JP2008244148A - Electrostatic chuck and manufacturing method thereof - Google Patents

Electrostatic chuck and manufacturing method thereof Download PDF

Info

Publication number
JP2008244148A
JP2008244148A JP2007082594A JP2007082594A JP2008244148A JP 2008244148 A JP2008244148 A JP 2008244148A JP 2007082594 A JP2007082594 A JP 2007082594A JP 2007082594 A JP2007082594 A JP 2007082594A JP 2008244148 A JP2008244148 A JP 2008244148A
Authority
JP
Japan
Prior art keywords
comb
electrode
electrostatic chuck
bipolar
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007082594A
Other languages
Japanese (ja)
Other versions
JP4658086B2 (en
Inventor
Tomoyuki Ogura
知之 小倉
Noboru Miyata
昇 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2007082594A priority Critical patent/JP4658086B2/en
Publication of JP2008244148A publication Critical patent/JP2008244148A/en
Application granted granted Critical
Publication of JP4658086B2 publication Critical patent/JP4658086B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck that solves the problem wherein an interdigital shape cannot be formed precisely by flame spraying since a masking tool warps and deviates easily in the flame spraying formation of an interdigital electrode, and attracts and fixes an insulating glass substrate at relatively low temperature with sufficient attraction force. <P>SOLUTION: The electrostatic chuck has the bipolar interdigital electrode on an insulator layer and a dielectric layer for covering the bipolar interdigital electrode. The electrostatic chuck has a projecting connection section 3c where a comb tooth 3a in the bipolar interdigital electrode and a connection shaft 3b overlap. The comb tooth 3a in the bipolar interdigital electrode and the connection shaft 3b are as thick as 25-50 μm, and the connection section 3c is as thick as 50-100 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガラス基板を吸着固定する静電チャックに関するもので、特に、双極の櫛歯電極と、この櫛歯電極を被覆する誘電体層と、を溶射により形成した静電チャックに関するものである。 The present invention relates to an electrostatic chuck for adsorbing and fixing a glass substrate, and more particularly to an electrostatic chuck in which a bipolar comb electrode and a dielectric layer covering the comb electrode are formed by thermal spraying. .

従来、双極型の静電チャックが多く用いられてきた。双極型の静電チャックは、一対の静電電極それぞれに正負の電圧を印加すると、電極に近接する誘電体表面に正負の電荷が生じ、このとき誘電体表面に載置した導電性基板には誘電体表面と逆電荷が生じるため、互いに引き合う力、すなわちジョンセンラーベック力が発現することを利用したものである。したがって、絶縁性のガラス基板を静電チャックにより吸着固定するときは、ガラス基板に電荷が生じないためITO等の導電膜を塗布して吸着させていた。しかし、吸着固定するためだけに導電膜を形成することは手間やコストがかかるため、導電膜を塗布せずに吸着固定する手段が望まれていた。そこで、絶縁性のガラス基板を吸着する静電チャックとして、電界に働く力であるグラディエント力を利用した静電チャックが提案されている(特許文献1、2参照)。 Conventionally, bipolar electrostatic chucks have been frequently used. In a bipolar electrostatic chuck, when a positive or negative voltage is applied to each of a pair of electrostatic electrodes, positive and negative charges are generated on the dielectric surface adjacent to the electrodes. At this time, the conductive substrate placed on the dielectric surface Since a charge opposite to that of the dielectric surface is generated, this utilizes the fact that the forces attracting each other, that is, the Johnsenlerbeck force is developed. Therefore, when an insulating glass substrate is attracted and fixed by an electrostatic chuck, a conductive film such as ITO is applied and adsorbed because no electric charge is generated on the glass substrate. However, since it takes time and cost to form the conductive film only for adsorption fixation, a means for adsorption fixation without applying the conductive film has been desired. Thus, as an electrostatic chuck that attracts an insulating glass substrate, an electrostatic chuck using a gradient force that is a force acting on an electric field has been proposed (see Patent Documents 1 and 2).

このグラディエント力を利用した静電チャックでは、ジョンセンラーベック力を利用した静電チャックと比べて十分な吸着力を得ることができないという問題があった。本発明者らの検討によれば、ジョンセンラーベック力を利用した静電チャックの吸着力が数百g/cmであるのに対して、グラディエント力を利用した静電チャックの吸着力は数十g/cmであり、十分ではない。また、グラディエント力を発揮するには、特許文献1に記載された静電チャックのように櫛歯間距離が小さいことが要求されるため電極間で放電し易く、耐電圧が低くなり絶縁破壊が起きる場合があった。特に電極が露出しているため電極間の放電による絶縁破壊を防ぐには高真空が要求されることから、処理容器内を真空に到達させるまでの低真空時のガラス基板の固定ができないため位置ずれを起こすことがあった。 In the electrostatic chuck using the gradient force, there is a problem in that a sufficient attracting force cannot be obtained as compared with the electrostatic chuck using the John Senler-Beck force. According to the study by the present inventors, the chucking force of the electrostatic chuck using the Johnsenler Beck force is several hundred g / cm 2 , whereas the chucking force of the electrostatic chuck using the gradient force is It is several tens of g / cm 2 , which is not sufficient. Further, in order to exert the gradient force, it is required that the distance between the comb teeth is small as in the electrostatic chuck described in Patent Document 1, so that it is easy to discharge between the electrodes, the withstand voltage is lowered, and the dielectric breakdown occurs. There was a case to get up. In particular, since the electrodes are exposed, high vacuum is required to prevent dielectric breakdown due to discharge between the electrodes, so the glass substrate cannot be fixed at low vacuum until the inside of the processing vessel reaches vacuum. There was a shift.

また、特許文献2に記載された静電チャックでは、誘電体層を0.2〜2.0mmの厚さに形成することを特徴としておりCVD等の蒸着法で誘電体層を形成することが困難であることから焼結法を用いている。しかしながら、焼結体中に電極を埋設しその電極上に薄い誘電体層を精度良く形成することは、小型のガラス基板用の小さい静電チャックであれば可能であっても、近年大型化が著しいガラス基板に対応できる大型の静電チャックを作製することは困難である。 The electrostatic chuck described in Patent Document 2 is characterized in that the dielectric layer is formed to a thickness of 0.2 to 2.0 mm, and the dielectric layer can be formed by a vapor deposition method such as CVD. The sintering method is used because it is difficult. However, although it is possible to embed an electrode in a sintered body and to form a thin dielectric layer on the electrode with high accuracy, it is possible to use a small electrostatic chuck for a small glass substrate. It is difficult to produce a large electrostatic chuck that can cope with a remarkable glass substrate.

さらには、ガラス基板を加熱することによってガラス基板の抵抗率を1015Ω・cm以下に変化させて静電吸着させる静電チャックも提案されている(特許文献3参照)。しかしながら、特許文献3による静電チャックも同様に、焼結法により作製しているため大型のガラス基板には適用が難しいことに加え、ガラス基板を最高350℃もの高温に加熱するため静電チャックの基材とガラス基板との熱膨張の差により歪が発生してガラス基板への成膜やエッチング等の微細で精密な処理ができないという問題があった。
特開2006−66857号公報 特開2006−49852号公報 特開2005−32858号公報
Furthermore, an electrostatic chuck that electrostatically attracts the glass substrate by changing the resistivity of the glass substrate to 10 15 Ω · cm or less by heating the glass substrate has been proposed (see Patent Document 3). However, the electrostatic chuck according to Patent Document 3 is also manufactured by a sintering method, so that it is difficult to apply to a large glass substrate. In addition, the electrostatic chuck is used to heat the glass substrate to a high temperature of 350 ° C. There is a problem that distortion occurs due to the difference in thermal expansion between the base material and the glass substrate, and fine and precise processing such as film formation and etching on the glass substrate cannot be performed.
JP 2006-66857 A JP 2006-49852 A JP 2005-32858 A

そこで、本発明者は焼結法以外の方法により静電チャックの製造を検討したところ、溶射法が適用できる可能性があることを見出した。溶射法によれば、金属や金属-セラミックス複合材料等の基材を使用できるため、焼結体を用いるよりも大きさの制約が低減できる。ここで、溶射法により所定領域に膜を形成する場合、前記所定領域に応じた所定形状の開口部を有するマスキング冶具を用いることが一般的に行われている。静電チャックの櫛歯電極を所定形状に形成しようとする場合、櫛歯電極の溶射時にマスキング冶具の反りやズレが生じやすいため、精度良く櫛歯形状を溶射し難いという問題があった。 Then, when this inventor examined manufacture of an electrostatic chuck by methods other than a sintering method, it discovered that a thermal spraying method might be applicable. According to the thermal spraying method, since a substrate such as a metal or a metal-ceramic composite material can be used, the size restriction can be reduced as compared with the case of using a sintered body. Here, when a film is formed in a predetermined region by a thermal spraying method, generally, a masking jig having an opening having a predetermined shape corresponding to the predetermined region is used. When the comb-teeth electrode of the electrostatic chuck is to be formed in a predetermined shape, the masking jig is likely to be warped or misaligned during the thermal spraying of the comb-teeth electrode, which makes it difficult to spray the comb-teeth shape with high accuracy.

特に櫛歯電極の櫛歯幅や櫛歯間距離を小さくした場合には、マスキング冶具の反りやズレが生じやすく、溶射の精度不良により双極が短絡したり、電極が途切れたりすることがあった。また、マスキング冶具の厚さを大きくすれば、冶具の反り等を小さくすることは可能であるが、冶具の厚さが大きくなると櫛歯電極の櫛歯幅や櫛歯間距離によっては溶射が困難になるため、冶具を厚くすることはできない。さらに、マスキング冶具に不具合が生じないような櫛歯電極の形状に櫛歯幅や櫛歯間距離を調整すると、絶縁性ガラス基板を吸着できなくなるという問題があった。したがって、溶射により絶縁性のガラス基板を吸着できるような櫛歯電極を形成することは非常に困難であった。 In particular, when the comb tooth width and the inter-comb distance of the comb electrode are reduced, the masking jig is likely to be warped and misaligned, and the bipolar electrode may be short-circuited or the electrode may be interrupted due to poor spraying accuracy. . In addition, if the thickness of the masking jig is increased, it is possible to reduce the warpage of the jig, but if the thickness of the jig is increased, spraying is difficult depending on the comb tooth width of the comb electrode and the distance between the comb teeth. Therefore, the jig cannot be thickened. Furthermore, when the comb tooth width and the inter-comb distance are adjusted to the shape of the comb electrode that does not cause a problem in the masking jig, there is a problem that the insulating glass substrate cannot be adsorbed. Therefore, it has been very difficult to form a comb electrode that can adsorb an insulating glass substrate by thermal spraying.

本発明は、上述したような問題を解決するために見出されたものであり、絶縁性のガラス基板を吸着できるような櫛歯電極を溶射法で形成した静電チャックを提供するものである。 The present invention has been found to solve the above-described problems, and provides an electrostatic chuck in which comb-shaped electrodes capable of adsorbing an insulating glass substrate are formed by a thermal spraying method. .

本発明は、絶縁体層上の双極の櫛歯電極と、前記双極の櫛歯電極を被覆する誘電体層と、を具備する静電チャックであって、双極の櫛歯電極の櫛歯と連結軸とが重なり合った凸形状の接続部を有することを特徴とする静電チャックを提供するものである。櫛歯電極の櫛歯と連結軸とを別個に溶射して接続することで、櫛歯電極を精度良く作製できる。 The present invention relates to an electrostatic chuck comprising a bipolar comb-teeth electrode on an insulator layer and a dielectric layer covering the bipolar comb-teeth electrode, and is connected to the comb teeth of the bipolar comb-teeth electrode It is an object of the present invention to provide an electrostatic chuck characterized in that it has a convex connection portion with an axis overlapping. By combing and connecting the comb teeth and the connecting shaft of the comb electrodes separately, the comb electrodes can be manufactured with high accuracy.

また、本発明は、前記双極の櫛歯電極の櫛歯および連結軸の厚さが25〜50μm、前記双極の櫛歯電極の櫛歯と連結軸との接続部の厚さが50〜100μmであることを特徴とする静電チャックを提供するものである。上記厚さであれば、櫛歯と連結軸とが剥離することを抑制することができる。また、接続部の厚さも上記範囲であれば、剥離を生じ難く、後工程の誘電体層の溶射に及ぼす悪影響を防ぐことができる。 In the present invention, the thickness of the comb teeth and the connecting shaft of the bipolar comb electrode is 25 to 50 μm, and the thickness of the connecting portion between the comb teeth and the connecting shaft of the bipolar comb electrode is 50 to 100 μm. An electrostatic chuck is provided. If it is the said thickness, it can suppress that a comb tooth and a connection shaft peel. Further, if the thickness of the connecting portion is within the above range, peeling is unlikely to occur, and adverse effects on the thermal spraying of the dielectric layer in the subsequent process can be prevented.

また、本発明は、基材上に溶射により形成された酸化物系セラミックスからなる絶縁体層と、前記絶縁体層上に溶射により形成された双極の櫛歯電極と、前記双極の櫛歯電極を被覆するように溶射により形成された酸化物系セラミックスを主成分とする誘電体層と、を具備し、前記双極の櫛歯電極の櫛歯幅が2.5〜5.0mm、櫛歯間距離が2.5〜5.0mm、前記誘電体層の厚さが100〜600μmであることを特徴とする静電チャックを提供するものである。櫛歯電極が上記形状であって、誘電体層の厚さを上記範囲とすれば、絶縁性のガラス基板であっても、十分な吸着力で吸着することができる。 The present invention also provides an insulator layer made of an oxide-based ceramic formed by thermal spraying on a substrate, a bipolar comb-tooth electrode formed by thermal spraying on the insulator layer, and the bipolar comb-tooth electrode A dielectric layer composed mainly of an oxide-based ceramic formed by thermal spraying so as to cover the electrode, and the comb tooth width of the bipolar comb electrode is 2.5 to 5.0 mm, An electrostatic chuck having a distance of 2.5 to 5.0 mm and a thickness of the dielectric layer of 100 to 600 μm is provided. If the comb electrode has the above shape and the thickness of the dielectric layer is in the above range, even an insulating glass substrate can be adsorbed with a sufficient adsorbing force.

さらに、絶縁体層上に双極の櫛歯電極の櫛歯を溶射により形成する工程と、絶縁体層上に双極の櫛歯電極の連結軸を櫛歯の片端と重なるようにして溶射により形成する工程と、を含むことを特徴とする静電チャックの製造方法を提供する。上述のように、本製法を用いることにより、櫛歯電極を精度良く形成することができ、絶縁性ガラス基板を吸着することができる静電チャックを得ることができる。 Furthermore, the step of forming the comb teeth of the bipolar comb-teeth electrode on the insulator layer by thermal spraying, and the step of forming the connecting shaft of the bipolar comb-teeth electrode on the insulator layer by thermal spraying so as to overlap one end of the comb teeth. And a method of manufacturing an electrostatic chuck. As described above, by using this production method, the comb-shaped electrode can be formed with high accuracy, and an electrostatic chuck capable of adsorbing the insulating glass substrate can be obtained.

本発明の静電チャックによれば、櫛歯電極の櫛歯と連結軸との重なり合った凸形状の接続部を形成することで、櫛歯電極が剥離することを抑制し、精度良く作製でき、絶縁性のガラス基板であっても十分な吸着力で吸着することができる。 According to the electrostatic chuck of the present invention, by forming a convex connection portion where the comb teeth and the connecting shaft of the comb electrode overlap each other, it is possible to suppress the comb electrode from being peeled off, and to be accurately manufactured. Even an insulating glass substrate can be adsorbed with a sufficient adsorbing force.

図1に本発明に係る静電チャックの平面図、およびAA断面図を示した。平面図の点線で示した部分に櫛歯電極が埋設されている。また、図2は本発明の櫛歯電極の構成を示す模式平面図である。
図1および図2に模式的に示すように、本発明の静電チャック10は、基材1と、この基材1上に溶射により形成された酸化物系セラミックスからなる絶縁体層2と、絶縁体層2上に溶射により形成された双極の櫛歯電極3と、双極の櫛歯電極3を被覆するように溶射により形成された酸化物系セラミックスを主成分とする誘電体層4と、を具備している。図2において、Wは櫛歯電極の櫛歯幅であり、Lは櫛歯間距離である。図2に示したように、櫛歯間距離とは、双極の一方の電極の櫛歯と、もう一方の電極の櫛歯との間の距離である。
FIG. 1 shows a plan view and an AA cross-sectional view of the electrostatic chuck according to the present invention. A comb electrode is embedded in a portion indicated by a dotted line in the plan view. FIG. 2 is a schematic plan view showing the configuration of the comb electrode of the present invention.
As schematically shown in FIGS. 1 and 2, the electrostatic chuck 10 of the present invention includes a base material 1 and an insulator layer 2 made of oxide ceramics formed on the base material 1 by thermal spraying. A bipolar comb-teeth electrode 3 formed by thermal spraying on the insulator layer 2, and a dielectric layer 4 mainly composed of oxide ceramics formed by thermal spraying so as to cover the bipolar comb-teeth electrode 3; It has. In FIG. 2, W is a comb tooth width of the comb electrode, and L is a distance between comb teeth. As shown in FIG. 2, the inter-comb distance is the distance between the comb teeth of one of the bipolar electrodes and the comb teeth of the other electrode.

本発明者らは、それまで2枚の平板形状であった双極型電極について、櫛歯形状に変えたところ絶縁性のガラス基板であっても、わずかに吸着力を示すことを見出した。しかしながら、実用可能なものではなかったことから、さらに吸着力を高めるべく温度条件、櫛歯形状、および誘電体層について詳細な検討を行った結果、本発明を知見するに至った。さらに実用化を進める中で、櫛歯電極の形成に最適な電極構造および製造方法を見出した。 The inventors of the present invention have found that the bipolar electrode, which has been in the form of two flat plates so far, shows a slight adsorption force even if it is an insulating glass substrate when it is changed to a comb shape. However, since it was not practical, the present invention was discovered as a result of detailed investigation of the temperature conditions, the comb shape, and the dielectric layer in order to further increase the attractive force. Furthermore, in the course of further practical application, the inventors have found an electrode structure and a manufacturing method that are optimal for forming a comb electrode.

図3は、本発明の静電チャックの櫛歯電極の作製手順を示した概略図である。はじめに図3(イ)に示したように絶縁体層2上に櫛歯電極の櫛歯3aを溶射し、次に図3(ロ)に示したように連結軸3bを櫛歯3aの一方の端部と重なるようにして溶射する。したがって、本発明の静電チャックの櫛歯電極形状は、櫛歯電極の櫛歯3aと連結軸3bとが重なり合った凸形状の接続部3cを有した構造となっている(図4)。これは、本発明の静電チャックの製造方法に特有の形状であり、このように二段階で櫛歯電極を形成することにより、精度良く電極を形成することができる。 FIG. 3 is a schematic view showing a procedure for producing a comb-tooth electrode of the electrostatic chuck of the present invention. First, as shown in FIG. 3 (a), the comb teeth 3a of the comb-teeth electrode are sprayed on the insulator layer 2, and then the connecting shaft 3b is connected to one of the comb teeth 3a as shown in FIG. 3 (b). Thermal spray so that it overlaps the edge. Therefore, the comb electrode shape of the electrostatic chuck of the present invention has a structure having a convex connection portion 3c in which the comb teeth 3a of the comb electrode and the connecting shaft 3b overlap each other (FIG. 4). This is a shape peculiar to the manufacturing method of the electrostatic chuck of the present invention, and the electrodes can be formed with high accuracy by forming the comb electrodes in two steps.

双極の櫛歯電極の櫛歯3aおよび連結軸3bの厚さを25〜50μmとし、櫛歯と連結軸との接続部3cの厚さを50〜100μmとしたのは、櫛歯形状を精度良く形成できる範囲だからである。上述のような二段階での櫛歯電極形成であればマスキング冶具の反りやズレが生じないので、精度良く溶射できる。それに加え櫛歯電極の櫛歯および連結軸の厚さを上記範囲とすることで溶射後の絶縁体層からの電極の剥離を防止することができる。また、少なくとも25μmの厚さがあれば、電極の断線や局部負荷による電極の劣化も低減できる。さらに、その後の誘電体層4を形成する工程において接続部3cの厚さのために、誘電体層のセラミックス溶射膜が不均一になったり、平面度が出なかったりといった不具合を低減することができる。 The thickness of the comb teeth 3a and the connecting shaft 3b of the bipolar comb-teeth electrode is set to 25 to 50 μm, and the thickness of the connecting portion 3c between the comb teeth and the connecting shaft is set to 50 to 100 μm. This is because it can be formed. If the comb-teeth electrode is formed in two stages as described above, the masking jig is not warped or displaced, so that thermal spraying can be performed with high accuracy. In addition, it is possible to prevent peeling of the electrode from the insulator layer after thermal spraying by setting the thicknesses of the comb teeth and the connecting shaft of the comb electrode within the above range. In addition, if the thickness is at least 25 μm, electrode deterioration due to electrode disconnection or local load can be reduced. Further, in the subsequent step of forming the dielectric layer 4, due to the thickness of the connecting portion 3c, it is possible to reduce problems such as non-uniformity of the ceramic sprayed film of the dielectric layer and lack of flatness. it can.

平板形状から櫛歯形状に変えることにより吸着力が生じたのは、ジョンセンラーベック力に加えてグラディエント力が吸着力に作用したためと考えられる。グラディエント力を作用させるには、櫛歯幅Wや櫛歯間距離Lを小さくする必要があるが、溶射法による電極形成では精度上困難であった。また、焼結体を用いた静電チャックでは、誘電体層を精度良く形成することが困難であるという問題があった。本発明はこのような問題を一挙に解決し、溶射による電極形成が可能な櫛歯幅Wおよび櫛歯間距離Lでありながら、グラディエント力が効果的に作用するような静電チャックを提供するものである。 The reason why the attractive force is generated by changing the shape from the flat plate shape to the comb-tooth shape is considered to be that the gradient force acts on the attractive force in addition to the John Senler Beck force. In order to apply the gradient force, it is necessary to reduce the comb tooth width W and the inter-comb distance L, but it is difficult in terms of accuracy to form electrodes by the thermal spraying method. In addition, the electrostatic chuck using a sintered body has a problem that it is difficult to form a dielectric layer with high accuracy. The present invention solves such problems all at once, and provides an electrostatic chuck in which a gradient force acts effectively while having a comb tooth width W and an inter-comb distance L capable of forming electrodes by thermal spraying. Is.

櫛歯電極の櫛歯幅Wおよび櫛歯間距離Lを2.5〜5.0mmの範囲としたのは、櫛歯幅Wおよび櫛歯間距離Lが、上記範囲であれば、溶射法によって精度良く電極を形成することができ、櫛歯幅や櫛歯間距離のばらつきにより吸着力が不均一になることを低減できる。特に櫛歯間距離Lを小さくすると、溶射の精度不良により生じた櫛歯間距離の小さいところでは、放電が起き易くなるので好ましくない。逆に櫛歯幅Wおよび櫛歯間距離Lが5.0mmを超えて大きくなると所望の吸着力が得られず好ましくない。これは、5.0mmを超えて大きくなると、グラディエント力が吸着力に寄与しなくなるためである。なお、本発明では、櫛歯間距離Lが大きく形成されているため、低真空(0.05MPa程度)や大気中でも放電が起き難く、高真空でなくとも静電吸着力を作用させることができるので、より高精度にガラス基板を吸着することができる。また、大気中でも電圧を印加できることから、吸着力やリーク電流の評価が容易である。なお、櫛歯の歯を繋ぐ連結軸の幅については、特に限定しないが、連結軸付近での放電や吸着力を考慮すると、櫛歯の幅と同等であることが望ましく、連結軸と櫛歯の先端との距離も、櫛歯間距離と同等であることが望ましい。 The reason why the comb tooth width W and the inter-comb distance L are in the range of 2.5 to 5.0 mm is that the comb tooth width W and the inter-comb distance L are within the above ranges by the thermal spraying method. Electrodes can be formed with high accuracy, and the non-uniform adsorption force due to variations in the width of the comb teeth and the distance between the comb teeth can be reduced. In particular, if the inter-comb distance L is made small, it is not preferable because a discharge easily occurs at a small inter-comb distance caused by thermal spraying inaccuracy. Conversely, when the comb tooth width W and the inter-comb distance L are larger than 5.0 mm, a desired adsorption force cannot be obtained, which is not preferable. This is because the gradient force does not contribute to the adsorption force when it exceeds 5.0 mm. In the present invention, since the inter-comb distance L is formed large, it is difficult for electric discharge to occur even in a low vacuum (about 0.05 MPa) or in the atmosphere, and an electrostatic adsorption force can be applied even without a high vacuum. Therefore, the glass substrate can be adsorbed with higher accuracy. In addition, since the voltage can be applied even in the atmosphere, it is easy to evaluate the adsorption force and the leakage current. The width of the connecting shaft that connects the teeth of the comb teeth is not particularly limited. However, in consideration of the discharge and adsorption force near the connecting shaft, it is desirable that the width is equal to the width of the comb teeth. It is desirable that the distance from the tip of the wire is equal to the distance between the comb teeth.

本発明の静電チャックの適用温度は80〜150℃である。高温まで加熱すると絶縁性ガラス基板の体積抵抗率が低下して、静電吸着力を大きくすることができるが不具合も起き易くなる。具体的には、ガラス基板と静電チャックの熱膨張差によって固定精度が低下して、ガラス基板への成膜処理等に影響を及ぼす場合がある。また、静電チャックの誘電体層は酸化物系セラミックスを主成分とした溶射セラミックスに樹脂等の封孔剤を用いた封孔処理を施す場合があり、高温では封孔剤の成分が揮発したり、染み出したりしてガラス基板を汚染するおそれがある。したがって、静電チャックの適用温度としては150℃以下の低温が望ましく、さらに120℃よりも低温であれば、より望ましい。本発明の静電チャックを用いれば高温まで加熱しなくとも80〜150℃の低温で絶縁性(23℃における体積抵抗率2.2×1015Ω・cm)のガラス基板を十分な吸着力で吸着することができる。ガラス基板の加熱は、基材にトンネル状の流体経路を設けて所定温度の流体を流せるようにしたり、静電チャックをヒータ上に載せたりする方法で静電チャックを介して行うことができる。また、静電チャック内部にヒータ電極を設けても良い。 The application temperature of the electrostatic chuck of the present invention is 80 to 150 ° C. When heated to a high temperature, the volume resistivity of the insulating glass substrate is reduced, and the electrostatic adsorption force can be increased, but problems are likely to occur. Specifically, the fixing accuracy may be reduced due to a difference in thermal expansion between the glass substrate and the electrostatic chuck, which may affect the film forming process on the glass substrate. In addition, the dielectric layer of the electrostatic chuck may be subjected to a sealing treatment using a sealing agent such as a resin on thermal sprayed ceramics mainly composed of oxide ceramics. The components of the sealing agent volatilize at high temperatures. There is a risk that the glass substrate may be contaminated by oozing out. Therefore, the application temperature of the electrostatic chuck is desirably a low temperature of 150 ° C. or lower, and more desirably a temperature lower than 120 ° C. If the electrostatic chuck of the present invention is used, a glass substrate having an insulating property (volume resistivity 2.2 × 10 15 Ω · cm at 23 ° C.) at a low temperature of 80 to 150 ° C. can be obtained without sufficient heating without heating to a high temperature. Can be adsorbed. The glass substrate can be heated through the electrostatic chuck by a method in which a fluid having a predetermined temperature is allowed to flow by providing a tunnel-like fluid path in the base material or an electrostatic chuck is placed on the heater. A heater electrode may be provided inside the electrostatic chuck.

誘電体層は、酸化物系セラミックスを主成分とした溶射セラミックスである。酸化物系セラミックスとしては、Al、アルミナジルコニア、スピネル、ムライト等を用いることができる。なかでもAlが溶射膜の密着性、耐食性および体積抵抗率の調整の容易性から好ましい。Alに添加する材料としては、TiOやSiC等の導電材料が適用できる。このような導電材料を添加するのは、体積抵抗率の調整と溶射膜の密着性を高めるためである。溶射膜の密着性の観点からTiOが好適である。TiOの添加量は2.5〜20質量%で調整することにより本発明の静電チャックの適用温度に好適な誘電体層を形成することができる。 The dielectric layer is a thermal sprayed ceramic whose main component is an oxide-based ceramic. As the oxide ceramic, Al 2 O 3 , alumina zirconia, spinel, mullite, or the like can be used. Among these, Al 2 O 3 is preferable from the viewpoint of adhesion of the sprayed film, corrosion resistance, and ease of adjusting the volume resistivity. As a material to be added to Al 2 O 3 , a conductive material such as TiO 2 or SiC can be applied. The reason why such a conductive material is added is to adjust the volume resistivity and improve the adhesion of the sprayed film. From the viewpoint of adhesion of the sprayed film, TiO 2 is preferred. A dielectric layer suitable for the application temperature of the electrostatic chuck of the present invention can be formed by adjusting the amount of TiO 2 added to 2.5 to 20% by mass.

誘電体層の厚さは、100〜600μmである。100μmより薄いと耐電圧が低くなり絶縁破壊が起こりやすく、600μmより厚いと吸着力が低下するため好ましくない。これは、誘電体層が厚くなるとジョンセンラーベック力およびグラディエント力が低下するためである。したがって、誘電体層の厚さは500μm以下とすることがより望ましい。このような範囲で溶射セラミックスからなる誘電体層を形成し、さらに櫛歯幅Wおよび櫛歯間距離Lを上記範囲とし、温度条件を80〜150℃とすることで十分な吸着力が発揮される。 The thickness of the dielectric layer is 100 to 600 μm. If the thickness is less than 100 μm, the withstand voltage is lowered and dielectric breakdown is likely to occur. This is because as the dielectric layer becomes thicker, the John Senler Beck force and gradient force decrease. Therefore, the thickness of the dielectric layer is more preferably 500 μm or less. In this range, a dielectric layer made of thermal sprayed ceramics is formed, and the comb tooth width W and the inter-comb tooth distance L are in the above ranges, and the temperature condition is set to 80 to 150 ° C., so that sufficient adsorbing power is exhibited. The

本発明の静電チャックの基材としては、セラミックス、金属または金属基複合材料を用いることができるが、熱伝導性、熱膨張特性、機械的強度、耐熱性、および溶射膜との密着性を総合的に判断すると金属基複合材料が好ましい。特に、本発明の静電チャックは、80℃〜150℃に加熱して使用するため迅速な加熱および均熱性が求められることから、これらの特性に優れた金属基複合材料が好適である。 As the base material of the electrostatic chuck of the present invention, ceramics, metal, or metal matrix composite material can be used, but it has thermal conductivity, thermal expansion characteristics, mechanical strength, heat resistance, and adhesion to the sprayed film. When judging comprehensively, metal matrix composite materials are preferable. In particular, since the electrostatic chuck of the present invention is used after being heated to 80 ° C. to 150 ° C., rapid heating and soaking properties are required. Therefore, a metal matrix composite material excellent in these characteristics is suitable.

絶縁体層としては、Al、アルミナジルコニア、スピネル、ムライト等、種々の酸化物系セラミックスを用いることができる。なかでも、Alが耐食性や絶縁性の点で好ましい。 As the insulator layer, various oxide ceramics such as Al 2 O 3 , alumina zirconia, spinel and mullite can be used. Of these, Al 2 O 3 is preferable in terms of corrosion resistance and insulation.

また、櫛歯電極の電極材料としては、要求特性により選択することが可能で、Ni、Fe、Al、Mo、W、およびそれらの合金等を用いることができる。 Further, the electrode material of the comb-teeth electrode can be selected according to required characteristics, and Ni, Fe, Al, Mo, W, and alloys thereof can be used.

ここで、図1に示した本発明の静電チャックの製造方法をより詳細に説明する。静電チャックの構成として、基材;金属基複合材料、絶縁体層;Al、電極材料;Ni、誘電体層;主成分Alとした例を用いて説明する。まず基材1となる金属基複合材料を用意する。基材の形状は特に限定しないが、ガラス基板を載置する目的上、通常板形状が採用される。次に、この基材1のガラス基板を載置する側である上面に溶射法により、下地層としてのAl絶縁体層2を500μmの厚さで形成する。絶縁体層の厚さにムラができないように、基材の上面は平面度3.0μm以下に予め加工しておくことが望ましい。 Here, the manufacturing method of the electrostatic chuck of the present invention shown in FIG. 1 will be described in more detail. The structure of the electrostatic chuck will be described using an example in which a base material: a metal matrix composite material, an insulator layer: Al 2 O 3 , an electrode material: Ni, a dielectric layer; a main component Al 2 O 3 . First, a metal matrix composite material to be the base material 1 is prepared. Although the shape of a base material is not specifically limited, A plate | board shape is normally employ | adopted for the objective of mounting a glass substrate. Next, an Al 2 O 3 insulator layer 2 as a base layer is formed to a thickness of 500 μm by a thermal spraying method on the upper surface of the base 1 on which the glass substrate is placed. In order to prevent unevenness in the thickness of the insulator layer, it is desirable that the upper surface of the base material is processed in advance to have a flatness of 3.0 μm or less.

次に、Al絶縁体層2の上に溶射法により双極の櫛歯電極3を形成する。櫛歯電極の形成は、上述のように二段階での形成方法を採用している。はじめに、図3(イ)に示したような櫛歯の帯状開口部を有するマスキング冶具を用いて、電極の溶射を行う。このような櫛歯のみ開口したマスキング冶具を用いれば溶射時の反りやズレがないため、精度良く溶射が可能である。しかる後に、図3(ロ)に示したように連結軸3bの溶射を行う。このように二段階で溶射を行うのは、櫛歯電極の櫛歯と連結軸を一度に形成しようとすると、櫛歯形状を精度良く形成できないためである。上述のように従来溶射法による電極の形成は、櫛歯形状の開口部を有するマスキング冶具を使用していたが、本発明における所定の櫛歯櫛歯幅および櫛歯間距離を形成しようとすると、マスキング冶具の反りやズレが生じやすいため精度良く櫛歯形状を形成することができなかった。 Next, the bipolar comb-tooth electrode 3 is formed on the Al 2 O 3 insulator layer 2 by thermal spraying. The formation of the comb electrode employs a two-stage formation method as described above. First, the electrodes are thermally sprayed using a masking jig having a comb-shaped band-shaped opening as shown in FIG. If a masking jig having only such comb teeth is used, there is no warping or misalignment during thermal spraying, and thermal spraying can be performed with high accuracy. Thereafter, the connecting shaft 3b is sprayed as shown in FIG. The reason why the thermal spraying is performed in two stages is that if the comb teeth and the connecting shaft of the comb electrode are formed at a time, the comb tooth shape cannot be formed with high accuracy. As described above, the conventional thermal spraying method for forming an electrode uses a masking jig having a comb-shaped opening. However, when an attempt is made to form a predetermined comb-tooth width and inter-comb distance in the present invention. Since the masking jig is likely to be warped or displaced, the comb tooth shape could not be formed with high accuracy.

本発明では、連結軸の形状を除いた帯状の櫛歯形状の開口部を有するマスキング冶具と連結軸の形状の開口部を有するマスキング冶具とを用いて、二段階で溶射することにより電極を形成する。これにより、マスキング冶具の反りやズレが生じ難くなるため精度良く櫛歯電極を形成することができる。 In the present invention, an electrode is formed by thermal spraying in two stages using a masking jig having a band-like comb-shaped opening excluding the shape of the connecting shaft and a masking jig having an opening having the shape of the connecting shaft. To do. Thereby, since it becomes difficult to generate | occur | produce the curvature and shift | offset | difference of a masking jig, a comb-tooth electrode can be formed with sufficient precision.

マスキング冶具の素材としては、金属、セラミックス等種々の材質を用いることができ、マスキング冶具の厚さとしては、1.0〜7.0mmとすることができる。この範囲であれば、本発明の櫛歯電極の櫛歯および連結軸の厚さである25〜50μmの溶射膜を所望の櫛歯幅および櫛歯間距離で形成することができる。 Various materials such as metal and ceramics can be used as the material of the masking jig, and the thickness of the masking jig can be set to 1.0 to 7.0 mm. If it is this range, the sprayed film of 25-50 micrometers which is the thickness of the comb-tooth and connection shaft of the comb-tooth electrode of this invention can be formed with the desired comb-tooth width | variety and the distance between comb-tooth.

溶射により電極層を形成することで、下地層となるAl絶縁体層2および後述するAlを主成分とする誘電体層4との密着性を高めることができる。これは、前記櫛歯電極3とAl絶縁体層2とAlを主成分とする誘電体層4をいずれも溶射により形成するので、溶射層に存在するポアに、別の溶射層が入り込むことによってアンカー効果を発揮するためである。すなわち、櫛歯電極を溶射するとAl絶縁体層に存在するポアに櫛歯電極の一部が入り込み、誘電体層を溶射するとAl絶縁体層および櫛歯電極に存在するポアに誘電体層の一部が入り込むことによって各層間の結合が強固になり密着性が高まる。 By forming the electrode layer by thermal spraying, it is possible to improve the adhesion between the Al 2 O 3 insulator layer 2 serving as a base layer and the dielectric layer 4 mainly composed of Al 2 O 3 described later. This is because the comb electrode 3, the Al 2 O 3 insulator layer 2 and the dielectric layer 4 mainly composed of Al 2 O 3 are all formed by thermal spraying. This is because an anchor effect is exhibited when the sprayed layer enters. Namely, a part of the comb electrodes when spraying comb electrodes in pores present in the Al 2 O 3 insulator layer enters present in Al 2 O 3 insulator layer and comb electrodes when spraying dielectric layer pore When a part of the dielectric layer enters, the bonding between the layers is strengthened and the adhesion is improved.

櫛歯電極3を溶射により形成した後、Alを主成分とする誘電体層4を溶射する。誘電体層4は、少なくとも櫛歯電極3を被覆するように形成されれば良く、副次的にAl絶縁体層2も、櫛歯電極3の被覆に伴って被覆されて良い。したがって、図1に示された静電チャックように、双極の櫛歯電極3およびAl絶縁体層2を被覆するように誘電体層4が形成された構造を採用することができる。また、ここで、本発明の静電チャックの表面となるAlを主成分とする誘電体層は公知の方法にて封孔処理されていても良い。封孔処理で充填する処理材としては、シリカゾル、アルミナゾル、マグネシアゾルなどのコロイダル状のスラリ−、あるいは、SiO2、Al2O3、TiO2等の金属アルコキシド系ポリマ−及びこれらのポリマ−とメラミン、アクリル、フェノ−ル、フッ素、シリコン、アクリル樹脂等の各種樹脂を含有するものを使用することができる。 After the comb electrode 3 is formed by thermal spraying, the dielectric layer 4 mainly composed of Al 2 O 3 is sprayed. The dielectric layer 4 may be formed so as to cover at least the comb-tooth electrode 3, and the Al 2 O 3 insulator layer 2 may also be coated as the comb-tooth electrode 3 is coated. Therefore, a structure in which the dielectric layer 4 is formed so as to cover the bipolar comb-tooth electrode 3 and the Al 2 O 3 insulator layer 2 as in the electrostatic chuck shown in FIG. 1 can be adopted. Here, the dielectric layer mainly composed of Al 2 O 3 which becomes the surface of the electrostatic chuck of the present invention may be sealed by a known method. As the treatment material to be filled in the sealing treatment, colloidal slurry such as silica sol, alumina sol, magnesia sol, or metal alkoxide polymer such as SiO 2 , Al 2 O 3 , TiO 2 , and these polymers Those containing various resins such as melamine, acrylic, phenol, fluorine, silicon, and acrylic resin can be used.

次に、静電チャックの表面の研削加工、ラッピング加工を行い、所望の表面粗さ(Ra:0.1〜2.0μm程度)となるようにする。
外部電源5と櫛歯電極3との接続は、図1の例のように、端子接続用の穴を開けた基材に端子6を接続しても良いし、図5のように櫛歯電極3の一部を露出させて、その部分に接続しても良い。基材の穴に端子を挿入する場合、基材に導電性があると短絡してしまうおそれがあるので、端子周りを絶縁管7で保護すると良い。絶縁管7の部分は、他の形態、例えば絶縁性の充填材を入れたり、何もいれずに間隙としたりする方法も採用できる。なお、図5の断面図においては双極の片方のみ電源に接続されているが、双極のもう一方の電極が電源に接続されていることは言うまでも無い。
Next, the surface of the electrostatic chuck is ground and lapped so as to have a desired surface roughness (Ra: about 0.1 to 2.0 μm).
As for the connection between the external power supply 5 and the comb electrode 3, the terminal 6 may be connected to a base material having a hole for terminal connection as in the example of FIG. 1, or the comb electrode as shown in FIG. A part of 3 may be exposed and connected to that part. When inserting the terminal into the hole of the base material, if the base material is conductive, there is a possibility of short-circuiting. For the insulating tube 7, other forms, for example, an insulating filler or a method of forming a gap without anything can be employed. In the cross-sectional view of FIG. 5, only one of the bipolar electrodes is connected to the power source, but it goes without saying that the other electrode of the bipolar electrode is connected to the power source.

以下、試験例を用いて本発明をさらに詳細に説明する。
(1)電極形成試験
はじめに、静電チャックの電極形成試験を行った。基材として金属基複合材料(寸法:209×157mm、厚さ40mm、SiC70質量%、Al合金加圧浸透品)を用いた。まず、金属基複合材料の表面のブラスト処理を行った。次に、この基材の上面に溶射法により下地層としてのAl絶縁体層を500μmの厚さで形成した。その後、マスキング冶具(ステンレス製、厚さ5mm)を用い、Al絶縁体層上にマスキング冶具を載置してから所定厚さ(表1参照)のNiの電極を溶射した。マスキング冶具は櫛歯と連結軸とを二段階で溶射するための櫛歯または連結軸それぞれについて開口部を有するものと、櫛歯と連結軸を一度に一段階で溶射するための櫛歯および連結軸とを合わせた形状の開口部を有するものとを用いた(表1参照)。櫛歯厚さと連結軸厚さは同一とし、櫛歯幅Wおよび櫛歯間距離Lそれぞれ3mmとした。なお、櫛歯を繋ぐ連結軸の幅は3mmで一定とし、双極の一方の連結軸と他方の櫛歯の先端との距離は櫛歯間距離と同一とした。また、櫛歯電極形成の範囲は、櫛歯電極を模式的に示した図2におけるCを180mm、Dを150mmとした。それぞれの形状について10個作製し電極の剥離の有無を調べた。櫛歯電極の形成結果を表1に示す。
Hereinafter, the present invention will be described in more detail using test examples.
(1) Electrode formation test First, an electrode formation test of an electrostatic chuck was conducted. A metal matrix composite material (dimensions: 209 × 157 mm, thickness 40 mm, SiC 70 mass%, Al alloy pressure penetration product) was used as the base material. First, the surface of the metal matrix composite material was blasted. Next, an Al 2 O 3 insulator layer having a thickness of 500 μm was formed on the upper surface of the substrate by a thermal spraying method. Then, using a masking jig (made of stainless steel, thickness 5 mm), the masking jig was placed on the Al 2 O 3 insulator layer, and then a Ni electrode having a predetermined thickness (see Table 1) was sprayed. The masking jig has an opening for each of the comb teeth and the connecting shaft for spraying the comb teeth and the connecting shaft in two stages, and the comb tooth and the connecting means for spraying the comb teeth and the connecting shaft in one stage at a time. Those having an opening having a shape combined with the shaft were used (see Table 1). The comb tooth thickness and the connecting shaft thickness were the same, and the comb tooth width W and the inter-comb distance L were each 3 mm. The width of the connecting shaft connecting the comb teeth was fixed at 3 mm, and the distance between one of the bipolar connecting shafts and the tip of the other comb tooth was the same as the distance between the comb teeth. Moreover, the range of comb electrode formation was set to 180 mm for C and 150 mm for D in FIG. 2 schematically showing the comb electrode. Ten pieces were prepared for each shape, and the presence or absence of electrode peeling was examined. Table 1 shows the results of forming the comb electrodes.

櫛歯厚さおよび接続部厚さが本発明の範囲内であり、本発明の二段階(表1;二段と表記)で行う櫛歯電極形成方法を用いた試験例2〜4では、ほとんど剥離が起こらず、実用化可能なレベルであった。櫛歯と連結軸を一段階(表1;一段と表記)で溶射した試験例6および7では、ほとんどが剥離した。また、本発明の範囲外の櫛歯厚さの試験例1および試験例5のうち、櫛歯厚さの大きい試験例5では、半数以上で剥離が見られたが、櫛歯厚さの小さい試験例1では、剥離が見られなかった。したがって、剥離のほとんど見られなかった試験例1〜4について、次の試験に進めた。なお、本発明の製造方法に係る二段階で電極を形成したものでは櫛歯と連結軸の接続部の厚さはそれぞれの厚さの和に等しかった。 In Test Examples 2 to 4 in which the comb tooth thickness and the connecting portion thickness are within the scope of the present invention and the comb electrode forming method performed in two stages (Table 1; expressed as two stages) of the present invention is used. Peeling did not occur and it was at a level that could be put to practical use. In Test Examples 6 and 7, in which the comb teeth and the connecting shaft were sprayed in one step (Table 1; expressed as one step), most of them peeled off. In Test Example 1 and Test Example 5 having a comb tooth thickness outside the scope of the present invention, in Test Example 5 having a large comb tooth thickness, peeling occurred in more than half, but the comb tooth thickness was small. In Test Example 1, no peeling was observed. Therefore, it advanced to the next test about Test Examples 1-4 in which peeling was hardly seen. In the case where the electrodes were formed in two steps according to the manufacturing method of the present invention, the thicknesses of the connecting portions of the comb teeth and the connecting shaft were equal to the sum of the respective thicknesses.

(2)静電チャックの作製
上記試験に用いた試験例1〜4については、試験に用いた基材のうち評価の良好であった1つをそれぞれ試験例8〜11として、後述するように誘電体層を形成して静電チャックを作製し、評価試験に進めた。
それ以外の試験例(試験例12〜23)についても、上記試験同様、基材として金属基複合材料(寸法:209×157mm、厚さ40mm、SiC70質量%、Al合金加圧浸透品)を用い、基材表面のブラスト処理を行った後、この基材の上面に溶射法により下地層としてのAl絶縁体層を500μmの厚さで形成した。その後、マスキング冶具(ステンレス製、厚さ5mm)を用い、Al絶縁体層上にマスキング冶具を載置してから厚さ40μmのNiの電極を溶射した。マスキング冶具は櫛歯と連結軸とを二段階で溶射するための櫛歯または連結軸それぞれについて開口部を有するものを用いた。櫛歯厚さと連結軸厚さは同一とし、櫛歯電極の形状はマスキング冶具の開口部を変えて櫛歯幅Wおよび櫛歯間距離Lを調整した(表2参照)。なお、連結軸の幅は3mmで一定とし、連結軸と櫛歯の先端との距離は櫛歯間距離と同一とした。また、櫛歯電極形成の範囲は、櫛歯電極を模式的に示した図2におけるDに相当する幅を150mmとし、櫛歯幅および櫛歯間距離によって多少の差はあるもののCをおよそ180mmの幅とした。
次に、櫛歯電極およびAl絶縁体層を被覆するように誘電体層(5質量%のTiOを含むAl)を形成した。その後、誘電体層を研削加工、ラップ処理を実施し、誘電体層の厚さ(表2参照)および表面粗さ(Ra0.2μm)を調整し静電チャックを作製した。電極との接続は、図5に示したように、櫛歯電極の一部を露出させ、露出部に導線を接続した。なお、評価に使用するガラス基板は露出部にかからない大きさのものを用いた。
(2) Production of electrostatic chuck For Test Examples 1 to 4 used in the above test, one of the base materials used in the test that had a good evaluation was designated as Test Examples 8 to 11 as described later. An electrostatic chuck was fabricated by forming a dielectric layer, and the evaluation test was advanced.
For the other test examples (Test Examples 12 to 23), similarly to the above test, a metal matrix composite material (dimensions: 209 × 157 mm, thickness 40 mm, SiC 70 mass%, Al alloy pressure penetration product) was used as the base material. After blasting the substrate surface, an Al 2 O 3 insulator layer as a base layer was formed to a thickness of 500 μm on the upper surface of the substrate by a thermal spraying method. Then, using a masking jig (made of stainless steel, thickness 5 mm), the Ni mask having a thickness of 40 μm was sprayed after the masking jig was placed on the Al 2 O 3 insulator layer. As the masking jig, one having an opening for each of the comb teeth and the connecting shaft for spraying the comb teeth and the connecting shaft in two stages was used. The comb tooth thickness and the connecting shaft thickness were the same, and the shape of the comb electrode was changed by changing the opening of the masking jig to adjust the comb tooth width W and the inter-comb distance L (see Table 2). The width of the connecting shaft was fixed at 3 mm, and the distance between the connecting shaft and the tip of the comb teeth was the same as the distance between the comb teeth. The range of the comb electrode formation is such that the width corresponding to D in FIG. 2 schematically showing the comb electrode is 150 mm, and C is approximately 180 mm although there is a slight difference depending on the comb tooth width and the inter-comb distance. And the width.
Next, a dielectric layer (Al 2 O 3 containing 5% by mass of TiO 2 ) was formed so as to cover the comb electrode and the Al 2 O 3 insulator layer. Thereafter, the dielectric layer was ground and lapped, and the thickness (see Table 2) and surface roughness (Ra 0.2 μm) of the dielectric layer were adjusted to produce an electrostatic chuck. As shown in FIG. 5, the electrodes were connected by exposing a part of the comb electrodes and connecting the lead wires to the exposed portions. In addition, the glass substrate used for evaluation used the thing of the magnitude | size which does not cover an exposed part.

(2)評価
上記のようにして得られた静電チャックをヒータ上に載せて真空チャンバー内に設置し、□150mm×2mmのガラス基板(23℃における体積抵抗率が2.2×1015Ω・cm)を載置した後、静電チャックを所定温度に加熱し、大気中で、櫛歯電極間に±2000Vの電圧を印加したときの各静電チャックの吸着力を評価した。
吸着力の測定は、静電吸着させたガラス基板を垂直方向に引き上げて、ガラス基板が静電チャックの吸着面から外れたときの力を測定した。その結果を、表2にまとめて示した。
(2) Evaluation The electrostatic chuck obtained as described above is placed on a heater and placed in a vacuum chamber, and a □ 150 mm × 2 mm glass substrate (volume resistivity at 23 ° C. is 2.2 × 10 15 Ω) After placing (cm), the electrostatic chuck was heated to a predetermined temperature, and the attractive force of each electrostatic chuck when a voltage of ± 2000 V was applied between the comb electrodes in the air was evaluated.
The adsorption force was measured by pulling up the electrostatically adsorbed glass substrate in the vertical direction and measuring the force when the glass substrate was detached from the adsorption surface of the electrostatic chuck. The results are summarized in Table 2.

表2に示した結果からわかるように、本発明の範囲内であるNo.9〜11、13〜16および19〜22では100g/cm以上の吸着力が得られた。
一方、本発明の範囲外であるNo.8、12、17、18、23では十分な吸着力が得られないか、不具合により吸着力の評価ができない結果となった。櫛歯厚さが小さい試験例8では、断線や断線に伴う局部負荷による電極の劣化により吸着力のばらつきが大きく、全体として吸着力が低かった。櫛歯幅および櫛歯間距離が小さい試験例12では、櫛歯電極に電圧を印加したところ絶縁破壊が起こり、吸着力の評価ができなかった。また、櫛歯幅および櫛歯間距離が大きい試験例17では、十分な吸着力が得られなかった。誘電体層厚さが小さい試験例18では、絶縁破壊が発生し、また、誘電体層厚さの大きい試験例23では、十分な吸着力が得られなかった。
As can be seen from the results shown in Table 2, No. 1 within the scope of the present invention. For 9 to 11, 13 to 16, and 19 to 22, an adsorption force of 100 g / cm 2 or more was obtained.
On the other hand, Nos. 8, 12, 17, 18, and 23, which are out of the scope of the present invention, did not provide sufficient adsorption force, or the adsorption force could not be evaluated due to problems. In Test Example 8 in which the comb tooth thickness is small, the variation in the adsorption force is large due to the electrode deterioration due to the disconnection or the local load accompanying the disconnection, and the adsorption force is low as a whole. In Test Example 12 in which the comb tooth width and the inter-comb distance were small, when a voltage was applied to the comb electrode, dielectric breakdown occurred and the adsorptive power could not be evaluated. In Test Example 17 where the comb tooth width and the inter-comb distance were large, sufficient adsorbing power could not be obtained. In Test Example 18 in which the dielectric layer thickness was small, dielectric breakdown occurred, and in Test Example 23 in which the dielectric layer thickness was large, sufficient adsorption force was not obtained.

以上説明したように、本発明によれば、絶縁性のガラス基板を比較的低温で、十分な吸着力で吸着固定できる静電チャックが得られることが分かった。 As described above, according to the present invention, it has been found that an electrostatic chuck capable of attracting and fixing an insulating glass substrate at a relatively low temperature with a sufficient attracting force can be obtained.

次に、図6および図7に示した大型ガラス基板用の静電チャックについて実施例を示す。図6は本実施例で作製した静電チャックの櫛歯電極形状を示した全体図であり、図7は6分割された電極領域のうち、一領域を拡大して示した図である。基材(1360mm×821mm×50mm、金属基複合材料;SiC70質量%、Al合金加圧浸透品)に絶縁体層(厚さ500μm)、6分割電極(櫛歯幅3mm、櫛歯間距離3mm、電極形成範囲375mm×312.4mm)および誘電体層(厚さ500μm)を形成した。電極の形成は、櫛歯形成用のマスキング冶具と連結軸形成用のマスキング冶具(ステンレス製、厚さ5mm)とを用い、櫛歯厚さ及び連結軸厚さを40μmとして溶射を行った。電極との接続は、図7の電極領域の対角に存在する端子接続部(図7において、寸法;30mm×27mmの領域)に接続できるように基材に端子挿入穴を設けて、図1のように金属端子(低熱膨張合金;ニレジスト)を挿入し、その周りの絶縁管7に相当する部分にエポキシ樹脂を充填し固定する構成とした。静電チャックをヒータ上に載せ、櫛歯電極間に±2000Vの電圧を印加し、真空中(0.05MPa)、115℃で6箇所の分割電極上にガラス基板(405mm×342mm×2mm)を吸着させて吸着力を測定したところ、平均180g/cm2であった。さらに、同条件で大型ガラス基板(1220mm×685mm×2mm)を吸着させたところ、問題なく吸着することができた。 Next, an Example is shown about the electrostatic chuck for large sized glass substrates shown to FIG. 6 and FIG. FIG. 6 is an overall view showing the shape of the comb-teeth electrode of the electrostatic chuck produced in this example, and FIG. 7 is an enlarged view of one of the six electrode regions. Base material (1360 mm × 821 mm × 50 mm, metal matrix composite material: SiC 70% by mass, Al alloy pressure infiltration product), insulator layer (thickness 500 μm), 6-segment electrode (comb tooth width 3 mm, inter-comb distance 3 mm An electrode formation range of 375 mm × 312.4 mm) and a dielectric layer (thickness: 500 μm) were formed. The electrodes were formed by using a masking jig for forming a comb tooth and a masking jig for forming a connecting shaft (made of stainless steel, thickness 5 mm), and spraying with a comb tooth thickness and a connecting shaft thickness of 40 μm. For connection with the electrode, a terminal insertion hole is provided in the base material so that it can be connected to a terminal connection portion (in FIG. 7, an area of 30 mm × 27 mm in FIG. 7) diagonally to the electrode area of FIG. As described above, a metal terminal (low thermal expansion alloy; Ni-resist) is inserted, and a portion corresponding to the insulating tube 7 around the metal terminal is filled with epoxy resin and fixed. An electrostatic chuck is placed on the heater, a voltage of ± 2000 V is applied between the comb electrodes, and a glass substrate (405 mm × 342 mm × 2 mm) is placed on the six divided electrodes at 115 ° C. in vacuum (0.05 MPa). When the adsorption force was measured after adsorption, the average was 180 g / cm 2 . Furthermore, when a large glass substrate (1220 mm × 685 mm × 2 mm) was adsorbed under the same conditions, it could be adsorbed without problems.

本発明に係る静電チャックの平面図およびAA模式断面図である。It is the top view and AA schematic cross section of the electrostatic chuck which concern on this invention. 本発明に係る静電チャックの櫛歯電極形状を示す模式的平面図である。It is a typical top view which shows the comb-tooth electrode shape of the electrostatic chuck which concerns on this invention. 本発明に係る静電チャックの電極形成方法を示す模式図である。It is a schematic diagram which shows the electrode formation method of the electrostatic chuck which concerns on this invention. 本発明に係る静電チャックの接続部3c近傍の模式拡大断面図である。It is a model expanded sectional view of the connection part 3c vicinity of the electrostatic chuck which concerns on this invention. 本発明の他の実施形態を示す平面図およびBB模式断面図である。It is a top view and BB model sectional view showing other embodiments of the present invention. 本発明の実施例に係る静電チャックの電極形状を示す平面図である(数値は寸法mmを示す)。It is a top view which shows the electrode shape of the electrostatic chuck which concerns on the Example of this invention (a numerical value shows the dimension mm). 本発明の実施例に係る静電チャックの電極形状を示す拡大図である(数値は数法mmを示す)。It is an enlarged view which shows the electrode shape of the electrostatic chuck which concerns on the Example of this invention (a numerical value shows several-method mm).

符号の説明Explanation of symbols

1;基材
10;静電チャック
2;絶縁体層
3;双極の櫛歯電極
3a;櫛歯
3b;連結軸
3c;接続部
4;誘電体層
5;電源
6;電極端子
7;絶縁管
W;櫛歯幅
L;櫛歯間距離
DESCRIPTION OF SYMBOLS 1; Substrate 10; Electrostatic chuck 2; Insulator layer 3; Bipolar comb electrode 3a; Comb tooth 3b; Connecting shaft 3c; Connection part 4; Dielectric layer 5; ; Comb tooth width L; distance between comb teeth

Claims (5)

絶縁体層上の双極の櫛歯電極と、
前記双極の櫛歯電極を被覆する誘電体層と、を具備する静電チャックであって、
前記双極の櫛歯電極の櫛歯と連結軸とが重なり合った凸形状の接続部を有することを特徴とする静電チャック。
A bipolar comb electrode on the insulator layer;
A dielectric layer covering the bipolar comb electrode, and an electrostatic chuck comprising:
An electrostatic chuck comprising a convex connection portion in which comb teeth of the bipolar comb electrode and a connecting shaft overlap each other.
前記双極の櫛歯電極の櫛歯および連結軸の厚さが25〜50μm、
前記双極の櫛歯電極の櫛歯と連結軸との接続部の厚さが50〜100μmであることを特徴とする請求項1記載の静電チャック。
The thickness of the comb teeth and the connecting shaft of the bipolar comb electrode is 25-50 μm;
The electrostatic chuck according to claim 1, wherein a thickness of a connection portion between the comb teeth of the bipolar comb-teeth electrode and the connecting shaft is 50 to 100 μm.
基材上に溶射により形成された酸化物系セラミックスからなる絶縁体層と、
前記絶縁体層上に溶射により形成された双極の櫛歯電極と、
前記双極の櫛歯電極を被覆するように溶射により形成された酸化物系セラミックスを主成分とする誘電体層と、
を具備することを特徴とする請求項1または2記載の静電チャック。
An insulator layer made of an oxide-based ceramic formed by thermal spraying on a substrate;
A bipolar comb electrode formed by thermal spraying on the insulator layer;
A dielectric layer mainly composed of an oxide-based ceramic formed by thermal spraying so as to cover the bipolar comb-teeth electrode;
The electrostatic chuck according to claim 1, further comprising:
前記双極の櫛歯電極の櫛歯幅が2.5〜5.0mm、櫛歯間距離が2.5〜5.0mm、前記誘電体層の厚さが100〜600μmであることを特徴とする請求項1〜3記載の静電チャック。 The bipolar comb electrode has a comb tooth width of 2.5 to 5.0 mm, a distance between comb teeth of 2.5 to 5.0 mm, and a thickness of the dielectric layer of 100 to 600 μm. The electrostatic chuck according to claim 1. 絶縁体層上に双極の櫛歯電極の櫛歯を溶射により形成する工程と、
絶縁体層上に双極の櫛歯電極の連結軸を櫛歯の片端と重なるようにして溶射により形成する工程と、
を含むことを特徴とする請求項1〜4記載の静電チャックの製造方法。
Forming the comb teeth of the bipolar comb-teeth electrode on the insulator layer by thermal spraying;
Forming the connecting shaft of the bipolar comb electrode on the insulator layer by thermal spraying so as to overlap one end of the comb tooth;
The method for manufacturing an electrostatic chuck according to claim 1, comprising:
JP2007082594A 2007-03-27 2007-03-27 Electrostatic chuck and manufacturing method thereof Expired - Fee Related JP4658086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007082594A JP4658086B2 (en) 2007-03-27 2007-03-27 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007082594A JP4658086B2 (en) 2007-03-27 2007-03-27 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008244148A true JP2008244148A (en) 2008-10-09
JP4658086B2 JP4658086B2 (en) 2011-03-23

Family

ID=39915120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007082594A Expired - Fee Related JP4658086B2 (en) 2007-03-27 2007-03-27 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4658086B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058502A (en) * 2014-09-09 2016-04-21 京セラ株式会社 Sample holder
WO2020027246A1 (en) * 2018-08-02 2020-02-06 株式会社クリエイティブテクノロジー Electrostatic adsorption body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264262A (en) * 1995-03-24 1996-10-11 Matsushita Electric Ind Co Ltd Planar heat generating body
JP2004356350A (en) * 2003-05-28 2004-12-16 Kyocera Corp Electrostatic chuck
JP2005012144A (en) * 2003-06-23 2005-01-13 Kyocera Corp Electrostatic chuck
JP2005245106A (en) * 2004-02-25 2005-09-08 Kyocera Corp Electrostatic chuck
JP2006049852A (en) * 2004-06-29 2006-02-16 Toto Ltd Electrostatic chuck

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264262A (en) * 1995-03-24 1996-10-11 Matsushita Electric Ind Co Ltd Planar heat generating body
JP2004356350A (en) * 2003-05-28 2004-12-16 Kyocera Corp Electrostatic chuck
JP2005012144A (en) * 2003-06-23 2005-01-13 Kyocera Corp Electrostatic chuck
JP2005245106A (en) * 2004-02-25 2005-09-08 Kyocera Corp Electrostatic chuck
JP2006049852A (en) * 2004-06-29 2006-02-16 Toto Ltd Electrostatic chuck

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058502A (en) * 2014-09-09 2016-04-21 京セラ株式会社 Sample holder
WO2020027246A1 (en) * 2018-08-02 2020-02-06 株式会社クリエイティブテクノロジー Electrostatic adsorption body
CN112512945A (en) * 2018-08-02 2021-03-16 创意科技股份有限公司 Electrostatic absorption body
JPWO2020027246A1 (en) * 2018-08-02 2021-08-02 株式会社クリエイティブテクノロジー Electrostatic adsorbent
JP7249047B2 (en) 2018-08-02 2023-03-30 株式会社クリエイティブテクノロジー Electrostatic adsorption body
US11866281B2 (en) 2018-08-02 2024-01-09 Creative Technology Corporation Electrostatic adsorption body

Also Published As

Publication number Publication date
JP4658086B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP6119430B2 (en) Electrostatic chuck device
TWI518835B (en) Electrostatic chuck device
JP6064908B2 (en) Electrostatic chuck device
JP6319023B2 (en) Electrostatic chuck device
JPWO2014156619A1 (en) Electrostatic chuck device
JP2001189378A (en) Wafer-chucking heating apparatus
TWI709189B (en) Electrostatic chuck device
JP2016058748A (en) Electrostatic chuck device
JP2005317749A (en) Holding body for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus loaded therewith
JP2006332068A (en) Ceramic heater and apparatus mounted the same for manufacturing semiconductor or liquid crystal
JP2008244147A (en) Electrostatic chuck, manufacturing method thereof, and attraction method of glass substrate
JP4658086B2 (en) Electrostatic chuck and manufacturing method thereof
JP2008244149A (en) Electrostatic chuck and manufacturing method thereof
JP3978011B2 (en) Wafer mounting stage
JP5343802B2 (en) Electrostatic chuck device
JP7388573B2 (en) Ceramic bonded body, electrostatic chuck device, manufacturing method of ceramic bonded body
JP2001284328A (en) Ceramic part
JP3662909B2 (en) Wafer adsorption heating device and wafer adsorption device
JP4890428B2 (en) Electrostatic chuck
JP2006319344A (en) Wafer holder for semiconductor production system and semiconductor production system mounting same
JP3991887B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP4111013B2 (en) Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
JP2007194393A (en) Electrostatic chuck
TWI836170B (en) Ceramic joint body, electrostatic chuck device, and method for manufacturing ceramic joint body
JP4069875B2 (en) Wafer holding member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees