JP2008242175A - 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法 - Google Patents

薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法 Download PDF

Info

Publication number
JP2008242175A
JP2008242175A JP2007083910A JP2007083910A JP2008242175A JP 2008242175 A JP2008242175 A JP 2008242175A JP 2007083910 A JP2007083910 A JP 2007083910A JP 2007083910 A JP2007083910 A JP 2007083910A JP 2008242175 A JP2008242175 A JP 2008242175A
Authority
JP
Japan
Prior art keywords
thin film
film
laser
polymer film
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083910A
Other languages
English (en)
Inventor
Hikarizai Ken
光在 權
Takeshi Yakura
健 矢倉
Mitsuo Matsumura
光雄 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007083910A priority Critical patent/JP2008242175A/ja
Publication of JP2008242175A publication Critical patent/JP2008242175A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】有機物薄膜の精密加工において、熱アブレーション法を採用することで、被加工部へのエネルギー伝達深度を深くして加工時間を短くするとともに、熱アブレーションの際に問題となる残膜を効率的に除去しうる方法を提供し、それをカラーフィルタ用ブラックマトリックス基板の製造に適用する。
【解決手段】基板1上に有機材料からなる薄膜2を形成し、その薄膜のうち除去すべき部分にレーザー光4を照射して熱アブレーションによるパターン加工を行った後、レーザーアブレーションが施された表面全面にアッシング処理8を施すことにより、残膜7も効率的に除去されたパターンを形成する。有機薄膜2の上には、後で除去可能な高分子膜3を形成しておき、レーザーアブレーション後にその高分子膜3を除去するのが有利である。有機薄膜2を遮光性樹脂薄膜とすれば、カラーフィルタ用のブラックマトリックス基板が製造できる。
【選択図】図1

Description

本発明は、レーザー光を被加工物である有機薄膜に照射し、照射部分に発生するレーザーアブレーション現象により有機薄膜を部分的に分解・除去する薄膜パターンの形成方法に関するものである。さらに詳細には、液晶表示装置等のディスプレイ装置に用いられる光学素子、例えばカラーフィルタ、特にそのブラックマトリックスの形成に有用なパターン形成方法に関する。本発明はまた、液晶表示装置に好適に組み込まれるカラーフィルタのブラックマトリックス基板の製造方法にも関係している。
薄膜パターンの形成法としては、感光性樹脂膜に対してマスク露光を行い、光照射部に潜像を形成したのち、現像により不要部分を除去する方法(フォトリソグラフィー)が一般的であるが、高価な感光性樹脂や露光設備、フォトマスクが必要とされ、加工コストが高いことや、被加工物が薬液に対して安定である必要があることなどの制約がある。これに対して近年、フォトマスクを用いない直接加工法が提案されている。中でも、各種レーザー光を照射して有機物材料を局部的に分解・除去するレーザーアブレーション加工法が注目されている。
例えば、特開平 5-185269 号公報(特許文献1)には、被加工材料の表面に除去可能な皮膜を形成し、その上からエキシマレーザーを照射して照射部の皮膜及び被加工材料を分解除去するレーザーアブレーション加工を行い、加工後に前記皮膜とともに、レーザーアブレーションにより発生した煤を除去する方法が開示されている。
また、特開平 9-80221号公報(特許文献2)には、基板上にポリイミド系高分子有機材料をバインダーとした黒鉛を主成分とする遮光被膜材料を成膜し、そこに所定のパターンを有するマスクを介してエキシマレーザー光の照射による光分解現像を施して、遮光マトリックスを形成することが記載されており、遮光マトリックス形成後は、ブラシ水洗やアッシングで洗浄し、分解物を除去するとされている。
上記特許文献1や特許文献2で採用されているような、希ガスとハロゲンとの励起状態からの誘導発光現象を利用したエキシマレーザーは、その波長が紫外域にあることから、紫外線に強い吸収をもつ材料、例えばポリマーなどの有機物に照射すると、当該有機物内の分子が高密度に励起され、その後励起状態から瞬間的に光化学分解、すなわち光化学アブレーション現象を生じる。したがって、エキシマレーザー加工では化学分解が主体となるため、後述するNd−YAGレーザー(ネオジウム−ヤグレーザー、YAGはイットリウム・アルミニウム・ガーネット)のような赤外域のレーザーを用いた加工と比較して、溶融跡などの熱損傷が少ないクリーンな加工ができ、かつ短波長レーザーであるため、微細加工に適している。しかしながら短波長を用いることから、被加工部へのエネルギー伝達深度が浅いために加工能率が低く、さらに光源(エキシマレーザー)が高コストであるといった問題がある。
一方、Nd−YAGレーザーに代表される熱エネルギーを利用したレーザー加工は、有機物内の分子が赤外域のレーザー光を吸収すると高振動状態になり、かつ周囲の分子も振動エネルギー(熱エネルギー)によって、熱分解、すなわち光熱分解を起こし、アブレーション(蒸発)現象が生じることを利用するものである。したがってこの方式では、有機物内の分子の振動を利用するために、被加工部の周囲が熱的損傷を受けること、赤外線を用いることからスポット径を小さく絞りにくく、点加工であるためにスループットの観点から量産に適さないとされている。しかしながら長波長を用いるため、被加工部へのエネルギー伝達深度が深く、加工時間が短いという長所を有している。
次に液晶表示装置や撮像素子などで用いられるカラーフィルタは、例えば、液晶表示装置に組み込まれて表示画像をカラー化するために用いられたり、固体撮像素子に組み込まれるカラー画像を得るために用いられたりする光学素子であって、通常、ガラスやシリコンウェハー、透明樹脂などの基板上の同一平面上に互いに隣接して形成された着色パターンからなるものである。
着色パターンは、例えば、赤色(R)画素、緑色(G)画素、及び青色(B)画素からなる三原色の色画素と、各色画素の境界に形成されたブラックマトリックスとを含んでいる。ここで、各色画素は各色に着色された透明な層であり、ブラックマトリックスは黒色で可視光を実質的に透過しない層である。また必要に応じて、RGBの各画素に加え、着色されていない透明画素が形成されることもある。
こうしたカラーフィルタの製造法としては、着色感光性樹脂組成物の固形分からなる着色感光性樹脂組成物層を基板上に形成し、その樹脂組成物層にフォトマスクを介して光線を照射したのち、光線未照射領域を現像液に溶解させて着色パターンを形成するフォトリソグラフィー法(顔料分散法)が一般に知られている。一般のカラーフィルタを構成するブラックマトリックスや、赤色画素、緑色画素及び青色画素のみならず、ギャップ制御機構や液晶配向のための構造は、感光性樹脂を変えながら、繰り返しフォトリソグラフィー加工を行うことで順次形成される。
近年、高価なフォトリソグラフィーを印刷やインクジェットなどといったより安価な方法に代替することが検討されているが、ブラックマトリックスに関しては、パターン異常や残膜精度が、表示欠陥(物理的欠陥や透過率ムラなど)に直結することから、代替技術の開発は進んでいない。
特開平5−185269号公報 特開平9−80221号公報
そこで本発明の目的は、有機物薄膜の精密加工において、熱アブレーション法を採用することで、被加工部へのエネルギー伝達深度を深くして加工時間を短くするとともに、熱アブレーションの際に問題となる残膜を効率的に除去しうる方法を提供することにある。本発明のもう一つの目的は、液晶表示などに用いられるカラーフィルタのブラックマトリックス基板の製造に上記の方法を適用し、薄膜精密パターンの直接加工法を提供することにある。
すなわち、本発明による薄膜パターンの形成方法は、基板上に有機材料からなる薄膜を形成し、その薄膜のうち除去すべき部分にレーザー光を照射して熱アブレーションによるパターン加工を行った後、レーザーアブレーションが施された表面全面をアッシング処理するものである。
また、本発明によるカラーフィルタ用ブラックマトリックス基板の製造方法は、透明基板上に、遮光性顔料を含有する遮光性樹脂薄膜を形成し、その薄膜のうち除去すべき部分にレーザー光を照射して熱アブレーションによるパターン加工を行った後、レーザーアブレーションが施された表面全面をアッシング処理するものである。
このように本発明では、熱アブレーションで発生する残膜を、精密パターンを損なうことなく除去する手段として、表面アッシングを採用する。上記の薄膜パターンの形成方法又はカラーフィルタ用ブラックマトリックスの製造方法においては、有機材料からなる薄膜ないし遮光性樹脂薄膜の上に、後で除去可能な高分子膜を形成し、その高分子膜の上からレーザー光を照射して熱アブレーションによるパターン加工を行い、次いで高分子膜を除去した後、アッシング処理を行うのが好ましい。この場合、後で除去可能な高分子膜を水溶性樹脂で構成し、パターン加工後の高分子膜の除去は、水を用いた洗浄によって行うのが有利である。また、水溶性の高分子膜は、好ましくはポリビニルアルコールで形成される。
本発明によれば、従来のフォトマスク露光を用いずに所望の形状の薄膜パターンを形成することができる。そしてこの方法をカラーフィルタ用ブラックマトリックス基板の製造に適用すれば、高いパターン精度を維持しながら、所望の光学特性を有し、解像度の高い樹脂ブラックマトリックス基板を得ることができる。
図1に、本発明による薄膜パターンの形成方法又はかかる薄膜パターンが形成されたブラックマトリックス基板の製造方法について、好ましい形態を工程毎に順を追って断面模式図で示した。以下、この図も参照しながら、本発明の実施の形態を詳しく説明する。
図1に示す形態では、まず(A)に示すように、基板1の上に有機薄膜2を形成する。次に、同(B)に示すように、その有機薄膜2の上に後で除去可能な高分子膜3を形成する。その後、同(C)に示すように、有機薄膜2のうちの除去すべき部分に対応する所望の開口部6を有するマスク5を介して、レーザー光4を照射する。これによって熱アブレーション加工が行われ、レーザー光4が照射された部分の高分子膜3及び有機薄膜2が除去されて、同(D)に示すように、所望のパターンが形成される。その後、同(E)に示すように、有機薄膜2上に形成された高分子膜3を除去する。ただし、図1(D)に示すパターンが形成された状態あるいは同(E)に示す高分子膜3が除去された状態では、高分子膜3及び有機薄膜2が熱アブレーションによって除去されているとはいえ、その部分の基板1上に、薄い残膜7が残っている。そこで本発明では、図1(F)に示すように、レーザーアブレーションが施された表面全面にアッシング処理8を施す。これにより、残膜7が分解除去されて、同(G)に示すように、基板1上に有機薄膜2からなる所望のパターンが形成されたもの、例えば、ブラックマトリックス基板が完成する。
ここでは主として、前記した薄膜パターンの形成方法で規定する要件に沿って説明したが、上の説明における「有機薄膜2」を、「遮光性顔料を含有する遮光性樹脂薄膜2」と読み替えれば、前記したカラーフィルタ用ブラックマトリックス基板の製造方法の説明となる。
本発明においては、図1に示す各工程のうち、(A)の有機薄膜形成工程、(C)及び(D)のレーザー照射(熱アブレーション)によるパターン形成工程、並びに(F)及び(G)のアッシングによるパターン完成工程を必須とする。(B)の高分子膜を形成する工程は任意であるが、採用することが好ましい。後で除去可能な高分子膜3を形成する工程(B)を組み込めば、アブレーション加工のときに発生しやすい煤を、当該高分子膜3を除去する際一緒に除去することができ、完成後のパターン表面の清浄化が期待できる。したがって、高分子膜3を形成する工程(B)を組み込んだ場合は、(E)の高分子膜を除去する工程も組み込まれることになる。
レーザーアブレーション加工に使用する基板1は、特に限定されるものでなく、石英ガラス、ホウケイ酸ガラス、アルミノケイ酸ガラス、表面がシリカコートされたソーダライムガラスなどの無機ガラス類、さらには各種プラスチックフィルムやシートなどが用いられる。また、反射型液晶表示装置に用いられる金属膜付きなど、不透明基板も使用可能である。基板1の厚さは、一般的に0.1mm〜3mm 程度である。
基板1の上には、有機薄膜2を形成する。有機薄膜2は、有機材料からなり、カラーフィルタ用ブラックマトリックス基板を製造する場合は、この有機薄膜2は、ブラックマトリックス膜、すなわち、遮光性顔料を含有する遮光性樹脂薄膜で構成される。ブラックマトリックス膜に使用する材料には、金属薄膜、金属薄膜に酸化物膜や窒化物膜を積層したもの、また、遮光性顔料を含有する樹脂からなるものなどがあるが、本発明では、遮光性顔料を含有する樹脂からなるものを用いる。遮光性顔料には、金属酸化物、金属窒化物、金属硫化物、カーボンブラック、各種有機黒色顔料などがあるが、これらの中でもカーボンブラックが好ましく用いられる。すなわち、カーボンブラックを遮光性顔料として含有する遮光性樹脂膜は、色調補正もしやすいことから、好ましい。
遮光性顔料としてカーボンブラックを用いる場合には、補色用に、青色顔料又は紫色顔料をそれぞれ単独で、あるいは両者を混合して使用することができる。また、これらに加えて、金属酸化物や金属窒化物、金属硫化物などの粉末を混合してもよい。
有機薄膜2ないし遮光性樹脂膜に用いる有機材料は、一般に樹脂であり、塗膜の耐熱性や耐光性、耐溶剤性などの観点から、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ウレタン樹脂、ポリエステル樹脂、ポリオレフィン系樹脂などが、好ましいものとして挙げられる。
有機薄膜2ないし遮光性樹脂薄膜の形成方法としては、デッィプコーティング、ロールコーティング、スピンコーティング、ダイコーティング、ワイヤーバーコーティングなどが一般的に用いられるが、印刷法、転写法、電着法、真空蒸着法、電子写真法などによりこの薄膜2を形成してもよい。
有機薄膜2ないし遮光性樹脂薄膜を形成した後は、真空乾燥機、オーブン、ホットプレートなどを用いた加熱(ベーク)が行われ、乾燥される。ベーク条件は、使用する樹脂や溶剤などにより異なるが、通常、40〜200℃で1〜60分間加熱することが一般的である。
カラーフィルタ用ブラックマトリックスを形成するための遮光性樹脂薄膜は、その膜厚を0.5〜3μm程度とするのが好ましい。その理由として、膜厚が0.5μm未満の場合には遮光性が不十分になり、逆に膜厚が3μm を超えるとカラーフィルタ表面の平坦性が損なわれ、ギャップ調整が困難になる。
遮光性樹脂薄膜における遮光性の基準は、光学濃度(OD値)を指標とする。光学濃度は、透過率の逆数の常用対数で表される。遮光性樹脂薄膜の光学濃度は、液晶表示装置の表示品位を向上させるため、2.5以上、とりわけ3.5以上であるのが好ましい。この値は、遮光性樹脂薄膜の膜厚との関係で定められるものである。
レーザーアブレーション加工を行うにあたり、有機薄膜2ないし遮光性樹脂薄膜の上には、図1(B)を参照して先に説明したように、後で除去可能な高分子膜3を形成してもよい。後で除去可能な高分子膜3は、レーザーアブレーション加工の後、剥離除去あるいは洗浄による溶解除去が可能な樹脂で構成するのが好ましく、このような後で除去可能な高分子膜3の存在により、レーザーアブレーション加工の際に発生しやすい煤を、当該高分子膜3とともに容易に除去でき、パターンないしブラックマトリックスの表面の清浄化が期待できる。
高分子膜3は、水溶性の樹脂で形成するのが好ましいが、この膜3の下地に影響を及ぼさない程度であれば、アルコールや他の有機溶剤に可溶な材料で形成してもよい。水溶性樹脂には、ポリビニルアルコール、カルボキシメチルセルロース、ポリエチレングリコール、ポリビニルピロリドンなどがあり、また、アルコールに可溶な樹脂には、ナイロン、ポリエチレングリコール、ポリビニルブチラールなどある。一方、その他の有機溶剤に可溶な樹脂としては、ポリスチレン、ポリ塩化ビニル、ポリエステル樹脂など、多くの汎用熱可塑性樹脂が挙げられる。
図1(C)に示すレーザーアブレーション加工においては、熱アブレーションを採用する。熱アブレーションとは、先述の如く、レーザー照射された部分の有機物分子がレーザー光を吸収して高振動状態になり、かつ周囲の分子も振動エネルギー(熱エネルギー)によって光熱分解を起こし、アブレーション(蒸発)現象が生じることを利用するものである。熱アブレーションに用いるレーザー光源は、樹脂成分の化学結合に影響しないものであればよく、その波長は一般に紫外線よりも長い波長、具体的には380nm以上である。レーザー光源の波長は、好ましくは500nm以上であり、より好ましくは赤外線レーザーが用いられる。一方、加工物の解像度の観点から、レーザーの波長は10μm 以下であることが好ましく、特に発振周波数1kHz 以上のパルスレーザーが好ましい。このようなレーザー光源としては、サファイア、イットリウム・アルミニウム・ガーネット(YAG)などの固体レーザーや、半導体レーザーを例示することができる。
レーザー光のエネルギー密度は、タクトタイムの短縮を図るうえで重要な要素である。エネルギー密度が大きすぎると、塗膜のみならず下地基板表面へのダメージを及ぼす可能性がある。一方、エネルギー密度が小さすぎると、塗膜がアブレーションされないか、若しくはアブレーション加工時間が長くなる可能性がある。したがって、最適なエネルギー密度を得るには、レーザー光の出力を制御できること、連続光ではなく、ある一定条件下での周波数でパルス発振されたレーザー光を用いること、ショットの回数によって、塗膜材料の種類や塗膜の膜厚に応じた条件下での加工を行うことが望ましい。このような観点から、有機薄膜2の膜厚を 0.5〜3μm とした場合、レーザー光のエネルギー密度は、0.1〜5J/cm2 程度の範囲から、塗膜材料の種類や塗膜の膜厚に合わせて選択するのが好ましい。
微細加工を行う目的で、図1(C)を参照して先に説明したように、レーザー光路の途中にマスク5を使用してもよい。マスク5の材料に特別な制限はなく、シリコン、銅、ステンレス鋼(SUS)などからなる金属マスクを、それぞれ単独で用いることができるほか、それらの2種以上を併用してもよい。また、マスク5には加工部形状に対応した開口部6を単独で設けてもよいが、加工効率を上げるために複数の開口部6を設けてもよい。
図1(B)に示すような後で除去可能な高分子膜3を設けた場合には、レーザーアブレーション後、同(E)に示すように、高分子膜3の除去を行う。高分子膜3を水溶性樹脂で構成した場合、それの除去は、水を用いた洗浄によって行われる。洗浄に用いる水は、純水であってもよいし、適当な溶質を含む水溶液であってもよい。洗浄法としては、当該高分子膜3の溶解度にもよるが、浸漬法、シャワーリング法、高圧スプレー法などが採用でき、それぞれ単独で適用してもよいし、複数種を組み合わせて適用してもよい。
熱アブレーション加工では、有機薄膜がレーザーのエネルギーを吸収することで、その部分を蒸発させて除去する加工が可能となるが、加工部分に薄い残膜7が残存することがある。その原因は必ずしも明確でないが、被加工物が薄膜状の場合には、膜に吸収されたレーザー光のエネルギー(熱)が下地(例えばガラス)に放熱されてしまうため、被加工物の分解が基板面まで進まないことが考えられている。
そこで本発明では、レーザーアブレーションによるパターン形成後、また図1(B)に示すように後で除去可能な高分子膜3を予め形成した場合には、レーザーアブレーション後に当該高分子膜3を除去してから、図1(F)に示すように、レーザーアブレーションが施された表面全面にアッシング処理8を施す。これにより、上述の如き薄い残膜7が分解除去され、アブレーション加工が施された部分に高い透過率を確保する。ここでアッシング(ashing)とは、有機物の最表面だけ酸化させ、除去する処理をいう。
薄い残膜7の除去に利用可能なアッシング法としては、酸素プラズマを用いる方法や、紫外線(UV)とオゾンを用いる方法などを挙げることができる。酸素プラズマによるアッシングは、半導体製造におけるドライエッチング後のレジスト除去に用いられることが多く、また紫外線とオゾンによるアッシングは、液晶セル基板やカラーフィルタ基板の表面処理に用いられることが多い。いずれも、雰囲気中に酸素ラジカルを発生させ、有機物の最表面のみ酸化処理することで、表面の親水化や、膜表面の付着汚染物質の除去を行うといわれている。
紫外線とオゾンによるアッシングに使用する紫外線ランプの種類は、特に限定されるものでないが、酸素ガス及びオゾンガスの両方に作用して活性酸素を生じさせる波長領域で発光するものが望ましい。また、紫外線とオゾンによるアッシングでは、紫外線の照射量によってアッシングの効果が変わってくることから、紫外線照射量を一定値以上とすることが好ましく、具体的には、1J/cm2 以上、さらには3J/cm2 以上とするのが好ましい。
以下に実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。例中、含有量ないし使用量を表す部及び%は、特記ない限り重量基準である。
[実施例1]
黒色樹脂膜形成用の塗料として、新日鐵化学(株)から販売されているブラックレジスト(型番“V-259 BK66”、黒色顔料入りのネガ型レジスト)を用いた。ガラス基板上に上記のブラックレジストをスピンコーターにより塗布した。光学特性から、乾燥後の膜厚が1.2μmとなるように塗布条件を調整した。塗布後、150℃のホットプレート上に15分間置き、乾燥させて、黒色樹脂膜を形成した。
次に、上記黒色樹脂膜上に 1.0%ポリビニルアルコール水溶液をスピンコーターにより塗布し、ポリビニルアルコール膜を形成した。この際、乾燥後の膜厚が0.5μmとなるように、塗布条件を調整した。塗布後、50℃のホットプレート上に40秒間置き、乾燥させて、レーザーアブレーション加工前の塗膜を完成させた。
黒色樹脂膜とポリビニルアルコール膜で形成された上記塗膜に対し、金属シリコン製のステンシルマスクを介して、パターンとして削り取られるべき領域にNd−YAGレーザー(波長1,064nm )を照射し、レーザーアブレーション加工を行った。このときのレーザー加工条件は、発振周波数7,500Hz、エネルギー密度0.9J/cm2とした。
アブレーション加工後の基板を、24℃に保たれた 0.5%濃度の水酸化カリウム水溶液に90秒間浸漬し、ポリビニルアルコール膜の剥離洗浄を行い、樹脂ブラックマトリックス基板を作製した。この状態において、アブレーション加工部分を光学顕微鏡で観察すると、ブラックマトリックスパターンは高い解像度で得られているものの、アブレーション加工部分に薄い残膜が観察された。このときのアブレーション加工部分について、大塚電子(株)製の微小分光光度計を用いて、可視光領域の分光透過率を測定し、その結果を図2の(A)にプロットした。
上記の残膜が残った状態のブラックマトリックス基板を、紫外線/オゾンアッシング装置に通し、室温で、紫外線照射量を3,000mJ/cm2及び8,000mJ/cm2の2水準に変えてアッシングした。
アッシング後の上記ブラックマトリックス基板のレーザーアブレーション加工部分について、大塚電子(株)製の微小分光光度計を用いて可視光領域の分光透過率を測定し、紫外線照射量3,000mJ/cm2でアッシングしたときの分光透過率を図2の(B)に、また紫外線照射量8,000mJ/cm2でアッシングしたときの分光透過率を同(C)にプロットした。図2において、(B)の曲線と(C)の曲線はほとんど重なっており、紫外線照射量2水準のいずれにおいても処理前の(A)に比べて透過率が大幅に改善され、可視光領域の全域に渡って95%以上の透過率を得ることができた。また、2水準のいずれのアッシングを施した場合も、ブラックマトリックスパターンは紫外線照射による影響がなく、解像度の高いパターンを維持していた。
[比較例1]
比較例として、ガラス基板上に実施例1と同様の黒色樹脂膜を形成し、ポリビニルアルコール膜の形成は行わず、黒色樹脂膜の上に直接、実施例1と同じ条件でレーザーアブレーション加工を行い、さらに水によるフラッシュ洗浄を行って、ブラックマトリックス基板を作製した。このブラックマトリックス基板のアブレーション加工部分について、可視光領域での分光透過率を測定したところ、可視光領域の全域に渡って透過率が90%以下であり、所望する光学特性を得ることができなかった。
本発明による薄膜パターンの形成方法又はブラックマトリックス基板の製造方法について、好ましい形態を工程毎に順を追って示す断面模式図である。 実施例1において、アッシングを施す前(A)及び紫外線照射量を変えてアッシングを施した後(B,C)のアブレーション加工部分の分光透過率を示す図である。
符号の説明
1……基板、
2……有機薄膜(遮光性樹脂薄膜)、
3……後で除去可能な高分子膜、
4……レーザー光、
5……マスク、
6……マスクの開口部、
7……アブレーション加工部の残膜、
8……アッシング。

Claims (7)

  1. 基板上に有機材料からなる薄膜を形成し、該薄膜のうち除去すべき部分にレーザー光を照射して熱アブレーションによるパターン加工を行った後、レーザーアブレーションが施された表面全面をアッシング処理することを特徴とする、薄膜パターンの形成方法。
  2. 有機材料からなる薄膜の上に、後で除去可能な高分子膜を形成し、該高分子膜の上からレーザー光を照射して熱アブレーションによるパターン加工を行い、次いで該高分子膜を除去した後、アッシング処理を行う請求項1に記載の方法。
  3. 後で除去可能な高分子膜が水溶性であり、パターン加工後の高分子膜の除去が、水を用いた洗浄によって行われる請求項2に記載の方法。
  4. 透明基板上に、遮光性顔料を含有する遮光性樹脂薄膜を形成し、該薄膜のうち除去すべき部分にレーザー光を照射して熱アブレーションによるパターン加工を行った後、レーザーアブレーションが施された表面全面をアッシング処理することを特徴とする、カラーフィルタ用ブラックマトリックス基板の製造方法。
  5. 遮光性樹脂薄膜の上に、後で除去可能な高分子膜を形成し、該高分子膜の上からレーザー光を照射して熱アブレーションによるパターン加工を行い、次いで該高分子膜を除去した後、アッシング処理を行う請求項4に記載の方法。
  6. 後で除去可能な高分子膜が水溶性であり、パターン加工後の高分子膜の除去が、水を用いた洗浄によって行われる請求項5に記載の方法。
  7. 後で除去可能な高分子膜がポリビニルアルコールで形成される請求項6に記載の方法。
JP2007083910A 2007-03-28 2007-03-28 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法 Pending JP2008242175A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083910A JP2008242175A (ja) 2007-03-28 2007-03-28 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083910A JP2008242175A (ja) 2007-03-28 2007-03-28 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法

Publications (1)

Publication Number Publication Date
JP2008242175A true JP2008242175A (ja) 2008-10-09

Family

ID=39913605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083910A Pending JP2008242175A (ja) 2007-03-28 2007-03-28 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法

Country Status (1)

Country Link
JP (1) JP2008242175A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242730A (ja) * 2010-05-21 2011-12-01 Wise Micro Technology Corp カラー表示装置
JP2014013341A (ja) * 2012-07-05 2014-01-23 Toshiba Corp ホログラム生成方法、及びホログラム生成装置
WO2015106545A1 (zh) * 2014-01-14 2015-07-23 京东方科技集团股份有限公司 薄膜层图案的制作方法、显示基板及其制作方法、显示装置
KR101552989B1 (ko) * 2009-07-29 2015-09-15 엘지디스플레이 주식회사 미세 패턴 형성방법 및 이를 이용한 액정표시장치의 제조방법
CN112262328A (zh) * 2018-05-10 2021-01-22 信越聚合物株式会社 光控滤光片
CN112394438A (zh) * 2019-08-19 2021-02-23 东京应化工业株式会社 滤色器的制造方法、滤色器、及树脂组合物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552989B1 (ko) * 2009-07-29 2015-09-15 엘지디스플레이 주식회사 미세 패턴 형성방법 및 이를 이용한 액정표시장치의 제조방법
JP2011242730A (ja) * 2010-05-21 2011-12-01 Wise Micro Technology Corp カラー表示装置
JP2014013341A (ja) * 2012-07-05 2014-01-23 Toshiba Corp ホログラム生成方法、及びホログラム生成装置
WO2015106545A1 (zh) * 2014-01-14 2015-07-23 京东方科技集团股份有限公司 薄膜层图案的制作方法、显示基板及其制作方法、显示装置
US9502444B2 (en) 2014-01-14 2016-11-22 Boe Technology Group Co., Ltd. Method for forming a thin-film layer pattern, display substrate and manufacturing method thereof, and display device
CN112262328A (zh) * 2018-05-10 2021-01-22 信越聚合物株式会社 光控滤光片
CN112262328B (zh) * 2018-05-10 2023-05-02 信越聚合物株式会社 光控滤光片
CN112394438A (zh) * 2019-08-19 2021-02-23 东京应化工业株式会社 滤色器的制造方法、滤色器、及树脂组合物
JP2021032944A (ja) * 2019-08-19 2021-03-01 東京応化工業株式会社 カラーフィルターの製造方法、カラーフィルター、及び樹脂組成物
JP7452959B2 (ja) 2019-08-19 2024-03-19 東京応化工業株式会社 カラーフィルターの製造方法、カラーフィルター、及び樹脂組成物

Similar Documents

Publication Publication Date Title
US7867688B2 (en) Laser ablation resist
US10364179B2 (en) Method for manufacturing glass cliche using laser etching and apparatus for laser irradiation therefor
KR20090122457A (ko) 열전사층에 무기층을 증착시키는 방법
JP2008242175A (ja) 薄膜パターンの形成方法及びカラーフィルタ用ブラックマトリックス基板の製造方法
KR100866499B1 (ko) 폴리머 마스크의 수리 방법
JP2006523552A (ja) 伝導性カーボンブラックを含むレーザー彫刻可能なフレキソ印刷要素及びフレキソ印刷版の製造
JP5275275B2 (ja) 基板処理方法、euvマスクの製造方法、euvマスクおよび半導体装置の製造方法
EP1353224A1 (en) Cleaning of a pellicle-mask assembly
JP2004053971A (ja) カラーフィルタの製造方法およびカラーフィルタ修正用装置
WO2007136183A1 (en) Method of repairing a polymer mask
KR19990088109A (ko) 웨트에칭방법및장치
JP2004077904A (ja) カラーフィルタの製造方法
JP4930740B2 (ja) カラーフィルタの欠陥修正方法
US20190247896A1 (en) Method and apparatus for cleaning a substrate and computer program product
JP2989809B2 (ja) エマルジョンマスク等の欠陥修正方法
JP2002082217A (ja) カラーフィルタ異物除去方法
JP5182126B2 (ja) カラーフィルタ基板の修正方法
JP2008032886A (ja) ブラックマトリクス基板の製造方法及びカラーフィルタの製造方法並びに有機エレクトロルミネッセンス素子の製造方法
JP2007240715A (ja) カラーフィルタの製造方法
JP2000162423A (ja) カラーフィルターの製造方法
KR20200108658A (ko) 희생층을 이용한 광 유도 전사 방법
JP2008203718A (ja) 樹脂bm基板の残渣除去方法及びカラーフィルタの製造方法
JP2006098527A (ja) パターン形成体の製造方法
JP2002139617A (ja) カラーフィルターの製造方法
JPH11281814A (ja) カラーフィルタの製造方法