、しかも高い飽和磁束密度 1
1000(G)を持つ極めて優れた磁気特性を有するに
もかかわらず、硬くて、非常に脆い合金であり、鋳造、
冷間圧延、切断加工が困難であるために、大型部品とし
ては粉砕して圧粉する圧紛磁心に自ずと限定されてい
た。
That is, the sendust-based high magnetic permeability material has a very low coercive force of 0.04 (Oe), an initial magnetic susceptibility of over 30000, and a high saturation magnetic flux density 1.
It is a hard and very brittle alloy, despite having extremely good magnetic properties with 1000 (G), casting,
Since cold rolling and cutting are difficult, large-sized parts are naturally limited to powder magnetic cores that are crushed and pressed.

【0005】[0005]

【発明が解決しようとする課題】従来、センダスト系合
金は、所定の形状体を作製するためにNi、Moなどの
元素を添加して加工性を向上させたり、金属射出成形法
(MIM)の適用も行われているが、いずれも磁気特性
を劣化させる。また、金属射出成形法では、寸法形状が
大きくなると、焼結時の収縮率が大きくなるために、ワ
レを生じたり、脱脂時にフクレが起こるために、特に厚
み10mm以上の厚肉形状で複雑形状で寸法精度の優れ
る製品を得るのが困難だった。
Conventionally, sendust type alloys are added with elements such as Ni and Mo to improve workability in order to form a predetermined shape body, and metal alloys of the metal injection molding method (MIM) are used. Although applied, they both deteriorate the magnetic properties. In the metal injection molding method, when the size and shape increase, the shrinkage rate during sintering increases, causing cracks and blister during degreasing. It was difficult to obtain a product with excellent dimensional accuracy.

【0006】特に、センダスト系合金の成形性を改良す
るために、所定の成分よりFeを25%少なくして溶解
し、これを粉砕して、これに不足分のFe粉末を添加す
ると、Fe粉末がバインダーの役目をして圧延を可能に
し、圧延後焼き鈍しと圧延を繰り返して薄板を作製する
方法も提案された。しかし、ある程度の成形性は向上で
きるものの、その改善にも限界があり、近年要求される
厚さが10mm以上の厚肉形状やヨーク等のごとき複雑
形状の成形は依然困難であった。
[0006] In particular, in order to improve the formability of a sendust-based alloy, Fe is reduced by 25% from a predetermined component to dissolve it, and this is crushed, and an insufficient amount of Fe powder is added to this, so that Fe powder is added. Has also been proposed as a binder to enable rolling, and a method of producing a thin sheet by repeating annealing and rolling after rolling. However, although the moldability can be improved to some extent, there is a limit to the improvement, and it has been still difficult to mold a complicated shape such as a thick wall shape having a thickness of 10 mm or more and a yoke, which is required in recent years.

【0007】また、上記の金属射出成形法による成形に
おいても、材料は軟質磁性材料のケイ素鋼であるが、カ
ップリング剤を添加してバインダー添加量を減らし、焼
結後の残留炭素量と残留酸素量を減らし、磁気特性の向
上を図る方法(特開平1−212702〜21270
6)が提案されているが、この手法でも厚肉形状や複雑
形状の焼結体を作製するのは困難であった。
Also, in the above-mentioned metal injection molding method, the material is silicon steel, which is a soft magnetic material, but the coupling agent is added to reduce the binder addition amount, and the residual carbon amount and residual amount after sintering are reduced. A method of reducing the amount of oxygen to improve magnetic properties (Japanese Patent Laid-Open No. 1-212702 to 21270).
6) has been proposed, but it was difficult to produce a sintered body having a thick wall shape or a complicated shape even by this method.

【0008】一方、バインダーとしてポリビニルアルコ
ールは、焼結フェライトなどの酸化物の製造に用いら
れ、例えば、フェライトの仮焼粉をボールミルにて平均
粒度1μm程度まで湿式粉砕した後、ポリビニルアルコ
ールなどのバインダーを0.6〜1.0wt%を加え、
スプレードライヤーによって50〜100μmの造粒粉
を作製し、該造粒粉を成形し焼結する方法などが行われ
ているが、それらはいずれも成形後大気中で脱脂するた
めに、バインダーは燃焼してしまい、焼結後に焼結体中
に炭素はほとんど残留しないので有効である。
On the other hand, polyvinyl alcohol is used as a binder for the production of oxides such as sintered ferrite. For example, calcined powder of ferrite is wet pulverized by a ball mill to an average particle size of about 1 μm, and then a binder such as polyvinyl alcohol. 0.6-1.0 wt% is added,
A method of producing granulated powder having a particle size of 50 to 100 μm by a spray dryer, molding the granulated powder, and sintering the same has been carried out. However, since all of them are degreased in the air after molding, the binder is burned. This is effective because almost no carbon remains in the sintered body after sintering.

【0009】ところが、この発明の対象とするセンダス
ト焼結合金の場合は、焼結を真空もしくは不活性ガス中
で行う必要があるために、最適な脱脂条件で処理しなけ
れば、当然焼結体中に酸素及び炭素が残留し、焼結密度
が低下すると同時に磁気特性も劣化するので、容易には
前述のフェライトの製造法適用できない。
However, in the case of the sendust sintered alloy which is the subject of the present invention, since it is necessary to perform the sintering in a vacuum or in an inert gas, unless the treatment is performed under the optimum degreasing condition, the sintered body is naturally formed. oxygen and carbon remains in the so sintered density also deteriorates the magnetic properties at the same time reduced, facilitating the preparation of the aforementioned ferrite in can not be applied.

【0010】このようにセンダスト系の合金の製造方法
において、センダスト合金の加工性を改良したり、さら
に金属射出成形法により成形方法を改良した試みが提案
されているが、いずれの方法によっても近年要求される
ような厚さが10mm以上の厚肉形状やヨーク等のごと
き複雑形状でかつ優れた磁気特性を有するセンダスト系
軟質磁性材料を製造するのは困難であった。
As described above, in the method for producing a sendust-based alloy, attempts have been proposed to improve the workability of the sendust alloy and further improve the forming method by the metal injection molding method. It was difficult to manufacture a sendust-based soft magnetic material having a required thickness of 10 mm or more, a complicated shape such as a yoke, or the like, and excellent magnetic characteristics.

【0011】この発明は、粉末冶金法によりセンダスト
系の焼結合金を製造する方法において、合金粉末とバイ
ンダーとの反応を抑制し、焼結体中の残留酸素量、残留
炭素量を低減させるとともに、成形時の粉体の流動性、
潤滑性を向上させて、成形体の寸法精度の向上及び生産
性の向上を図り、厚さが10mm以上の厚肉形状やヨー
ク等のごとき複雑形状でかつ優れた磁気特性を有するセ
ンダスト系軟質磁性材料の製造方法の提供を目的とす
る。
The present invention is a method for producing a sendust-based sintered alloy by powder metallurgy, which suppresses the reaction between the alloy powder and the binder to reduce the residual oxygen content and residual carbon content in the sintered body. , The fluidity of powder during molding,
By improving the lubricity, improving the dimensional accuracy of the molded body and improving the productivity, the sendust-based soft magnetic having a thick shape with a thickness of 10 mm or more, a complicated shape such as a yoke, and excellent magnetic characteristics. It is intended to provide a method for manufacturing a material.

【0012】[0012]

【課題を解決するための手段】発明者らは、センダスト
合金粉末とバインダーとの反応を抑制でき、焼結体の残
留酸素量、残留炭素量を低減させる方法を種々検討した
結果、バインダーとして少量のポリビニルアルコール、
メチルセルロース、ポリアクリルアミドを単独または2
種類複合したものと水とからなるバインダーを用いるこ
とにより、スプレー造粒工程においてセンダスト合金粉
末とバインダーとの反応を抑制することができ、焼結後
の焼結体中の残留酸素量、残留炭素量を大幅に低減でき
ることを知見した。
Means for Solving the Problems As a result of various studies on the method of suppressing the reaction between the Sendust alloy powder and the binder and reducing the residual oxygen content and the residual carbon content of the sintered body, the inventors have found that a small amount of binder is used. Polyvinyl alcohol,
Methyl cellulose, polyacrylamide alone or 2
By using a binder composed of a mixture of various types and water, the reaction between the sendust alloy powder and the binder can be suppressed in the spray granulation process, and the amount of residual oxygen and residual carbon in the sintered body after sintering can be suppressed. We have found that the amount can be greatly reduced.

【0013】すなわち、上記バインダーが、ポリビニル
アルコール、メチルセルロース、ポリアクリルアミドそ
れぞれが単独の場合、その添加量を2.0wt%以下で
スプレー造粒しても、成形時に金型へ粉末供給するため
のフィーダー内における振動にも十分耐えられる程度の
粒子間結合力と、十分な流動性及び成形体強度を得るこ
とができること、それらバインダーの2種類を複合した
場合、その量を1.5wt%としても上記と同様な作用
効果が得られること、さらに必要に応じて使用する滑剤
も0.3wt%以下と極少量でよく、従来の金属射出成
形の場合の約10wt%の添加量に比べてバインダー量
を大幅に低減できることを知見した。
That is, when each of the above binders is polyvinyl alcohol, methyl cellulose, and polyacrylamide alone, a feeder for supplying powder to a mold at the time of molding even if spray granulation is performed at an addition amount of 2.0 wt% or less. It is possible to obtain an interparticle bonding force sufficient to withstand internal vibration, sufficient fluidity and molded product strength. When two kinds of these binders are combined, the amount is 1.5 wt% The same effect as above can be obtained, and the lubricant used if necessary can be a very small amount of 0.3 wt% or less, and the binder amount can be made smaller than the addition amount of about 10 wt% in the conventional metal injection molding. We have found that it can be significantly reduced.

【0014】使用するセンダスト系合金粉末は、一般に
は溶解・粉化法、アトマイズ法によって作製されるが、
これらの粉末粒子は粒内部あるいは表面にかなり歪みエ
ネルギーを蓄えており、この歪みのために、造粒後、バ
インダーと金属粉末の界面との間で電気2重層が形成さ
れやすくなり、造粒粉の静電気により流動性を極度に低
下させる。このため造粒前に粉末歪みを除去する熱処理
工程、すなわち、真空中もしくは不活性ガス中にて30
0℃〜800℃の温度範囲で熱処理を施すことにより、
流動性の優れた造粒粉ができることを知見した。
The sendust-based alloy powder used is generally produced by a melting / pulverizing method or an atomizing method.
These powder particles store a considerable amount of strain energy inside or on the surface of the powder, and this strain makes it easy to form an electric double layer between the binder and the interface of the metal powder after the granulation. Electrostatically reduces fluidity extremely. For this reason, a heat treatment step for removing powder distortion before granulation, that is, in a vacuum or in an inert gas, 30
By performing heat treatment in the temperature range of 0 ° C to 800 ° C,
We have found that a granulated powder with excellent fluidity can be produced.

【0015】またセンダスト系合金粉末と上記のバイン
ダーとを添加、混練してスラリーを作製する工程で、水
とセンダスト系合金粉末との酸化反応を極力防止するた
めに0℃〜10℃に冷却してスラリー撹拌することによ
り酸化反応を大幅に防止できることを知見した。さらに
水素中で脱脂することにより、バインダーをほとんど除
去できるために、脱脂後の焼結は引続きそのまま昇温す
ることにより進行させることができ、焼結密度も向上す
ることを知見した。
In the process of adding and kneading the sendust-based alloy powder and the above-mentioned binder to prepare a slurry, the mixture is cooled to 0 to 10 ° C. in order to prevent the oxidation reaction between water and the sendust-based alloy powder as much as possible. It was found that the oxidation reaction can be largely prevented by agitating the slurry. Further, it was found that the binder can be almost removed by degreasing in hydrogen, so that the sintering after degreasing can be advanced by continuing to raise the temperature as it is, and the sintering density is also improved.

【0016】センダスト系合金粉末と上記のバインダー
とを添加、混練して0℃〜10℃の低温でスラリー状と
なし、該スラリーをスプレードライヤー装置により平均
粒度が20μm〜400μmになるようにして得られた
造粒粉を用いて成形することにより、造粒粉は十分な結
合力を有し、バインダーと滑剤の効果による優れた潤滑
性とも相まって、粉体の流動性が格段に向上し、成形体
密度のバラツキや成形機の寿命を低下させることもな
く、焼結後の寸法精度にも優れ、厚肉形状や複雑形状で
かつ優れた磁気特性を有するセンダスト系焼結合金が効
率よく得られることを知見し、この発明を完成した。
The sendust-based alloy powder and the above binder are added and kneaded to form a slurry at a low temperature of 0 ° C. to 10 ° C. , and the slurry is obtained by a spray dryer so that the average particle size becomes 20 μm to 400 μm. By molding with the granulated powder, the granulated powder has a sufficient binding force, combined with the excellent lubricity due to the effect of the binder and the lubricant, the fluidity of the powder is significantly improved, Efficiently obtain a sendust-based sintered alloy that has excellent dimensional accuracy after sintering without variation in body density or shortening the life of the molding machine, and has thick and complex shapes and excellent magnetic properties. Based on this finding, the present invention has been completed.

【0017】すなわち、この発明は、熱処理などにより
歪み取りしたセンダスト系合金粉末に、ポリビニルアル
コール、メチルセルロース、ポリアクリルアミドを単独
または2種類複合したものを0.1〜2.0wt%と2
0〜50wt%の水からなるバインダーを添加、混練し
た後、0℃〜10℃の温度で撹拌してスラリー状とな
し、該スラリーをスプレードライヤー装置により平均粒
度が20μm〜400μmの造粒粉となし、該造粒粉を
用いて、成形後に水素流気中で脱脂を行い、さらに真空
中もしくは不活性ガス中で焼結後、均一化熱処理して歪
みを除去して焼結合金を得ることを特徴とするセンダス
ト系焼結合金の製造方法である。
That is, according to the present invention, 0.1 to 2.0 wt% of Sendust-based alloy powder that has been strained by heat treatment or the like, in which polyvinyl alcohol, methyl cellulose and polyacrylamide are used alone or in combination of two types, is added.
After adding and kneading a binder composed of 0 to 50 wt% water, the mixture is stirred at a temperature of 0 to 10 ° C. to form a slurry, and the slurry is formed into a granulated powder having an average particle size of 20 μm to 400 μm by a spray dryer device. None, using the granulated powder, degreasing in flowing hydrogen after molding, further sintering in vacuum or in an inert gas, and homogenizing heat treatment to remove strain to obtain a sintered alloy. And a method for producing a sendust-based sintered alloy.

【0018】この発明において、対象とするセンダスト
系合金の組成は、Si6〜12wt%、Al3〜10w
t%、残部Feとする基本組成を有するものであり、焼
結後の磁気特性の向上及び焼結密度の向上のために、微
量のCu、Co、Ni、Cr、S、W、V、Sb、P、
As、Ta、Bi、Sn、Ti、Pb、B、Caなどを
添加することもできる。すなわち、センダスト系合金粉
末としては、所要組成からなる単一の合金を粉砕した粉
末や、例えばFe−Al合金とFe−Si合金のように
異なる組成の合金を粉砕した後、混合して所要組成の調
整した粉末、あるいはヒステリシス損失、初透磁率、製
造性を改善するため添加元素を加えたものなど、公知の
センダスト合金粉末を用いることができる。
In the present invention, the composition of the target sendust alloy is Si6 to 12 wt% and Al3 to 10 w.
It has a basic composition of t% and the balance is Fe, and a small amount of Cu, Co, Ni, Cr, S, W, V, Sb is used for improving the magnetic characteristics after sintering and the sintering density. , P,
It is also possible to add As, Ta, Bi, Sn, Ti, Pb, B, Ca and the like. That is, as the sendust-based alloy powder, a powder obtained by pulverizing a single alloy having the required composition or an alloy having a different composition such as Fe-Al alloy and Fe-Si alloy is pulverized and then mixed to obtain the required composition. Or a known Sendust alloy powder such as a powder prepared by adding the additive element for improving the hysteresis loss, the initial magnetic permeability, and the manufacturability can be used.

【0019】センダスト系合金粉末の製造方法も、溶解
・粉化法、ガスアトマイズ法、水アトマイズ法などの公
知の方法を適宜選定することができる。しかしこれらの
粉末は、作業段階で粉末粒子に急冷、衝撃あるいは
などにより内部歪みまたは表面歪みが加わっているため
に、これら粉末に直接バインダーなどを添加して造粒す
ると、バインダーと金属粉末との界面に電気二重層が形
成され、静電気により造粒後の造粒粉の流動性が著しく
低下する。このために造粒前に粉末の歪みを除去する熱
処理工程を取り入れる必要がある。真空中もしくは不活
性ガス中での熱処理温度は、300℃未満では歪み取り
が十分なく、800℃を越える温度では粉末の一部が
溶着し始めるので、熱処理温度は300℃〜800℃の
温度が好ましい。
As the method for producing the sendust-based alloy powder, a known method such as a melting / pulverizing method, a gas atomizing method and a water atomizing method can be appropriately selected. However, these powders are quenched to the powder particles in the work phase, since the applied internal distortion or surface strain due impact or oxidation, when added such as these powders directly binder and granulated, the binder metal powder An electric double layer is formed at the interface with and the static electricity significantly reduces the fluidity of the granulated powder after granulation. For this reason, it is necessary to incorporate a heat treatment step for removing the distortion of the powder before granulation. If the heat treatment temperature in vacuum or in an inert gas is less than 300 ° C., the strain relief is not sufficient , and if the temperature exceeds 800 ° C., a part of the powder begins to weld, so the heat treatment temperature is 300 ° C. to 800 ° C. Is preferred.

【0020】また、センダスト系の合金粉末の粒度は特
に限定しないが、合金粉末の平均粒径が1μm未満では
大気中の酸素あるいはバインダー及び水と反応して酸化
しやすくなり、焼結後の磁気特性を低下させる恐れがあ
るため好ましくなく、さらに、15μmを越える平均粒
径では粒径が大きすぎて焼結密度が95%程度で飽和
し、該密度の向上が望めないため好ましくない。よっ
て、合金粉末の粒度は1〜15μmの平均粒径が好まし
い範囲である。特に好ましくは1〜5μmである。
The particle size of the sendust-based alloy powder is not particularly limited, but if the average particle size of the alloy powder is less than 1 μm, it easily reacts with oxygen in the atmosphere or with the binder and water to oxidize, and the magnetism after sintering is reduced. It is not preferable because the properties may be deteriorated. Further, when the average particle size exceeds 15 μm, the particle size is too large and the sintered density is saturated at about 95%, which is not preferable because improvement in the density cannot be expected. Therefore, the grain size of the alloy powder is preferably in the range of 1 to 15 μm. It is particularly preferably 1 to 5 μm.

【0021】バインダー この発明において、合金粉末をスラリー状にするため
に、添加するバインダーには、ポリビニルアルコール、
メチルセルロース、ポリアクリルアミドを単独または2
種類複合したものに水を添加したものを用いる。バイン
ダーとして、ポリビニルアルコール、メチルセルロー
ス、ポリアクリルアミドのそれぞれが単独の場合、その
添加量が0.1wt%未満では、成形前の給粉時に造粒
粉が壊れるとともに粉体の流動性が著しく低下し、また
2.0wt%を越えると、焼結体における残留酸素量と
残留炭素量が増加して透磁率が低下すると同時に焼結体
が変形しやすくなるので、0.1wt%〜2.0wt%
の含有量がこれらの点で好ましい。これらのバインダー
を2種類複合して用いる場合の含有量も、上記の各バイ
ンダーを単独で用いる場合と同様に、0.1wt%未満
では造粒粉内の粒子間の結合力が弱く、成形前の給粉時
に造粒粉が壊れるとともに粉体の流動性が著しく低下
し、また1.5wt%を越えると焼結体における残留酸
素量と残留炭素量が増加して透磁率が低下すると同時に
焼結体が変形しやすくなるので、0.1wt%〜1.5
wt%の含有量が好ましい範囲である。
Binder In the present invention, the binder to be added for making the alloy powder into a slurry is polyvinyl alcohol,
Methyl cellulose, polyacrylamide alone or 2
Use a mixture of types with water added. As the binder, when each of polyvinyl alcohol, methyl cellulose, and polyacrylamide is alone, if the addition amount is less than 0.1 wt%, the granulated powder is broken during powder feeding before molding and the fluidity of the powder is significantly reduced, On the other hand, if it exceeds 2.0 wt%, the residual oxygen amount and the residual carbon amount in the sintered body increase, the magnetic permeability decreases, and the sintered body is easily deformed.
The content of is preferable in these respects. When the content of two kinds of these binders used in combination is similar to the case of using each of the above binders alone, if the content is less than 0.1 wt%, the bonding force between the particles in the granulated powder is weak, and therefore, before molding. The granulated powder is broken during powder feeding, and the fluidity of the powder is significantly reduced. If it exceeds 1.5 wt%, the residual oxygen content and residual carbon content in the sintered body increase and the magnetic permeability decreases, and at the same time, the sintering 0.1wt% ~ 1.5 because the body will be easily deformed
A content of wt% is a preferable range.

【0022】この発明において、原料粉末とバインダー
の混合スラリー中に添加する水の含有量は、20wt%
未満では、合金粉末とバインダーとを混練したスラリー
の濃度が高くなって、粘度が増加しすぎるため、該スラ
リーを後述する撹拌機からスプレードライヤー装置まで
供給することができず、また、50wt%を越えるとス
ラリー濃度が低くなりすぎ、撹拌機内及び撹拌機のスラ
リー供給パイプ内で沈殿が起こり、供給量が不安定にな
るとともにスプレードライヤー装置によって得られる造
粒粉の平均粒度が20μm未満となり、さらに粒度にバ
ラツキを生じるため、20wt%〜50wt%が好まし
い範囲である。さらに好ましくは、30wt%〜40w
t%の範囲である。水としては、センダスト系合金粉末
との反応を極力抑制するために、脱酸素処理した純水、
あるいは窒素などの不活性ガスでバブリング処理した水
を用いることが望ましい。また、バインダー添加後のス
ラリー撹拌は、チラーなどで0℃〜10℃に冷却して、
低温で行う方が合金粉末と水との酸化反応をより抑制す
ることができ、10℃を越える水温では、センダスト合
金粉末と水との酸化反応が急激に促進されて酸素量が増
大するので好ましくない。
In the present invention, the content of water added to the mixed slurry of the raw material powder and the binder is 20 wt%.
When the amount is less than the above, the concentration of the slurry in which the alloy powder and the binder are kneaded becomes high, and the viscosity increases too much, so that the slurry cannot be supplied from the agitator described later to the spray dryer device, and 50 wt% is added. If it exceeds, the slurry concentration becomes too low, precipitation occurs in the stirrer and the slurry supply pipe of the stirrer, the supply amount becomes unstable, and the average particle size of the granulated powder obtained by the spray dryer device becomes less than 20 μm. 20 wt% to 50 wt% is a preferable range because the particle size varies. More preferably, 30 wt% to 40 w
It is in the range of t%. As the water, in order to suppress the reaction with the sendust-based alloy powder as much as possible, deoxidized pure water,
Alternatively, it is desirable to use water bubbling with an inert gas such as nitrogen. In addition, stirring the slurry after adding the binder is cooled to 0 ° C to 10 ° C with a chiller or the like,
It is preferable to carry out the reaction at a low temperature because the oxidation reaction between the alloy powder and water can be further suppressed, and at a water temperature exceeding 10 ° C., the oxidation reaction between the Sendust alloy powder and water is rapidly accelerated and the amount of oxygen increases, which is preferable. Absent.

【0023】また、上述したバインダーにグリセリン、
ワックスエマルジョン、ステアリン酸、フタール酸エス
テル、ペトリオール、グライコールなどの分散剤・潤滑
剤のうち少なくとも1種を添加するか、あるいはさら
に、n−オクチルアルコール、ポリアルキレン誘導体、
ポリエーテル系誘導体などの消泡剤を添加すると、スラ
リーの分散性、均一性の向上及びスプレードライヤー装
置中での粉化状態が良好になり、気泡が少なく、滑り
性、流動性にすぐれる球形の造粒粉を得ることが可能に
なる。なお、分散剤、潤滑剤を添加する場合は、0.0
3wt%未満の含有量では造粒粉を成形後の離型性改善
に効果がなく、また0.3wt%を越えると焼結体にお
ける残留炭素量と酸素量が増加して保磁力が増加して磁
気特性が劣化するので、0.03wt%〜0.3wt%
の含有量が好ましい。
In addition, glycerin,
At least one dispersant / lubricant such as wax emulsion, stearic acid, phthalic acid ester, petriol, and glycol is added, or in addition, n-octyl alcohol, polyalkylene derivative,
Addition of an antifoaming agent such as a polyether derivative improves the dispersibility and homogeneity of the slurry and improves the powdering state in the spray dryer device, resulting in less air bubbles and a spherical shape with excellent lubricity and fluidity. It is possible to obtain the granulated powder of. When adding a dispersant or a lubricant, 0.0
If the content is less than 3 wt%, there is no effect in improving the releasability after molding the granulated powder, and if it exceeds 0.3 wt%, the residual carbon content and oxygen content in the sintered body increase and the coercive force increases. As the magnetic properties deteriorate, 0.03 wt% to 0.3 wt%
Is preferred.

【0024】造粒方法 この発明において、合金粉末に上述したバインダーを添
加、混練したスラリーは、スプレードライヤー装置によ
って造粒粉にする。まず、スプレードライヤー装置を用
いた造粒粉の製造方法を説明すると、スラリー撹拌機か
らスラリーをスプレードライヤー装置に供給する、例え
ば、回転ディスクの遠心力で噴霧したり、加圧ノズル先
端部で霧状に噴霧され、噴霧された液滴は、加熱された
不活性ガスの熱風によって瞬時に乾燥されて造粒粉とな
り、回収部内の下部に自然落下する。
Granulation Method In the present invention, the slurry in which the above-mentioned binder is added to the alloy powder and kneaded is made into a granulated powder by a spray dryer device. First, a method for producing granulated powder using a spray dryer device will be described. Slurry is supplied from a slurry stirrer to a spray dryer device, for example, it is atomized by the centrifugal force of a rotating disk or atomized at the tip of a pressure nozzle. The sprayed liquid droplets are instantly dried by the hot air of the heated inert gas to become granulated powder, and spontaneously fall to the lower part in the recovery unit.

【0025】スプレードライヤー装置の構成としては、
上記のディスク回転型、加圧ノズル型のいずれでもよい
が、特に微粉末のセンダスト系合金粉末は非常に酸化し
やすいために、装置のスラリー収納部分あるいは造粒粉
の回収部分を不活性ガスなどで置換でき、かつその酸素
濃度を常時3%以下に保持できる密閉構造であることが
好ましい。
The structure of the spray dryer device is as follows.
Either of the above disk rotating type and pressure nozzle type may be used, but since the fine powder Sendust alloy powder is very easy to oxidize, the slurry storage part of the apparatus or the recovery part of the granulated powder may be inert gas or the like. It is preferable that the airtight structure is a closed structure that can be replaced with and the oxygen concentration can be constantly maintained at 3% or less.

【0026】また、スプレードライヤー装置の回収部分
の構成としては、回転ディスクあるいは加圧ノズルより
噴霧された液滴を瞬時に乾燥させるために、回転ディス
クの近傍あるいは加圧ノズルの上方に加熱された不活性
ガスを噴射する噴射口を配置し、また、回収部内の下部
に、噴射されたガスを回収部外へ排出する排出口を設け
るが、その際、予め装置外部あるいは装置に付属された
加熱器で所要温度に加熱された不活性ガスの温度を低下
させないように、上記噴射口を不活性ガスの温度に応じ
た温度、例えば60〜150℃に保持することが好まし
い。
Further, as the constitution of the recovery part of the spray dryer device, in order to instantly dry the droplets sprayed from the rotary disk or the pressure nozzle, it is heated near the rotary disk or above the pressure nozzle. An injection port for injecting an inert gas is arranged, and a discharge port for discharging the injected gas to the outside of the recovery unit is provided in the lower part of the recovery unit.At that time, heating outside the device or attached to the device is performed in advance. It is preferable to maintain the injection port at a temperature corresponding to the temperature of the inert gas, for example, 60 to 150 ° C., so as not to lower the temperature of the inert gas heated to the required temperature in the vessel.

【0027】すなわち、不活性ガスの温度が低下する
と、噴霧された液滴を短時間で十分乾燥することができ
なくなるため、スラリーの供給量を減少させなければな
らず能率が低下してしまう。また、比較的大きな粒径の
造粒粉を作る場合は、回転ディスクの回転数あるいは加
圧ノズルの圧力を低下させるが、その際に不活性ガスの
温度が低下していると、噴霧された液滴を十分乾燥する
ことができないので、結果としてスラリーの供給量を減
少させることにより、大きな粒径の造粒粉を得る場合に
は極端に能率が低下することになる。従って、予め加熱
された不活性ガスの温度をそのまま維持しながら回収部
内へ送り込むには、噴射口の温度を60〜150℃に保
持することが好ましく、特に100℃前後が最も好まし
い。
That is, when the temperature of the inert gas is lowered, the sprayed droplets cannot be dried sufficiently in a short time, so that the slurry supply amount must be reduced and the efficiency is lowered. When making granulated powder with a relatively large particle size, the rotation speed of the rotating disk or the pressure of the pressure nozzle is lowered, but if the temperature of the inert gas is lowered at that time, it is sprayed. Since the droplets cannot be dried sufficiently, as a result, the amount of slurry supplied is reduced, resulting in extremely low efficiency when obtaining granulated powder having a large particle size. Therefore, in order to feed the preheated inert gas into the recovery unit while maintaining the temperature as it is, it is preferable to maintain the temperature of the injection port at 60 to 150 ° C, and particularly preferably about 100 ° C.

【0028】また、不活性ガスの噴射口と排出口の温度
差が小さい場合も処理能率が低下する傾向があるので、
排出口の温度は50℃以下、好ましくは40℃以下、特
に好ましくは常温に設定することが望ましい。不活性ガ
スとしては、窒素ガスやアルゴンガスが好ましく、加熱
温度は60〜150℃が好ましい。
Further, when the temperature difference between the inert gas injection port and the exhaust port is small, the processing efficiency tends to decrease, so that
It is desirable that the temperature of the discharge port is set to 50 ° C. or lower, preferably 40 ° C. or lower, and particularly preferably room temperature. As the inert gas, nitrogen gas or argon gas is preferable, and the heating temperature is preferably 60 to 150 ° C.

【0029】造粒粉の粒度は、スプレードライヤー装置
へ供給するスラリーの濃度や、その供給量、あるいは回
転ディスクの回転数または加圧ノズルの圧力によって制
御することができるが、造粒粉の平均粒径が20μm未
満では、造粒粉の流動性がほとんど向上せず、また、平
均粒径が400μmを越えると、粒径が大きすぎて成形
時の金型内への充填密度が低下するとともに成形体密度
も低下し、ひいては、焼結後の焼結体密度の低下をきた
すこととなるため好ましくなく、よって、造粒粉の平均
粒径は20〜400μmに限定する。特に好ましくは5
0〜200μmである。また、ふるいによりアンダーカ
ット、オーバーカットを行うことにより、さらに極めて
流動性に富んだ造粒粉を得ることができる。さらに、得
られた造粒粉にステアリン酸亜鉛、ステアリン酸マグネ
シウム、ステアリン酸カルシウム、ステアリン酸アルミ
ニウム、ポリエチレングリコールなどの潤滑剤を少量添
加すると、さらに流動性を向上させることができ有効で
ある。
The particle size of the granulated powder can be controlled by the concentration of the slurry supplied to the spray dryer device, the supply amount thereof, the number of revolutions of the rotary disk or the pressure of the pressure nozzle. When the particle size is less than 20 μm, the fluidity of the granulated powder is hardly improved, and when the average particle size exceeds 400 μm, the particle size is too large and the packing density in the mold at the time of molding decreases. It is not preferable because the density of the compact is also lowered, which in turn lowers the density of the sintered body after sintering. Therefore, the average particle diameter of the granulated powder is limited to 20 to 400 μm. Particularly preferably 5
It is 0 to 200 μm. Further, by performing undercutting and overcutting with a sieve, it is possible to obtain a granulated powder having an extremely high fluidity. Further, it is effective to add a small amount of a lubricant such as zinc stearate, magnesium stearate, calcium stearate, aluminum stearate or polyethylene glycol to the obtained granulated powder, because the fluidity can be further improved.

【0030】造粒後の工程、すなわち、成形、焼結、熱
処理などの条件、方法は公知のいずれの粉末冶金的手段
を採用することができる。以下に好ましい条件の一例を
示す。成形は、公知のいずれの成形方法でも採用できる
が、圧縮成形で行うことが最も好ましく、その圧力は
0.3〜2.0Ton/cm2が好ましい。また、複雑
形状品を成形する場合には、スプレー造粒粉は流動性に
優れているために、多段プレス機により成形することが
でき、かなり複雑な形状のものまで対応できる。
Any known powder metallurgical means can be adopted for the step after granulation, that is, the conditions and methods such as molding, sintering, heat treatment and the like. An example of preferable conditions is shown below. The molding can be carried out by any known molding method, but compression molding is most preferable, and the pressure thereof is preferably 0.3 to 2.0 Ton / cm 2 . Further, in the case of molding a product having a complicated shape, since the spray granulated powder has excellent fluidity, it can be molded by a multi-stage press machine, and it is possible to cope with a considerably complicated shape.

【0031】成形後、焼結前において、真空中で加熱す
る一般的な方法や、水素流気中で100℃〜200℃/
時間で昇温し、300℃〜800℃で1〜2時間保持す
る方法などにより脱バインダー処理を行うことが好まし
い。特に、磁気特性の優れたセンダスト合金を作製する
場合には、焼結後の残留酸素量と残留炭素量を低減する
ために、水素流気中で脱バインダー処理を施すことが不
可欠である。300℃以下の温度では、脱バインダーが
十分でなく、バインダーを完全に除去できず、高純度の
焼結体が得られない。また、800℃を越える温度では
原料粉末表面の不純物を除去する前に粉末同士の焼結が
早く進行するために、不純物が除去できなくなる。
After molding and before sintering, a general method of heating in vacuum or 100 ° C. to 200 ° C./in hydrogen flowing air
It is preferable to perform the binder removal treatment by, for example, a method of raising the temperature over a period of time and holding the temperature at 300 ° C to 800 ° C for 1 to 2 hours. In particular, when producing a Sendust alloy having excellent magnetic properties, it is indispensable to perform debinding processing in flowing hydrogen in order to reduce the amount of residual oxygen and the amount of residual carbon after sintering. At a temperature of 300 ° C. or lower, the binder is not sufficiently removed, the binder cannot be completely removed, and a high-purity sintered body cannot be obtained. Further, at a temperature higher than 800 ° C., the sintering cannot be performed because the sintering of the powders progresses before the impurities on the surface of the raw material powder are removed.

【0032】なお、金属射出成形体の場合と異なり、バ
インダー添加量が数分の一と少ないために、脱バインダ
ー時の昇温スピードをバインダー無添加のものとほぼ同
等のスピードに設定しても、特に割れ、フクレは発生し
ないので、金属射出成形に比べて高能率で生産対応でき
る利点がある。脱バインダー処理後は、真空中もしくは
不活性ガス中で引き続いて加熱昇温して焼結を行うこと
が好ましく、800℃を越えてからの昇温速度は任意に
選定すればよく、例えば100〜300℃/時間など、
公知の昇温方法を採用できる。
Unlike the case of the metal injection molded body, since the amount of binder added is as small as a fraction, even if the temperature rising speed at the time of debinding is set to a speed almost equal to that without binder. In particular, since cracks and blisters do not occur, there is an advantage that production can be performed with higher efficiency than metal injection molding. After the binder removal treatment, it is preferable to carry out sintering by heating in a vacuum or in an inert gas, and the temperature rising rate after the temperature exceeds 800 ° C. may be arbitrarily selected. 300 ° C / hour, etc.
A known heating method can be adopted.

【0033】脱バインダー処理後の成形品の焼結並びに
焼結後の熱処理条件は、選定した合金粉末に応じて適宜
選定されるが、焼結並びに焼結後の熱処理条件として
は、1100℃〜1250℃、1〜2時間保持する焼結
工程、300℃〜600℃、1〜2時間保持する均一化
処理工程が好ましい。
Sintering of the molded product after the binder removal treatment and heat treatment conditions after the sintering are appropriately selected according to the selected alloy powder, but the sintering and heat treatment conditions after the sintering are 1100 ° C. A sintering step of holding at 1250 ° C. for 1 to 2 hours and a homogenizing treatment step of holding at 300 ° C. to 600 ° C. for 1 to 2 hours are preferable.

【0034】[0034]

【作用】この発明は、熱処理して歪み取りしたセンダス
ト系合金粉末にポリビニルアルコール、メチルセルロー
ス、ポリアクリルアミドを単独または2種類複合したも
のと水とからなるバインダーを添加、混練してスラリー
状となし、0℃〜10℃の低温で撹拌したスラリーをス
プレードライヤー装置により平均粒度20μm〜400
μmの造粒粉となし、該造粒粉を用いて、成形、脱脂、
焼結することにより、バインダーと滑剤の効果により優
れた潤滑性とも相まって、粉体の流動性が格段に向上
し、成形サイクルが向上するとともに、成形体密度を低
下させることもなく、焼結後の寸法精度にも優れるた
め、厚肉形状や複雑形状でかつ優れた磁気特性を有する
センダスト系焼結合金が得られる。さらに、この発明に
おける造粒粉は、バインダーによって被覆されているた
めに、大気中において酸化し難いので、成形工程におけ
る作業性が向上する利点も有する。
According to the present invention, a sendust-based alloy powder that has been heat-treated and strain-removed is added with a binder consisting of polyvinyl alcohol, methyl cellulose, polyacrylamide alone or in combination of two and water, and kneaded to form a slurry. The slurry, which was stirred at a low temperature of 0 ° C to 10 ° C, was sprayed with a spray dryer to give an average particle size of 20 µm to 400 µm.
a granulated powder of μm, molding, degreasing,
By sintering, combined with the excellent lubricity due to the effect of the binder and lubricant, the fluidity of the powder is significantly improved, the molding cycle is improved, and the density of the molded body is not lowered. Because of its excellent dimensional accuracy, it is possible to obtain a sendust-based sintered alloy having a thick shape or a complicated shape and excellent magnetic properties. Further, since the granulated powder according to the present invention is coated with the binder, it is difficult to oxidize in the atmosphere, so that there is an advantage that workability in the molding step is improved.

【0035】[0035]

【実施例】【Example】

実施例1 A15.4wt%、Si9.6wt%、残部Feからな
る平均粒径4.3μmのガスアトマイズ粉を表1に示す
熱処理温度でArガス中で熱処理した後、該粉末に同表
に示す種類および添加量のバインダー、水、滑剤などを
添加して、同表に示す撹拌温度で各5時間撹拌しスラリ
ーを作製した。該スラリーをチャンバー内を窒素ガスで
置換して酸素濃度を0.5%まで低下させた密閉式のデ
ィスク回転型スプレードライヤー装置により、熱風入口
温度を100℃、熱風出口温度を40℃に設定して造粒
を行った。
Example 1 A gas atomized powder of A15.4 wt%, Si 9.6 wt%, and the balance Fe having an average particle size of 4.3 μm was heat-treated in Ar gas at the heat treatment temperature shown in Table 1, and then the kind shown in the same table. Then, a binder, water, a lubricant and the like were added, and the mixture was stirred for 5 hours at the stirring temperature shown in the same table to prepare a slurry. The hot air inlet temperature was set to 100 ° C. and the hot air outlet temperature was set to 40 ° C. by a closed disk rotary spray dryer device in which the inside of the chamber was replaced with nitrogen gas to reduce the oxygen concentration to 0.5%. And granulated.

【0036】該造粒粉をプレス機を用いて、圧力1To
n/cm2で10mm×15mm×厚み10mmの形状
に成形した後、水素流気中で室温から表1に示す温度ま
でを昇温速度100℃/時で加熱する脱バインダー処理
を行い、引き続いて真空中で1200℃まで昇温し2時
間保持する焼結を行って焼結体を得た。焼結後の均一化
熱処理は水素中で500℃の温度で2時間行った。ま
た、この時磁気特性測定用サンプルとして30φ×24
φ×5tのリングをプレス成形して同時に脱脂、焼結処
理を行った。焼結後の均一化熱処理は、500℃の温度
で2時間行った。
The granulated powder was pressed with a press at a pressure of 1 To.
After forming into a shape of 10 mm × 15 mm × thickness 10 mm at n / cm 2 , a binder removal treatment of heating from room temperature to a temperature shown in Table 1 at a temperature rising rate of 100 ° C./hour in a flowing hydrogen gas was performed. Sintering was carried out by heating in a vacuum to 1200 ° C. and holding for 2 hours to obtain a sintered body. The homogenizing heat treatment after sintering was performed in hydrogen at a temperature of 500 ° C. for 2 hours. At this time, as a sample for measuring magnetic characteristics, 30φ × 24
A φ × 5t ring was press-molded and simultaneously degreased and sintered. The homogenizing heat treatment after sintering was performed at a temperature of 500 ° C. for 2 hours.

【0037】次に、直流磁気特性をB−Hトレーサー
(AUTOMATIC D.C. B−H CURVE
S TRACER)によって測定し、表2に記載するご
とく、0.01Oeにおける初透磁率μ0.01、保磁力H
c、10Oeにおける磁束密度B10の値を得た。造粒粉
の流動性、焼結体の相対密度、残留酸素量と残留炭素
量、磁気特性を表2に示す。ここでは相対密度はセンダ
ストのインゴットの密度を真密度として用いた。なお、
流動性は内径8mmのロート管を100gの原料粉が自
然落下し通過するまでに要した時間で測定した。ここで
流動性は20秒以下を目標とした。また、造粒粉の粒度
はメッシュで通しして重量平均した値である。ま
た、得られた焼結体には、ワレ、ヒビ、変形などはまっ
たく見られなかった。表1,2における比較例は、製造
条件がこの発明の限定条件外の場合である。
Next, the DC magnetic characteristics were measured by the BH tracer (AUTOMATIC DC BH CURVE).
S TRACER), and as shown in Table 2, the initial magnetic permeability μ 0.01 at 0.01 Oe and the coercive force H
The value of the magnetic flux density B 10 at c and 10 Oe was obtained. Table 2 shows the fluidity of the granulated powder, the relative density of the sintered body, the amount of residual oxygen and the amount of residual carbon, and the magnetic properties. Here, as the relative density, the density of Sendust ingot was used as the true density. In addition,
The fluidity was measured by the time required for 100 g of the raw material powder to spontaneously drop and pass through a funnel tube having an inner diameter of 8 mm. Here, the fluidity was targeted at 20 seconds or less. The particle size of the granulated powder is a value obtained by sieving through a mesh and averaging by weight. Moreover, cracks, cracks, and deformation were not observed in the obtained sintered body at all. Comparative examples in Tables 1 and 2 are cases in which the manufacturing conditions are outside the limiting conditions of the present invention.

【0038】実施例2 実施例1の原料粉末をArガス中で400℃×2時間の
熱処理を行った後、表3に示す種類及び添加量のバイン
ダー、水、滑剤などを添加して、5℃の撹拌温度で5時
間撹拌しスラリーを作製した。該スラリーを実施例1と
同一条件でスプレー造粒を行った。該造粒粉をプレス機
を用いて、圧力1Ton/cm2で10mm×15mm
×厚み10mmの形状に成形した後、水素流気中で室温
から500℃までを昇温速度100℃/時で加熱する脱
バインダー処理を行い、引き続いて真空中で1200℃
まで昇温し2時間保持する焼結を行って焼結体を得た。
焼結後の均一化熱処理は水素中で500℃の温度で2時
間行った。また、この時、磁気特性測定用サンプルとし
て30φ×24φ×5tのリングをプレス成形して同時
に脱脂、焼結処理を行った焼結後の均一化熱処理は、5
00℃で2時間行った。次に、直流磁気特性測定は実施
例1と同一条件で行った。造粒粉の流動性、焼結体の相
対密度、残留酸素量と残留炭素量、磁気特性を表4に示
す。測定方法は実施例1に準じて行った。なお、得られ
た焼結体には、ワレ、ヒビ、変形などはまったく見られ
なかった。表3,4における比較例は、製造条件がこの
発明の限定条件外の場合である。
Example 2 The raw material powder of Example 1 was heat-treated in Ar gas at 400 ° C. for 2 hours, and then the types and amounts of binders, water, lubricants and the like shown in Table 3 were added, and 5 A slurry was prepared by stirring for 5 hours at a stirring temperature of ° C. The slurry was spray-granulated under the same conditions as in Example 1. The granulated powder is pressed with a press machine at a pressure of 1 Ton / cm 2 to 10 mm × 15 mm
× After forming into a shape with a thickness of 10 mm, a binder removal treatment is performed by heating from room temperature to 500 ° C. at a temperature rising rate of 100 ° C./hour in hydrogen gas, and subsequently 1200 ° C. in vacuum.
The temperature was raised and the temperature was maintained for 2 hours for sintering to obtain a sintered body.
The homogenizing heat treatment after sintering was performed in hydrogen at a temperature of 500 ° C. for 2 hours. In addition, at this time, a ring of 30φ × 24φ × 5t was press-molded as a sample for magnetic property measurement, and at the same time, degreasing and sintering were performed.
It was carried out at 00 ° C. for 2 hours. Next, the DC magnetic property measurement was performed under the same conditions as in Example 1. Table 4 shows the fluidity of the granulated powder, the relative density of the sintered body, the residual oxygen content and the residual carbon content, and the magnetic properties. The measuring method was carried out according to Example 1. No cracks, cracks, or deformations were found in the obtained sintered body. The comparative examples in Tables 3 and 4 are cases in which the manufacturing conditions are outside the limiting conditions of the present invention.

【0039】比較のため、実施例1の表1のNo.2の
原料粉末をスプレー造粒せずに圧力1Ton/cm2
10×15×10(厚)mmの形状にプレス成形した
後、水素流気中で室温から500℃までを昇温速度10
0℃/時で加熱する脱バインダー処理を行い、引き続い
て真空中で1200℃まで昇温し2時間保持する焼結を
行って焼結体を得た。また、得られた焼結体には、ワ
レ、ヒビ、変形などはまったく見られなかった。なお、
磁気特性用のリング成形体はセンダストの粉末が硬く
て、延展性がないために、バインダー無添加では成形体
強度が弱すぎて成形できなかった。焼結体の相対密度、
残留酸素量と残留炭素量を表4の比較例No.33に示
す。
For comparison, No. 1 in Table 1 of Example 1 was used. The raw material powder of No. 2 was press-formed into a shape of 10 × 15 × 10 (thickness) mm at a pressure of 1 Ton / cm 2 without spray granulation, and then the temperature rising rate from room temperature to 500 ° C. was 10 in flowing hydrogen.
A binder removal treatment of heating at 0 ° C./hour was performed, and subsequently, sintering was performed by raising the temperature to 1200 ° C. in a vacuum and holding for 2 hours to obtain a sintered body. Moreover, cracks, cracks, and deformation were not observed in the obtained sintered body at all. In addition,
Since the ring-shaped molded body for magnetic properties had a hard sendust powder and no spreadability, the molded body could not be molded without a binder because the strength of the molded body was too weak. Relative density of the sintered body,
The residual oxygen content and the residual carbon content are shown in Table 4 as Comparative Example No. 33.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【発明の効果】実施例から明らかなように、センダスト
の合金粉末を真空中もしくは不活性ガス中で300℃〜
800℃の温度で熱処理した後、ポリビニルアルコー
ル、メチルセルロース、ポリアクリルアミドを単独また
は2種類複合したものと水とからなるバインダーを添
加、混練してスラリー状となし、該スラリーを0℃〜1
0℃の温度に冷却して撹拌した後、スプレードライヤー
装置により平均粒径20〜400μmの造粒粉となし、
該造粒粉を用いてプレス成形し、水素流気中で特定温度
条件にて脱脂を行った後、真空中もしくは不活性ガス中
で焼結する粉末冶金法により、焼結密度が高く、磁気特
性の優れた焼結体が得られることがわかった。該造粒粉
は非常に流動性が良好であるために、多段プレス成形に
より複雑形状の成形体を作製することができるので、今
後センダストの用途が拡大されると考えられる。
As is apparent from the examples, the sendust alloy powder is heated in a vacuum or in an inert gas at 300 ° C.
After heat treatment at a temperature of 800 ° C., polyvinyl alcohol, methyl cellulose, adding a binder consisting of polyacrylamide and a singly or two complexed with those of water, mixed kneaded with a slurry and without, 0 ° C. The slurry to 1
After cooling to a temperature of 0 ° C. and stirring, a granulated powder having an average particle size of 20 to 400 μm was formed with a spray dryer device,
By press molding using the granulated powder, degreasing under a specific temperature condition in flowing hydrogen, and then sintering in a vacuum or in an inert gas, the powder metallurgy method has a high sintering density and a high magnetic field. It was found that a sintered body with excellent characteristics can be obtained. Since the granulated powder has very good fluidity, it is possible to produce a molded product having a complicated shape by multi-stage press molding, and it is considered that the use of sendust will be expanded in the future.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/06 C22C 38/06 H01F 1/22 H01F 1/22 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI C22C 38/06 C22C 38/06 H01F 1/22 H01F 1/22

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空中もしくは不活性ガス中にて300
℃〜800℃の温度範囲で熱処理したFe−Al−Si
系合金粉末に、ポリビニルアルコール、メチルセルロー
ス、ポリアクリルアミドを単独または2種類複合したも
のを0.1〜2.0wt%と20〜50wt%の水から
なるバインダーを添加、混練、撹拌してスラリー状とな
し、該スラリーをスプレードライヤー装置により平均粒
径20〜400μmの造粒粉となし、該造粒粉を用い
て、成形後に水素流気中で脱脂を行い、さらに真空中も
しくは不活性ガス中で焼結する粉末冶金法にて焼結合金
を得ることを特徴とするセンダスト系焼結合金の製造方
法。
1. 300 in vacuum or in an inert gas
Fe-Al-Si heat-treated in the temperature range of 800C to 800C
A polyvinyl alcohol, methyl cellulose, polyacrylamide, or a mixture of two types is added to a base alloy powder, a binder consisting of 0.1 to 2.0 wt% and 20 to 50 wt% of water is added, kneaded, and stirred to form a slurry. None, the slurry was made into a granulated powder having an average particle size of 20 to 400 μm by a spray dryer device, the granulated powder was used to degrease in a hydrogen stream after molding, and further in a vacuum or an inert gas. A method for producing a sendust-based sintered alloy, which comprises obtaining a sintered alloy by a powder metallurgy method of sintering.
【請求項2】 スラリーを0℃〜10℃の温度に冷却さ
れた状態で撹拌することを特徴とする第1項記載のセン
ダスト系焼結合金の製造方法。
2. The method for producing a sendust-based sintered alloy according to claim 1, wherein the slurry is stirred while being cooled to a temperature of 0 ° C. to 10 ° C.
【請求項3】 成形体を水素流気中で300℃〜800
℃の温度で脱脂することを特徴とする第1項記載のセン
ダスト系焼結合金の製造方法。
3. A molded body in a flowing hydrogen atmosphere at 300 ° C. to 800 ° C.
The method for producing a sendust-based sintered alloy according to claim 1, wherein degreasing is performed at a temperature of ° C.
【請求項4】 焼結体を300℃〜600℃にて均一化
処理することを特徴とする第1項記載のセンダスト系焼
結合金の製造方法。
4. The method for producing a sendust-based sintered alloy according to claim 1, wherein the sintered body is homogenized at 300 ° C. to 600 ° C.
JP21218594A 1994-08-12 1994-08-12 Method for producing sendust-based sintered alloy Expired - Fee Related JP3432905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21218594A JP3432905B2 (en) 1994-08-12 1994-08-12 Method for producing sendust-based sintered alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21218594A JP3432905B2 (en) 1994-08-12 1994-08-12 Method for producing sendust-based sintered alloy

Publications (2)

Publication Number Publication Date
JPH0860288A JPH0860288A (en) 1996-03-05
JP3432905B2 true JP3432905B2 (en) 2003-08-04

Family

ID=16618337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21218594A Expired - Fee Related JP3432905B2 (en) 1994-08-12 1994-08-12 Method for producing sendust-based sintered alloy

Country Status (1)

Country Link
JP (1) JP3432905B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4507663B2 (en) * 2004-03-30 2010-07-21 住友電気工業株式会社 Method for producing soft magnetic material, soft magnetic powder and dust core
JP2006026668A (en) * 2004-07-13 2006-02-02 Kokuho:Kk Welding carriage
JP5257743B2 (en) * 2008-02-28 2013-08-07 日立金属株式会社 Fe-based soft magnetic powder, manufacturing method thereof, and dust core
JP2012107330A (en) * 2010-10-26 2012-06-07 Sumitomo Electric Ind Ltd Soft magnetic powder, granulated powder, dust core, electromagnetic component, and method for manufacturing dust core
TWI443689B (en) * 2011-07-11 2014-07-01 Alps Green Devices Co Ltd A composite magnetic powder, and a powder magnetic core using the composite magnetic powder
CN109626967A (en) * 2019-01-25 2019-04-16 西北工业大学 A kind of vacuum degreasing method of photocuring 3D printing aluminium oxide ceramics biscuit

Also Published As

Publication number Publication date
JPH0860288A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3435223B2 (en) Method for producing sendust-based sintered alloy
JP3432905B2 (en) Method for producing sendust-based sintered alloy
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JP4033884B2 (en) Manufacturing method of rare earth sintered magnet
JPH08120393A (en) Production of iron-silicon soft magnetic sintered alloy
JP4415374B2 (en) Manufacturing method of rare earth sintered magnet
CA1076397A (en) Wear-resistant shaped magnetic article and process for making the same
JPH1053833A (en) Production of sintered iron-aluminum-silicon alloy
JP2000212679A (en) Raw material granular body for iron-silicon base soft magnetic sintered alloy, its production and production of iron-silicon base soft magnetic sintered alloy member
JPH08107034A (en) Manufacture of r-fe-b sintered permanent magnet
JP3170156B2 (en) Method for producing isotropic granulated powder
JP3631330B2 (en) Method for producing rare earth sintered permanent magnet
JP3083963B2 (en) Method and apparatus for producing anisotropic granulated powder
JPH0888112A (en) Manufacture of r-fe-b sintered permanent magnet
JP2915560B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JP2000087194A (en) Alloy for electromagnet and its manufacture
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
JPH0917674A (en) Manufacture of sintered rare earth magnet
JP3540389B2 (en) Method for producing sintered R-Fe-B permanent magnet
JP2018206835A (en) Soft magnetic alloy particle and electronic component
JPH0888111A (en) Manufacture of r-fe-b sintered permanent magnet
JPS61127848A (en) Manufacture of sintered alnico magnet
JP3174442B2 (en) Method for producing R-Fe-B sintered anisotropic permanent magnet
JPH09316501A (en) Manufacture of sintered metal or sintered alloy

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees