JP2008239535A - Continuous method for producing dihydroxybenzene derivative - Google Patents

Continuous method for producing dihydroxybenzene derivative Download PDF

Info

Publication number
JP2008239535A
JP2008239535A JP2007081070A JP2007081070A JP2008239535A JP 2008239535 A JP2008239535 A JP 2008239535A JP 2007081070 A JP2007081070 A JP 2007081070A JP 2007081070 A JP2007081070 A JP 2007081070A JP 2008239535 A JP2008239535 A JP 2008239535A
Authority
JP
Japan
Prior art keywords
general formula
hydroxyphenyl
ester
compound represented
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081070A
Other languages
Japanese (ja)
Other versions
JP5236887B2 (en
Inventor
Katsuhiko Machida
勝彦 町田
Homare Yumoto
誉 湯本
Hideyuki Fujioka
秀行 藤岡
Tomohiro Kano
智浩 鹿野
Takashi Kobayashi
剛史 小林
Kiyoya Kido
清弥 城戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2007081070A priority Critical patent/JP5236887B2/en
Publication of JP2008239535A publication Critical patent/JP2008239535A/en
Application granted granted Critical
Publication of JP5236887B2 publication Critical patent/JP5236887B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a dihydroxybenzene derivative from dihydroxybenzene represented by resorcin and a divalent carboxylic acid halide. <P>SOLUTION: The method for producing a dihydroxybenzene derivative comprises (a) a process of dissolving or suspending dihydroxybenzene in a substantially water-immiscible organic solvent and partially neutralizing the solution or suspension with a basic compound, (b) a process (esterification reaction process) of successively reacting the resulting product with a carboxylic acid halide while dripping and feeding it, (c) a process (oligomer decomposition process) of heat-treating the reaction product at a temperature higher than a temperature in the esterification reaction and (d) a process of bringing the mixture prepared by the process (c) into contact with water and continuously precipitating a crystallized product. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材との接着耐久性を向上させる目的で使用されるレゾルシンジエステル系化合物に代表されるジヒドロキシベンゼン誘導体の製造方法に関する。   The present invention relates to a dihydroxybenzene derivative represented by a resorcin diester compound used for the purpose of improving adhesion durability with a metal reinforcing material such as a steel cord used for rubber articles such as pneumatic tires and industrial belts. It relates to a manufacturing method.

自動車用タイヤ、コンベアベルト、ホース等、特に強度が要求されるゴム製品には、ゴムを補強し強度、耐久性を向上させる目的で、スチールコード等の金属補強材をゴム組成物で被覆した複合材料が用いられている。該ゴム−金属複合材料が高い補強効果を発揮し信頼性を得るためにはゴム−金属補強材間に混合、配合、貯蔵等の条件に左右されない安定した接着が必要である。かかる複合体を得るには、亜鉛、黄銅、真鍮等でメッキされたスチールコード等の金属補強材を、硫黄を配合したゴム組成物に埋設し加熱加硫時に、ゴムの加硫と同時に接着させるいわゆる直接加硫接着が広く用いられており、これまで該直接加硫接着におけるゴム−金属補強材間の接着性、特に耐湿熱接着性向上のため様々な検討が行われている。   For rubber products that require particularly high strength, such as automobile tires, conveyor belts, hoses, etc., composites in which a metal reinforcing material such as a steel cord is coated with a rubber composition to reinforce the rubber and improve its strength and durability. Material is used. In order for the rubber-metal composite material to exhibit a high reinforcing effect and to obtain reliability, stable adhesion that is not affected by the conditions of mixing, blending, storage and the like is necessary between the rubber-metal reinforcing material. In order to obtain such a composite, a metal reinforcing material such as a steel cord plated with zinc, brass, brass or the like is embedded in a rubber composition containing sulfur, and is adhered at the same time as rubber vulcanization at the time of heat vulcanization. So-called direct vulcanization bonding has been widely used, and various studies have been made so far in order to improve the adhesion between the rubber and the metal reinforcing material in the direct vulcanization bonding, particularly the wet heat resistance.

例えば、レゾルシン又は、レゾルシンとホルマリンを縮合して得られる、レゾルシン−ホルムアルデヒド樹脂(以下、「RF樹脂」と略記する。)を耐湿熱接着性向上の目的で配合したゴム組成物が報告されている(特許文献1)。   For example, there has been reported a rubber composition containing resorcin or resorcin-formaldehyde resin (hereinafter abbreviated as “RF resin”) obtained by condensing resorcin and formalin for the purpose of improving moisture and heat resistance. (Patent Document 1).

また、重量平均分子量が3000〜45000のレゾルシン骨格を有する混合ポリエステルからなる、接着材料が報告されている(特許文献2)。   In addition, an adhesive material made of a mixed polyester having a resorcin skeleton having a weight average molecular weight of 3000 to 45000 has been reported (Patent Document 2).

一方、我々は上記技術よりもさらに耐湿熱接着性を向上したものとしてレゾルシンジエステル系化合物および組成物を報告している(特許文献3)。しかしながら、該レゾルシンジエステル系化合物に代表されるジヒドロキシベンゼン誘導体を単離する際、回分式の晶析操作を実施する場合には、生産スケールの大型化に伴い、晶析工程に使用する装置サイズが過大になるため、より効率的な製造方法が必要であった。
特開2001−234140号公報 特開平7−118621号公報 WO2005−087704号公報
On the other hand, we have reported a resorcin diester compound and a composition having improved wet heat resistance compared to the above technique (Patent Document 3). However, when isolating a dihydroxybenzene derivative typified by the resorcin diester compound, when carrying out a batch-type crystallization operation, as the production scale increases, the size of the apparatus used for the crystallization process is reduced. Since it becomes excessive, a more efficient manufacturing method was required.
JP 2001-234140 A JP-A-7-118621 WO2005-087704 gazette

本発明は、レゾルシンに代表されるジヒドロキシベンゼンと2価カルボン酸ハライドとを反応させてレゾルシンジエステル系化合物に代表されるジヒドロキシベンゼン誘導体を製造する方法を提供するものである。   The present invention provides a method for producing a dihydroxybenzene derivative typified by a resorcin diester compound by reacting dihydroxybenzene typified by resorcin with a divalent carboxylic acid halide.

本発明者らは鋭意検討した結果、連続式の晶析工程を含む製造方法によって、効率良くジヒドロキシベンゼン誘導体を製造できる事を見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a dihydroxybenzene derivative can be efficiently produced by a production method including a continuous crystallization process, and have completed the present invention.

即ち本発明は、
[1](a)実質的に水と不混和性の有機溶媒に一般式(1)で表される化合物
That is, the present invention
[1] (a) A compound represented by the general formula (1) in an organic solvent substantially immiscible with water

Figure 2008239535
Figure 2008239535

を溶解または懸濁し、塩基性化合物で部分中和する工程、
(b)続いて一般式(2)で表されるカルボン酸ハライド
Dissolving or suspending and partially neutralizing with a basic compound,
(B) Subsequently, a carboxylic acid halide represented by the general formula (2)

Figure 2008239535
Figure 2008239535

(式中Rは炭素数1〜16の脂肪族基、2価の芳香族基を表し、Xはハロゲン原子を表す。)
を滴下装入しつつ反応させる工程、
(c)エステル化反応時の温度よりも高い温度で熱処理する工程、
(d)前記(c)で得られた混合物を水と接触させて連続的に晶析し生成物を析出させる工程
からなる事を特徴とする一般式(3)で表される化合物の製造方法である。
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group, and X represents a halogen atom.)
A step of reacting while charging dropwise,
(C) a step of heat-treating at a temperature higher than the temperature during the esterification reaction;
(D) A process for producing a compound represented by the general formula (3), which comprises a step of bringing the mixture obtained in (c) above into contact with water and continuously crystallizing to precipitate a product. It is.

Figure 2008239535
Figure 2008239535

(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表す。)
[2]一般式(3)で表される化合物が、下記一般式(4)
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group.)
[2] The compound represented by the general formula (3) is represented by the following general formula (4).

Figure 2008239535
Figure 2008239535

(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表す。)
で表される化合物である[1]に記載の製造方法。
[3]一般式(4)で表される化合物中に、下記一般式(5)で表される化合物が0〜30%含まれる事を特徴とする[1]〜[2]のいずれかに記載の製造方法。
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group.)
[1] The production method according to [1].
[3] The compound represented by the general formula (4) contains 0 to 30% of a compound represented by the following general formula (5), according to any one of [1] to [2] The manufacturing method as described.

Figure 2008239535
Figure 2008239535

(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表し、nは2〜6の整数を示す。) (In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group, and n represents an integer of 2 to 6).

本発明によれば、空気入りタイヤや工業用ベルト等のゴム物品に用いられるスチールコード等の金属補強材との接着耐久性を向上させる目的で使用されるレゾルシンジエステル系化合物に代表されるジヒドロキシベンゼン誘導体の効率的な連続式製造方法を提供する事が出来る。   According to the present invention, dihydroxybenzene typified by resorcin diester compounds used for the purpose of improving adhesion durability with metal reinforcing materials such as steel cords used in rubber articles such as pneumatic tires and industrial belts. An efficient continuous production method for derivatives can be provided.

以下に、本発明を詳細に説明する。
本発明に使用される一般式(1)で表される化合物としては、カテコール、レゾルシンおよびハイドロキノンが挙げられる。これらの中ではレゾルシンが好ましい。
The present invention is described in detail below.
Examples of the compound represented by the general formula (1) used in the present invention include catechol, resorcin and hydroquinone. Of these, resorcin is preferred.

本発明に使用される一般式(2)で表されるカルボン酸ハライドにおいて、Rは炭素数1〜16の脂肪族基あるいは2価の芳香族基を表す。炭素数1〜16の脂肪族基としては、例えば、メチレン基、エチレン基、ブチレン基、イソブチレン基、オクチレン基、2−エチルヘキシレン基等の直鎖または分岐鎖のアルキレン基、エチレニル基、ブチレニル基、オクチレニル基等の直鎖または分岐鎖のアルケニル基、これらのアルキレン基又はアルケニル基の水素原子がヒドロキシル基又はアミノ基等で置換されたアルキレン基またはアルケニレン基、シクロヘキシル基等の脂環式基が挙げられる。一方、2価の芳香族基としては、置換されていても良いフェニレン基あるいは置換されていても良いナフチレン基、ビフェニル基、ジフェニルエーテル基等が挙げられる。これらの中でも入手の容易さ等を考慮すれば、炭素数2〜10のアルキレン基およびフェニレン基が望ましく、特にエチレン基、ブチレン基又はオクチレン基が好ましい。   In the carboxylic acid halide represented by the general formula (2) used in the present invention, R represents an aliphatic group having 1 to 16 carbon atoms or a divalent aromatic group. Examples of the aliphatic group having 1 to 16 carbon atoms include a linear or branched alkylene group such as a methylene group, an ethylene group, a butylene group, an isobutylene group, an octylene group, and a 2-ethylhexylene group, an ethylenyl group, and a butyrenyl group. Group, linear or branched alkenyl group such as octylenyl group, alkylene group or alkylene group in which hydrogen atom of alkenyl group is substituted with hydroxyl group or amino group, alkenylene group, alicyclic group such as cyclohexyl group Is mentioned. On the other hand, examples of the divalent aromatic group include an optionally substituted phenylene group or an optionally substituted naphthylene group, biphenyl group, and diphenyl ether group. Among these, in view of availability, an alkylene group having 2 to 10 carbon atoms and a phenylene group are desirable, and an ethylene group, a butylene group, or an octylene group is particularly desirable.

本発明に使用される一般式(2)で表されるカルボン酸ハライドにおいて、Xで示されるハロゲン原子としては、塩素、臭素が好ましい。   In the carboxylic acid halide represented by the general formula (2) used in the present invention, the halogen atom represented by X is preferably chlorine or bromine.

本発明に使用される一般式(2)で表されるカルボン酸ハライドとしては、マロン酸ジクロライド、コハク酸ジクロライド、フマル酸ジクロライド、マレイン酸ジクイロライド、グルタル酸ジクロライド、アジピン酸ジクロライド、スベリン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、1.10−デカンジカルボン酸ジクロライド、1,12−ドデカンジカルボン酸ジクロライド、1,16−ヘキサデカン酸ジクロライド等の脂肪族カルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、シクロヘキセンジカルボン酸ジクロライド等の脂環式ジカルボン酸ジクロライド、イソフタル酸ジクロライド、テレフタル酸ジクロライド等の芳香族ジカルボン酸クロライド、マロン酸ジブロマイド、コハク酸ジブロマイド、フマル酸ジブロマイド、マレイン酸ジブロマイド、グルタル酸ジブロマイド、アジピン酸ジブロマイド、スベリン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、1.10−デカンジカルボン酸ジブロマイド、1,12−ドデカンジカルボン酸ジブロマイド、1,16−ヘキサデカン酸ジブロマイド等の脂肪族カルボン酸ジブロマイド、シクロヘキサンジカルボン酸ジブロマイド、シクロヘキセンジカルボン酸ジブロマイド等の脂環式ジカルボン酸ジブロマイド、イソフタル酸ジブロマイド、テレフタル酸ジブロマイド等の芳香族ジカルボン酸ブロマイドが挙げられる。これらの中でも、マロン酸ジクロライド、コハク酸ジクロライド、アジピン酸ジクロライド、アゼライン酸ジクロライド、セバシン酸ジクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、マロン酸ジブロマイド、コハク酸ジブロマイド、アジピン酸ジブロマイド、アゼライン酸ジブロマイド、セバシン酸ジブロマイド、テレフタル酸ジブロマイド、イソフタル酸ジブロマイド等が好ましい。   Examples of the carboxylic acid halide represented by the general formula (2) used in the present invention include malonic acid dichloride, succinic acid dichloride, fumaric acid dichloride, maleic acid dichloride, glutaric acid dichloride, adipic acid dichloride, suberic acid dichloride, and azelain. Acid dichloride, sebacic acid dichloride, 1.10-decane dicarboxylic acid dichloride, 1,12-dodecane dicarboxylic acid dichloride, 1,16-hexadecanoic acid dichloride, etc., aliphatic carboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, cyclohexene dicarboxylic acid dichloride, etc. Aromatic dicarboxylic acid dichloride, isophthalic acid dichloride, terephthalic acid dichloride aromatic dicarboxylic acid chloride, malonic acid dibromide, succinic acid Bromide, fumaric acid dibromide, maleic acid dibromide, glutaric acid dibromide, adipic acid dibromide, suberic acid dibromide, azelaic acid dibromide, sebacic acid dibromide, 1.10-decanedicarboxylic acid dibromide, 1,12 -Aliphatic dicarboxylic acid dibromide such as aliphatic carboxylic acid dibromide such as dodecane dicarboxylic acid dibromide, 1,16-hexadecanoic acid dibromide, cyclohexane dicarboxylic acid dibromide, cyclohexene dicarboxylic acid dibromide, isophthalic acid dibromide, Aromatic dicarboxylic acid bromide such as terephthalic acid dibromide. Among these, malonic acid dichloride, succinic acid dichloride, adipic acid dichloride, azelaic acid dichloride, sebacic acid dichloride, terephthalic acid dichloride, isophthalic acid dichloride, malonic acid dibromide, succinic acid dibromide, adipic acid dibromide, azelaic acid dichloride Bromide, sebacic acid dibromide, terephthalic acid dibromide, isophthalic acid dibromide and the like are preferred.

本発明における、実質的に水と不混和性の有機溶媒は、室温下で水への溶解度が5%以下の有機溶媒を意味し、一般にはケトン系、エーテル系およびエステル系有機溶媒から選択される。ケトン系有機溶媒としてはメチルイソブチルケトン、エチルイソブチルケトン、ジイソブチルケトン等が挙げられる。エーテル系有機溶媒としてはジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、シクロペンチルメチルエーテル等が挙げられる。また、エステル系有機溶媒としては、酢酸エチル、酢酸ブチル、酢酸アミル等が挙げられる。これらの中でも、反応選択率、一般式(1)で表される化合物の回収率、沸点等の観点からメチルイソブチルケトンが最も好ましい。   The organic solvent substantially immiscible with water in the present invention means an organic solvent having a solubility in water of 5% or less at room temperature, and is generally selected from ketone-based, ether-based and ester-based organic solvents. The Examples of the ketone organic solvent include methyl isobutyl ketone, ethyl isobutyl ketone, and diisobutyl ketone. Examples of ether organic solvents include diethyl ether, diisopropyl ether, dibutyl ether, cyclopentyl methyl ether and the like. Examples of the ester organic solvent include ethyl acetate, butyl acetate, amyl acetate and the like. Among these, methyl isobutyl ketone is most preferable from the viewpoints of reaction selectivity, recovery rate of the compound represented by the general formula (1), boiling point, and the like.

本発明の塩基性化合物としては、有機塩基および無機塩基が用いられる。有機塩基としてはピリジン、β−ピコリン、N−メチルモルホリン、ジメチルアニリン、ジエチルアニリン、トリメチルアミン、トリエチルアミン、トリブチルアミン等の有機アミンが挙げられる。無機塩基としては水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物、炭酸カリウム、炭酸ナトリウム等のアルカリ金属炭酸塩が用いられる。これらの中でも、価格面を考慮すれば無機塩基が好ましく、特に水酸化ナトリウム、水酸化カリウムが好ましい。これら無機塩基は固体のまま使用しても、水溶液として使用しても差し支えない。   As the basic compound of the present invention, an organic base and an inorganic base are used. Examples of the organic base include organic amines such as pyridine, β-picoline, N-methylmorpholine, dimethylaniline, diethylaniline, trimethylamine, triethylamine, and tributylamine. As the inorganic base, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkali metal carbonates such as potassium carbonate and sodium carbonate are used. Among these, an inorganic base is preferable from the viewpoint of price, and sodium hydroxide and potassium hydroxide are particularly preferable. These inorganic bases may be used as a solid or as an aqueous solution.

本発明において、一般式(1)で表される化合物は後述するように、一般式(2)で表されるカルボン酸ハライドに対して過剰に用いるが、工程(a)における部分中和に使用される塩基性化合物の量は、通常、反応に使用する一般式(2)で表されるカルボン酸ハライドの1.0〜1.5当量、好ましくは1.0〜1.2当量さらに好ましくは1.0〜1.05当量が採用される。この範囲未満では化学量論量より不足する。一方、この範囲を超えて使用した場合には収率が低下する傾向がある。   In the present invention, the compound represented by the general formula (1) is used excessively with respect to the carboxylic acid halide represented by the general formula (2) as described later, but used for partial neutralization in the step (a). The amount of the basic compound to be used is usually 1.0 to 1.5 equivalents, preferably 1.0 to 1.2 equivalents, more preferably 1.0 to 1.2 equivalents of the carboxylic acid halide represented by the general formula (2) used in the reaction. 1.0 to 1.05 equivalents are employed. Below this range, it is deficient than the stoichiometric amount. On the other hand, when it exceeds this range, the yield tends to decrease.

本発明において、一般式(1)で表される化合物を一般式(2)で表されるカルボン酸ハライドに対して4〜30倍、好ましくは5〜25倍、より好ましくは8〜20倍のモル比で反応させる。一般式(1)で表される化合物のモル比が上記範囲より低い場合は、オリゴエステルが主生成物となる。また、一般式(2)で表される化合物が上記範囲より高い場合、反応選択率に差が観られないばかりか、容積効率を悪化させる。   In the present invention, the compound represented by the general formula (1) is 4 to 30 times, preferably 5 to 25 times, more preferably 8 to 20 times the carboxylic acid halide represented by the general formula (2). The reaction is carried out at a molar ratio. When the molar ratio of the compound represented by the general formula (1) is lower than the above range, the oligoester is the main product. Moreover, when the compound represented by General formula (2) is higher than the said range, not only a difference is not looked at by reaction selectivity, but volume efficiency is deteriorated.

本発明の一般式(3)で表される化合物としては、例えば、一般式(4)で表される化合物が挙げられる。一般式(4)中のRは一般式(2)および一般式(3)中のRと同義である。   As a compound represented by General formula (3) of this invention, the compound represented by General formula (4) is mentioned, for example. R in general formula (4) has the same meaning as R in general formula (2) and general formula (3).

一般式(3)で表される化合物の具体例としては、マロン酸ビス(2−ヒドロキシフェニル)エステル、コハク酸ビス(2−ヒドロキシフェニル)エステル、フマル酸ビス(2−ヒドロキシフェニル)エステル、マレイン酸ビス(2−ヒドロキシフェニル)エステル、リンゴ酸ビス(2−ヒドロキシフェニル)エステル、イタコン酸ビス(2−ヒドロキシフェニル)エステル、シトラコン酸ビス(2−ヒドロキシフェニル)エステル、アジピン酸ビス(2−ヒドロキシフェニル)エステル、酒石酸ビス(2−ヒドロキシフェニル)エステル、アゼライン酸ビス(2−ヒドロキシフェニル)エステル、セバシン酸ビス(2−ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(2−ヒドロキシフェニル)エステル、テレフタル酸ビス(2−ヒドロキシフェニル)エステル、イソフタル酸ビス(2−ヒドロキシフェニル)エステル、マロン酸ビス(3−ヒドロキシフェニル)エステル、コハク酸ビス(3−ヒドロキシフェニル)エステル、フマル酸ビス(3−ヒドロキシフェニル)エステル、マレイン酸ビス(3−ヒドロキシフェニル)エステル、リンゴ酸ビス(3−ヒドロキシフェニル)エステル、イタコン酸ビス(3−ヒドロキシフェニル)エステル、シトラコン酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、酒石酸ビス(3−ヒドロキシフェニル)エステル、アゼライン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(3−ヒドロキシフェニル)エステル、テレフタル酸ビス(3−ヒドロキシフェニル)エステル、イソフタル酸ビス(3−ヒドロキシフェニル)エステル、マロン酸ビス(4−ヒドロキシフェニル)エステル、コハク酸ビス(4−ヒドロキシフェニル)エステル、フマル酸ビス(4−ヒドロキシフェニル)エステル、マレイン酸ビス(4−ヒドロキシフェニル)エステル、イタコン酸ビス(4−ヒドロキシフェニル)エステル、シトラコン酸ビス(4−ヒドロキシフェニル)エステル、アジピン酸ビス(4−ヒドロキシフェニル)エステル、酒石酸ビス(4−ヒドロキシフェニル)エステル、アゼライン酸ビス(4−ヒドロキシフェニル)エステル、セバシン酸ビス(4−ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(4−ヒドロキシフェニル)エステル、テレフタル酸ビス(4−ヒドロキシフェニル)エステル、イソフタル酸ビス(4−ヒドロキシフェニル)エステル等が挙げられる。   Specific examples of the compound represented by the general formula (3) include malonic acid bis (2-hydroxyphenyl) ester, succinic acid bis (2-hydroxyphenyl) ester, fumaric acid bis (2-hydroxyphenyl) ester, maleic acid. Acid bis (2-hydroxyphenyl) ester, malic acid bis (2-hydroxyphenyl) ester, itaconic acid bis (2-hydroxyphenyl) ester, citraconic acid bis (2-hydroxyphenyl) ester, adipic acid bis (2-hydroxy) Phenyl) ester, tartaric acid bis (2-hydroxyphenyl) ester, azelaic acid bis (2-hydroxyphenyl) ester, sebacic acid bis (2-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis (2-hydroxyphenyl) ester, terephthalic acid (2-hydroxyphenyl) ester, isophthalic acid bis (2-hydroxyphenyl) ester, malonic acid bis (3-hydroxyphenyl) ester, succinic acid bis (3-hydroxyphenyl) ester, fumarate bis (3-hydroxyphenyl) ) Ester, bis (3-hydroxyphenyl) maleate, bis (3-hydroxyphenyl) malate, bis (3-hydroxyphenyl) itaconate, bis (3-hydroxyphenyl) citraconic acid, bis adipate (3-hydroxyphenyl) ester, tartrate bis (3-hydroxyphenyl) ester, azelaic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis ( -Hydroxyphenyl) ester, terephthalic acid bis (3-hydroxyphenyl) ester, isophthalic acid bis (3-hydroxyphenyl) ester, malonic acid bis (4-hydroxyphenyl) ester, succinic acid bis (4-hydroxyphenyl) ester, Fumaric acid bis (4-hydroxyphenyl) ester, maleic acid bis (4-hydroxyphenyl) ester, itaconic acid bis (4-hydroxyphenyl) ester, citraconic acid bis (4-hydroxyphenyl) ester, adipic acid bis (4- Hydroxyphenyl) ester, tartrate bis (4-hydroxyphenyl) ester, azelaic acid bis (4-hydroxyphenyl) ester, sebacic acid bis (4-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis (4- Hydroxyphenyl) ester, terephthalic acid bis (4-hydroxyphenyl) ester, isophthalic acid bis (4-hydroxyphenyl) ester, and the like.

これらの中でも、マロン酸ビス(3−ヒドロキシフェニル)エステル、コハク酸ビス(3−ヒドロキシフェニル)エステル、フマル酸ビス(3−ヒドロキシフェニル)エステル、マレイン酸ビス(3−ヒドロキシフェニル)エステル、リンゴ酸ビス(3−ヒドロキシフェニル)エステル、イタコン酸ビス(3−ヒドロキシフェニル)エステル、シトラコン酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、酒石酸ビス(3−ヒドロキシフェニル)エステル、アゼライン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステル、シクロヘキサンジカルボン酸ビス(3−ヒドロキシフェニル)エステルが好ましく、特にコハク酸ビス(3−ヒドロキシフェニル)エステル、アジピン酸ビス(3−ヒドロキシフェニル)エステル、セバシン酸ビス(3−ヒドロキシフェニル)エステルが好ましい。   Among these, malonic acid bis (3-hydroxyphenyl) ester, succinic acid bis (3-hydroxyphenyl) ester, fumaric acid bis (3-hydroxyphenyl) ester, maleic acid bis (3-hydroxyphenyl) ester, malic acid Bis (3-hydroxyphenyl) ester, itaconic acid bis (3-hydroxyphenyl) ester, citraconic acid bis (3-hydroxyphenyl) ester, adipic acid bis (3-hydroxyphenyl) ester, tartrate bis (3-hydroxyphenyl) Esters, azelaic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester, cyclohexanedicarboxylic acid bis (3-hydroxyphenyl) ester are preferred, and in particular succinic acid bis (3-hydroxy Eniru) ester, adipic acid bis (3-hydroxyphenyl) ester, sebacic acid bis (3-hydroxyphenyl) ester are preferable.

本発明において、エステル化反応工程とは、前記一般式(1)で表される化合物と前記(2)で表されるカルボン酸ハライドとを反応させる工程である。   In the present invention, the esterification reaction step is a step of reacting the compound represented by the general formula (1) with the carboxylic acid halide represented by the above (2).

本発明のエステル化反応工程は、連続式でも回分式でも実施できる。回分式操作で実施する場合には、一般式(2)で表されるカルボン酸ハライドを滴下装入しつつ行なわれる。カルボン酸ハライドの供給速度は特に限定されず、エステル化工程の所望の温度が保持できる範囲で適宜決定すれば良い。使用する原料、塩基性化合物の種類、反応スケールにもよるが通常は2〜20時間程度で供給する。カルボン酸ハライドの滴下終了をもってエステル化反応工程を終了しても差し支えないし、場合によっては熟成時間を設けても良い。熟成時間は通常1〜10時間程度が採用される。   The esterification reaction step of the present invention can be carried out either continuously or batchwise. When carrying out by batch operation, it is carried out while dropping the carboxylic acid halide represented by the general formula (2). The supply rate of the carboxylic acid halide is not particularly limited, and may be determined as appropriate as long as the desired temperature in the esterification step can be maintained. Depending on the raw material used, the type of basic compound, and the reaction scale, it is usually supplied in about 2 to 20 hours. The esterification reaction step may be completed upon completion of the dropwise addition of the carboxylic acid halide, and in some cases, an aging time may be provided. The aging time is usually about 1 to 10 hours.

本発明のエステル化反応工程は、通常、−20℃〜50℃、好ましくは−10℃〜40℃、より好ましくは0℃〜30℃で行なわれる。この範囲より低い温度では反応速度が低下し時間を要する。この範囲より高い温度では、カルボン酸ハライドの種類にもよるが、オリゴマー分解工程終了時点での反応選択率が低下する傾向にある。   The esterification reaction step of the present invention is usually performed at -20 ° C to 50 ° C, preferably -10 ° C to 40 ° C, more preferably 0 ° C to 30 ° C. If the temperature is lower than this range, the reaction rate decreases and time is required. If the temperature is higher than this range, the reaction selectivity at the end of the oligomer decomposition step tends to decrease, depending on the type of carboxylic acid halide.

本発明のエステル化反応工程の濃度は、所望の温度範囲にて攪拌が十分に行なわれるだけの液性が確保できれば特に限定されず、工程(a)における一般式(1)で表される化合物の仕込み濃度で5重量%〜60重量%、好ましくは10〜55重量%、さらに好ましくは20〜50重量%で行なわれる。この範囲より低濃度では容積効率が低い。また、この範囲より高濃度では粘度が高く攪拌に不具合が生じる傾向にある。   The concentration of the esterification reaction step of the present invention is not particularly limited as long as liquidity sufficient to sufficiently stir in the desired temperature range can be secured, and the compound represented by the general formula (1) in step (a) 5 to 60% by weight, preferably 10 to 55% by weight, and more preferably 20 to 50% by weight. Volumetric efficiency is low at concentrations below this range. Further, if the concentration is higher than this range, the viscosity is high and the stirring tends to fail.

本発明の水洗工程とは、エステル化反応液を水で洗浄するものであり、エステル化反応工程で副生する塩を除去するために実施する。塩の残濃度が高い場合には、エステル化反応液は塩を含有するスラリーとなり、塩の沈降によって閉塞等の不具合を生じる場合がある。また高濃度の塩は、設備材質選定上の制約を生じる場合があるため、所望の材質に応じて塩濃度を低減する。   The water washing step of the present invention is to wash the esterification reaction solution with water, and is carried out to remove the salt produced as a by-product in the esterification reaction step. When the residual concentration of the salt is high, the esterification reaction solution becomes a slurry containing salt and may cause problems such as clogging due to sedimentation of the salt. Moreover, since a high concentration salt may cause restrictions in selecting the equipment material, the salt concentration is reduced according to the desired material.

本発明の水洗工程は、連続式および回分式の何れで実施しても構わない。水洗工程の段数あるいは抽出回数は、所望の水洗効果が得られればよく、特に制限されない。また水洗工程で使用する抽剤は、向流式および並流式の何れで用いても構わない。   The water washing step of the present invention may be carried out either continuously or batchwise. The number of steps in the water washing step or the number of extractions is not particularly limited as long as a desired water washing effect can be obtained. In addition, the extractant used in the water washing step may be used in either a countercurrent type or a cocurrent type.

水洗工程では、水または水を主成分とする抽剤を用いる。抽剤量は、エステル化反応混合物に対し、好ましくは0.05〜10質量倍、より好ましくは0.1〜5質量倍、さらに好ましくは0.5〜3質量倍の抽剤を用いる。抽剤量は、多過ぎると容積効率が悪化し、少な過ぎると十分な水洗効果が得られない。抽剤は、前記使用量の範囲内で任意に分割使用してもよい。   In the washing step, water or an extractant containing water as a main component is used. The amount of the extract is preferably 0.05 to 10 times, more preferably 0.1 to 5 times, and still more preferably 0.5 to 3 times the amount of the esterification reaction mixture. If the amount of the extract is too large, the volumetric efficiency is deteriorated, and if it is too small, a sufficient washing effect cannot be obtained. The extract may be arbitrarily divided and used within the range of the use amount.

抽剤中には、目的とする塩の除去が達成される限りは、プロセスの必要に応じて、本製造方法で使用及び/又は生成する物質を、水以外の成分として任意の組成で含有することができる。また抽出液については、必要に応じて原料や副生物の回収を行うことができる。   As long as the removal of the target salt is achieved, the extract contains a substance used and / or generated in the present production method in any composition as a component other than water as required by the process. be able to. Moreover, about an extract, a raw material and a by-product can be collect | recovered as needed.

本発明におけるオリゴマー分解工程とは、エステル化反応液をエステル化反応時の温度よりも高い温度で熱処理することである。   The oligomer decomposition step in the present invention is to heat-treat the esterification reaction solution at a temperature higher than the temperature during the esterification reaction.

系内に水を含んだままでオリゴマー分解工程に進んでしまうと生成物の加水分解が懸念されるため、水洗工程後には、水を除去する必要がある。多くの場合、使用する実質的に水と不混和性の有機溶媒は水と共沸組成を有しており、公知の共沸脱水操作にて、留出液より分離した有機溶媒を系内に戻しつつ水を留去する。通常、系内の水分濃度が2重量%以下、好ましくは1重量%以下を脱水の目安とする。   If the process proceeds to the oligomer decomposition step with water still contained in the system, there is a concern about hydrolysis of the product. Therefore, it is necessary to remove water after the water washing step. In many cases, the substantially water-immiscible organic solvent to be used has an azeotropic composition with water, and the organic solvent separated from the distillate in the azeotropic dehydration operation is put into the system. While returning, water is distilled off. Usually, the water concentration in the system is 2% by weight or less, preferably 1% by weight or less as a guide for dehydration.

本発明において、オリゴマー分解工程は、通常、105℃〜140℃、好ましくは110℃〜130℃、さらに好ましくは115℃〜125℃で行なわれる。この範囲より低い温度ではオリゴマー分解速度が遅く時間を要する。この範囲より高い温度では、生成物の種類にもよるが、その骨格バランスが崩れる傾向があり、また、熱履歴により副生物が観られる事もある。   In the present invention, the oligomer decomposition step is usually performed at 105 to 140 ° C, preferably 110 to 130 ° C, more preferably 115 to 125 ° C. At temperatures lower than this range, the oligomer decomposition rate is slow and requires time. At temperatures higher than this range, depending on the type of product, the skeletal balance tends to be lost, and by-products may be observed due to thermal history.

本発明のオリゴマー分解工程はエステル化反応混合物(場合により脱水したもの)をそのまま使用しても良いし、有機溶媒を分離した混合物を用いても良い。使用する有機溶媒種および有機溶媒の使用量によっては、圧力条件によって、所望のオリゴマー分解温度に達しない場合もある事から、有機溶媒を分離した後、あるいは分離しながらオリゴマー分解温度に設定してもよい。有機溶媒を分離する場合には、前述の共沸脱水操作と同様の脱水効果が得られるメリットもある。有機溶媒の分離操作は、連続式でも回分式でもよい。回分式操作であれば、減圧度一定で内温を徐々に上昇しつつ留去しても良いし、内温が一定となるように減圧度を調整しつつ留去しても良い。   In the oligomer decomposition step of the present invention, the esterification reaction mixture (dehydrated in some cases) may be used as it is, or a mixture obtained by separating an organic solvent may be used. Depending on the type of organic solvent used and the amount of organic solvent used, depending on the pressure conditions, the desired oligomer decomposition temperature may not be reached. Also good. In the case of separating the organic solvent, there is an advantage that the same dehydration effect as that in the azeotropic dehydration operation described above can be obtained. The separation operation of the organic solvent may be a continuous type or a batch type. In the case of batch operation, the internal temperature may be distilled off while gradually increasing at a constant pressure reduction, or may be distilled off while adjusting the pressure reduction so that the internal temperature becomes constant.

本発明のオリゴマー分解工程は、化合物の種類や温度にもよるが、通常、2〜20時間程度行なう。また、有機溶媒を留去しながら昇温する場合には、その時間も含める。この範囲より短い時間ではオリゴマー分解が不十分で製品組成がオリゴマーリッチとなる。この範囲より長時間の熱処理は組成変化が観られないので無駄になると共に、場合によっては熱履歴により副生物の生成が観られる事もある。   The oligomer decomposition step of the present invention is usually performed for about 2 to 20 hours, although it depends on the kind and temperature of the compound. When the temperature is raised while distilling off the organic solvent, the time is also included. In a time shorter than this range, oligomer decomposition is insufficient and the product composition becomes oligomer rich. Heat treatment longer than this range is wasted because no composition change is observed, and in some cases, by-product formation may be observed due to thermal history.

本発明において有機溶媒を除去せずにオリゴマー分解工程を行なった場合、そのまま次工程(d)に進んでも構わないし、有機溶媒を除去した後に工程(d)に進んでも良い。使用している有機溶媒の量にもよるが、貧溶媒である水に対する比率が高い場合には晶析工程に悪影響を及ぼす可能性があり、濃縮等により量を削減した後に工程(d)に進む事が多い。濃縮後、混合液中の有機溶媒の質量濃度としては、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下、を濃縮の目安とすれば良い。   In the present invention, when the oligomer decomposition step is performed without removing the organic solvent, the process may proceed to the next step (d) as it is, or may proceed to the step (d) after removing the organic solvent. Depending on the amount of the organic solvent used, if the ratio of water to the poor solvent is high, the crystallization process may be adversely affected. There are many things to proceed. After concentration, the mass concentration of the organic solvent in the mixed solution is preferably 20% or less, more preferably 10% or less, and even more preferably 5% or less, as a standard for concentration.

本発明の工程(d)は、オリゴマー分解工程により反応が完結した混合液を水を主成分とする貧溶媒と接触させて生成物を得る晶析工程である。基本的には生成物である一般式(3)で表される化合物の貧溶媒であると共に、原料である一般式(1)で表される化合物の良溶媒であれば良く、通常は水が用いられる。貧溶媒には、結晶化が達成される限りはプロセスの必要に応じて、本発明で使用及び/又は生成する物質を、水以外の成分として任意の組成で含有してもよい。   The step (d) of the present invention is a crystallization step for obtaining a product by bringing the mixed solution whose reaction is completed in the oligomer decomposition step into contact with a poor solvent containing water as a main component. Basically, it may be a poor solvent for the compound represented by the general formula (3) as a product and a good solvent for the compound represented by the general formula (1) as a raw material. Used. As long as crystallization is achieved, the poor solvent may contain the material used and / or produced in the present invention in any composition as a component other than water, as required by the process.

本発明における貧溶媒量は、貧溶媒中に含有する水を基準として決定し、反応混合物に対して、好ましくは1重量倍〜50重量倍、より好ましくは2重量倍〜10重量倍、さらに好ましくは3重量倍〜5重量倍を使用する。この範囲以下では、結晶化が不十分となって晶析工程収率が低下するため効率が悪化する。またこの範囲以上では、貧溶媒が過剰となって容積効率が悪化する。   The amount of the poor solvent in the present invention is determined on the basis of the water contained in the poor solvent, and is preferably 1 to 50 times, more preferably 2 to 10 times, and even more preferably the reaction mixture. Use 3 to 5 times by weight. Below this range, crystallization is inadequate and the crystallization process yield is reduced, so the efficiency deteriorates. Above this range, the poor solvent becomes excessive and the volumetric efficiency deteriorates.

本発明において、反応混合物を貧溶媒と接触させる際の温度は通常、0℃〜40℃、好ましくは0℃〜25℃が採用される。この範囲より高い温度では、生成物の加水分解が懸念される。   In the present invention, the temperature at which the reaction mixture is brought into contact with a poor solvent is usually 0 ° C. to 40 ° C., preferably 0 ° C. to 25 ° C. At temperatures higher than this range, there is a concern about the hydrolysis of the product.

本発明において、反応混合物と貧溶媒である水を接触させる方法は特に限定されず、所望の温度を維持できれば良い。反応混合物は大半の溶媒が留去され、原料である一般式(1)で表される化合物に生成物が溶解している状態であるため、化合物種類にもよるがオリゴマー分解温度以下では流動性を維持できない場合が多い。従って本発明では、所定温度に加温した反応混合物を、所望の温度に設定した貧溶媒と連続的に接触させ、連続的に晶析する操作を実施する。   In the present invention, the method for bringing the reaction mixture into contact with water which is a poor solvent is not particularly limited as long as the desired temperature can be maintained. The reaction mixture is in a state in which most of the solvent is distilled off and the product is dissolved in the compound represented by the general formula (1) as a raw material. Often cannot be maintained. Therefore, in the present invention, the reaction mixture heated to a predetermined temperature is continuously brought into contact with a poor solvent set at a desired temperature, and an operation for continuous crystallization is performed.

晶析工程の滞留時間は、好ましくは0.5時間〜16時間、より好ましくは1時間〜6時間で実施する。この範囲より時間が短い場合、結晶化が十分にできず、装置への結晶付着や配管の閉塞を生じる場合がある。この範囲より長時間かけると、装置容積が過大となる。   The residence time in the crystallization step is preferably 0.5 to 16 hours, more preferably 1 to 6 hours. When the time is shorter than this range, crystallization cannot be sufficiently performed, and the crystal may adhere to the apparatus or the piping may be blocked. If the time is longer than this range, the device volume becomes excessive.

晶析工程で用いる装置は、貧溶媒と反応混合物を所定の滞留時間で接触・混合するため、攪拌槽を使用することが好ましい。撹拌槽の回転数は、特に限定されないが、晶析によって生成するスラリーが良好に流動し、かつ、結晶の破砕が過度に生じない条件に設定すればよい。   The apparatus used in the crystallization process preferably uses a stirring tank in order to contact and mix the poor solvent and the reaction mixture in a predetermined residence time. Although the rotation speed of a stirring tank is not specifically limited, What is necessary is just to set to the conditions which the slurry produced | generated by crystallization flows favorably and the crushing of a crystal | crystallization does not produce excessively.

本発明では、驚くべきことに、連続式の晶析操作を実施することによって、顕著に粒径が増大し、かつ、粒径および粒子形状の揃った結晶を得ることができる。粒径の増大によって、後工程で実施する固液分離性の向上や、製品中の微粉含有量が低減されるため、本発明では生産性および品質を顕著に向上することができる。連続式の晶析操作において得られる粒径が増大する理由は、液相中の一般式(1)で表される原料化合物の濃度に由来すると考えられる。回分式の晶析操作では、液相中の一般式(1)で表される原料化合物の濃度は、原料混合物の供給に伴って増大し、晶析操作の開始時と終了時の間で変化するのに対し、連続式の晶析操作では、液相中の一般式(1)で表される原料化合物の濃度が一定に保たれる。   Surprisingly, in the present invention, by carrying out a continuous crystallization operation, it is possible to obtain crystals having a significantly increased particle size and a uniform particle size and particle shape. By increasing the particle size, the solid-liquid separation performance performed in the post-process and the fine powder content in the product are reduced. Therefore, in the present invention, productivity and quality can be significantly improved. The reason why the particle size obtained in the continuous crystallization operation is increased is considered to be derived from the concentration of the raw material compound represented by the general formula (1) in the liquid phase. In the batch crystallization operation, the concentration of the raw material compound represented by the general formula (1) in the liquid phase increases with the supply of the raw material mixture, and changes between the start and end of the crystallization operation. On the other hand, in the continuous crystallization operation, the concentration of the raw material compound represented by the general formula (1) in the liquid phase is kept constant.

本発明において、晶析工程で得られるスラリーは、固液分離工程により製品の単離を行なう。固液分離工程は、濾過、遠心分離等などから選択することが好ましい。固液分離工程は、回分式でも連続式でも構わない。   In the present invention, the slurry obtained in the crystallization step is subjected to product isolation by a solid-liquid separation step. The solid-liquid separation step is preferably selected from filtration, centrifugation and the like. The solid-liquid separation step may be a batch type or a continuous type.

本発明において、固液分離操作により発生する分離液には、原料として過剰に使用した一般式(1)で表される化合物が含まれているため、反応で用いたのと同一の実質的に水と不混和性の有機溶媒を用いて、抽出回収することが好ましい。抽出操作は、通常は連続式で多段抽出操作を実施する。   In the present invention, the separation liquid generated by the solid-liquid separation operation contains the compound represented by the general formula (1) used excessively as a raw material, so that it is substantially the same as that used in the reaction. It is preferable to extract and recover using an organic solvent immiscible with water. The extraction operation is usually a continuous multistage extraction operation.

本発明において固液分離操作により単離した湿体は、常圧または減圧下で乾燥する。乾燥温度は特に限定されないが20℃〜120℃、好ましくは40℃〜80℃で行なう事が多い。この範囲より高い温度では生成物の加水分解が懸念される。回分式の乾燥操作では、乾燥初期〜後半にかけて連続的あるいは段階的に温度を上げつつ乾燥する事で、加水分解を抑制しつつ乾燥時間を短くする事ができる。また乾燥工程は、連続式の乾燥装置を用いることもできる。   In the present invention, the wet body isolated by the solid-liquid separation operation is dried under normal pressure or reduced pressure. The drying temperature is not particularly limited, but is often 20 ° C to 120 ° C, preferably 40 ° C to 80 ° C. If the temperature is higher than this range, the product may be hydrolyzed. In the batch-type drying operation, drying time can be shortened while suppressing hydrolysis by increasing the temperature continuously or stepwise from the initial stage to the latter half of the drying process. Moreover, a continuous drying apparatus can also be used for a drying process.

本発明において得られた乾燥固体は再結晶による精製や、カラム精製を行なっても良い。   The dried solid obtained in the present invention may be purified by recrystallization or column purification.

本発明において、一般式(1)で表される化合物として例えばレゾルシンを用いた場合には、一般式(4)で表される化合物が得られるが、一般式(5)で表されるオリゴエステル体も含まれる事がある。通常、一般式(4)で表される化合物が60〜100重量%、一般式(5)におけるn=2の化合物が0〜20重量%、一般式(5)におけるn=3の化合物が0〜10重量%、一般式(5)におけるn=4〜6の化合物の総和が10重量%程度である量を含有する。これらの比率は一般式(2)で表されるカルボン酸ハライドとレゾルシンのモル比を変化させる事でコントロール可能である。即ち、カルボン酸ハライドに対するレゾルシンのモル比を高くするほど、一般式(5)で表されるオリゴエステル体の比率は低下する。これらオリゴエステル体を含んでいても、前記一般式(3)で表される化合物同様の方法により、これらを含む反応混合物から単離することができる。   In the present invention, when, for example, resorcin is used as the compound represented by the general formula (1), a compound represented by the general formula (4) is obtained, and an oligoester represented by the general formula (5) is obtained. The body may also be included. Usually, the compound represented by the general formula (4) is 60 to 100% by weight, the compound of n = 2 in the general formula (5) is 0 to 20% by weight, and the compound of n = 3 in the general formula (5) is 0. 10% by weight, and the total amount of the compounds of n = 4-6 in the general formula (5) is about 10% by weight. These ratios can be controlled by changing the molar ratio of the carboxylic acid halide and resorcin represented by the general formula (2). That is, the higher the molar ratio of resorcin to carboxylic acid halide, the lower the ratio of the oligoester represented by the general formula (5). Even if these oligoesters are contained, they can be isolated from the reaction mixture containing them by the same method as the compound represented by the general formula (3).

以下に、実施例を上げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

[実施例1]
1)脱MIBKマスの製造例
反応器(撹拌槽、内容積500L)にて、レゾルシン(以下、RSと略)176kgをメチルイソブチルケトン(以下、MIBKと略)176kgに溶解し、30.6質量%のNaOH水溶液38.7kgを添加して部分中和した。その後、11℃まで冷却し、10〜15℃を維持しながら塩化アジポイル(以下、ADCと略)27.8kg(純度95.6%)を6時間かけて滴下しつつエステル化反応を行い、同温度で1時間熟成を行った。
[Example 1]
1) Production example of de-MIBK mass In a reactor (stirring tank, internal volume 500 L), 176 kg of resorcinol (hereinafter abbreviated as RS) was dissolved in 176 kg of methyl isobutyl ketone (hereinafter abbreviated as MIBK) and 30.6 masses. Partial neutralization was performed by adding 38.7 kg of an aqueous NaOH solution. Thereafter, the mixture was cooled to 11 ° C., and while maintaining the temperature at 10 to 15 ° C., 27.8 kg (purity: 95.6%) of adipoyl chloride was added dropwise over 6 hours to carry out the esterification reaction. Aging was carried out at temperature for 1 hour.

次いで、水52.8kgを添加し、35〜40℃を維持しながら、1時間撹拌を行い、1時間静置して分液操作を行った。下層の水層を抜出後、再度、水52.8kgを添加し、同様の操作を2回繰り返した。   Subsequently, 52.8 kg of water was added, stirring was performed for 1 hour while maintaining 35 to 40 ° C., and the mixture was allowed to stand for 1 hour to perform a liquid separation operation. After extracting the lower aqueous layer, 52.8 kg of water was added again, and the same operation was repeated twice.

その後、撹拌槽を減圧(40mmHg前後)し、撹拌槽のジャケットを温水で加熱することで昇温し、共沸脱水を行った。約20時間後、系内の水分濃度は0.3%となり、共沸脱水操作を終了した。その後、昇温しつつ減圧下(30mmHg前後)でMIBKの留去を行った。約6時間後に内温が120℃に達し、同温度で1時間熟成を行い、脱MIBKマス(アジピン酸ビス(3−ヒドロキシフェニル)エステルを含有するRS溶融液)177kgを得た。脱MIBKマス中のMIBK濃度は3質量%であった。得られた脱MIBKマスは、中継槽に移液して保管した。中継槽は、RSの凝固を防止するため110〜120℃で保温した。   Thereafter, the stirring tank was depressurized (around 40 mmHg), and the temperature of the stirring tank jacket was increased by heating with warm water to perform azeotropic dehydration. After about 20 hours, the water concentration in the system became 0.3%, and the azeotropic dehydration operation was completed. Then, MIBK was distilled off under reduced pressure (around 30 mmHg) while raising the temperature. About 6 hours later, the internal temperature reached 120 ° C., and aging was carried out at the same temperature for 1 hour to obtain 177 kg of de-MIBK mass (RS melt containing adipic acid bis (3-hydroxyphenyl) ester). The MIBK concentration in the de-MIBK mass was 3% by mass. The obtained MIBK mass was transferred to a relay tank and stored. The relay tank was kept at 110-120 ° C. to prevent RS from solidifying.

2)連続晶析工程
晶析機(撹拌槽、内容積230L)に5℃の冷水121kgを装入し、撹拌を行った。得られた脱MIBKマス(120℃)27.7kgを、流量7.2kg/hにて晶析機に供給して回分式の晶析操作を行い、アジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーを得た。次いで、冷水(5℃)を流量31.4kg/h、脱MIBKマス(120℃)を流量7.2kg/hにて各々連続的に供給し、連続晶析操作を実施した。撹拌槽の滞留液量は滞留時間が3.3時間となるように設定した。連続運転中、晶析機の内温は13〜15℃に維持された。
2) Continuous crystallization process 121 kg of 5 ° C cold water was charged into a crystallizer (stirring tank, internal volume: 230 L) and stirred. The obtained de MIBK mass (120 ° C.) 27.7 kg was supplied to a crystallizer at a flow rate of 7.2 kg / h to perform batch-type crystallization, and adipic acid bis (3-hydroxyphenyl) ester A slurry was obtained. Subsequently, cold water (5 ° C.) was continuously supplied at a flow rate of 31.4 kg / h and de-MIBK mass (120 ° C.) was continuously supplied at a flow rate of 7.2 kg / h, and a continuous crystallization operation was performed. The amount of staying liquid in the stirring tank was set so that the staying time was 3.3 hours. During the continuous operation, the internal temperature of the crystallizer was maintained at 13 to 15 ° C.

3)濾過工程
晶析機から連続的に排出されるアジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーは、一旦、中継槽に保管後、加圧濾過器(濾過面積0.2m2)を用いて固液分離操作を行った。濾過速度(濾過面積[m2]当たりの濾液平均流量[kg/h])は、25,000kg/h・m2を示し、極めて良好であった。濾過後、さらに水でリンス操作を行い、含水率38%のウェットケーキを得た。得られたウェットケーキを光学顕微鏡で確認した結果、粒径700〜1000μmを有する真球状粒子であることが分かった。
3) Filtration process The slurry of bis (3-hydroxyphenyl) adipate discharged continuously from the crystallizer is temporarily stored in a relay tank and then used with a pressure filter (filtration area 0.2 m2). Solid-liquid separation operation was performed. The filtration rate (filtrate average flow rate [kg / h] per filtration area [m2]) was 25,000 kg / h · m2, which was very good. After filtration, a rinsing operation was further performed with water to obtain a wet cake having a water content of 38%. As a result of confirming the obtained wet cake with an optical microscope, it was found to be true spherical particles having a particle size of 700 to 1000 μm.

4)乾燥工程
濾過工程で得たウェットケーキを回転撹拌式乾燥機(コニカル乾燥機)に装入し、減圧下(40mmHg前後)にてジャケット温度70℃で乾燥操作を行った。約20時間後、アジピン酸ビス(3−ヒドロキシフェニル)エステル中の水分は0.2質量%となり、乾燥操作を終了した。アジピン酸ビス(3−ヒドロキシフェニル)エステルの収量は、脱MIBKマス供給量100kg当たり、アジピン酸ビス(3−ヒドロキシフェニル)エステルの乾燥品として26kgであった(粗収率88%)。
4) Drying Step The wet cake obtained in the filtration step was placed in a rotary stirring type dryer (conical dryer) and dried at a jacket temperature of 70 ° C. under reduced pressure (around 40 mmHg). After about 20 hours, the water content in the bis (3-hydroxyphenyl) adipate was 0.2% by mass, and the drying operation was completed. The yield of bis (3-hydroxyphenyl) adipate was 26 kg as a dried product of bis (3-hydroxyphenyl) adipate per 100 kg of de-MIBK mass feed (crude yield 88%).

[比較例1]
1)バッチ晶析工程
晶析機(撹拌槽、内容積1000L)に冷水(5℃)417kgを装入し、撹拌を行った。実施例1と同様の操作を繰り返し、得られた脱MIBKマス(120℃)101kgを、30分かけて晶析機に供給し、回分式の晶析操作を行ってアジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーを得た。晶析過程で、内温は5℃から14℃に上昇した。
[Comparative Example 1]
1) Batch Crystallization Step 417 kg of cold water (5 ° C.) was charged into a crystallizer (stirring tank, internal volume 1000 L) and stirred. The same operation as in Example 1 was repeated, and 101 kg of the obtained MIBK mass (120 ° C.) obtained was supplied to the crystallizer over 30 minutes, and batch crystallization operation was performed to obtain bis (3-hydroxyadipate). A slurry of phenyl) ester was obtained. During the crystallization process, the internal temperature rose from 5 ° C to 14 ° C.

2)濾過工程
晶析機から連続的に排出されるアジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーは、一旦、中継槽に保管後、加圧濾過器(濾過面積0.2m2)を用いて固液分離操作を行った。濾過速度(濾過面積[m2]当たりの濾液平均流量[kg/h])は、7,000kg/h・m2を示した。濾過後、さらに水でリンス操作を行い、含水率51%のウェットケーキを得た。得られたウェットケーキを光学顕微鏡で確認した結果、粒径10μmオーダーの不定形粒子であることが分かった。
2) Filtration process The slurry of bis (3-hydroxyphenyl) adipate discharged continuously from the crystallizer is temporarily stored in a relay tank and then used with a pressure filter (filtration area 0.2 m2). Solid-liquid separation operation was performed. The filtration rate (filtrate average flow rate [kg / h] per filtration area [m2]) was 7,000 kg / h · m2. After the filtration, a rinsing operation was further performed with water to obtain a wet cake having a water content of 51%. As a result of confirming the obtained wet cake with an optical microscope, it was found to be amorphous particles having a particle size of the order of 10 μm.

[実施例2]
実施例1と同様の操作を繰り返して製造した脱MIBKマスを用い、以下の工程を実施した。
1)連続晶析工程
晶析機(撹拌槽、内容積230L)に5℃の冷水117kgを装入し、撹拌を行った。実施例1と同様の操作を繰り返し、得られた脱MIBKマス(120℃)31.3kgを、流量19.0kg/hにて晶析機に供給して回分式の晶析操作を行い、アジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーを得た。次いで、冷水(5℃)を流量71.1kg/h、脱MIBKマス(120℃)を流量19.0kg/hにて各々連続的に供給し、連続晶析操作を実施した。撹拌槽の滞留液量は滞留時間が1.5時間となるように設定した。連続運転中、撹拌槽の内温は13〜15℃に維持された。
[Example 2]
The following steps were carried out using a de- MIBK mass produced by repeating the same operation as in Example 1.
1) Continuous crystallization process 117 kg of 5 ° C cold water was charged into a crystallizer (stirring tank, internal volume 230 L) and stirred. The same operation as in Example 1 was repeated, and 31.3 kg of the obtained MIBK mass (120 ° C.) obtained was supplied to the crystallizer at a flow rate of 19.0 kg / h to perform batch crystallization operation. A slurry of acid bis (3-hydroxyphenyl) ester was obtained. Next, cold water (5 ° C.) was continuously supplied at a flow rate of 71.1 kg / h and de-MIBK mass (120 ° C.) was supplied at a flow rate of 19.0 kg / h, and continuous crystallization operation was performed. The amount of staying liquid in the stirring tank was set so that the staying time was 1.5 hours. During the continuous operation, the internal temperature of the stirring tank was maintained at 13 to 15 ° C.

2)連続固液分離工程
晶析機から連続的に排出されるアジピン酸ビス(3−ヒドロキシフェニル)エステルのスラリーは、一旦、中継槽に保管後、連続式遠心分離機に流量1.1m3/hで供給した。遠心分離機ではアジピン酸ビス(3−ヒドロキシフェニル)エステルの結晶と濾液が、連続的に分離され、含水率20%のウェットケーキを得た。
2) Continuous solid-liquid separation step The slurry of bis (3-hydroxyphenyl) adipate discharged continuously from the crystallizer is temporarily stored in a relay tank and then flowed to a continuous centrifuge at a flow rate of 1.1 m3 / supplied in h. In the centrifuge, the crystals of adipic acid bis (3-hydroxyphenyl) ester and the filtrate were continuously separated to obtain a wet cake having a water content of 20%.

Claims (3)

(a)実質的に水と不混和性の有機溶媒に一般式(1)で表される化合物
Figure 2008239535
を溶解または懸濁し、塩基性化合物で部分中和する工程、
(b)続いて一般式(2)で表されるカルボン酸ハライド
Figure 2008239535
(式中Rは炭素数1〜16の脂肪族基、2価の芳香族基を表し、Xはハロゲン原子を表す。)
を滴下装入しつつ反応させる工程、
(c)エステル化反応時の温度よりも高い温度で熱処理する工程、
(d)前記(c)で得られた混合物を水と接触させて連続的に晶析し生成物を析出させる工程
からなる事を特徴とする一般式(3)で表される化合物の製造方法。
Figure 2008239535
(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表す。)
(A) A compound represented by the general formula (1) in an organic solvent substantially immiscible with water
Figure 2008239535
Dissolving or suspending and partially neutralizing with a basic compound,
(B) Subsequently, a carboxylic acid halide represented by the general formula (2)
Figure 2008239535
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group, and X represents a halogen atom.)
A step of reacting while charging dropwise,
(C) a step of heat treatment at a temperature higher than the temperature at the time of the esterification reaction,
(D) A process for producing a compound represented by the general formula (3), which comprises a step of bringing the mixture obtained in (c) above into contact with water and continuously crystallizing to precipitate a product. .
Figure 2008239535
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group.)
一般式(3)で表される化合物が、下記一般式(4)
Figure 2008239535
(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表す。)
で表される化合物である請求項1に記載の製造方法。
The compound represented by the general formula (3) is represented by the following general formula (4).
Figure 2008239535
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group.)
The production method according to claim 1, wherein the compound is represented by the formula:
一般式(4)で表される化合物中に、下記一般式(5)で表される化合物が0〜30%含まれる事を特徴とする請求項1〜2のいずれかに記載の製造方法。
Figure 2008239535
(式中、Rは炭素数1〜16の脂肪族基、2価の芳香族基を表し、nは2〜6の整数を示す。)
The production method according to claim 1, wherein the compound represented by the general formula (4) contains 0 to 30% of the compound represented by the following general formula (5).
Figure 2008239535
(In the formula, R represents an aliphatic group having 1 to 16 carbon atoms and a divalent aromatic group, and n represents an integer of 2 to 6).
JP2007081070A 2007-03-27 2007-03-27 Continuous production method of dihydroxybenzene derivative Active JP5236887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081070A JP5236887B2 (en) 2007-03-27 2007-03-27 Continuous production method of dihydroxybenzene derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081070A JP5236887B2 (en) 2007-03-27 2007-03-27 Continuous production method of dihydroxybenzene derivative

Publications (2)

Publication Number Publication Date
JP2008239535A true JP2008239535A (en) 2008-10-09
JP5236887B2 JP5236887B2 (en) 2013-07-17

Family

ID=39911295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081070A Active JP5236887B2 (en) 2007-03-27 2007-03-27 Continuous production method of dihydroxybenzene derivative

Country Status (1)

Country Link
JP (1) JP5236887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362703B2 (en) * 2008-03-19 2013-12-11 三井化学株式会社 Method for producing dihydroxybenzene derivative
EP2960278A1 (en) * 2014-06-23 2015-12-30 LANXESS Deutschland GmbH Adhesive systems for rubber mixtures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287113A (en) * 1976-01-13 1977-07-20 Mitsubishi Gas Chem Co Inc Production of ester
JPS58108527A (en) * 1981-12-10 1983-06-28 チバ・ガイギ−・ア−ゲ− Photographic material
JPH07118621A (en) * 1993-10-19 1995-05-09 Sumitomo Chem Co Ltd Adhesive and its application to rubber
JPH11158140A (en) * 1997-11-26 1999-06-15 Sumitomo Chem Co Ltd Production of methionine
WO2005087704A1 (en) * 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. Compound and composition containing the same
JP2008127286A (en) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc Method for producing dihydroxybenzene derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5287113A (en) * 1976-01-13 1977-07-20 Mitsubishi Gas Chem Co Inc Production of ester
JPS58108527A (en) * 1981-12-10 1983-06-28 チバ・ガイギ−・ア−ゲ− Photographic material
JPH07118621A (en) * 1993-10-19 1995-05-09 Sumitomo Chem Co Ltd Adhesive and its application to rubber
JPH11158140A (en) * 1997-11-26 1999-06-15 Sumitomo Chem Co Ltd Production of methionine
WO2005087704A1 (en) * 2004-03-12 2005-09-22 Mitsui Chemicals, Inc. Compound and composition containing the same
JP2008127286A (en) * 2006-11-16 2008-06-05 Mitsui Chemicals Inc Method for producing dihydroxybenzene derivative

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5362703B2 (en) * 2008-03-19 2013-12-11 三井化学株式会社 Method for producing dihydroxybenzene derivative
EP2960278A1 (en) * 2014-06-23 2015-12-30 LANXESS Deutschland GmbH Adhesive systems for rubber mixtures

Also Published As

Publication number Publication date
JP5236887B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
CN105531245B (en) Method for purifying the acid composition comprising the carboxylic acid of 2 formylfuran 5 and 2,5 furan dicarboxylic acids
JP2002502838A5 (en)
JP6269508B2 (en) Process for producing purified amine compound
CN106699831B (en) A method of liquid crystal cholesterol is prepared using lanolin using complexometry
JP5236887B2 (en) Continuous production method of dihydroxybenzene derivative
JP2007169238A (en) Method for purifying 6,6&#39;-(ethylenedioxy)di-2-naphthoic acid
JP2011513297A (en) Production method of bronopol
JP5000986B2 (en) Method for producing dihydroxybenzene derivative
JP2001002416A (en) Production of ethylene glycol soluble germanium dioxide and dissolving method thereof
JP3958948B2 (en) Production method of polyester raw material
JP5362703B2 (en) Method for producing dihydroxybenzene derivative
JP2019081742A (en) Manufacturing method of 2,6-naphthalenedicarboxylic acid
ES2386079T3 (en) Procedure for the preparation of alkali metal or alkaline earth metal tricheomethane
JP5037984B2 (en) Method for producing resorcin diester compound
US4720570A (en) Rate of crystallizing diphenylisophthalate/diphenylterephthalate monomer
MX2008015260A (en) Process for preparing triallyl cyanurate.
JP4220619B2 (en) Method for producing indene carbonate
JP2006257026A (en) Method for producing 4,4&#39;-bisphenol f of high purity and bisphenol f of general-purpose purity simultaneously
CN115636769B (en) Preparation process of 4-carbamoyl benzoyl chloride and process for preparing 4-cyano benzoyl chloride by using same
JP2001131115A (en) Method of manufacturing for adipate of 1,3- bis(aminomethyl)cyclohexane
JP3927835B2 (en) Process for producing iodinated aromatic compound diacetate
WO2023036948A1 (en) Process for purifying meso-lactide
EP1468987B1 (en) Process for producing 2,4&#39;-dihydroxydiphenyl sulfone
CN114206834A (en) Method for purifying 4, 4&#39; -dichlorodiphenyl sulfone
JPH09208510A (en) Production of 4,4&#39;-bis(hydroxymethyl)diphenyl

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090716

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250